kreuzberg 4.0.0.rc2 → 4.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (446) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +14 -14
  3. data/.rspec +3 -3
  4. data/.rubocop.yaml +1 -1
  5. data/.rubocop.yml +543 -538
  6. data/Gemfile +8 -8
  7. data/Gemfile.lock +194 -6
  8. data/README.md +396 -426
  9. data/Rakefile +34 -25
  10. data/Steepfile +51 -47
  11. data/examples/async_patterns.rb +283 -341
  12. data/ext/kreuzberg_rb/extconf.rb +65 -45
  13. data/ext/kreuzberg_rb/native/.cargo/config.toml +23 -0
  14. data/ext/kreuzberg_rb/native/Cargo.lock +7619 -6535
  15. data/ext/kreuzberg_rb/native/Cargo.toml +75 -44
  16. data/ext/kreuzberg_rb/native/README.md +425 -425
  17. data/ext/kreuzberg_rb/native/build.rs +15 -15
  18. data/ext/kreuzberg_rb/native/include/ieeefp.h +11 -11
  19. data/ext/kreuzberg_rb/native/include/msvc_compat/strings.h +14 -14
  20. data/ext/kreuzberg_rb/native/include/strings.h +20 -20
  21. data/ext/kreuzberg_rb/native/include/unistd.h +47 -47
  22. data/ext/kreuzberg_rb/native/src/lib.rs +3802 -2998
  23. data/extconf.rb +60 -28
  24. data/kreuzberg.gemspec +199 -148
  25. data/lib/kreuzberg/api_proxy.rb +126 -142
  26. data/lib/kreuzberg/cache_api.rb +67 -46
  27. data/lib/kreuzberg/cli.rb +47 -55
  28. data/lib/kreuzberg/cli_proxy.rb +117 -127
  29. data/lib/kreuzberg/config.rb +936 -691
  30. data/lib/kreuzberg/error_context.rb +136 -32
  31. data/lib/kreuzberg/errors.rb +116 -118
  32. data/lib/kreuzberg/extraction_api.rb +313 -85
  33. data/lib/kreuzberg/mcp_proxy.rb +177 -186
  34. data/lib/kreuzberg/ocr_backend_protocol.rb +40 -113
  35. data/lib/kreuzberg/post_processor_protocol.rb +15 -86
  36. data/lib/kreuzberg/result.rb +334 -216
  37. data/lib/kreuzberg/setup_lib_path.rb +99 -80
  38. data/lib/kreuzberg/types.rb +170 -0
  39. data/lib/kreuzberg/validator_protocol.rb +16 -89
  40. data/lib/kreuzberg/version.rb +5 -5
  41. data/lib/kreuzberg.rb +96 -103
  42. data/lib/libpdfium.so +0 -0
  43. data/sig/kreuzberg/internal.rbs +184 -184
  44. data/sig/kreuzberg.rbs +561 -520
  45. data/spec/binding/async_operations_spec.rb +473 -0
  46. data/spec/binding/batch_operations_spec.rb +595 -0
  47. data/spec/binding/batch_spec.rb +359 -0
  48. data/spec/binding/cache_spec.rb +227 -227
  49. data/spec/binding/cli_proxy_spec.rb +85 -85
  50. data/spec/binding/cli_spec.rb +55 -55
  51. data/spec/binding/config_result_spec.rb +377 -0
  52. data/spec/binding/config_spec.rb +419 -345
  53. data/spec/binding/config_validation_spec.rb +377 -283
  54. data/spec/binding/embeddings_spec.rb +816 -0
  55. data/spec/binding/error_handling_spec.rb +399 -213
  56. data/spec/binding/error_recovery_spec.rb +488 -0
  57. data/spec/binding/errors_spec.rb +66 -66
  58. data/spec/binding/font_config_spec.rb +220 -0
  59. data/spec/binding/images_spec.rb +738 -0
  60. data/spec/binding/keywords_extraction_spec.rb +600 -0
  61. data/spec/binding/metadata_types_spec.rb +1228 -0
  62. data/spec/binding/pages_extraction_spec.rb +471 -0
  63. data/spec/binding/plugins/ocr_backend_spec.rb +307 -307
  64. data/spec/binding/plugins/postprocessor_spec.rb +269 -269
  65. data/spec/binding/plugins/validator_spec.rb +273 -274
  66. data/spec/binding/tables_spec.rb +641 -0
  67. data/spec/fixtures/config.toml +38 -39
  68. data/spec/fixtures/config.yaml +41 -41
  69. data/spec/fixtures/invalid_config.toml +3 -4
  70. data/spec/smoke/package_spec.rb +177 -178
  71. data/spec/spec_helper.rb +40 -42
  72. data/spec/unit/config/chunking_config_spec.rb +213 -0
  73. data/spec/unit/config/embedding_config_spec.rb +343 -0
  74. data/spec/unit/config/extraction_config_spec.rb +438 -0
  75. data/spec/unit/config/font_config_spec.rb +285 -0
  76. data/spec/unit/config/hierarchy_config_spec.rb +314 -0
  77. data/spec/unit/config/image_extraction_config_spec.rb +209 -0
  78. data/spec/unit/config/image_preprocessing_config_spec.rb +249 -0
  79. data/spec/unit/config/keyword_config_spec.rb +229 -0
  80. data/spec/unit/config/language_detection_config_spec.rb +258 -0
  81. data/spec/unit/config/ocr_config_spec.rb +171 -0
  82. data/spec/unit/config/page_config_spec.rb +221 -0
  83. data/spec/unit/config/pdf_config_spec.rb +267 -0
  84. data/spec/unit/config/postprocessor_config_spec.rb +290 -0
  85. data/spec/unit/config/tesseract_config_spec.rb +181 -0
  86. data/spec/unit/config/token_reduction_config_spec.rb +251 -0
  87. data/test/metadata_types_test.rb +959 -0
  88. data/vendor/Cargo.toml +61 -0
  89. data/vendor/kreuzberg/Cargo.toml +259 -204
  90. data/vendor/kreuzberg/README.md +263 -175
  91. data/vendor/kreuzberg/build.rs +782 -474
  92. data/vendor/kreuzberg/examples/bench_fixes.rs +71 -0
  93. data/vendor/kreuzberg/examples/test_pdfium_fork.rs +62 -0
  94. data/vendor/kreuzberg/src/api/error.rs +81 -81
  95. data/vendor/kreuzberg/src/api/handlers.rs +320 -199
  96. data/vendor/kreuzberg/src/api/mod.rs +94 -79
  97. data/vendor/kreuzberg/src/api/server.rs +518 -353
  98. data/vendor/kreuzberg/src/api/types.rs +206 -170
  99. data/vendor/kreuzberg/src/cache/mod.rs +1167 -1167
  100. data/vendor/kreuzberg/src/chunking/mod.rs +2303 -677
  101. data/vendor/kreuzberg/src/chunking/processor.rs +219 -0
  102. data/vendor/kreuzberg/src/core/batch_mode.rs +95 -95
  103. data/vendor/kreuzberg/src/core/batch_optimizations.rs +385 -0
  104. data/vendor/kreuzberg/src/core/config.rs +1914 -1032
  105. data/vendor/kreuzberg/src/core/config_validation.rs +949 -0
