liblinear-ruby 1.0.1 → 1.0.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +1 -1
- data/ext/blasp.h +8 -8
- data/ext/daxpy.c +3 -3
- data/ext/ddot.c +3 -3
- data/ext/dnrm2.c +7 -7
- data/ext/dscal.c +4 -4
- data/ext/liblinear_wrap.cxx +382 -382
- data/ext/linear.cpp +44 -55
- data/ext/linear.h +5 -1
- data/ext/tron.cpp +13 -5
- data/ext/tron.h +1 -1
- data/lib/liblinear.rb +2 -0
- data/lib/liblinear/version.rb +1 -1
- metadata +2 -41
- data/liblinear-2.1/COPYRIGHT +0 -31
- data/liblinear-2.1/Makefile +0 -37
- data/liblinear-2.1/Makefile.win +0 -24
- data/liblinear-2.1/README +0 -600
- data/liblinear-2.1/blas/Makefile +0 -22
- data/liblinear-2.1/blas/blas.h +0 -25
- data/liblinear-2.1/blas/blasp.h +0 -438
- data/liblinear-2.1/blas/daxpy.c +0 -57
- data/liblinear-2.1/blas/ddot.c +0 -58
- data/liblinear-2.1/blas/dnrm2.c +0 -70
- data/liblinear-2.1/blas/dscal.c +0 -52
- data/liblinear-2.1/heart_scale +0 -270
- data/liblinear-2.1/linear.cpp +0 -3053
- data/liblinear-2.1/linear.def +0 -22
- data/liblinear-2.1/linear.h +0 -79
- data/liblinear-2.1/matlab/Makefile +0 -49
- data/liblinear-2.1/matlab/README +0 -208
- data/liblinear-2.1/matlab/libsvmread.c +0 -212
- data/liblinear-2.1/matlab/libsvmwrite.c +0 -119
- data/liblinear-2.1/matlab/linear_model_matlab.c +0 -176
- data/liblinear-2.1/matlab/linear_model_matlab.h +0 -2
- data/liblinear-2.1/matlab/make.m +0 -22
- data/liblinear-2.1/matlab/predict.c +0 -341
- data/liblinear-2.1/matlab/train.c +0 -492
- data/liblinear-2.1/predict.c +0 -243
- data/liblinear-2.1/python/Makefile +0 -4
- data/liblinear-2.1/python/README +0 -380
- data/liblinear-2.1/python/liblinear.py +0 -323
- data/liblinear-2.1/python/liblinearutil.py +0 -270
- data/liblinear-2.1/train.c +0 -449
- data/liblinear-2.1/tron.cpp +0 -241
- data/liblinear-2.1/tron.h +0 -35
- data/liblinear-2.1/windows/liblinear.dll +0 -0
- data/liblinear-2.1/windows/libsvmread.mexw64 +0 -0
- data/liblinear-2.1/windows/libsvmwrite.mexw64 +0 -0
- data/liblinear-2.1/windows/predict.exe +0 -0
- data/liblinear-2.1/windows/predict.mexw64 +0 -0
- data/liblinear-2.1/windows/train.exe +0 -0
- data/liblinear-2.1/windows/train.mexw64 +0 -0
data/liblinear-2.1/COPYRIGHT
DELETED
@@ -1,31 +0,0 @@
|
|
1
|
-
|
2
|
-
Copyright (c) 2007-2015 The LIBLINEAR Project.
|
3
|
-
All rights reserved.
|
4
|
-
|
5
|
-
Redistribution and use in source and binary forms, with or without
|
6
|
-
modification, are permitted provided that the following conditions
|
7
|
-
are met:
|
8
|
-
|
9
|
-
1. Redistributions of source code must retain the above copyright
|
10
|
-
notice, this list of conditions and the following disclaimer.
|
11
|
-
|
12
|
-
2. Redistributions in binary form must reproduce the above copyright
|
13
|
-
notice, this list of conditions and the following disclaimer in the
|
14
|
-
documentation and/or other materials provided with the distribution.
|
15
|
-
|
16
|
-
3. Neither name of copyright holders nor the names of its contributors
|
17
|
-
may be used to endorse or promote products derived from this software
|
18
|
-
without specific prior written permission.
