miga-base 0.4.3.0 → 0.5.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (120) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +1 -1
  3. data/lib/miga/cli.rb +43 -223
  4. data/lib/miga/cli/action/add.rb +91 -62
  5. data/lib/miga/cli/action/classify_wf.rb +97 -0
  6. data/lib/miga/cli/action/daemon.rb +14 -10
  7. data/lib/miga/cli/action/derep_wf.rb +95 -0
  8. data/lib/miga/cli/action/doctor.rb +83 -55
  9. data/lib/miga/cli/action/get.rb +68 -52
  10. data/lib/miga/cli/action/get_db.rb +206 -0
  11. data/lib/miga/cli/action/index_wf.rb +31 -0
  12. data/lib/miga/cli/action/init.rb +115 -190
  13. data/lib/miga/cli/action/init/daemon_helper.rb +124 -0
  14. data/lib/miga/cli/action/ls.rb +20 -11
  15. data/lib/miga/cli/action/ncbi_get.rb +199 -157
  16. data/lib/miga/cli/action/preproc_wf.rb +46 -0
  17. data/lib/miga/cli/action/quality_wf.rb +45 -0
  18. data/lib/miga/cli/action/stats.rb +147 -99
  19. data/lib/miga/cli/action/summary.rb +10 -4
  20. data/lib/miga/cli/action/tax_dist.rb +61 -46
  21. data/lib/miga/cli/action/tax_test.rb +46 -39
  22. data/lib/miga/cli/action/wf.rb +178 -0
  23. data/lib/miga/cli/base.rb +11 -0
  24. data/lib/miga/cli/objects_helper.rb +88 -0
  25. data/lib/miga/cli/opt_helper.rb +160 -0
  26. data/lib/miga/daemon.rb +7 -4
  27. data/lib/miga/dataset/base.rb +5 -5
  28. data/lib/miga/project/base.rb +4 -4
  29. data/lib/miga/project/result.rb +2 -1
  30. data/lib/miga/remote_dataset/base.rb +5 -5
  31. data/lib/miga/remote_dataset/download.rb +1 -1
  32. data/lib/miga/version.rb +3 -3
  33. data/scripts/cds.bash +3 -1
  34. data/scripts/essential_genes.bash +1 -0
  35. data/scripts/stats.bash +1 -1
  36. data/scripts/trimmed_fasta.bash +5 -3
  37. data/utils/distance/runner.rb +3 -0
  38. data/utils/distance/temporal.rb +10 -1
  39. data/utils/enveomics/Manifest/Tasks/fasta.json +5 -0
  40. data/utils/enveomics/Manifest/Tasks/sequence-identity.json +7 -0
  41. data/utils/enveomics/Scripts/BlastTab.addlen.rb +33 -31
  42. data/utils/enveomics/Scripts/FastA.tag.rb +42 -41
  43. data/utils/enveomics/Scripts/HMM.essential.rb +85 -55
  44. data/utils/enveomics/Scripts/HMM.haai.rb +29 -20
  45. data/utils/enveomics/Scripts/SRA.download.bash +1 -1
  46. data/utils/enveomics/Scripts/aai.rb +163 -128
  47. data/utils/enveomics/build_enveomics_r.bash +11 -10
  48. data/utils/enveomics/enveomics.R/DESCRIPTION +3 -2
  49. data/utils/enveomics/enveomics.R/R/autoprune.R +141 -107
  50. data/utils/enveomics/enveomics.R/R/barplot.R +105 -86
  51. data/utils/enveomics/enveomics.R/R/cliopts.R +131 -115
  52. data/utils/enveomics/enveomics.R/R/df2dist.R +144 -106
  53. data/utils/enveomics/enveomics.R/R/growthcurve.R +201 -133
  54. data/utils/enveomics/enveomics.R/R/recplot.R +350 -315
  55. data/utils/enveomics/enveomics.R/R/recplot2.R +1334 -914
  56. data/utils/enveomics/enveomics.R/R/tribs.R +521 -361
  57. data/utils/enveomics/enveomics.R/R/utils.R +31 -15
  58. data/utils/enveomics/enveomics.R/README.md +7 -0
  59. data/utils/enveomics/enveomics.R/man/cash-enve.GrowthCurve-method.Rd +17 -0
  60. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2-method.Rd +17 -0
  61. data/utils/enveomics/enveomics.R/man/cash-enve.RecPlot2.Peak-method.Rd +17 -0
  62. data/utils/enveomics/enveomics.R/man/enve.GrowthCurve-class.Rd +16 -21
  63. data/utils/enveomics/enveomics.R/man/enve.TRIBS-class.Rd +31 -28
  64. data/utils/enveomics/enveomics.R/man/enve.TRIBS.merge.Rd +23 -19
  65. data/utils/enveomics/enveomics.R/man/enve.TRIBStest-class.Rd +36 -26
  66. data/utils/enveomics/enveomics.R/man/enve.__prune.iter.Rd +23 -24
  67. data/utils/enveomics/enveomics.R/man/enve.__prune.reduce.Rd +23 -24