  106. data/vendor/kreuzberg/src/core/extractor.rs +1200 -1024
  107. data/vendor/kreuzberg/src/core/formats.rs +235 -0
  108. data/vendor/kreuzberg/src/core/io.rs +329 -329
  109. data/vendor/kreuzberg/src/core/mime.rs +605 -605
  110. data/vendor/kreuzberg/src/core/mod.rs +61 -45
  111. data/vendor/kreuzberg/src/core/pipeline.rs +1223 -984
  112. data/vendor/kreuzberg/src/core/server_config.rs +1220 -0
  113. data/vendor/kreuzberg/src/embeddings.rs +471 -432
  114. data/vendor/kreuzberg/src/error.rs +431 -431
  115. data/vendor/kreuzberg/src/extraction/archive.rs +959 -954
  116. data/vendor/kreuzberg/src/extraction/capacity.rs +263 -0
  117. data/vendor/kreuzberg/src/extraction/docx.rs +404 -40
  118. data/vendor/kreuzberg/src/extraction/email.rs +855 -854
  119. data/vendor/kreuzberg/src/extraction/excel.rs +697 -688
  120. data/vendor/kreuzberg/src/extraction/html.rs +1830 -553
  121. data/vendor/kreuzberg/src/extraction/image.rs +492 -368
  122. data/vendor/kreuzberg/src/extraction/libreoffice.rs +574 -563
  123. data/vendor/kreuzberg/src/extraction/markdown.rs +216 -213
  124. data/vendor/kreuzberg/src/extraction/mod.rs +93 -81
  125. data/vendor/kreuzberg/src/extraction/office_metadata/app_properties.rs +398 -398
  126. data/vendor/kreuzberg/src/extraction/office_metadata/core_properties.rs +247 -247
  127. data/vendor/kreuzberg/src/extraction/office_metadata/custom_properties.rs +240 -240
  128. data/vendor/kreuzberg/src/extraction/office_metadata/mod.rs +130 -130
  129. data/vendor/kreuzberg/src/extraction/office_metadata/odt_properties.rs +284 -287
  130. data/vendor/kreuzberg/src/extraction/pptx.rs +3102 -3000
  131. data/vendor/kreuzberg/src/extraction/structured.rs +491 -490
  132. data/vendor/kreuzberg/src/extraction/table.rs +329 -328
  133. data/vendor/kreuzberg/src/extraction/text.rs +277 -269
  134. data/vendor/kreuzberg/src/extraction/xml.rs +333 -333
  135. data/vendor/kreuzberg/src/extractors/archive.rs +447 -446
  136. data/vendor/kreuzberg/src/extractors/bibtex.rs +470 -469
  137. data/vendor/kreuzberg/src/extractors/docbook.rs +504 -502
  138. data/vendor/kreuzberg/src/extractors/docx.rs +400 -367
  139. data/vendor/kreuzberg/src/extractors/email.rs +157 -143
  140. data/vendor/kreuzberg/src/extractors/epub.rs +696 -707
  141. data/vendor/kreuzberg/src/extractors/excel.rs +385 -343
  142. data/vendor/kreuzberg/src/extractors/fictionbook.rs +492 -491
  143. data/vendor/kreuzberg/src/extractors/html.rs +419 -393
  144. data/vendor/kreuzberg/src/extractors/image.rs +219 -198
  145. data/vendor/kreuzberg/src/extractors/jats.rs +1054 -1051
  146. data/vendor/kreuzberg/src/extractors/jupyter.rs +368 -367
  147. data/vendor/kreuzberg/src/extractors/latex.rs +653 -652
  148. data/vendor/kreuzberg/src/extractors/markdown.rs +701 -700
  149. data/vendor/kreuzberg/src/extractors/mod.rs +429 -365
  150. data/vendor/kreuzberg/src/extractors/odt.rs +628 -628
  151. data/vendor/kreuzberg/src/extractors/opml.rs +635 -634
  152. data/vendor/kreuzberg/src/extractors/orgmode.rs +529 -528
  153. data/vendor/kreuzberg/src/extractors/pdf.rs +761 -493
  154. data/vendor/kreuzberg/src/extractors/pptx.rs +279 -248
  155. data/vendor/kreuzberg/src/extractors/rst.rs +577 -576
  156. data/vendor/kreuzberg/src/extractors/rtf.rs +809 -810
  157. data/vendor/kreuzberg/src/extractors/security.rs +484 -484
  158. data/vendor/kreuzberg/src/extractors/security_tests.rs +367 -367
  159. data/vendor/kreuzberg/src/extractors/structured.rs +142 -140
  160. data/vendor/kreuzberg/src/extractors/text.rs +265 -260
  161. data/vendor/kreuzberg/src/extractors/typst.rs +651 -650
  162. data/vendor/kreuzberg/src/extractors/xml.rs +147 -135
  163. data/vendor/kreuzberg/src/image/dpi.rs +164 -164
  164. data/vendor/kreuzberg/src/image/mod.rs +6 -6
  165. data/vendor/kreuzberg/src/image/preprocessing.rs +417 -417
  166. data/vendor/kreuzberg/src/image/resize.rs +89 -89
  167. data/vendor/kreuzberg/src/keywords/config.rs +154 -154
  168. data/vendor/kreuzberg/src/keywords/mod.rs +237 -237
  169. data/vendor/kreuzberg/src/keywords/processor.rs +275 -267
  170. data/vendor/kreuzberg/src/keywords/rake.rs +293 -293
  171. data/vendor/kreuzberg/src/keywords/types.rs +68 -68
  172. data/vendor/kreuzberg/src/keywords/yake.rs +163 -163
  173. data/vendor/kreuzberg/src/language_detection/mod.rs +985 -942
  174. data/vendor/kreuzberg/src/language_detection/processor.rs +218 -0
  175. data/vendor/kreuzberg/src/lib.rs +114 -105
  176. data/vendor/kreuzberg/src/mcp/mod.rs +35 -32
  177. data/vendor/kreuzberg/src/mcp/server.rs +2090 -1968
  178. data/vendor/kreuzberg/src/ocr/cache.rs +469 -469
  179. data/vendor/kreuzberg/src/ocr/error.rs +37 -37
  180. data/vendor/kreuzberg/src/ocr/hocr.rs +216 -216
  181. data/vendor/kreuzberg/src/ocr/language_registry.rs +520 -0
  182. data/vendor/kreuzberg/src/ocr/mod.rs +60 -58
  183. data/vendor/kreuzberg/src/ocr/processor.rs +858 -863
  184. data/vendor/kreuzberg/src/ocr/table/mod.rs +4 -4
  185. data/vendor/kreuzberg/src/ocr/table/tsv_parser.rs +144 -144
  186. data/vendor/kreuzberg/src/ocr/tesseract_backend.rs +456 -450
  187. data/vendor/kreuzberg/src/ocr/types.rs +393 -393
  188. data/vendor/kreuzberg/src/ocr/utils.rs +47 -47
  189. data/vendor/kreuzberg/src/ocr/validation.rs +206 -206
  190. data/vendor/kreuzberg/src/panic_context.rs +154 -154
  191. data/vendor/kreuzberg/src/pdf/bindings.rs +306 -0