|
19
|
-
|
20
|
-
|
21
|
-
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
22
|
-
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
23
|
-
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
24
|
-
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
|
25
|
-
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
26
|
-
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
27
|
-
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
28
|
-
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
29
|
-
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
30
|
-
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
31
|
-
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/liblinear-2.1/Makefile
DELETED
@@ -1,37 +0,0 @@
|
|
1
|
-
CXX ?= g++
|
2
|
-
CC ?= gcc
|
3
|
-
CFLAGS = -Wall -Wconversion -O3 -fPIC
|
4
|
-
LIBS = blas/blas.a
|
5
|
-
SHVER = 3
|
6
|
-
OS = $(shell uname)
|
7
|
-
#LIBS = -lblas
|
8
|
-
|
9
|
-
all: train predict
|
10
|
-
|
11
|
-
lib: linear.o tron.o blas/blas.a
|
12
|
-
if [ "$(OS)" = "Darwin" ]; then \
|
13
|
-
SHARED_LIB_FLAG="-dynamiclib -Wl,-install_name,liblinear.so.$(SHVER)"; \
|
14
|
-
else \
|
15
|
-
SHARED_LIB_FLAG="-shared -Wl,-soname,liblinear.so.$(SHVER)"; \
|
16
|
-
fi; \
|
17
|
-
$(CXX) $${SHARED_LIB_FLAG} linear.o tron.o blas/blas.a -o liblinear.so.$(SHVER)
|
18
|
-
|
19
|
-
train: tron.o linear.o train.c blas/blas.a
|
20
|
-
$(CXX) $(CFLAGS) -o train train.c tron.o linear.o $(LIBS)
|
21
|
-
|
22
|
-
predict: tron.o linear.o predict.c blas/blas.a
|
23
|
-
$(CXX) $(CFLAGS) -o predict predict.c tron.o linear.o $(LIBS)
|
24
|
-
|
25
|
-
tron.o: tron.cpp tron.h
|
26
|
-
$(CXX) $(CFLAGS) -c -o tron.o tron.cpp
|
27
|
-
|
28
|
-
linear.o: linear.cpp linear.h
|
29
|
-
$(CXX) $(CFLAGS) -c -o linear.o linear.cpp
|
30
|
-
|
31
|
-
blas/blas.a: blas/*.c blas/*.h
|
32
|
-
make -C blas OPTFLAGS='$(CFLAGS)' CC='$(CC)';
|
33
|
-
|
34
|
-
clean:
|
35
|
-
make -C blas clean
|
36
|
-
make -C matlab clean
|
37
|
-
rm -f *~ tron.o linear.o train predict liblinear.so.$(SHVER)
|
data/liblinear-2.1/Makefile.win
DELETED
@@ -1,24 +0,0 @@
|
|
1
|
-
CXX = cl.exe
|
2
|
-
CFLAGS = /nologo /O2 /EHsc /I. /D _WIN64 /D _CRT_SECURE_NO_DEPRECATE
|
3
|
-
TARGET = windows
|
4
|
-
|
5
|
-
all: $(TARGET)\train.exe $(TARGET)\predict.exe lib
|
6
|
-
|
7
|
-
$(TARGET)\train.exe: tron.obj linear.obj train.c blas\*.c
|
8
|
-
$(CXX) $(CFLAGS) -Fe$(TARGET)\train.exe tron.obj linear.obj train.c blas\*.c
|
9
|
-
|
10
|
-
$(TARGET)\predict.exe: tron.obj linear.obj predict.c blas\*.c
|
11
|
-
$(CXX) $(CFLAGS) -Fe$(TARGET)\predict.exe tron.obj linear.obj predict.c blas\*.c
|
12
|
-
|
13
|
-
linear.obj: linear.cpp linear.h
|
14
|
-
$(CXX) $(CFLAGS) -c linear.cpp
|
15
|
-
|
16
|
-
tron.obj: tron.cpp tron.h
|
17
|
-
$(CXX) $(CFLAGS) -c tron.cpp
|
18
|
-
|
19
|
-
lib: linear.cpp linear.h linear.def tron.obj
|
20
|
-
$(CXX) $(CFLAGS) -LD linear.cpp tron.obj blas\*.c -Fe$(TARGET)\liblinear -link -DEF:linear.def
|
21
|
-
|
22
|
-
clean:
|
23
|
-
-erase /Q *.obj $(TARGET)\*.exe $(TARGET)\*.dll $(TARGET)\*.exp $(TARGET)\*.lib
|
24
|
-
|
data/liblinear-2.1/README
DELETED
@@ -1,600 +0,0 @@
|
|
1
|
-
LIBLINEAR is a simple package for solving large-scale regularized linear
|
2
|
-
classification and regression. It currently supports
|
3
|
-
- L2-regularized logistic regression/L2-loss support vector classification/L1-loss support vector classification
|
4
|
-
- L1-regularized L2-loss support vector classification/L1-regularized logistic regression
|
5
|
-
- L2-regularized L2-loss support vector regression/L1-loss support vector regression.
|
6
|
-
This document explains the usage of LIBLINEAR.
|
7
|
-
|
8
|
-
To get started, please read the ``Quick Start'' section first.
|
9
|
-
For developers, please check the ``Library Usage'' section to learn
|
10
|
-
how to integrate LIBLINEAR in your software.
|
11
|
-
|
12
|
-
Table of Contents
|
13
|
-
=================
|
14
|
-
|
15
|
-
- When to use LIBLINEAR but not LIBSVM
|
16
|
-
- Quick Start
|
17
|
-
- Installation
|
18
|
-
- `train' Usage
|
19
|
-
- `predict' Usage
|
20
|
-
- Examples
|
21
|
-
- Library Usage
|
22
|
-
- Building Windows Binaries
|
23
|
-
- Additional Information
|
24
|
-
- MATLAB/OCTAVE interface
|
25
|
-
- PYTHON interface
|
26
|
-
|
27
|
-
When to use LIBLINEAR but not LIBSVM
|
28
|
-
====================================
|
29
|
-
|
30
|
-
There are some large data for which with/without nonlinear mappings
|
31
|
-
gives similar performances. Without using kernels, one can
|
32
|
-
efficiently train a much larger set via linear classification/regression.