  68. data/utils/enveomics/enveomics.R/man/enve.__tribs.Rd +32 -33
  69. data/utils/enveomics/enveomics.R/man/enve.barplot.Rd +91 -64
  70. data/utils/enveomics/enveomics.R/man/enve.cliopts.Rd +57 -37
  71. data/utils/enveomics/enveomics.R/man/enve.col.alpha.Rd +24 -19
  72. data/utils/enveomics/enveomics.R/man/enve.col2alpha.Rd +19 -18
  73. data/utils/enveomics/enveomics.R/man/enve.df2dist.Rd +39 -26
  74. data/utils/enveomics/enveomics.R/man/enve.df2dist.group.Rd +38 -25
  75. data/utils/enveomics/enveomics.R/man/enve.df2dist.list.Rd +40 -26
  76. data/utils/enveomics/enveomics.R/man/enve.growthcurve.Rd +67 -49
  77. data/utils/enveomics/enveomics.R/man/enve.prune.dist.Rd +37 -28
  78. data/utils/enveomics/enveomics.R/man/enve.recplot.Rd +122 -97
  79. data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +35 -31
  80. data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +24 -23
  81. data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +68 -51
  82. data/utils/enveomics/enveomics.R/man/enve.recplot2.__counts.Rd +25 -24
  83. data/utils/enveomics/enveomics.R/man/enve.recplot2.__peakHist.Rd +21 -22
  84. data/utils/enveomics/enveomics.R/man/enve.recplot2.__whichClosestPeak.Rd +19 -20
  85. data/utils/enveomics/enveomics.R/man/enve.recplot2.changeCutoff.Rd +19 -18
  86. data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +41 -32
  87. data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +29 -24
  88. data/utils/enveomics/enveomics.R/man/enve.recplot2.corePeak.Rd +18 -18
  89. data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +40 -34
  90. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +36 -24
  91. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +19 -20
  92. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +19 -20
  93. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +27 -29
  94. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +41 -42
  95. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +17 -18
  96. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +43 -33
  97. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +36 -28
  98. data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +74 -56
  99. data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +44 -31
  100. data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +27 -22
  101. data/utils/enveomics/enveomics.R/man/enve.recplot2.windowDepthThreshold.Rd +32 -26
  102. data/utils/enveomics/enveomics.R/man/enve.tribs.Rd +59 -44
  103. data/utils/enveomics/enveomics.R/man/enve.tribs.test.Rd +28 -21
  104. data/utils/enveomics/enveomics.R/man/enve.truncate.Rd +27 -22
  105. data/utils/enveomics/enveomics.R/man/plot.enve.GrowthCurve.Rd +63 -43
  106. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBS.Rd +38 -29
  107. data/utils/enveomics/enveomics.R/man/plot.enve.TRIBStest.Rd +38 -30
  108. data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +111 -83
  109. data/utils/enveomics/enveomics.R/man/summary.enve.GrowthCurve.Rd +19 -18
  110. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBS.Rd +19 -18
  111. data/utils/enveomics/enveomics.R/man/summary.enve.TRIBStest.Rd +19 -18
  112. data/utils/find-medoid.R +3 -2
  113. data/utils/representatives.rb +5 -3
  114. data/utils/subclade/pipeline.rb +22 -11
  115. data/utils/subclade/runner.rb +5 -1
  116. data/utils/subclades-compile.rb +1 -1
  117. data/utils/subclades.R +9 -3
  118. metadata +15 -4
  119. data/utils/enveomics/enveomics.R/man/enveomics.R-package.Rd +0 -15
  120. data/utils/enveomics/enveomics.R/man/z$-methods.Rd +0 -26
@@ -1,25 +1,38 @@
1
- \name{enve.df2dist.group}
2
- \alias{enve.df2dist.group}
3