  192. data/vendor/kreuzberg/src/pdf/bundled.rs +408 -0
  193. data/vendor/kreuzberg/src/pdf/error.rs +214 -122
  194. data/vendor/kreuzberg/src/pdf/fonts.rs +358 -0
  195. data/vendor/kreuzberg/src/pdf/hierarchy.rs +903 -0
  196. data/vendor/kreuzberg/src/pdf/images.rs +139 -139
  197. data/vendor/kreuzberg/src/pdf/metadata.rs +509 -346
  198. data/vendor/kreuzberg/src/pdf/mod.rs +81 -50
  199. data/vendor/kreuzberg/src/pdf/rendering.rs +369 -369
  200. data/vendor/kreuzberg/src/pdf/table.rs +417 -393
  201. data/vendor/kreuzberg/src/pdf/text.rs +553 -158
  202. data/vendor/kreuzberg/src/plugins/extractor.rs +1042 -1013
  203. data/vendor/kreuzberg/src/plugins/mod.rs +212 -209
  204. data/vendor/kreuzberg/src/plugins/ocr.rs +637 -620
  205. data/vendor/kreuzberg/src/plugins/processor.rs +650 -642
  206. data/vendor/kreuzberg/src/plugins/registry.rs +1339 -1337
  207. data/vendor/kreuzberg/src/plugins/traits.rs +258 -258
  208. data/vendor/kreuzberg/src/plugins/validator.rs +967 -956
  209. data/vendor/kreuzberg/src/stopwords/mod.rs +1470 -1470
  210. data/vendor/kreuzberg/src/text/mod.rs +27 -19
  211. data/vendor/kreuzberg/src/text/quality.rs +710 -697
  212. data/vendor/kreuzberg/src/text/quality_processor.rs +231 -0
  213. data/vendor/kreuzberg/src/text/string_utils.rs +229 -217
  214. data/vendor/kreuzberg/src/text/token_reduction/cjk_utils.rs +164 -164
  215. data/vendor/kreuzberg/src/text/token_reduction/config.rs +100 -100
  216. data/vendor/kreuzberg/src/text/token_reduction/core.rs +832 -796
  217. data/vendor/kreuzberg/src/text/token_reduction/filters.rs +923 -902
  218. data/vendor/kreuzberg/src/text/token_reduction/mod.rs +160 -160
  219. data/vendor/kreuzberg/src/text/token_reduction/semantic.rs +619 -619
  220. data/vendor/kreuzberg/src/text/token_reduction/simd_text.rs +148 -147
  221. data/vendor/kreuzberg/src/text/utf8_validation.rs +193 -0
  222. data/vendor/kreuzberg/src/types.rs +1713 -903
  223. data/vendor/kreuzberg/src/utils/mod.rs +31 -17
  224. data/vendor/kreuzberg/src/utils/pool.rs +503 -0
  225. data/vendor/kreuzberg/src/utils/pool_sizing.rs +364 -0
  226. data/vendor/kreuzberg/src/utils/quality.rs +968 -959
  227. data/vendor/kreuzberg/src/utils/string_pool.rs +761 -0
  228. data/vendor/kreuzberg/src/utils/string_utils.rs +381 -381
  229. data/vendor/kreuzberg/stopwords/af_stopwords.json +53 -53
  230. data/vendor/kreuzberg/stopwords/ar_stopwords.json +482 -482
  231. data/vendor/kreuzberg/stopwords/bg_stopwords.json +261 -261
  232. data/vendor/kreuzberg/stopwords/bn_stopwords.json +400 -400
  233. data/vendor/kreuzberg/stopwords/br_stopwords.json +1205 -1205
  234. data/vendor/kreuzberg/stopwords/ca_stopwords.json +280 -280
  235. data/vendor/kreuzberg/stopwords/cs_stopwords.json +425 -425
  236. data/vendor/kreuzberg/stopwords/da_stopwords.json +172 -172
  237. data/vendor/kreuzberg/stopwords/de_stopwords.json +622 -622
  238. data/vendor/kreuzberg/stopwords/el_stopwords.json +849 -849
  239. data/vendor/kreuzberg/stopwords/en_stopwords.json +1300 -1300
  240. data/vendor/kreuzberg/stopwords/eo_stopwords.json +175 -175
  241. data/vendor/kreuzberg/stopwords/es_stopwords.json +734 -734
  242. data/vendor/kreuzberg/stopwords/et_stopwords.json +37 -37
  243. data/vendor/kreuzberg/stopwords/eu_stopwords.json +100 -100
  244. data/vendor/kreuzberg/stopwords/fa_stopwords.json +801 -801
  245. data/vendor/kreuzberg/stopwords/fi_stopwords.json +849 -849
  246. data/vendor/kreuzberg/stopwords/fr_stopwords.json +693 -693
  247. data/vendor/kreuzberg/stopwords/ga_stopwords.json +111 -111
  248. data/vendor/kreuzberg/stopwords/gl_stopwords.json +162 -162
  249. data/vendor/kreuzberg/stopwords/gu_stopwords.json +226 -226
  250. data/vendor/kreuzberg/stopwords/ha_stopwords.json +41 -41
  251. data/vendor/kreuzberg/stopwords/he_stopwords.json +196 -196
  252. data/vendor/kreuzberg/stopwords/hi_stopwords.json +227 -227
  253. data/vendor/kreuzberg/stopwords/hr_stopwords.json +181 -181
  254. data/vendor/kreuzberg/stopwords/hu_stopwords.json +791 -791
  255. data/vendor/kreuzberg/stopwords/hy_stopwords.json +47 -47
  256. data/vendor/kreuzberg/stopwords/id_stopwords.json +760 -760
  257. data/vendor/kreuzberg/stopwords/it_stopwords.json +634 -634
  258. data/vendor/kreuzberg/stopwords/ja_stopwords.json +136 -136
  259. data/vendor/kreuzberg/stopwords/kn_stopwords.json +84 -84
  260. data/vendor/kreuzberg/stopwords/ko_stopwords.json +681 -681
  261. data/vendor/kreuzberg/stopwords/ku_stopwords.json +64 -64
  262. data/vendor/kreuzberg/stopwords/la_stopwords.json +51 -51
  263. data/vendor/kreuzberg/stopwords/lt_stopwords.json +476 -476
  264. data/vendor/kreuzberg/stopwords/lv_stopwords.json +163 -163
  265. data/vendor/kreuzberg/stopwords/ml_stopwords.json +1 -1
  266. data/vendor/kreuzberg/stopwords/mr_stopwords.json +101 -101
  267. data/vendor/kreuzberg/stopwords/ms_stopwords.json +477 -477
  268. data/vendor/kreuzberg/stopwords/ne_stopwords.json +490 -490
  269. data/vendor/kreuzberg/stopwords/nl_stopwords.json +415 -415
  270. data/vendor/kreuzberg/stopwords/no_stopwords.json +223 -223
  271. data/vendor/kreuzberg/stopwords/pl_stopwords.json +331 -331
  272. data/vendor/kreuzberg/stopwords/pt_stopwords.json +562 -562
  273. data/vendor/kreuzberg/stopwords/ro_stopwords.json +436 -436
  274. data/vendor/kreuzberg/stopwords/ru_stopwords.json +561 -561
  275. data/vendor/kreuzberg/stopwords/si_stopwords.json +193 -193