|
33
|
-
These data usually have a large number of features. Document classification
|
34
|
-
is an example.
|
35
|
-
|
36
|
-
Warning: While generally liblinear is very fast, its default solver
|
37
|
-
may be slow under certain situations (e.g., data not scaled or C is
|
38
|
-
large). See Appendix B of our SVM guide about how to handle such
|
39
|
-
cases.
|
40
|
-
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
|
41
|
-
|
42
|
-
Warning: If you are a beginner and your data sets are not large, you
|
43
|
-
should consider LIBSVM first.
|
44
|
-
|
45
|
-
LIBSVM page:
|
46
|
-
http://www.csie.ntu.edu.tw/~cjlin/libsvm
|
47
|
-
|
48
|
-
|
49
|
-
Quick Start
|
50
|
-
===========
|
51
|
-
|
52
|
-
See the section ``Installation'' for installing LIBLINEAR.
|
53
|
-
|
54
|
-
After installation, there are programs `train' and `predict' for
|
55
|
-
training and testing, respectively.
|
56
|
-
|
57
|
-
About the data format, please check the README file of LIBSVM. Note
|
58
|
-
that feature index must start from 1 (but not 0).
|
59
|
-
|
60
|
-
A sample classification data included in this package is `heart_scale'.
|
61
|
-
|
62
|
-
Type `train heart_scale', and the program will read the training
|
63
|
-
data and output the model file `heart_scale.model'. If you have a test
|
64
|
-
set called heart_scale.t, then type `predict heart_scale.t
|
65
|
-
heart_scale.model output' to see the prediction accuracy. The `output'
|
66
|
-
file contains the predicted class labels.
|
67
|
-
|
68
|
-
For more information about `train' and `predict', see the sections
|
69
|
-
`train' Usage and `predict' Usage.
|
70
|
-
|
71
|
-
To obtain good performances, sometimes one needs to scale the
|
72
|
-
data. Please check the program `svm-scale' of LIBSVM. For large and
|
73
|
-
sparse data, use `-l 0' to keep the sparsity.
|
74
|
-
|
75
|
-
Installation
|
76
|
-
============
|
77
|
-
|
78
|
-
On Unix systems, type `make' to build the `train' and `predict'
|
79
|
-
programs. Run them without arguments to show the usages.
|
80
|
-
|
81
|
-
On other systems, consult `Makefile' to build them (e.g., see
|
82
|
-
'Building Windows binaries' in this file) or use the pre-built
|
83
|
-
binaries (Windows binaries are in the directory `windows').
|
84
|
-
|
85
|
-
This software uses some level-1 BLAS subroutines. The needed functions are
|
86
|
-
included in this package. If a BLAS library is available on your
|
87
|
-
machine, you may use it by modifying the Makefile: Unmark the following line
|
88
|
-
|
89
|
-
#LIBS ?= -lblas
|
90
|
-
|
91
|
-
and mark
|
92
|
-
|
93
|
-
LIBS ?= blas/blas.a
|
94
|
-
|
95
|
-
`train' Usage
|
96
|
-
=============
|
97
|
-
|
98
|
-
Usage: train [options] training_set_file [model_file]
|
99
|
-
options:
|
100
|
-
-s type : set type of solver (default 1)
|
101
|
-
for multi-class classification
|
102
|
-
0 -- L2-regularized logistic regression (primal)
|
103
|
-
1 -- L2-regularized L2-loss support vector classification (dual)
|
104
|
-
2 -- L2-regularized L2-loss support vector classification (primal)
|
105
|
-
3 -- L2-regularized L1-loss support vector classification (dual)
|
106
|
-
4 -- support vector classification by Crammer and Singer
|
107
|
-
5 -- L1-regularized L2-loss support vector classification
|
108
|
-
6 -- L1-regularized logistic regression
|
109
|
-
7 -- L2-regularized logistic regression (dual)
|
110
|
-
for regression
|
111
|
-
11 -- L2-regularized L2-loss support vector regression (primal)
|
112
|
-
12 -- L2-regularized L2-loss support vector regression (dual)
|
113
|
-
13 -- L2-regularized L1-loss support vector regression (dual)
|
114
|
-
-c cost : set the parameter C (default 1)
|
115
|
-
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
|
116
|
-
-e epsilon : set tolerance of termination criterion
|
117
|
-
-s 0 and 2
|
118
|
-
|f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,
|
119
|
-
where f is the primal function and pos/neg are # of
|
120
|
-
positive/negative data (default 0.01)
|
121
|
-
-s 11
|
122
|
-
|f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.001)
|
123
|
-
-s 1, 3, 4 and 7
|
124
|
-
Dual maximal violation <= eps; similar to libsvm (default 0.1)
|
125
|
-
-s 5 and 6
|
126
|
-
|f'(w)|_1 <= eps*min(pos,neg)/l*|f'(w0)|_1,
|
127
|
-
where f is the primal function (default 0.01)
|
128
|
-
-s 12 and 13\n"
|
129
|
-
|f'(alpha)|_1 <= eps |f'(alpha0)|,
|
130
|
-
where f is the dual function (default 0.1)
|
131
|
-
-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)
|
132
|
-
-wi weight: weights adjust the parameter C of different classes (see README for details)
|
133
|
-
-v n: n-fold cross validation mode
|
134
|
-
-C : find parameter C (only for -s 0 and 2)
|
135
|
-
-q : quiet mode (no outputs)
|
136
|
-
|
137
|
-
Option -v randomly splits the data into n parts and calculates cross
|
138
|
-
validation accuracy on them.