- \title{enve df2dist group}
4
- \description{Transform a dataframe (or coercible object, like a table) into a `dist` object, where
5
- there are 1 or more distances between each pair of objects.}
6
- \usage{enve.df2dist.group(x, obj1.index = 1, obj2.index = 2, dist.index = 3,
7
- summary = median, empty.rm = TRUE)}
8
- \arguments{
9
- \item{x}{A dataframe (or coercible object) with at least three columns: (1) ID of the object 1,
10
- (2) ID of the object 2, and (3) distance between the two objects.}
11
- \item{obj1.index}{Index of the column containing the ID of the object 1.}
12
- \item{obj2.index}{Index of the column containing the ID of the object 2.}
13
- \item{dist.index}{Index of the column containing the distance.}
14
- \item{summary}{Function summarizing the different distances between the two objects.}
15
- \item{empty.rm}{Remove rows with empty or NA groups}
16
- }
17
-
18
- \value{Returns a `dist` object.}
19
-
20
- \author{Luis M. Rodriguez-R [aut, cre]}
21
-
22
-
23
-
24
-
25
-
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/df2dist.R
3
+ \name{enve.df2dist.group}
4
+ \alias{enve.df2dist.group}
5
+ \title{Enveomics: Data Frame to Dist (Group)}
6
+ \usage{
7
+ enve.df2dist.group(x, obj1.index = 1, obj2.index = 2, dist.index = 3,
8
+ summary = median, empty.rm = TRUE)
9
+ }
10
+ \arguments{
11
+ \item{x}{A dataframe (or coercible object) with at least three columns:
12
+ \enumerate{
13
+ \item ID of the object 1,
14
+ \item ID of the object 2, and
15
+ \item distance between the two objects.}}
16
+
17
+ \item{obj1.index}{Index of the column containing the ID of the object 1.}
18
+
19
+ \item{obj2.index}{Index of the column containing the ID of the object 2.}
20
+
21
+ \item{dist.index}{Index of the column containing the distance.}
22
+
23
+ \item{summary}{Function summarizing the different distances between the
24
+ two objects.}
25
+
26
+ \item{empty.rm}{Remove rows with empty or \code{NA} groups.}
27
+ }
28
+ \value{
29
+ Returns a \strong{dist} object.
30
+ }
31
+ \description{
32
+ Transform a dataframe (or coercible object, like a table) into a
33
+ \strong{dist} object, where there are 1 or more distances between each pair
34
+ of objects.
35
+ }
36
+ \author{
37
+ Luis M. Rodriguez-R [aut, cre]
38
+ }
@@ -1,26 +1,40 @@
1
- \name{enve.df2dist.list}
2
- \alias{enve.df2dist.list}
3
- \title{enve df2dist list}
4
- \description{Transform a dataframe (or coercible object, like a table) into a `dist` object.}
5
- \usage{enve.df2dist.list(x, groups, obj1.index = 1, obj2.index = 2,
6
- dist.index = 3, empty.rm = TRUE, ...)}
7
- \arguments{
8
- \item{x}{A dataframe (or coercible object) with at least three columns: (1) ID of the object 1,
9
- (2) ID of the object 2, and (3) distance between the two objects.}
10
- \item{groups}{Named array where the IDs correspond to the object IDs, and the values correspond to
11
- the group.}
12
- \item{obj1.index}{Index of the column containing the ID of the object 1.}
13
- \item{obj2.index}{Index of the column containing the ID of the object 2.}
14
- \item{dist.index}{Index of the column containing the distance.}
15
- \item{empty.rm}{Remove incomplete matrices}
16
- \item{\dots}{Any other parameters supported by `enve.df2dist.group`.}
17
- }
18
-
19
- \value{Returns a `list` of `dist` object.}
20
-
21
- \author{Luis M. Rodriguez-R [aut, cre]}
22
-
23
-
24
-
25
-
26
-
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/df2dist.R
3
+ \name{enve.df2dist.list}
4
+ \alias{enve.df2dist.list}
5
+ \title{Enveomics: Data Frame to Dist (List)}
6
+ \usage{
7
+ enve.df2dist.list(x, groups, obj1.index = 1, obj2.index = 2,
8
+ dist.index = 3, empty.rm = TRUE, ...)