  276. data/vendor/kreuzberg/stopwords/sk_stopwords.json +420 -420
  277. data/vendor/kreuzberg/stopwords/sl_stopwords.json +448 -448
  278. data/vendor/kreuzberg/stopwords/so_stopwords.json +32 -32
  279. data/vendor/kreuzberg/stopwords/st_stopwords.json +33 -33
  280. data/vendor/kreuzberg/stopwords/sv_stopwords.json +420 -420
  281. data/vendor/kreuzberg/stopwords/sw_stopwords.json +76 -76
  282. data/vendor/kreuzberg/stopwords/ta_stopwords.json +129 -129
  283. data/vendor/kreuzberg/stopwords/te_stopwords.json +54 -54
  284. data/vendor/kreuzberg/stopwords/th_stopwords.json +118 -118
  285. data/vendor/kreuzberg/stopwords/tl_stopwords.json +149 -149
  286. data/vendor/kreuzberg/stopwords/tr_stopwords.json +506 -506
  287. data/vendor/kreuzberg/stopwords/uk_stopwords.json +75 -75
  288. data/vendor/kreuzberg/stopwords/ur_stopwords.json +519 -519
  289. data/vendor/kreuzberg/stopwords/vi_stopwords.json +647 -647
  290. data/vendor/kreuzberg/stopwords/yo_stopwords.json +62 -62
  291. data/vendor/kreuzberg/stopwords/zh_stopwords.json +796 -796
  292. data/vendor/kreuzberg/stopwords/zu_stopwords.json +31 -31
  293. data/vendor/kreuzberg/tests/api_embed.rs +360 -0
  294. data/vendor/kreuzberg/tests/api_extract_multipart.rs +52 -52
  295. data/vendor/kreuzberg/tests/api_large_pdf_extraction.rs +471 -0
  296. data/vendor/kreuzberg/tests/api_large_pdf_extraction_diagnostics.rs +289 -0
  297. data/vendor/kreuzberg/tests/api_tests.rs +1472 -966
  298. data/vendor/kreuzberg/tests/archive_integration.rs +545 -543
  299. data/vendor/kreuzberg/tests/batch_orchestration.rs +587 -556
  300. data/vendor/kreuzberg/tests/batch_pooling_benchmark.rs +154 -0
  301. data/vendor/kreuzberg/tests/batch_processing.rs +328 -316
  302. data/vendor/kreuzberg/tests/bibtex_parity_test.rs +421 -421
  303. data/vendor/kreuzberg/tests/concurrency_stress.rs +541 -525
  304. data/vendor/kreuzberg/tests/config_features.rs +612 -598
  305. data/vendor/kreuzberg/tests/config_integration_test.rs +753 -0
  306. data/vendor/kreuzberg/tests/config_loading_tests.rs +416 -415
  307. data/vendor/kreuzberg/tests/core_integration.rs +519 -510
  308. data/vendor/kreuzberg/tests/csv_integration.rs +414 -414
  309. data/vendor/kreuzberg/tests/data/hierarchy_ground_truth.json +294 -0
  310. data/vendor/kreuzberg/tests/docbook_extractor_tests.rs +500 -498
  311. data/vendor/kreuzberg/tests/docx_metadata_extraction_test.rs +122 -122
  312. data/vendor/kreuzberg/tests/docx_vs_pandoc_comparison.rs +370 -370
  313. data/vendor/kreuzberg/tests/email_integration.rs +327 -325
  314. data/vendor/kreuzberg/tests/epub_native_extractor_tests.rs +275 -275
  315. data/vendor/kreuzberg/tests/error_handling.rs +402 -393
  316. data/vendor/kreuzberg/tests/fictionbook_extractor_tests.rs +228 -228
  317. data/vendor/kreuzberg/tests/format_integration.rs +165 -159
  318. data/vendor/kreuzberg/tests/helpers/mod.rs +202 -142
  319. data/vendor/kreuzberg/tests/html_table_test.rs +551 -551
  320. data/vendor/kreuzberg/tests/image_integration.rs +255 -253
  321. data/vendor/kreuzberg/tests/instrumentation_test.rs +139 -139
  322. data/vendor/kreuzberg/tests/jats_extractor_tests.rs +639 -639
  323. data/vendor/kreuzberg/tests/jupyter_extractor_tests.rs +704 -704
  324. data/vendor/kreuzberg/tests/keywords_integration.rs +479 -479
  325. data/vendor/kreuzberg/tests/keywords_quality.rs +509 -509
  326. data/vendor/kreuzberg/tests/latex_extractor_tests.rs +496 -496
  327. data/vendor/kreuzberg/tests/markdown_extractor_tests.rs +490 -490
  328. data/vendor/kreuzberg/tests/mime_detection.rs +429 -428
  329. data/vendor/kreuzberg/tests/ocr_configuration.rs +514 -510
  330. data/vendor/kreuzberg/tests/ocr_errors.rs +698 -676
  331. data/vendor/kreuzberg/tests/ocr_language_registry.rs +191 -0
  332. data/vendor/kreuzberg/tests/ocr_quality.rs +629 -627
  333. data/vendor/kreuzberg/tests/ocr_stress.rs +469 -469
  334. data/vendor/kreuzberg/tests/odt_extractor_tests.rs +674 -695
  335. data/vendor/kreuzberg/tests/opml_extractor_tests.rs +616 -616
  336. data/vendor/kreuzberg/tests/orgmode_extractor_tests.rs +822 -822
  337. data/vendor/kreuzberg/tests/page_markers.rs +297 -0
  338. data/vendor/kreuzberg/tests/pdf_hierarchy_detection.rs +301 -0
  339. data/vendor/kreuzberg/tests/pdf_hierarchy_quality.rs +589 -0
  340. data/vendor/kreuzberg/tests/pdf_integration.rs +45 -43
  341. data/vendor/kreuzberg/tests/pdf_ocr_triggering.rs +301 -0
  342. data/vendor/kreuzberg/tests/pdf_text_merging.rs +475 -0
  343. data/vendor/kreuzberg/tests/pdfium_linking.rs +340 -0
  344. data/vendor/kreuzberg/tests/pipeline_integration.rs +1446 -1411
  345. data/vendor/kreuzberg/tests/plugin_ocr_backend_test.rs +776 -771
  346. data/vendor/kreuzberg/tests/plugin_postprocessor_test.rs +577 -560
  347. data/vendor/kreuzberg/tests/plugin_system.rs +927 -921
  348. data/vendor/kreuzberg/tests/plugin_validator_test.rs +783 -783
  349. data/vendor/kreuzberg/tests/registry_integration_tests.rs +587 -586
  350. data/vendor/kreuzberg/tests/rst_extractor_tests.rs +694 -692
  351. data/vendor/kreuzberg/tests/rtf_extractor_tests.rs +775 -776
  352. data/vendor/kreuzberg/tests/security_validation.rs +416 -415
  353. data/vendor/kreuzberg/tests/stopwords_integration_test.rs +888 -888
  354. data/vendor/kreuzberg/tests/test_fastembed.rs +631 -609
  355. data/vendor/kreuzberg/tests/typst_behavioral_tests.rs +1260 -1259