|
139
|
-
|
140
|
-
Option -C conducts cross validation under different C values and finds
|
141
|
-
the best one. This options is supported only by -s 0 and -s 2. If
|
142
|
-
the solver is not specified, -s 2 is used.
|
143
|
-
|
144
|
-
Formulations:
|
145
|
-
|
146
|
-
For L2-regularized logistic regression (-s 0), we solve
|
147
|
-
|
148
|
-
min_w w^Tw/2 + C \sum log(1 + exp(-y_i w^Tx_i))
|
149
|
-
|
150
|
-
For L2-regularized L2-loss SVC dual (-s 1), we solve
|
151
|
-
|
152
|
-
min_alpha 0.5(alpha^T (Q + I/2/C) alpha) - e^T alpha
|
153
|
-
s.t. 0 <= alpha_i,
|
154
|
-
|
155
|
-
For L2-regularized L2-loss SVC (-s 2), we solve
|
156
|
-
|
157
|
-
min_w w^Tw/2 + C \sum max(0, 1- y_i w^Tx_i)^2
|
158
|
-
|
159
|
-
For L2-regularized L1-loss SVC dual (-s 3), we solve
|
160
|
-
|
161
|
-
min_alpha 0.5(alpha^T Q alpha) - e^T alpha
|
162
|
-
s.t. 0 <= alpha_i <= C,
|
163
|
-
|
164
|
-
For L1-regularized L2-loss SVC (-s 5), we solve
|
165
|
-
|
166
|
-
min_w \sum |w_j| + C \sum max(0, 1- y_i w^Tx_i)^2
|
167
|
-
|
168
|
-
For L1-regularized logistic regression (-s 6), we solve
|
169
|
-
|
170
|
-
min_w \sum |w_j| + C \sum log(1 + exp(-y_i w^Tx_i))
|
171
|
-
|
172
|
-
For L2-regularized logistic regression (-s 7), we solve
|
173
|
-
|
174
|
-
min_alpha 0.5(alpha^T Q alpha) + \sum alpha_i*log(alpha_i) + \sum (C-alpha_i)*log(C-alpha_i) - a constant
|
175
|
-
s.t. 0 <= alpha_i <= C,
|
176
|
-
|
177
|
-
where
|
178
|
-
|
179
|
-
Q is a matrix with Q_ij = y_i y_j x_i^T x_j.
|
180
|
-
|
181
|
-
For L2-regularized L2-loss SVR (-s 11), we solve
|
182
|
-
|
183
|
-
min_w w^Tw/2 + C \sum max(0, |y_i-w^Tx_i|-epsilon)^2
|
184
|
-
|
185
|
-
For L2-regularized L2-loss SVR dual (-s 12), we solve
|
186
|
-
|
187
|
-
min_beta 0.5(beta^T (Q + lambda I/2/C) beta) - y^T beta + \sum |beta_i|
|
188
|
-
|
189
|
-
For L2-regularized L1-loss SVR dual (-s 13), we solve
|
190
|
-
|
191
|
-
min_beta 0.5(beta^T Q beta) - y^T beta + \sum |beta_i|
|
192
|
-
s.t. -C <= beta_i <= C,
|
193
|
-
|
194
|
-
where
|
195
|
-
|
196
|
-
Q is a matrix with Q_ij = x_i^T x_j.
|
197
|
-
|
198
|
-
If bias >= 0, w becomes [w; w_{n+1}] and x becomes [x; bias].
|
199
|
-
|
200
|
-
The primal-dual relationship implies that -s 1 and -s 2 give the same
|
201
|
-
model, -s 0 and -s 7 give the same, and -s 11 and -s 12 give the same.
|
202
|
-
|
203
|
-
We implement 1-vs-the rest multi-class strategy for classification.
|
204
|
-
In training i vs. non_i, their C parameters are (weight from -wi)*C
|
205
|
-
and C, respectively. If there are only two classes, we train only one
|
206
|
-
model. Thus weight1*C vs. weight2*C is used. See examples below.