9
+ }
10
+ \arguments{
11
+ \item{x}{A dataframe (or coercible object) with at least three columns:
12
+ \enumerate{
13
+ \item ID of the object 1,
14
+ \item ID of the object 2, and
15
+ \item distance between the two objects.}}
16
+
17
+ \item{groups}{Named array where the IDs correspond to the object IDs,
18
+ and the values correspond to the group.}
19
+
20
+ \item{obj1.index}{Index of the column containing the ID of the object 1.}
21
+
22
+ \item{obj2.index}{Index of the column containing the ID of the object 2.}
23
+
24
+ \item{dist.index}{Index of the column containing the distance.}
25
+
26
+ \item{empty.rm}{Remove incomplete matrices.}
27
+
28
+ \item{...}{Any other parameters supported by
29
+ \code{\link{enve.df2dist.group}}.}
30
+ }
31
+ \value{
32
+ Returns a \strong{list} of \strong{dist} objects.
33
+ }
34
+ \description{
35
+ Transform a dataframe (or coercible object, like a table)
36
+ into a \strong{dist} object.
37
+ }
38
+ \author{
39
+ Luis M. Rodriguez-R [aut, cre]
40
+ }
@@ -1,49 +1,67 @@
1
- \name{enve.growthcurve}
2
- \alias{enve.growthcurve}
3
- \title{enve growthcurve}
4
- \description{Calculates growth curves using the logistic growth function.}
5
- \usage{enve.growthcurve(x, times = 1:nrow(x), triplicates = FALSE, design,
6
- new.times = seq(min(times), max(times), length.out = length(times) *
7
- 10), level = 0.95, interval = c("confidence", "prediction"),
8
- plot = TRUE, FUN = function(t, K, r, P0) K * P0 * exp(r *
9
- t)/(K + P0 * (exp(r * t) - 1)), nls.opt = list(), ...)}
10
- \arguments{
11
- \item{x}{Data frame (or coercible) containing the observed growth data (e.g.,
12
- O.D. values). Each column is an independent growth curve and each
13
- row is a time point. NA's are allowed.}
14
- \item{times}{Vector with the times at which each row was taken. By default, all
15
- rows are assumed to be part of constantly periodic measurements.}
16
- \item{triplicates}{If TRUE, the columns are assumed to be sorted by sample with three
17
- replicates by sample. It requires a number of columns multiple of 3.}
18
- \item{design}{Experimental design of the data. An `array` of mode list with sample
19
- names as index and the list of column names in each sample as the
20
- values. By default, each column is assumed to be an independent sample
21
- if `triplicates` is FALSE, or every three columns are assumed to be a
22
- sample if `triplicates` is TRUE. In the latter case, samples are
23
- simply numbered.}
24
- \item{new.times}{Values of time for the fitted curve.}
25
- \item{level}{Confidence (or prediction) interval in the fitted curve.}
26
- \item{interval}{Type of interval to be calculated for the fitted curve.}
27
- \item{plot}{Should the growth curve be plotted?}
28
- \item{FUN}{Function to fit. By default: logistic growth with paramenters `K`:
29
- carrying capacity, `r`: intrinsic growth rate, and `P0`: Initial
30
- population.}
31
- \item{nls.opt}{Any additional options passed to `nls`.}
32
- \item{\dots}{Any additional parameters to be passed to `plot.enve.GrowthCurve`.}
33
- }
34
-
35
- \value{Returns an `enve.GrowthCurve` object.}
36
-
37
- \author{Luis M. Rodriguez-R [aut, cre]}
38
-
39
-
40
-
41
-
42
- \examples{
43
- # Load data
44
- data("growth.curves", package="enveomics.R", envir=environment())
45
- # Generate growth curves with different colors
46
- g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
47
- # Generate black-and-white growth curves with different symbols
48
- plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
49
- }
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/growthcurve.R
3
+ \name{enve.growthcurve}
4
+ \alias{enve.growthcurve}
5
+ \title{Enveomics: Growth Curve}
6
+ \usage{
7
+ enve.growthcurve(x, times = 1:nrow(x), triplicates = FALSE, design,
8
+ new.times = seq(min(times), max(times), length.out = length(times) *
9
+ 10), level = 0.95, interval = c("confidence", "prediction"),
10
+ plot = TRUE, FUN = function(t, K, r, P0) K * P0 * exp(r * t)/(K + P0
11
+ * (exp(r * t) - 1)), nls.opt = list(), ...)
