liblinear-ruby 1.0.1 → 1.0.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +1 -1
  3. data/ext/blasp.h +8 -8
  4. data/ext/daxpy.c +3 -3
  5. data/ext/ddot.c +3 -3
  6. data/ext/dnrm2.c +7 -7
  7. data/ext/dscal.c +4 -4
  8. data/ext/liblinear_wrap.cxx +382 -382
  9. data/ext/linear.cpp +44 -55
  10. data/ext/linear.h +5 -1
  11. data/ext/tron.cpp +13 -5
  12. data/ext/tron.h +1 -1
  13. data/lib/liblinear.rb +2 -0
  14. data/lib/liblinear/version.rb +1 -1
  15. metadata +2 -41
  16. data/liblinear-2.1/COPYRIGHT +0 -31
  17. data/liblinear-2.1/Makefile +0 -37
  18. data/liblinear-2.1/Makefile.win +0 -24
  19. data/liblinear-2.1/README +0 -600
  20. data/liblinear-2.1/blas/Makefile +0 -22
  21. data/liblinear-2.1/blas/blas.h +0 -25
  22. data/liblinear-2.1/blas/blasp.h +0 -438
  23. data/liblinear-2.1/blas/daxpy.c +0 -57
  24. data/liblinear-2.1/blas/ddot.c +0 -58
  25. data/liblinear-2.1/blas/dnrm2.c +0 -70
  26. data/liblinear-2.1/blas/dscal.c +0 -52
  27. data/liblinear-2.1/heart_scale +0 -270
  28. data/liblinear-2.1/linear.cpp +0 -3053
  29. data/liblinear-2.1/linear.def +0 -22
  30. data/liblinear-2.1/linear.h +0 -79
  31. data/liblinear-2.1/matlab/Makefile +0 -49
  32. data/liblinear-2.1/matlab/README +0 -208
  33. data/liblinear-2.1/matlab/libsvmread.c +0 -212
  34. data/liblinear-2.1/matlab/libsvmwrite.c +0 -119
  35. data/liblinear-2.1/matlab/linear_model_matlab.c +0 -176
  36. data/liblinear-2.1/matlab/linear_model_matlab.h +0 -2
  37. data/liblinear-2.1/matlab/make.m +0 -22
  38. data/liblinear-2.1/matlab/predict.c +0 -341
  39. data/liblinear-2.1/matlab/train.c +0 -492
  40. data/liblinear-2.1/predict.c +0 -243
  41. data/liblinear-2.1/python/Makefile +0 -4
  42. data/liblinear-2.1/python/README +0 -380
  43. data/liblinear-2.1/python/liblinear.py +0 -323
  44. data/liblinear-2.1/python/liblinearutil.py +0 -270
  45. data/liblinear-2.1/train.c +0 -449
  46. data/liblinear-2.1/tron.cpp +0 -241
  47. data/liblinear-2.1/tron.h +0 -35
  48. data/liblinear-2.1/windows/liblinear.dll +0 -0
  49. data/liblinear-2.1/windows/libsvmread.mexw64 +0 -0
  50. data/liblinear-2.1/windows/libsvmwrite.mexw64 +0 -0
  51. data/liblinear-2.1/windows/predict.exe +0 -0
  52. data/liblinear-2.1/windows/predict.mexw64 +0 -0
  53. data/liblinear-2.1/windows/train.exe +0 -0
  54. data/liblinear-2.1/windows/train.mexw64 +0 -0
@@ -1,243 +0,0 @@
1
- #include <stdio.h>
2
- #include <ctype.h>
3
- #include <stdlib.h>
4
- #include <string.h>
5
- #include <errno.h>
6
- #include "linear.h"
7
-
8
- int print_null(const char *s,...) {return 0;}
9
-
10
- static int (*info)(const char *fmt,...) = &printf;
11
-
12
- struct feature_node *x;
13
- int max_nr_attr = 64;
14
-
15
- struct model* model_;
16
- int flag_predict_probability=0;
17
-
18
- void exit_input_error(int line_num)
19
- {
20
- fprintf(stderr,"Wrong input format at line %d\n", line_num);
21
- exit(1);
22
- }
23
-
24
- static char *line = NULL;
25
- static int max_line_len;
26
-
27
- static char* readline(FILE *input)
28
- {
29
- int len;
30
-
31
- if(fgets(line,max_line_len,input) == NULL)
32
- return NULL;
33
-
34
- while(strrchr(line,'\n') == NULL)
35
- {
36
- max_line_len *= 2;
37
- line = (char *) realloc(line,max_line_len);
38
- len = (int) strlen(line);
39
- if(fgets(line+len,max_line_len-len,input) == NULL)
40
- break;
41
- }
42
- return line;
43
- }
44
-
45
- void do_predict(FILE *input, FILE *output)
46
- {
47
- int correct = 0;