|
207
|
-
|
208
|
-
We also implement multi-class SVM by Crammer and Singer (-s 4):
|
209
|
-
|
210
|
-
min_{w_m, \xi_i} 0.5 \sum_m ||w_m||^2 + C \sum_i \xi_i
|
211
|
-
s.t. w^T_{y_i} x_i - w^T_m x_i >= \e^m_i - \xi_i \forall m,i
|
212
|
-
|
213
|
-
where e^m_i = 0 if y_i = m,
|
214
|
-
e^m_i = 1 if y_i != m,
|
215
|
-
|
216
|
-
Here we solve the dual problem:
|
217
|
-
|
218
|
-
min_{\alpha} 0.5 \sum_m ||w_m(\alpha)||^2 + \sum_i \sum_m e^m_i alpha^m_i
|
219
|
-
s.t. \alpha^m_i <= C^m_i \forall m,i , \sum_m \alpha^m_i=0 \forall i
|
220
|
-
|
221
|
-
where w_m(\alpha) = \sum_i \alpha^m_i x_i,
|
222
|
-
and C^m_i = C if m = y_i,
|
223
|
-
C^m_i = 0 if m != y_i.
|
224
|
-
|
225
|
-
`predict' Usage
|
226
|
-
===============
|
227
|
-
|
228
|
-
Usage: predict [options] test_file model_file output_file
|
229
|
-
options:
|
230
|
-
-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0); currently for logistic regression only
|
231
|
-
-q : quiet mode (no outputs)
|
232
|
-
|
233
|
-
Note that -b is only needed in the prediction phase. This is different
|
234
|
-
from the setting of LIBSVM.
|
235
|
-
|
236
|
-
Examples
|
237
|
-
========
|
238
|
-
|
239
|
-
> train data_file
|
240
|
-
|
241
|
-
Train linear SVM with L2-loss function.
|
242
|
-
|
243
|
-
> train -s 0 data_file
|
244
|
-
|
245
|
-
Train a logistic regression model.
|
246
|
-
|
247
|
-
> train -v 5 -e 0.001 data_file
|
248
|
-
|
249
|
-
Do five-fold cross-validation using L2-loss SVM.
|
250
|
-
Use a smaller stopping tolerance 0.001 than the default
|
251
|
-
0.1 if you want more accurate solutions.
|
252
|
-
|
253
|
-
> train -C data_file
|
254
|
-
|
255
|
-
Conduct cross validation many times by L2-loss SVM
|
256
|
-
and find the parameter C which achieves the best cross
|
257
|
-
validation accuracy.
|
258
|
-
|
259
|
-
> train -C -s 0 -v 3 -c 0.5 -e 0.0001 data_file
|
260
|
-
|
261
|
-
For parameter selection by -C, users can specify other
|
262
|
-
solvers (currently -s 0 and -s 2 are supported) and
|
263
|
-
different number of CV folds. Further, users can use
|
264
|
-
the -c option to specify the smallest C value of the
|
265
|
-
search range. This setting is useful when users want
|
266
|
-
to rerun the parameter selection procedure from a
|
267
|
-
specified C under a different setting, such as a stricter
|
268
|
-
stopping tolerance -e 0.0001 in the above example.
|
269
|
-
|
270
|
-
> train -c 10 -w1 2 -w2 5 -w3 2 four_class_data_file
|
271
|
-
|
272
|
-
Train four classifiers:
|
273
|
-
positive negative Cp Cn
|
274
|
-
class 1 class 2,3,4. 20 10
|
275
|
-
class 2 class 1,3,4. 50 10
|
276
|
-
class 3 class 1,2,4. 20 10
|
277
|
-
class 4 class 1,2,3. 10 10
|
278
|
-
|
279
|
-
> train -c 10 -w3 1 -w2 5 two_class_data_file
|
280
|
-
|
281
|
-
If there are only two classes, we train ONE model.
|
282
|
-
The C values for the two classes are 10 and 50.
|
283
|
-
|
284
|
-
> predict -b 1 test_file data_file.model output_file
|
285
|
-
|
286
|
-
Output probability estimates (for logistic regression only).
|
287
|
-
|
288
|
-
Library Usage
|
289
|
-
=============
|
290
|
-
|
291
|
-
- Function: model* train(const struct problem *prob,
|
292
|
-
const struct parameter *param);
|
293
|
-
|
294
|
-
This function constructs and returns a linear classification
|
295
|
-
or regression model according to the given training data and
|
296
|
-
parameters.
|
297
|
-
|
298
|
-
struct problem describes the problem:
|
299
|
-
|
300
|
-
struct problem
|
301
|
-
{
|
302
|
-
int l, n;
|
303
|
-
int *y;
|
304
|
-
struct feature_node **x;
|
305
|
-
double bias;
|
306
|
-
};
|
307
|
-
|
308
|
-
where `l' is the number of training data. If bias >= 0, we assume
|
309
|
-
that one additional feature is added to the end of each data
|
310
|
-
instance. `n' is the number of feature (including the bias feature
|
311
|
-
if bias >= 0). `y' is an array containing the target values. (integers
|
312
|
-
in classification, real numbers in regression) And `x' is an array
|
313
|
-
of pointers, each of which points to a sparse representation (array
|
314
|
-
of feature_node) of one training vector.