12
+ }
13
+ \arguments{
14
+ \item{x}{Data frame (or coercible) containing the observed growth data
15
+ (e.g., O.D. values). Each column is an independent growth curve and each
16
+ row is a time point. \code{NA}'s are allowed.}
17
+
18
+ \item{times}{Vector with the times at which each row was taken. By default,
19
+ all rows are assumed to be part of constantly periodic measurements.}
20
+
21
+ \item{triplicates}{If \code{TRUE}, the columns are assumed to be sorted by
22
+ sample with three replicates by sample. It requires a number of columns
23
+ multiple of 3.}
24
+
25
+ \item{design}{Experimental design of the data. An \strong{array} of mode list
26
+ with sample names as index and the list of column names in each sample as
27
+ the values. By default, each column is assumed to be an independent sample
28
+ if \code{triplicates} is \code{FALSE}, or every three columns are assumed
29
+ to be a sample if \code{triplicates} is \code{TRUE}. In the latter case,
30
+ samples are simply numbered.}
31
+
32
+ \item{new.times}{Values of time for the fitted curve.}
33
+
34
+ \item{level}{Confidence (or prediction) interval in the fitted curve.}
35
+
36
+ \item{interval}{Type of interval to be calculated for the fitted curve.}
37
+
38
+ \item{plot}{Should the growth curve be plotted?}
39
+
40
+ \item{FUN}{Function to fit. By default: logistic growth with paramenters
41
+ \code{K}: carrying capacity,
42
+ \code{r}: intrinsic growth rate, and
43
+ \code{P0}: Initial population.}
44
+
45
+ \item{nls.opt}{Any additional options passed to \code{nls}.}
46
+
47
+ \item{...}{Any additional parameters to be passed to
48
+ \code{plot.enve.GrowthCurve}.}
49
+ }
50
+ \value{
51
+ Returns an \code{\link{enve.GrowthCurve}} object.
52
+ }
53
+ \description{
54
+ Calculates growth curves using the logistic growth function.
55
+ }
56
+ \examples{
57
+ # Load data
58
+ data("growth.curves", package="enveomics.R", envir=environment())
59
+ # Generate growth curves with different colors
60
+ g <- enve.growthcurve(growth.curves[,-1], growth.curves[,1], triplicates=TRUE)
61
+ # Generate black-and-white growth curves with different symbols
62
+ plot(g, pch=15:17, col="black", band.density=45, band.angle=c(-45,45,0))
63
+
64
+ }
65
+ \author{
66
+ Luis M. Rodriguez-R [aut, cre]
67
+ }
@@ -1,28 +1,37 @@
1
- \name{enve.prune.dist}
2
- \alias{enve.prune.dist}
3
- \title{enve prune dist}
4
- \description{Automatically prunes a tree, to keep representatives of each clade.}
5
- \usage{enve.prune.dist(t, dist.quantile = 0.25, min_dist, quiet = FALSE,
6
- max_iters = 100, min_nodes_random = 40000, random_nodes_frx = 1)}
7
- \arguments{
8
- \item{t}{A `phylo` object or a path to the Newick file.}
9
- \item{dist.quantile}{The quantile of edge lengths.}
10
- \item{min_dist}{The minimum distance to allow between two tips. If not set, dist.quantile is
11
- used instead to calculate it.}
12
- \item{quiet}{Boolean indicating if the function must run without output.}
13
- \item{max_iters}{Maximum number of iterations.}
14
- \item{min_nodes_random}{Minimum number of nodes to trigger "tip-pairs" nodes sampling. This sampling
15
- is less reproducible and more computationally expensive, but it's the only
16
- solution if the cophenetic matrix exceeds 2^31-1 entries; above that, it
17
- cannot be represented in R.}
18
- \item{random_nodes_frx}{Fraction of the nodes to be sampled if more than `min_nodes_random`.}
19
- }
20
-
21
- \value{Returns a pruned phylo object.}
22
-
23
- \author{Luis M. Rodriguez-R [aut, cre]}
24
-
25
-
26
-
27
-
28
-
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/autoprune.R
3
+ \name{enve.prune.dist}
4
+ \alias{enve.prune.dist}
5
+ \title{Enveomics: Prune Dist}
6
+ \usage{
7
+ enve.prune.dist(t, dist.quantile = 0.25, min_dist, quiet = FALSE,
8
+ max_iters = 100, min_nodes_random = 40000, random_nodes_frx = 1)
9
+ }
10
+ \arguments{
11
+ \item{t}{A \strong{phylo} object or a path to the Newick file.}
12
+
13
+ \item{dist.quantile}{The quantile of edge lengths.}
14
+
15
+ \item{min_dist}{The minimum distance to allow between two tips.