48
- int total = 0;
49
- double error = 0;
50
- double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
51
-
52
- int nr_class=get_nr_class(model_);
53
- double *prob_estimates=NULL;
54
- int j, n;
55
- int nr_feature=get_nr_feature(model_);
56
- if(model_->bias>=0)
57
- n=nr_feature+1;
58
- else
59
- n=nr_feature;
60
-
61
- if(flag_predict_probability)
62
- {
63
- int *labels;
64
-
65
- if(!check_probability_model(model_))
66
- {
67
- fprintf(stderr, "probability output is only supported for logistic regression\n");
68
- exit(1);
69
- }
70
-
71
- labels=(int *) malloc(nr_class*sizeof(int));
72
- get_labels(model_,labels);
73
- prob_estimates = (double *) malloc(nr_class*sizeof(double));
74
- fprintf(output,"labels");
75
- for(j=0;j<nr_class;j++)
76
- fprintf(output," %d",labels[j]);
77
- fprintf(output,"\n");
78
- free(labels);
79
- }
80
-
81
- max_line_len = 1024;
82
- line = (char *)malloc(max_line_len*sizeof(char));
83
- while(readline(input) != NULL)
84
- {
85
- int i = 0;
86
- double target_label, predict_label;
87
- char *idx, *val, *label, *endptr;
88
- int inst_max_index = 0; // strtol gives 0 if wrong format
89
-
90
- label = strtok(line," \t\n");
91
- if(label == NULL) // empty line
92
- exit_input_error(total+1);
93
-
94
- target_label = strtod(label,&endptr);
95
- if(endptr == label || *endptr != '\0')
96
- exit_input_error(total+1);
97
-
98
- while(1)
99
- {
100
- if(i>=max_nr_attr-2) // need one more for index = -1
101
- {
102
- max_nr_attr *= 2;
103
- x = (struct feature_node *) realloc(x,max_nr_attr*sizeof(struct feature_node));
104
- }
105
-
106
- idx = strtok(NULL,":");
107
- val = strtok(NULL," \t");
108
-
109
- if(val == NULL)
110
- break;
111
- errno = 0;
112
- x[i].index = (int) strtol(idx,&endptr,10);
113
- if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index)
114
- exit_input_error(total+1);
115
- else
116
- inst_max_index = x[i].index;
117
-
118
- errno = 0;
119
- x[i].value = strtod(val,&endptr);
120
- if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
121
- exit_input_error(total+1);
122
-
123
- // feature indices larger than those in training are not used
124
- if(x[i].index <= nr_feature)
125
- ++i;
126
- }
127
-
128
- if(model_->bias>=0)
129
- {
130
- x[i].index = n;
131
- x[i].value = model_->bias;
132
- i++;
133
- }
134
- x[i].index = -1;
135
-
136
- if(flag_predict_probability)
137
- {
138
- int j;
139
- predict_label = predict_probability(model_,x,prob_estimates);
140
- fprintf(output,"%g",predict_label);
141
- for(j=0;j<model_->nr_class;j++)
142
- fprintf(output," %g",prob_estimates[j]);
143
- fprintf(output,"\n");
144
- }
145
- else
146
- {
147
- predict_label = predict(model_,x);
148
- fprintf(output,"%g\n",predict_label);
149
- }
150
-
151
- if(predict_label == target_label)
152
- ++correct;
153
- error += (predict_label-target_label)*(predict_label-target_label);
154
- sump += predict_label;
155
- sumt += target_label;
156
- sumpp += predict_label*predict_label;
157
- sumtt += target_label*target_label;
158
- sumpt += predict_label*target_label;
159
- ++total;
160
- }
161
- if(check_regression_model(model_))
162
- {
163
- info("Mean squared error = %g (regression)\n",error/total);
164
- info("Squared correlation coefficient = %g (regression)\n",
165
- ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
166
- ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
167
- );
168
- }
169
- else
170