  356. data/vendor/kreuzberg/tests/typst_extractor_tests.rs +648 -647
  357. data/vendor/kreuzberg/tests/xlsx_metadata_extraction_test.rs +87 -87
  358. data/vendor/kreuzberg-ffi/Cargo.toml +67 -0
  359. data/vendor/kreuzberg-ffi/README.md +851 -0
  360. data/vendor/kreuzberg-ffi/benches/result_view_benchmark.rs +227 -0
  361. data/vendor/kreuzberg-ffi/build.rs +168 -0
  362. data/vendor/kreuzberg-ffi/cbindgen.toml +37 -0
  363. data/vendor/kreuzberg-ffi/kreuzberg-ffi.pc.in +12 -0
  364. data/vendor/kreuzberg-ffi/kreuzberg.h +3012 -0
  365. data/vendor/kreuzberg-ffi/src/batch_streaming.rs +588 -0
  366. data/vendor/kreuzberg-ffi/src/config.rs +1341 -0
  367. data/vendor/kreuzberg-ffi/src/error.rs +901 -0
  368. data/vendor/kreuzberg-ffi/src/extraction.rs +555 -0
  369. data/vendor/kreuzberg-ffi/src/helpers.rs +879 -0
  370. data/vendor/kreuzberg-ffi/src/lib.rs +977 -0
  371. data/vendor/kreuzberg-ffi/src/memory.rs +493 -0
  372. data/vendor/kreuzberg-ffi/src/mime.rs +329 -0
  373. data/vendor/kreuzberg-ffi/src/panic_shield.rs +265 -0
  374. data/vendor/kreuzberg-ffi/src/plugins/document_extractor.rs +442 -0
  375. data/vendor/kreuzberg-ffi/src/plugins/mod.rs +14 -0
  376. data/vendor/kreuzberg-ffi/src/plugins/ocr_backend.rs +628 -0
  377. data/vendor/kreuzberg-ffi/src/plugins/post_processor.rs +438 -0
  378. data/vendor/kreuzberg-ffi/src/plugins/validator.rs +329 -0
  379. data/vendor/kreuzberg-ffi/src/result.rs +510 -0
  380. data/vendor/kreuzberg-ffi/src/result_pool.rs +639 -0
  381. data/vendor/kreuzberg-ffi/src/result_view.rs +773 -0
  382. data/vendor/kreuzberg-ffi/src/string_intern.rs +568 -0
  383. data/vendor/kreuzberg-ffi/src/types.rs +363 -0
  384. data/vendor/kreuzberg-ffi/src/util.rs +210 -0
  385. data/vendor/kreuzberg-ffi/src/validation.rs +848 -0
  386. data/vendor/kreuzberg-ffi/tests.disabled/README.md +48 -0
  387. data/vendor/kreuzberg-ffi/tests.disabled/config_loading_tests.rs +299 -0
  388. data/vendor/kreuzberg-ffi/tests.disabled/config_tests.rs +346 -0
  389. data/vendor/kreuzberg-ffi/tests.disabled/extractor_tests.rs +232 -0
  390. data/vendor/kreuzberg-ffi/tests.disabled/plugin_registration_tests.rs +470 -0
  391. data/vendor/kreuzberg-tesseract/.commitlintrc.json +13 -0
  392. data/vendor/kreuzberg-tesseract/.crate-ignore +2 -0
  393. data/vendor/kreuzberg-tesseract/Cargo.lock +2933 -0
  394. data/vendor/kreuzberg-tesseract/Cargo.toml +57 -0
  395. data/vendor/{rb-sys/LICENSE-MIT → kreuzberg-tesseract/LICENSE} +22 -21
  396. data/vendor/kreuzberg-tesseract/README.md +399 -0
  397. data/vendor/kreuzberg-tesseract/build.rs +1127 -0
  398. data/vendor/kreuzberg-tesseract/patches/README.md +71 -0
  399. data/vendor/kreuzberg-tesseract/patches/tesseract.diff +199 -0
  400. data/vendor/kreuzberg-tesseract/src/api.rs +1371 -0
  401. data/vendor/kreuzberg-tesseract/src/choice_iterator.rs +77 -0
  402. data/vendor/kreuzberg-tesseract/src/enums.rs +297 -0
  403. data/vendor/kreuzberg-tesseract/src/error.rs +81 -0
  404. data/vendor/kreuzberg-tesseract/src/lib.rs +145 -0
  405. data/vendor/kreuzberg-tesseract/src/monitor.rs +57 -0
  406. data/vendor/kreuzberg-tesseract/src/mutable_iterator.rs +197 -0
  407. data/vendor/kreuzberg-tesseract/src/page_iterator.rs +253 -0
  408. data/vendor/kreuzberg-tesseract/src/result_iterator.rs +286 -0
  409. data/vendor/kreuzberg-tesseract/src/result_renderer.rs +183 -0
  410. data/vendor/kreuzberg-tesseract/tests/integration_test.rs +211 -0
  411. metadata +196 -45
  412. data/vendor/kreuzberg/benches/otel_overhead.rs +0 -48
  413. data/vendor/kreuzberg/src/extractors/fictionbook.rs.backup2 +0 -738
  414. data/vendor/rb-sys/.cargo-ok +0 -1
  415. data/vendor/rb-sys/.cargo_vcs_info.json +0 -6
  416. data/vendor/rb-sys/Cargo.lock +0 -393
  417. data/vendor/rb-sys/Cargo.toml +0 -70
  418. data/vendor/rb-sys/Cargo.toml.orig +0 -57
  419. data/vendor/rb-sys/LICENSE-APACHE +0 -190
  420. data/vendor/rb-sys/bin/release.sh +0 -21
  421. data/vendor/rb-sys/build/features.rs +0 -108
  422. data/vendor/rb-sys/build/main.rs +0 -246
  423. data/vendor/rb-sys/build/stable_api_config.rs +0 -153
  424. data/vendor/rb-sys/build/version.rs +0 -48
  425. data/vendor/rb-sys/readme.md +0 -36
  426. data/vendor/rb-sys/src/bindings.rs +0 -21
  427. data/vendor/rb-sys/src/hidden.rs +0 -11
  428. data/vendor/rb-sys/src/lib.rs +0 -34
  429. data/vendor/rb-sys/src/macros.rs +0 -371
  430. data/vendor/rb-sys/src/memory.rs +0 -53
  431. data/vendor/rb-sys/src/ruby_abi_version.rs +0 -38
  432. data/vendor/rb-sys/src/special_consts.rs +0 -31
  433. data/vendor/rb-sys/src/stable_api/compiled.c +0 -179
  434. data/vendor/rb-sys/src/stable_api/compiled.rs +0 -257
  435. data/vendor/rb-sys/src/stable_api/ruby_2_6.rs +0 -316
  436. data/vendor/rb-sys/src/stable_api/ruby_2_7.rs +0 -316
  437. data/vendor/rb-sys/src/stable_api/ruby_3_0.rs +0 -324
  438. data/vendor/rb-sys/src/stable_api/ruby_3_1.rs +0 -317
  439. data/vendor/rb-sys/src/stable_api/ruby_3_2.rs +0 -315
  440. data/vendor/rb-sys/src/stable_api/ruby_3_3.rs +0 -326
  441. data/vendor/rb-sys/src/stable_api/ruby_3_4.rs +0 -327
  442. data/vendor/rb-sys/src/stable_api.rs +0 -261
  443. data/vendor/rb-sys/src/symbol.rs +0 -31
  444. data/vendor/rb-sys/src/tracking_allocator.rs +0 -332
  445. data/vendor/rb-sys/src/utils.rs +0 -89
  446. data/vendor/rb-sys/src/value_type.rs +0 -7
@@ -1,509 +1,509 @@
1
- //! Keyword extraction quality assessment tests.