16
+ If not set, \code{dist.quantile} is used instead to calculate it.}
17
+
18
+ \item{quiet}{Boolean indicating if the function must run without output.}
19
+
20
+ \item{max_iters}{Maximum number of iterations.}
21
+
22
+ \item{min_nodes_random}{Minimum number of nodes to trigger \emph{tip-pairs} nodes sampling.
23
+ This sampling is less reproducible and more computationally expensive,
24
+ but it's the only solution if the cophenetic matrix exceeds \code{2^31-1}
25
+ entries; above that, it cannot be represented in R.}
26
+
27
+ \item{random_nodes_frx}{Fraction of the nodes to be sampled if more than \code{min_nodes_random}.}
28
+ }
29
+ \value{
30
+ Returns a pruned \strong{phylo} object.
31
+ }
32
+ \description{
33
+ Automatically prunes a tree, to keep representatives of each clade.
34
+ }
35
+ \author{
36
+ Luis M. Rodriguez-R [aut, cre]
37
+ }
@@ -1,97 +1,122 @@
1
- \name{enve.recplot}
2
- \alias{enve.recplot}
3
- \title{enve recplot}
4
- \description{Produces recruitment plots provided that BlastTab.catsbj.pl has
5
- been previously executed. Requires the gplots library.}
6
- \usage{enve.recplot(prefix, id.min = NULL, id.max = NULL, id.binsize = NULL,
7
- id.splines = 0, id.metric = "id", id.summary = "sum", pos.min = 1,
8
- pos.max = NULL, pos.binsize = 1000, pos.splines = 0, rec.col1 = "white",
9
- rec.col2 = "black", main = NULL, contig.col = grey(0.85),
10
- ret.recplot = FALSE, ret.hist = FALSE, ret.mode = FALSE,
11
- id.cutoff = NULL, verbose = TRUE, ...)}
12
- \arguments{
13
- \item{prefix}{Path to the prefix of the BlastTab.catsbj.pl output files. At
14
- least the files .rec and .lim must exist with this prefix.}
15
- \item{id.min}{Minimum identity to be considered. By default, the minimum detected
16
- identity. This value is a percentage.}
17
- \item{id.max}{Maximum identity to be considered. By default, 100.}
18
- \item{id.binsize}{Size of the identity bins (vertical histograms). By default, 0.1 for
19
- identity metrics and 5 for bit score.}
20
- \item{id.splines}{Smoothing parameter for the splines in the identity histogram. Zero (0) for no
21
- splines. A generally good value is 1/2. If non-zero, requires the stats package.}
22
- \item{id.metric}{Metric of identity to be used (Y-axis). It can be any unambiguous prefix
23
- of "identity", "corrected identity", or "bit score".}
24
- \item{id.summary}{Method used to build the identity histogram (Horizontal axis of the right panel).
25
- It can be any unambiguous prefix of "sum", "average", "median", "90\% lower bound",
26
- "90\% upper bound", "95\% lower bound", and "95\% upper bound". The last four options
27
- correspond to the upper and lower boundaries of the 90\% and 95\% empirical confidence
28
- intervals.}
29
- \item{pos.min}{Minimum (leftmost) position in the reference (concatenated) genome (in bp).}
30
- \item{pos.max}{Maximum (rightmost) position in the reference (concatenated) genome (in bp).
31
- By default: Length of the genome.}
32
- \item{pos.binsize}{Size of the position bins (horizontal histograms) in bp.}
33
- \item{pos.splines}{Smoothing parameter for the splines in the position histogram. Zero (0) for no splines.
34
- If non-zero, requires the stats package.}
35
- \item{rec.col1}{Lightest color in the recruitment plot.}
36
- \item{rec.col2}{Darkest color in the recruitment plot.}
37
- \item{main}{Title of the plot.}
38
- \item{contig.col}{Color of the Contig boundaries. Set to NA to ignore Contig boundaries.}
39
- \item{ret.recplot}{Indicates if the matrix of the recruitment plot is to be returned.}
40
- \item{ret.hist}{Ignored, for backwards compatibility.}
41
- \item{ret.mode}{Indicates if the mode of the identity is to be computed. It requires the modeest
42
- package.}
43
- \item{id.cutoff}{Minimum identity to consider an alignment as "top". By default, it is 0.95 for the
44
- identity metrics and 95\% of the best scoring alignment for bit score.}
45
- \item{verbose}{Indicates if the function should report the advance.}
46
- \item{\dots}{Any additional graphic parameters to be passed to plot for all panels except the
47
- recruitment plot (lower-left).}
48
- }
49
-
50
- \value{A list with the following elements:
51
-
52
- pos.marks: Midpoints of the position histogram.