- info("Accuracy = %g%% (%d/%d)\n",(double) correct/total*100,correct,total);
171
- if(flag_predict_probability)
172
- free(prob_estimates);
173
- }
174
-
175
- void exit_with_help()
176
- {
177
- printf(
178
- "Usage: predict [options] test_file model_file output_file\n"
179
- "options:\n"
180
- "-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0); currently for logistic regression only\n"
181
- "-q : quiet mode (no outputs)\n"
182
- );
183
- exit(1);
184
- }
185
-
186
- int main(int argc, char **argv)
187
- {
188
- FILE *input, *output;
189
- int i;
190
-
191
- // parse options
192
- for(i=1;i<argc;i++)
193
- {
194
- if(argv[i][0] != '-') break;
195
- ++i;
196
- switch(argv[i-1][1])
197
- {
198
- case 'b':
199
- flag_predict_probability = atoi(argv[i]);
200
- break;
201
- case 'q':
202
- info = &print_null;
203
- i--;
204
- break;
205
- default:
206
- fprintf(stderr,"unknown option: -%c\n", argv[i-1][1]);
207
- exit_with_help();
208
- break;
209
- }
210
- }
211
- if(i>=argc)
212
- exit_with_help();
213
-
214
- input = fopen(argv[i],"r");
215
- if(input == NULL)
216
- {
217
- fprintf(stderr,"can't open input file %s\n",argv[i]);
218
- exit(1);
219
- }
220
-
221
- output = fopen(argv[i+2],"w");
222
- if(output == NULL)
223
- {
224
- fprintf(stderr,"can't open output file %s\n",argv[i+2]);
225
- exit(1);
226
- }
227
-
228
- if((model_=load_model(argv[i+1]))==0)
229
- {
230
- fprintf(stderr,"can't open model file %s\n",argv[i+1]);
231
- exit(1);
232
- }
233
-
234
- x = (struct feature_node *) malloc(max_nr_attr*sizeof(struct feature_node));
235
- do_predict(input, output);
236
- free_and_destroy_model(&model_);
237
- free(line);
238
- free(x);
239
- fclose(input);
240
- fclose(output);
241
- return 0;
242
- }
243
-
@@ -1,4 +0,0 @@
1
- all = lib
2
-
3
- lib:
4
- make -C .. lib
@@ -1,380 +0,0 @@
1
- -------------------------------------
2
- --- Python interface of LIBLINEAR ---
3
- -------------------------------------
4
-
5
- Table of Contents
6
- =================
7
-
8
- - Introduction
9
- - Installation
10
- - Quick Start
11
- - Design Description
12
- - Data Structures
13
- - Utility Functions
14
- - Additional Information
15
-
16
- Introduction
17
- ============
18
-
19
- Python (http://www.python.org/) is a programming language suitable for rapid
20
- development. This tool provides a simple Python interface to LIBLINEAR, a library
21
- for support vector machines (http://www.csie.ntu.edu.tw/~cjlin/liblinear). The
22
- interface is very easy to use as the usage is the same as that of LIBLINEAR. The
23
- interface is developed with the built-in Python library "ctypes."
24
-
25
- Installation
26
- ============
27
-
28
- On Unix systems, type
29
-
30
- > make
31
-
32
- The interface needs only LIBLINEAR shared library, which is generated by
33
- the above command. We assume that the shared library is on the LIBLINEAR
34
- main directory or in the system path.
35
-
36
- For windows, the shared library liblinear.dll is ready in the directory
37
- `..\windows'. You can also copy it to the system directory (e.g.,
38
- `C:\WINDOWS\system32\' for Windows XP). To regenerate the shared library,
39
- please follow the instruction of building windows binaries in LIBLINEAR README.
40
-
41
- Quick Start
42
- ===========
43
-
44
- There are two levels of usage. The high-level one uses utility functions
45
- in liblinearutil.py and the usage is the same as the LIBLINEAR MATLAB interface.