2
- //!
3
- //! This module tests keyword extraction quality by comparing against ground truth keywords.
4
- //! Measures precision, recall, and F1 to ensure default configurations work well out of the box.
5
- //!
6
- //! Test philosophy:
7
- //! - Define ground truth keywords for test documents (domain experts would identify these)
8
- //! - Measure how well extracted keywords match ground truth
9
- //! - Assert minimum quality thresholds for precision/recall/F1
10
- //! - Verify domain relevance of extracted terms
11
-
12
- #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
13
- use kreuzberg::keywords::{KeywordConfig, extract_keywords};
14
- use std::collections::HashSet;
15
-
16
- /// Ground truth keywords for ML document.
17
- /// These are the terms a machine learning expert would identify as key concepts.
18
- #[allow(dead_code)]
19
- fn get_ml_ground_truth() -> HashSet<&'static str> {
20
- [
21
- "machine learning",
22
- "artificial intelligence",
23
- "deep learning",
24
- "neural networks",
25
- "artificial neural networks",
26
- "convolutional neural networks",
27
- "algorithms",
28
- "training data",
29
- "supervised learning",
30
- "unsupervised learning",
31
- "semi-supervised",
32
- "natural language processing",
33
- "computer science",
34
- "model",
35
- "predictions",
36
- "data",
37
- "learning",
38
- ]
39
- .iter()
40
- .cloned()
41
- .collect()
42
- }
43
-
44
- /// Ground truth keywords for climate change document.
45
- #[allow(dead_code)]
46
- fn get_climate_ground_truth() -> HashSet<&'static str> {
47
- [
48
- "climate change",
49
- "global warming",
50
- "greenhouse gases",
51
- "greenhouse gas emissions",
52
- "fossil fuels",
53
- "burning fossil fuels",
54
- "carbon dioxide",
55
- "methane",
56
- "temperatures",
57
- "weather patterns",
58
- "climate system",
59
- "human activities",
60
- "agriculture",
61
- "deforestation",
62
- "solar cycle",
63
- "earth",
64
- ]
65
- .iter()
66
- .cloned()
67
- .collect()
68
- }
69
-
70
- #[derive(Debug)]
71
- #[allow(dead_code)]
72
- struct KeywordQualityScores {
73
- precision: f64,
74
- recall: f64,
75
- f1: f64,
76
- exact_matches: usize,
77
- partial_matches: usize,
78
- total_extracted: usize,
79
- total_ground_truth: usize,
80
- }
81
-
82
- impl KeywordQualityScores {
83
- fn new(exact_matches: usize, partial_matches: usize, total_extracted: usize, total_ground_truth: usize) -> Self {
84
- let precision = if total_extracted > 0 {
85
- (exact_matches + partial_matches) as f64 / total_extracted as f64
86
- } else {
87
- 0.0
88
- };
89
-
90
- let recall = if total_ground_truth > 0 {
91
- (exact_matches + partial_matches) as f64 / total_ground_truth as f64
92
- } else {
93
- 0.0
94
- };
95
-
96
- let f1 = if precision + recall > 0.0 {
97
- 2.0 * precision * recall / (precision + recall)
98
- } else {
99
- 0.0
100
- };
101
-
102
- Self {
103
- precision,
104
- recall,
105
- f1,
106
- exact_matches,
107
- partial_matches,
108
- total_extracted,
109
- total_ground_truth,
110
- }
111
- }
112
- }
113
-
114
- /// Evaluate extracted keywords against ground truth.
115
- ///
116
- /// Supports both exact matches and partial matches:
117
- /// - Exact: "machine learning" == "machine learning"
118
- /// - Partial: "machine" matches "machine learning" (subset)
119
- #[allow(dead_code)]
120
- fn evaluate_keyword_quality(extracted: &[&str], ground_truth: &HashSet<&str>) -> KeywordQualityScores {
121
- let extracted_lower: Vec<String> = extracted.iter().map(|s| s.to_lowercase()).collect();
122
- let ground_truth_lower: HashSet<String> = ground_truth.iter().map(|s| s.to_lowercase()).collect();
123
-
124
- let mut exact_matches = 0;
125
- let mut partial_matches = 0;
126
- let mut matched_ground_truth: HashSet<String> = HashSet::new();
127
-
128
- for extracted_kw in &extracted_lower {
129
- if ground_truth_lower.contains(extracted_kw) {
130
- exact_matches += 1;
131
- matched_ground_truth.insert(extracted_kw.clone());
132
- continue;
133
- }
134
-
135
- let mut found_partial = false;
136
- for gt_kw in &ground_truth_lower {
137
- if (gt_kw.contains(extracted_kw) || extracted_kw.contains(gt_kw)) && !matched_ground_truth.contains(gt_kw) {
138
- partial_matches += 1;
139
- matched_ground_truth.insert(gt_kw.clone());
140
- found_partial = true;
141
- break;
142
- }
143
- }
144
-
145
- if !found_partial {
146
- for gt_kw in &ground_truth_lower {
147
- let gt_words: Vec<&str> = gt_kw.split_whitespace().collect();
148
- let ex_words: HashSet<&str> = extracted_kw.split_whitespace().collect();
149
-
150
- let overlap = gt_words.iter().filter(|w| ex_words.contains(*w)).count();
151
- if overlap >= gt_words.len() / 2 && overlap > 0 && !matched_ground_truth.contains(gt_kw) {
152
- partial_matches += 1;
153
- matched_ground_truth.insert(gt_kw.clone());
154
- break;
155
- }
156
- }
157
- }
158
- }
159
-
160
- KeywordQualityScores::new(
161
- exact_matches,
162
- partial_matches,
163
- extracted_lower.len(),
164
- ground_truth_lower.len(),
165
- )
166
- }
167
-
168
- /// ML document text (subset for testing).