53
-
54
- id.matrix: Midpoints of the identity histogram.
55
-
56
- recplot (if ret.recplot=TRUE): Matrix containing the recruitment plot values.
57
-
58
- id.mean: Mean identity.
59
-
60
- id.median: Median identity.
61
-
62
- id.mode (if ret.mode=TRUE): Mode of the identity. Deprecated.
63
-
64
- id.hist (if ret.hist=TRUE): Values of the identity histogram.
65
-
66
- pos.hist.low (if ret.hist=TRUE): Values of the position histogram (depth) with "low"
67
- identity (i.e., below id.cutoff).
68
-
69
- pos.hist.top (if ret.hist=TRUE): Values of the position histogram (depth) with "top"
70
- identity (i.e., above id.cutoff).
71
-
72
- id.max: Value of id.max. This is returned because id.max=NULL may vary.
73
-
74
- id.cutoff: Value of id.cutoff. This is returned because id.cutoff=NULL may vary.
75
-
76
- seqdepth.mean.top: Average sequencing depth with identity above id.cutoff.
77
-
78
- seqdepth.mean.low: Average sequencing depth with identity below id.cutoff.
79
-
80
- seqdepth.mean.all: Average sequencing depth without identity filtering.
81
-
82
- seqdepth.median.top: Median sequencing depth with identity above id.cutoff.
83
-
84
- seqdepth.median.low: Median sequencing depth with identity below id.cutoff.
85
-
86
- seqdepth.median.all: Median sequencing depth without identity filtering.
87
-
88
- id.metric: Full name of the used identity metric.
89
-
90
- id.summary: Full name of the summary method used to build the identity plot.}
91
-
92
- \author{Luis M. Rodriguez-R [aut, cre]}
93
-
94
-
95
-
96
-
97
-
1
+ % Generated by roxygen2: do not edit by hand
2
+ % Please edit documentation in R/recplot.R
3
+ \name{enve.recplot}
4
+ \alias{enve.recplot}
5
+ \title{Enveomics: Recruitment Plots}
6
+ \usage{
7
+ enve.recplot(prefix, id.min = NULL, id.max = NULL, id.binsize = NULL,
8
+ id.splines = 0, id.metric = "id", id.summary = "sum",
9
+ pos.min = 1, pos.max = NULL, pos.binsize = 1000, pos.splines = 0,
10
+ rec.col1 = "white", rec.col2 = "black", main = NULL,
11
+ contig.col = grey(0.85), ret.recplot = FALSE, ret.hist = FALSE,
12
+ ret.mode = FALSE, id.cutoff = NULL, verbose = TRUE, ...)
13
+ }
14
+ \arguments{
15
+ \item{prefix}{Path to the prefix of the BlastTab.catsbj.pl output files. At
16
+ least the files \strong{.rec} and \strong{.lim} must exist with this prefix.}
17
+
18
+ \item{id.min}{Minimum identity to be considered. By default, the minimum detected
19
+ identity. This value is a percentage.}
20
+
21
+ \item{id.max}{Maximum identity to be considered. By default, 100\%.}
22
+
23
+ \item{id.binsize}{Size of the identity bins (vertical histograms). By default, 0.1 for
24
+ identity metrics and 5 for bit score.}
25
+
26
+ \item{id.splines}{Smoothing parameter for the splines in the identity histogram. Zero (0) for no
27
+ splines. A generally good value is 1/2. If non-zero, requires the \pkg{stats} package.}
28
+
29
+ \item{id.metric}{Metric of identity to be used (Y-axis).
30
+ It can be any unambiguous prefix of:
31
+ \itemize{
32
+ \item "identity"
33
+ \item "corrected identity"
34
+ \item "bit score"}}
35
+
36
+ \item{id.summary}{Method used to build the identity histogram (Horizontal axis of the right panel).