46
-
47
- >>> from liblinearutil import *
48
- # Read data in LIBSVM format
49
- >>> y, x = svm_read_problem('../heart_scale')
50
- >>> m = train(y[:200], x[:200], '-c 4')
51
- >>> p_label, p_acc, p_val = predict(y[200:], x[200:], m)
52
-
53
- # Construct problem in python format
54
- # Dense data
55
- >>> y, x = [1,-1], [[1,0,1], [-1,0,-1]]
56
- # Sparse data
57
- >>> y, x = [1,-1], [{1:1, 3:1}, {1:-1,3:-1}]
58
- >>> prob = problem(y, x)
59
- >>> param = parameter('-s 0 -c 4 -B 1')
60
- >>> m = train(prob, param)
61
-
62
- # Other utility functions
63
- >>> save_model('heart_scale.model', m)
64
- >>> m = load_model('heart_scale.model')
65
- >>> p_label, p_acc, p_val = predict(y, x, m, '-b 1')
66
- >>> ACC, MSE, SCC = evaluations(y, p_label)
67
-
68
- # Getting online help
69
- >>> help(train)
70
-
71
- The low-level use directly calls C interfaces imported by liblinear.py. Note that
72
- all arguments and return values are in ctypes format. You need to handle them
73
- carefully.
74
-
75
- >>> from liblinear import *
76
- >>> prob = problem([1,-1], [{1:1, 3:1}, {1:-1,3:-1}])
77
- >>> param = parameter('-c 4')
78
- >>> m = liblinear.train(prob, param) # m is a ctype pointer to a model
79
- # Convert a Python-format instance to feature_nodearray, a ctypes structure
80
- >>> x0, max_idx = gen_feature_nodearray({1:1, 3:1})
81
- >>> label = liblinear.predict(m, x0)
82
-
83
- Design Description
84
- ==================
85
-
86
- There are two files liblinear.py and liblinearutil.py, which respectively correspond to
87
- low-level and high-level use of the interface.
88
-
89
- In liblinear.py, we adopt the Python built-in library "ctypes," so that
90
- Python can directly access C structures and interface functions defined
91
- in linear.h.
92
-
93
- While advanced users can use structures/functions in liblinear.py, to
94
- avoid handling ctypes structures, in liblinearutil.py we provide some easy-to-use
95
- functions. The usage is similar to LIBLINEAR MATLAB interface.
96
-
97
- Data Structures
98
- ===============
99
-
100
- Three data structures derived from linear.h are node, problem, and
101
- parameter. They all contain fields with the same names in
102
- linear.h. Access these fields carefully because you directly use a C structure
103
- instead of a Python object. The following description introduces additional
104
- fields and methods.
105
-
106
- Before using the data structures, execute the following command to load the
107
- LIBLINEAR shared library:
108
-
109
- >>> from liblinear import *
110
-
111
- - class feature_node:
112
-
113
- Construct a feature_node.
114
-
115
- >>> node = feature_node(idx, val)
116
-
117
- idx: an integer indicates the feature index.
118
-
119
- val: a float indicates the feature value.
120
-
121
- Show the index and the value of a node.
122
-
123
- >>> print(node)
124
-
125
- - Function: gen_feature_nodearray(xi [,feature_max=None [,issparse=True]])
126
-
127
- Generate a feature vector from a Python list/tuple or a dictionary:
128
-
129
- >>> xi, max_idx = gen_feature_nodearray({1:1, 3:1, 5:-2})
130
-
131
- xi: the returned feature_nodearray (a ctypes structure)
132
-
133
- max_idx: the maximal feature index of xi
134
-
135
- issparse: if issparse == True, zero feature values are removed. The default
136
- value is True for the sparsity.
137
-
138
- feature_max: if feature_max is assigned, features with indices larger than
139
- feature_max are removed.
140
-
141
- - class problem:
142
-
143
- Construct a problem instance
144
-
145
- >>> prob = problem(y, x [,bias=-1])
146
-
147
- y: a Python list/tuple of l labels (type must be int/double).
148
-
149
- x: a Python list/tuple of l data instances. Each element of x must be
150
- an instance of list/tuple/dictionary type.
151
-
152
- bias: if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term
153
- added (default -1)
154
-
155
- You can also modify the bias value by
156
-
157
- >>> prob.set_bias(1)
158
-
159
- Note that if your x contains sparse data (i.e., dictionary), the internal
160
- ctypes data format is still sparse.