169
- #[allow(dead_code)]
170
- const ML_DOC_SAMPLE: &str = r#"
171
- Machine learning is a branch of artificial intelligence and computer science which focuses on the use of data and algorithms to imitate the way that humans learn.
172
- Machine learning algorithms build a model based on sample data, known as training data, to make predictions or decisions without being explicitly programmed to do so.
173
- Deep learning is a type of machine learning based on artificial neural networks. The learning process is deep because the structure of artificial neural networks consists of multiple input, output, and hidden layers.
174
- Neural networks can be used for supervised, semi-supervised, and unsupervised learning. Convolutional neural networks are commonly applied to analyzing visual imagery.
175
- Natural language processing is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language.
176
- "#;
177
-
178
- /// Climate document text (subset for testing).
179
- #[allow(dead_code)]
180
- const CLIMATE_DOC_SAMPLE: &str = r#"
181
- Climate change refers to long-term shifts in temperatures and weather patterns. These shifts may be natural, such as through variations in the solar cycle.
182
- But since the 1800s, human activities have been the main driver of climate change, primarily due to burning fossil fuels like coal, oil, and gas.
183
- Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun's heat and raising temperatures.
184
- The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from burning fossil fuels for energy, agriculture, and deforestation.
185
- Global warming is the long-term heating of Earth's climate system. Climate science reveals that human activity has been the dominant cause of climate change since the mid-20th century.
186
- "#;
187
-
188
- #[cfg(feature = "keywords-yake")]
189
- #[test]
190
- fn test_yake_quality_ml_document_default_config() {
191
- let config = KeywordConfig::yake();
192
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
193
-
194
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
195
-
196
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
197
- let ground_truth = get_ml_ground_truth();
198
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
199
-
200
- println!("\nYAKE ML Document Quality (Default Config):");
201
- println!(" Extracted: {} keywords", scores.total_extracted);
202
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
203
- println!(" Exact matches: {}", scores.exact_matches);
204
- println!(" Partial matches: {}", scores.partial_matches);
205
- println!(" Precision: {:.3}", scores.precision);
206
- println!(" Recall: {:.3}", scores.recall);
207
- println!(" F1: {:.3}", scores.f1);
208
- println!("\nExtracted keywords:");
209
- for (i, kw) in keywords.iter().enumerate().take(10) {
210
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
211
- }
212
-
213
- assert!(
214
- scores.precision >= 0.40,
215
- "YAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
216
- scores.precision,
217
- scores.exact_matches + scores.partial_matches,
218
- scores.total_extracted
219
- );
220
-
221
- assert!(
222
- scores.recall >= 0.30,
223
- "YAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
224
- scores.recall,
225
- scores.exact_matches + scores.partial_matches,
226
- scores.total_ground_truth
227
- );
228
-
229
- assert!(
230
- scores.f1 >= 0.30,
231
- "YAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
232
- scores.f1,
233
- scores.precision,
234
- scores.recall
235
- );
236
- }
237
-
238
- #[cfg(feature = "keywords-rake")]
239
- #[test]
240
- fn test_rake_quality_ml_document_default_config() {
241
- let config = KeywordConfig::rake();
242
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
243
-
244
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
245
-
246
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
247
- let ground_truth = get_ml_ground_truth();
248
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
249
-
250
- println!("\nRAKE ML Document Quality (Default Config):");
251
- println!(" Extracted: {} keywords", scores.total_extracted);
252
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
253
- println!(" Exact matches: {}", scores.exact_matches);
254
- println!(" Partial matches: {}", scores.partial_matches);
255
- println!(" Precision: {:.3}", scores.precision);
256
- println!(" Recall: {:.3}", scores.recall);
257
- println!(" F1: {:.3}", scores.f1);
258
- println!("\nExtracted keywords:");
259
- for (i, kw) in keywords.iter().enumerate().take(10) {
260
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
261
- }
262
-
263
- assert!(
264
- scores.precision >= 0.40,
265
- "RAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
266
- scores.precision,
267
- scores.exact_matches + scores.partial_matches,
268
- scores.total_extracted
269
- );
270
-
271
- assert!(
272
- scores.recall >= 0.30,
273
- "RAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
274
- scores.recall,
275
- scores.exact_matches + scores.partial_matches,
276
- scores.total_ground_truth
277
- );
278
-
279
- assert!(
280
- scores.f1 >= 0.30,
281
- "RAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
282
- scores.f1,
283
- scores.precision,
284
- scores.recall
285
- );
286
- }
287
-
288
- #[cfg(feature = "keywords-yake")]
289
- #[test]
290
- fn test_yake_quality_climate_document_default_config() {
291
- let config = KeywordConfig::yake();
292
- let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
293
-
294
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
295
-
296
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
297
- let ground_truth = get_climate_ground_truth();
298
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
299
-
300
- println!("\nYAKE Climate Document Quality (Default Config):");
301
- println!(" Extracted: {} keywords", scores.total_extracted);
302
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
303
- println!(" Exact matches: {}", scores.exact_matches);
304
- println!(" Partial matches: {}", scores.partial_matches);
305
- println!(" Precision: {:.3}", scores.precision);
306
- println!(" Recall: {:.3}", scores.recall);
307
- println!(" F1: {:.3}", scores.f1);
308
- println!("\nExtracted keywords:");
309
- for (i, kw) in keywords.iter().enumerate().take(10) {
310
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
311
- }
312
-
313
- assert!(
314
- scores.precision >= 0.40,
315
- "YAKE precision too low: {:.3} (expected >= 0.40)",
316
- scores.precision
317
- );
318
- assert!(
319
- scores.recall >= 0.30,
320
- "YAKE recall too low: {:.3} (expected >= 0.30)",
321
- scores.recall
322
- );
323
- assert!(
324
- scores.f1 >= 0.30,
325
- "YAKE F1 too low: {:.3} (expected >= 0.30)",
326
- scores.f1
327
- );
328
- }
329
-
330
- #[cfg(feature = "keywords-rake")]
331
- #[test]
332
- fn test_rake_quality_climate_document_default_config() {
333
- let config = KeywordConfig::rake();
334
- let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
335
-
336
- assert!(!keywords.is_empty(), "Should extract keywords with default config");
337
-
338
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