37
+ It can be any unambiguous prefix of:
38
+ \itemize{
39
+ \item "sum"
40
+ \item "average"
41
+ \item "median"
42
+ \item "90\% lower bound"
43
+ \item "90\% upper bound"
44
+ \item "95\% lower bound"
45
+ \item "95\% upper bound" }
46
+ The last four options
47
+ correspond to the upper and lower boundaries of the 90\% and 95\% empirical confidence
48
+ intervals.}
49
+
50
+ \item{pos.min}{Minimum (leftmost) position in the reference (concatenated) genome (in bp).}
51
+
52
+ \item{pos.max}{Maximum (rightmost) position in the reference (concatenated) genome (in bp).
53
+ By default: Length of the genome.}
54
+
55
+ \item{pos.binsize}{Size of the position bins (horizontal histograms) in bp.}
56
+
57
+ \item{pos.splines}{Smoothing parameter for the splines in the position histogram. Zero (0) for no splines.
58
+ If non-zero, requires the stats package.}
59
+
60
+ \item{rec.col1}{Lightest color in the recruitment plot.}
61
+
62
+ \item{rec.col2}{Darkest color in the recruitment plot.}
63
+
64
+ \item{main}{Title of the plot.}
65
+
66
+ \item{contig.col}{Color of the Contig boundaries. Set to \code{NA} to ignore Contig boundaries.}
67
+
68
+ \item{ret.recplot}{Indicates if the matrix of the recruitment plot is to be returned.}
69
+
70
+ \item{ret.hist}{Ignored, for backwards compatibility.}
71
+
72
+ \item{ret.mode}{Indicates if the mode of the identity is to be computed. It requires the
73
+ \pkg{modeest} package.}
74
+
75
+ \item{id.cutoff}{Minimum identity to consider an alignment as "top". By default, it is 0.95 for the
76
+ identity metrics and 95\% of the best scoring alignment for bit score.}
77
+
78
+ \item{verbose}{Indicates if the function should report the advance.}
79
+
80
+ \item{...}{Any additional graphic parameters to be passed to plot for all panels except the
81
+ recruitment plot (lower-left).}
82
+ }
83
+ \value{
84
+ Returns a list with the following elements:
85
+
86
+ \describe{
87
+ \item{\code{pos.marks}}{Midpoints of the position histogram.}
88
+ \item{\code{id.matrix}}{Midpoints of the identity histogram.}
89
+ \item{\code{recplot}}{Matrix containing the recruitment plot values
90
+ (if \code{ret.recplot=TRUE}).}
91
+ \item{\code{id.mean}}{Mean identity.}
92
+ \item{\code{id.median}}{Median identity.}
93
+ \item{\code{id.mode}}{Mode of the identity (if \code{ret.mode=TRUE}). Deprecated.}
94
+ \item{\code{id.hist}}{Values of the identity histogram (if \code{ret.hist=TRUE}).}
95
+ \item{\code{pos.hist.low}}{Values of the position histogram (depth) with "low"
96
+ identity (i.e., below id.cutoff) (if \code{ret.hist=TRUE}).}
97
+ \item{\code{pos.hist.top}}{Values of the position histogram (depth) with "top"
98
+ identity (i.e., above id.cutoff) (if \code{ret.hist=TRUE}).}
99
+ \item{\code{id.max}}{Value of \code{id.max}. This is returned because
100
+ \code{id.max=NULL} may vary.}
101
+ \item{\code{id.cutoff}}{Value of \code{id.cutoff}.
102
+ This is returned because \code{id.cutoff=NULL} may vary.}
103
+ \item{\code{seqdepth.mean.top}}{Average sequencing depth with identity above
104
+ \code{id.cutoff}.}
105
+ \item{\code{seqdepth.mean.low}}{Average sequencing depth with identity below
106
+ \code{id.cutoff}.}
107
+ \item{\code{seqdepth.mean.all}}{Average sequencing depth without identity filtering.}
108
+ \item{\code{seqdepth.median.top}}{Median sequencing depth with identity above
109
+ \code{id.cutoff}.}
110
+ \item{\code{seqdepth.median.low}}{Median sequencing depth with identity below
111
+ \code{id.cutoff}.}
112
+ \item{\code{seqdepth.median.all}}{Median sequencing depth without identity filtering.}
113
+ \item{\code{id.metric}}{Full name of the used identity metric.}
114
+ \item{\code{id.summary}}{Full name of the summary method used to build the identity plot.}}
115
+ }
116
+ \description{
117
+ Produces recruitment plots provided that BlastTab.catsbj.pl has
118
+ been previously executed. Requires the \pkg{gplots} library.
119
+ }
120
+ \author{
121
+ Luis M. Rodriguez-R [aut, cre]
122
+ }