161
-
162
- - class parameter:
163
-
164
- Construct a parameter instance
165
-
166
- >>> param = parameter('training_options')
167
-
168
- If 'training_options' is empty, LIBLINEAR default values are applied.
169
-
170
- Set param to LIBLINEAR default values.
171
-
172
- >>> param.set_to_default_values()
173
-
174
- Parse a string of options.
175
-
176
- >>> param.parse_options('training_options')
177
-
178
- Show values of parameters.
179
-
180
- >>> print(param)
181
-
182
- - class model:
183
-
184
- There are two ways to obtain an instance of model:
185
-
186
- >>> model_ = train(y, x)
187
- >>> model_ = load_model('model_file_name')
188
-
189
- Note that the returned structure of interface functions
190
- liblinear.train and liblinear.load_model is a ctypes pointer of
191
- model, which is different from the model object returned
192
- by train and load_model in liblinearutil.py. We provide a
193
- function toPyModel for the conversion:
194
-
195
- >>> model_ptr = liblinear.train(prob, param)
196
- >>> model_ = toPyModel(model_ptr)
197
-
198
- If you obtain a model in a way other than the above approaches,
199
- handle it carefully to avoid memory leak or segmentation fault.
200
-
201
- Some interface functions to access LIBLINEAR models are wrapped as
202
- members of the class model:
203
-
204
- >>> nr_feature = model_.get_nr_feature()
205
- >>> nr_class = model_.get_nr_class()
206
- >>> class_labels = model_.get_labels()
207
- >>> is_prob_model = model_.is_probability_model()
208
- >>> is_regression_model = model_.is_regression_model()
209
-
210
- The decision function is W*x + b, where
211
- W is an nr_class-by-nr_feature matrix, and
212
- b is a vector of size nr_class.
213
- To access W_kj (i.e., coefficient for the k-th class and the j-th feature)
214
- and b_k (i.e., bias for the k-th class), use the following functions.
215
-
216
- >>> W_kj = model_.get_decfun_coef(feat_idx=j, label_idx=k)
217
- >>> b_k = model_.get_decfun_bias(label_idx=k)
218
-
219
- We also provide a function to extract w_k (i.e., the k-th row of W) and
220
- b_k directly as follows.
221
-
222
- >>> [w_k, b_k] = model_.get_decfun(label_idx=k)
223
-
224
- Note that w_k is a Python list of length nr_feature, which means that
225
- w_k[0] = W_k1.
226
- For regression models, W is just a vector of length nr_feature. Either
227
- set label_idx=0 or omit the label_idx parameter to access the coefficients.
228
-
229
- >>> W_j = model_.get_decfun_coef(feat_idx=j)
230
- >>> b = model_.get_decfun_bias()
231
- >>> [W, b] = model_.get_decfun()
232
-
233
- Note that in get_decfun_coef, get_decfun_bias, and get_decfun, feat_idx
234
- starts from 1, while label_idx starts from 0. If label_idx is not in the
235
- valid range (0 to nr_class-1), then a NaN will be returned; and if feat_idx
236
- is not in the valid range (1 to nr_feature), then a zero value will be
237
- returned. For regression models, label_idx is ignored.
238
-
239
- Utility Functions
240
- =================
241
-
242
- To use utility functions, type
243
-
244
- >>> from liblinearutil import *
245
-
246
- The above command loads
247
- train() : train a linear model
248
- predict() : predict testing data
249
- svm_read_problem() : read the data from a LIBSVM-format file.
250
- load_model() : load a LIBLINEAR model.
251
- save_model() : save model to a file.
252
- evaluations() : evaluate prediction results.
253
-
254
- - Function: train
255
-
256
- There are three ways to call train()
257
-
258
- >>> model = train(y, x [, 'training_options'])
259
- >>> model = train(prob [, 'training_options'])
260
- >>> model = train(prob, param)
261
-
262
- y: a list/tuple of l training labels (type must be int/double).
263
-
264
- x: a list/tuple of l training instances. The feature vector of
265
- each training instance is an instance of list/tuple or dictionary.
266
-
267
- training_options: a string in the same form as that for LIBLINEAR command
268
- mode.