|
315
|
-
|
316
|
-
For example, if we have the following training data:
|
317
|
-
|
318
|
-
LABEL ATTR1 ATTR2 ATTR3 ATTR4 ATTR5
|
319
|
-
----- ----- ----- ----- ----- -----
|
320
|
-
1 0 0.1 0.2 0 0
|
321
|
-
2 0 0.1 0.3 -1.2 0
|
322
|
-
1 0.4 0 0 0 0
|
323
|
-
2 0 0.1 0 1.4 0.5
|
324
|
-
3 -0.1 -0.2 0.1 1.1 0.1
|
325
|
-
|
326
|
-
and bias = 1, then the components of problem are:
|
327
|
-
|
328
|
-
l = 5
|
329
|
-
n = 6
|
330
|
-
|
331
|
-
y -> 1 2 1 2 3
|
332
|
-
|
333
|
-
x -> [ ] -> (2,0.1) (3,0.2) (6,1) (-1,?)
|
334
|
-
[ ] -> (2,0.1) (3,0.3) (4,-1.2) (6,1) (-1,?)
|
335
|
-
[ ] -> (1,0.4) (6,1) (-1,?)
|
336
|
-
[ ] -> (2,0.1) (4,1.4) (5,0.5) (6,1) (-1,?)
|
337
|
-
[ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (6,1) (-1,?)
|
338
|
-
|
339
|
-
struct parameter describes the parameters of a linear classification
|
340
|
-
or regression model:
|
341
|
-
|
342
|
-
struct parameter
|
343
|
-
{
|
344
|
-
int solver_type;
|
345
|
-
|
346
|
-
/* these are for training only */
|
347
|
-
double eps; /* stopping criteria */
|
348
|
-
double C;
|
349
|
-
int nr_weight;
|
350
|
-
int *weight_label;
|
351
|
-
double* weight;
|
352
|
-
double p;
|
353
|
-
};
|
354
|
-
|
355
|
-
solver_type can be one of L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR, L2R_LR_DUAL, L2R_L2LOSS_SVR, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL.
|
356
|
-
for classification
|
357
|
-
L2R_LR L2-regularized logistic regression (primal)
|
358
|
-
L2R_L2LOSS_SVC_DUAL L2-regularized L2-loss support vector classification (dual)
|
359
|
-
L2R_L2LOSS_SVC L2-regularized L2-loss support vector classification (primal)
|
360
|
-
L2R_L1LOSS_SVC_DUAL L2-regularized L1-loss support vector classification (dual)
|
361
|
-
MCSVM_CS support vector classification by Crammer and Singer
|
362
|
-
L1R_L2LOSS_SVC L1-regularized L2-loss support vector classification
|
363
|
-
L1R_LR L1-regularized logistic regression
|
364
|
-
L2R_LR_DUAL L2-regularized logistic regression (dual)
|
365
|
-
for regression
|
366
|
-
L2R_L2LOSS_SVR L2-regularized L2-loss support vector regression (primal)
|
367
|
-
L2R_L2LOSS_SVR_DUAL L2-regularized L2-loss support vector regression (dual)
|
368
|
-
L2R_L1LOSS_SVR_DUAL L2-regularized L1-loss support vector regression (dual)
|
369
|
-
|
370
|
-
C is the cost of constraints violation.
|
371
|
-
p is the sensitiveness of loss of support vector regression.
|
372
|
-
eps is the stopping criterion.
|
373
|
-
|
374
|
-
nr_weight, weight_label, and weight are used to change the penalty
|
375
|
-
for some classes (If the weight for a class is not changed, it is
|
376
|
-
set to 1). This is useful for training classifier using unbalanced
|
377
|
-
input data or with asymmetric misclassification cost.
|
378
|
-
|
379
|
-
nr_weight is the number of elements in the array weight_label and
|
380
|
-
weight. Each weight[i] corresponds to weight_label[i], meaning that
|
381
|
-
the penalty of class weight_label[i] is scaled by a factor of weight[i].
|
382
|
-
|
383
|
-
If you do not want to change penalty for any of the classes,
|
384
|
-
just set nr_weight to 0.
|
385
|
-
|
386
|
-
*NOTE* To avoid wrong parameters, check_parameter() should be
|
387
|
-
called before train().
|
388
|
-
|
389
|
-
struct model stores the model obtained from the training procedure:
|
390
|
-
|
391
|
-
struct model
|
392
|
-
{
|
393
|
-
struct parameter param;
|
394
|
-
int nr_class; /* number of classes */
|
395
|
-
int nr_feature;
|
396
|
-
double *w;
|
397
|
-
int *label; /* label of each class */
|
398
|
-
double bias;
|
399
|
-
};
|
400
|
-
|
401
|
-
param describes the parameters used to obtain the model.