269
-
270
- prob: a problem instance generated by calling
271
- problem(y, x).
272
-
273
- param: a parameter instance generated by calling
274
- parameter('training_options')
275
-
276
- model: the returned model instance. See linear.h for details of this
277
- structure. If '-v' is specified, cross validation is
278
- conducted and the returned model is just a scalar: cross-validation
279
- accuracy for classification and mean-squared error for regression.
280
- If the '-C' option is specified, the best parameter C is found
281
- by cross validation. The returned model is a tuple of the best C
282
- and the corresponding cross-validation accuracy. The parameter
283
- selection utility is supported by only -s 0 and -s 2.
284
-
285
-
286
- To train the same data many times with different
287
- parameters, the second and the third ways should be faster..
288
-
289
- Examples:
290
-
291
- >>> y, x = svm_read_problem('../heart_scale')
292
- >>> prob = problem(y, x)
293
- >>> param = parameter('-s 3 -c 5 -q')
294
- >>> m = train(y, x, '-c 5')
295
- >>> m = train(prob, '-w1 5 -c 5')
296
- >>> m = train(prob, param)
297
- >>> CV_ACC = train(y, x, '-v 3')
298
- >>> best_C, best_rate = train(y, x, '-C -s 0')
299
- >>> m = train(y, x, '-c {0} -s 0'.format(best_C)) # use the same solver: -s 0
300
-
301
- - Function: predict
302
-
303
- To predict testing data with a model, use
304
-
305
- >>> p_labs, p_acc, p_vals = predict(y, x, model [,'predicting_options'])
306
-
307
- y: a list/tuple of l true labels (type must be int/double). It is used
308
- for calculating the accuracy. Use [] if true labels are
309
- unavailable.
310
-
311
- x: a list/tuple of l predicting instances. The feature vector of
312
- each predicting instance is an instance of list/tuple or dictionary.
313
-
314
- predicting_options: a string of predicting options in the same format as
315
- that of LIBLINEAR.
316
-
317
- model: a model instance.
318
-
319
- p_labels: a list of predicted labels
320
-
321
- p_acc: a tuple including accuracy (for classification), mean
322
- squared error, and squared correlation coefficient (for
323
- regression).
324
-
325
- p_vals: a list of decision values or probability estimates (if '-b 1'
326
- is specified). If k is the number of classes, for decision values,
327
- each element includes results of predicting k binary-class
328
- SVMs. If k = 2 and solver is not MCSVM_CS, only one decision value
329
- is returned. For probabilities, each element contains k values
330
- indicating the probability that the testing instance is in each class.
331
- Note that the order of classes here is the same as 'model.label'
332
- field in the model structure.
333
-
334
- Example:
335
-
336
- >>> m = train(y, x, '-c 5')
337
- >>> p_labels, p_acc, p_vals = predict(y, x, m)
338
-
339
- - Functions: svm_read_problem/load_model/save_model
340
-
341
- See the usage by examples:
342
-
343
- >>> y, x = svm_read_problem('data.txt')
344
- >>> m = load_model('model_file')
345
- >>> save_model('model_file', m)
346
-
347
- - Function: evaluations
348
-
349
- Calculate some evaluations using the true values (ty) and predicted
350
- values (pv):
351
-
352
- >>> (ACC, MSE, SCC) = evaluations(ty, pv)
353
-
354
- ty: a list of true values.
355
-
356
- pv: a list of predict values.
357
-
358
- ACC: accuracy.
359
-
360
- MSE: mean squared error.
361
-
362
- SCC: squared correlation coefficient.
363
-
364
-
365
- Additional Information
366
- ======================
367
-
368
- This interface was written by Hsiang-Fu Yu from Department of Computer
369
- Science, National Taiwan University. If you find this tool useful, please
370
- cite LIBLINEAR as follows
371
-
372
- R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
373
- LIBLINEAR: A Library for Large Linear Classification, Journal of
374
- Machine Learning Research 9(2008), 1871-1874. Software available at
375
- http://www.csie.ntu.edu.tw/~cjlin/liblinear
376
-
377
- For any question, please contact Chih-Jen Lin <cjlin@csie.ntu.edu.tw>,
378
- or check the FAQ page:
379
-
380
- http://www.csie.ntu.edu.tw/~cjlin/liblinear/faq.html