|
402
|
-
|
403
|
-
nr_class and nr_feature are the number of classes and features,
|
404
|
-
respectively. nr_class = 2 for regression.
|
405
|
-
|
406
|
-
The nr_feature*nr_class array w gives feature weights. We use one
|
407
|
-
against the rest for multi-class classification, so each feature
|
408
|
-
index corresponds to nr_class weight values. Weights are
|
409
|
-
organized in the following way
|
410
|
-
|
411
|
-
+------------------+------------------+------------+
|
412
|
-
| nr_class weights | nr_class weights | ...
|
413
|
-
| for 1st feature | for 2nd feature |
|
414
|
-
+------------------+------------------+------------+
|
415
|
-
|
416
|
-
If bias >= 0, x becomes [x; bias]. The number of features is
|
417
|
-
increased by one, so w is a (nr_feature+1)*nr_class array. The
|
418
|
-
value of bias is stored in the variable bias.
|
419
|
-
|
420
|
-
The array label stores class labels.
|
421
|
-
|
422
|
-
- Function: void cross_validation(const problem *prob, const parameter *param, int nr_fold, double *target);
|
423
|
-
|
424
|
-
This function conducts cross validation. Data are separated to
|
425
|
-
nr_fold folds. Under given parameters, sequentially each fold is
|
426
|
-
validated using the model from training the remaining. Predicted
|
427
|
-
labels in the validation process are stored in the array called
|
428
|
-
target.
|
429
|
-
|
430
|
-
The format of prob is same as that for train().
|
431
|
-
|
432
|
-
- Function: void find_parameter_C(const struct problem *prob,
|
433
|
-
const struct parameter *param, int nr_fold, double start_C,
|
434
|
-
double max_C, double *best_C, double *best_rate);
|
435
|
-
|
436
|
-
This function is similar to cross_validation. However, instead of
|
437
|
-
conducting cross validation under a specified parameter C, it
|
438
|
-
conducts cross validation many times under parameters C = start_C,
|
439
|
-
2*start_C, 4*start_C, 8*start_C, ..., and finds the best one with
|
440
|
-
the highest cross validation accuracy.
|
441
|
-
|
442
|
-
If start_C <= 0, then this procedure calculates a small enough C
|
443
|
-
for prob as the start_C. The procedure stops when the models of
|
444
|
-
all folds become stable or C reaches max_C. The best C and the
|
445
|
-
corresponding accuracy are assigned to *best_C and *best_rate,
|
446
|
-
respectively.
|
447
|
-
|
448
|
-
- Function: double predict(const model *model_, const feature_node *x);
|
449
|
-
|
450
|
-
For a classification model, the predicted class for x is returned.
|
451
|
-
For a regression model, the function value of x calculated using
|
452
|
-
the model is returned.
|
453
|
-
|
454
|
-
- Function: double predict_values(const struct model *model_,
|
455
|
-
const struct feature_node *x, double* dec_values);
|
456
|
-
|
457
|
-
This function gives nr_w decision values in the array dec_values.
|
458
|
-
nr_w=1 if regression is applied or the number of classes is two. An exception is
|
459
|
-
multi-class SVM by Crammer and Singer (-s 4), where nr_w = 2 if there are two classes. For all other situations, nr_w is the
|
460
|
-
number of classes.
|
461
|
-
|
462
|
-
We implement one-vs-the rest multi-class strategy (-s 0,1,2,3,5,6,7)
|
463
|
-
and multi-class SVM by Crammer and Singer (-s 4) for multi-class SVM.
|
464
|
-
The class with the highest decision value is returned.
|
465
|
-
|
466
|
-
- Function: double predict_probability(const struct model *model_,
|
467
|
-
const struct feature_node *x, double* prob_estimates);
|
468
|
-
|
469
|
-
This function gives nr_class probability estimates in the array
|
470
|
-
prob_estimates. nr_class can be obtained from the function
|
471
|
-
get_nr_class. The class with the highest probability is
|
472
|
-
returned. Currently, we support only the probability outputs of
|
473
|
-
logistic regression.
|
474
|
-
|
475
|
-
- Function: int get_nr_feature(const model *model_);
|
476
|
-
|
477
|
-
The function gives the number of attributes of the model.
|
478
|
-
|
479
|
-
- Function: int get_nr_class(const model *model_);
|
480
|
-
|
481
|
-
The function gives the number of classes of the model.
|
482
|
-
For a regression model, 2 is returned.
|
483
|
-
|
484
|
-
- Function: void get_labels(const model *model_, int* label);
|
485
|
-
|
486
|
-
This function outputs the name of labels into an array called label.
|
487
|
-
For a regression model, label is unchanged.
|
488
|
-
|
489
|
-
- Function: double get_decfun_coef(const struct model *model_, int feat_idx,
|
490
|
-
int label_idx);
|
491
|
-
|
492
|
-
This function gives the coefficient for the feature with feature index =
|
493
|
-
feat_idx and the class with label index = label_idx. Note that feat_idx
|
494
|
-
starts from 1, while label_idx starts from 0. If feat_idx is not in the
|
495
|
-
valid range (1 to nr_feature), then a zero value will be returned. For
|
496
|
-
classification models, if label_idx is not in the valid range (0 to
|
497
|
-
nr_class-1), then a zero value will be returned; for regression models,
|
498
|
-
label_idx is ignored.
|
499
|
-
|
500
|
-
- Function: double get_decfun_bias(const struct model *model_, int label_idx);
|
501
|
-
|
502
|
-
This function gives the bias term corresponding to the class with the
|
503
|
-
label_idx. For classification models, if label_idx is not in a valid range
|
504
|
-
(0 to nr_class-1), then a zero value will be returned; for regression
|
505
|
-
models, label_idx is ignored.
|
506
|
-
|
507
|
-
- Function: const char *check_parameter(const struct problem *prob,
|
508
|
-
const struct parameter *param);
|
509
|
-
|
510
|
-
This function checks whether the parameters are within the feasible
|
511
|
-
range of the problem. This function should be called before calling
|
512
|
-
train() and cross_validation(). It returns NULL if the
|
513
|
-
parameters are feasible, otherwise an error message is returned.
|
514
|
-
|
515
|
-
- Function: int check_probability_model(const struct model *model);
|
516
|
-
|
517
|
-
This function returns 1 if the model supports probability output;
|
518
|
-
otherwise, it returns 0.
|
519
|
-
|
520
|
-
- Function: int check_regression_model(const struct model *model);
|
521
|
-
|
522
|
-
This function returns 1 if the model is a regression model; otherwise
|
523
|
-
it returns 0.
|
524
|
-
|
525
|
-
- Function: int save_model(const char *model_file_name,
|
526
|
-
const struct model *model_);
|
527
|
-
|
528
|
-
This function saves a model to a file; returns 0 on success, or -1
|
529
|
-
if an error occurs.
|
530
|
-
|
531
|
-
- Function: struct model *load_model(const char *model_file_name);
|
532
|
-
|
533
|
-
This function returns a pointer to the model read from the file,
|
534
|
-
or a null pointer if the model could not be loaded.
|
535
|
-
|
536
|
-
- Function: void free_model_content(struct model *model_ptr);
|
537
|
-
|
538
|
-
This function frees the memory used by the entries in a model structure.
|
539
|
-
|
540
|
-
- Function: void free_and_destroy_model(struct model **model_ptr_ptr);
|
541
|
-
|
542
|
-
This function frees the memory used by a model and destroys the model
|
543
|
-
structure.
|
544
|
-
|
545
|
-
- Function: void destroy_param(struct parameter *param);
|
546
|
-
|
547
|
-
This function frees the memory used by a parameter set.
|
548
|
-
|
549
|
-
- Function: void set_print_string_function(void (*print_func)(const char *));
|
550
|
-
|
551
|
-
Users can specify their output format by a function. Use
|
552
|
-
set_print_string_function(NULL);
|
553
|
-
for default printing to stdout.
|
554
|
-
|
555
|
-
Building Windows Binaries
|
556
|
-
=========================
|
557
|
-
|
558
|
-
Windows binaries are in the directory `windows'. To build them via
|
559
|
-
Visual C++, use the following steps:
|
560
|
-
|
561
|
-
1. Open a dos command box and change to liblinear directory. If
|
562
|
-
environment variables of VC++ have not been set, type
|
563
|
-
|
564
|
-
""C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64\vcvars64.bat""
|
565
|
-
|
566
|
-
You may have to modify the above command according which version of
|
567
|
-
VC++ or where it is installed.
|
568
|
-
|
569
|
-
2. Type
|
570
|
-
|
571
|
-
nmake -f Makefile.win clean all
|
572
|
-
|
573
|
-
2. (Optional) To build 32-bit windows binaries, you must
|
574
|
-
(1) Setup "C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\vcvars32.bat" instead of vcvars64.bat
|
575
|
-
(2) Change CFLAGS in Makefile.win: /D _WIN64 to /D _WIN32
|
576
|
-
|
577
|
-
MATLAB/OCTAVE Interface
|
578
|
-
=======================
|
579
|
-
|
580
|
-
Please check the file README in the directory `matlab'.
|
581
|
-
|
582
|
-
PYTHON Interface
|
583
|
-
================
|
584
|
-
|
585
|
-
Please check the file README in the directory `python'.
|
586
|
-
|
587
|
-
Additional Information
|
588
|
-
======================
|
589
|
-
|
590
|
-
If you find LIBLINEAR helpful, please cite it as
|
591
|
-
|
592
|
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
|
593
|
-
LIBLINEAR: A Library for Large Linear Classification, Journal of
|
594
|
-
Machine Learning Research 9(2008), 1871-1874. Software available at
|
595
|
-
http://www.csie.ntu.edu.tw/~cjlin/liblinear
|
596
|
-
|
597
|
-
For any questions and comments, please send your email to
|
598
|
-
cjlin@csie.ntu.edu.tw
|
599
|
-
|
600
|
-
|