339
- let ground_truth = get_climate_ground_truth();
340
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
341
-
342
- println!("\nRAKE Climate Document Quality (Default Config):");
343
- println!(" Extracted: {} keywords", scores.total_extracted);
344
- println!(" Ground truth: {} keywords", scores.total_ground_truth);
345
- println!(" Exact matches: {}", scores.exact_matches);
346
- println!(" Partial matches: {}", scores.partial_matches);
347
- println!(" Precision: {:.3}", scores.precision);
348
- println!(" Recall: {:.3}", scores.recall);
349
- println!(" F1: {:.3}", scores.f1);
350
- println!("\nExtracted keywords:");
351
- for (i, kw) in keywords.iter().enumerate().take(10) {
352
- println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
353
- }
354
-
355
- assert!(
356
- scores.precision >= 0.40,
357
- "RAKE precision too low: {:.3} (expected >= 0.40)",
358
- scores.precision
359
- );
360
- assert!(
361
- scores.recall >= 0.30,
362
- "RAKE recall too low: {:.3} (expected >= 0.30)",
363
- scores.recall
364
- );
365
- assert!(
366
- scores.f1 >= 0.30,
367
- "RAKE F1 too low: {:.3} (expected >= 0.30)",
368
- scores.f1
369
- );
370
- }
371
-
372
- #[cfg(all(feature = "keywords-yake", feature = "keywords-rake"))]
373
- #[test]
374
- fn test_yake_vs_rake_quality_comparison() {
375
- let yake_config = KeywordConfig::yake();
376
- let rake_config = KeywordConfig::rake();
377
-
378
- let yake_keywords = extract_keywords(ML_DOC_SAMPLE, &yake_config).unwrap();
379
- let rake_keywords = extract_keywords(ML_DOC_SAMPLE, &rake_config).unwrap();
380
-
381
- let yake_extracted: Vec<&str> = yake_keywords.iter().map(|k| k.text.as_str()).collect();
382
- let rake_extracted: Vec<&str> = rake_keywords.iter().map(|k| k.text.as_str()).collect();
383
-
384
- let ground_truth = get_ml_ground_truth();
385
- let yake_scores = evaluate_keyword_quality(&yake_extracted, &ground_truth);
386
- let rake_scores = evaluate_keyword_quality(&rake_extracted, &ground_truth);
387
-
388
- println!("\nYAKE vs RAKE Quality Comparison (ML Document):");
389
- println!(
390
- " YAKE F1: {:.3} (P: {:.3}, R: {:.3})",
391
- yake_scores.f1, yake_scores.precision, yake_scores.recall
392
- );
393
- println!(
394
- " RAKE F1: {:.3} (P: {:.3}, R: {:.3})",
395
- rake_scores.f1, rake_scores.precision, rake_scores.recall
396
- );
397
-
398
- assert!(yake_scores.f1 >= 0.25, "YAKE F1 too low: {:.3}", yake_scores.f1);
399
- assert!(rake_scores.f1 >= 0.25, "RAKE F1 too low: {:.3}", rake_scores.f1);
400
-
401
- let best_f1 = yake_scores.f1.max(rake_scores.f1);
402
- assert!(
403
- best_f1 >= 0.30,
404
- "Neither algorithm achieved F1 >= 0.30. Best: {:.3}",
405
- best_f1
406
- );
407
- }
408
-
409
- #[cfg(feature = "keywords-yake")]
410
- #[test]
411
- fn test_yake_quality_with_optimized_config() {
412
- let config = KeywordConfig::yake()
413
- .with_max_keywords(15)
414
- .with_ngram_range(1, 3)
415
- .with_min_score(0.0);
416
-
417
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
418
-
419
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
420
- let ground_truth = get_ml_ground_truth();
421
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
422
-
423
- println!("\nYAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
424
- println!(
425
- " F1: {:.3} (P: {:.3}, R: {:.3})",
426
- scores.f1, scores.precision, scores.recall
427
- );
428
-
429
- assert!(
430
- scores.recall >= 0.35,
431
- "Optimized config should improve recall: {:.3} (expected >= 0.35)",
432
- scores.recall
433
- );
434
- }
435
-
436
- #[cfg(feature = "keywords-rake")]
437
- #[test]
438
- fn test_rake_quality_with_optimized_config() {
439
- let config = KeywordConfig::rake()
440
- .with_max_keywords(15)
441
- .with_ngram_range(1, 3)
442
- .with_min_score(0.0);
443
-
444
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
445
-
446
- let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
447
- let ground_truth = get_ml_ground_truth();
448
- let scores = evaluate_keyword_quality(&extracted, &ground_truth);
449
-
450
- println!("\nRAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
451
- println!(
452
- " F1: {:.3} (P: {:.3}, R: {:.3})",
453
- scores.f1, scores.precision, scores.recall
454
- );
455
-
456
- assert!(
457
- scores.recall >= 0.35,
458
- "Optimized config should improve recall: {:.3} (expected >= 0.35)",
459
- scores.recall
460
- );
461
- }
462
-
463
- #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
464
- #[test]
465
- fn test_extracted_keywords_are_domain_relevant() {
466
- let config = KeywordConfig::default();
467
- let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
468
-
469
- let ml_terms = [
470
- "machine",
471
- "learning",
472
- "artificial",
473
- "intelligence",
474
- "neural",
475
- "network",
476
- "deep",
477
- "algorithm",
478
- "data",
479
- "model",
480
- "training",
481
- "supervised",
482
- "unsupervised",
483
- "language",
484
- "processing",
485
- ];
486
-
487
- let relevant_count = keywords
488
- .iter()
489
- .filter(|kw| {
490
- let kw_lower = kw.text.to_lowercase();
491
- ml_terms.iter().any(|term| kw_lower.contains(term))
492
- })
493
- .count();
494
-
495
- let relevance_ratio = relevant_count as f64 / keywords.len() as f64;
496
-
497
- println!("\nDomain Relevance Check:");
498
- println!(" Extracted keywords: {}", keywords.len());
499
- println!(" Domain-relevant keywords: {}", relevant_count);
500
- println!(" Relevance ratio: {:.3}", relevance_ratio);
501
-
502
- assert!(
503
- relevance_ratio >= 0.70,
504
- "Too many irrelevant keywords extracted. Relevance: {:.3} (expected >= 0.70). Relevant: {}/{}",
505
- relevance_ratio,
506
- relevant_count,
507
- keywords.len()
508
- );
509
- }
1
+ //! Keyword extraction quality assessment tests.
2
+ //!
3
+ //! This module tests keyword extraction quality by comparing against ground truth keywords.
4
+ //! Measures precision, recall, and F1 to ensure default configurations work well out of the box.
5
+ //!
6
+ //! Test philosophy:
7
+ //! - Define ground truth keywords for test documents (domain experts would identify these)
8
+ //! - Measure how well extracted keywords match ground truth
9
+ //! - Assert minimum quality thresholds for precision/recall/F1
10
+ //! - Verify domain relevance of extracted terms
11
+
12
+ #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
13
+ use kreuzberg::keywords::{KeywordConfig, extract_keywords};
14
+ use std::collections::HashSet;
15
+
16
+ /// Ground truth keywords for ML document.
17
+ /// These are the terms a machine learning expert would identify as key concepts.
18
+ #[allow(dead_code)]
19
+ fn get_ml_ground_truth() -> HashSet<&'static str> {
20
+ [
21
+ "machine learning",
22
+ "artificial intelligence",
23
+ "deep learning",
24
+ "neural networks",
25
+ "artificial neural networks",
26
+ "convolutional neural networks",
27
+ "algorithms",
28
+ "training data",
29
+ "supervised learning",
30
+ "unsupervised learning",
31
+ "semi-supervised",
32
+ "natural language processing",
33
+ "computer science",
34
+ "model",
35
+ "predictions",
36
+ "data",
37
+ "learning",
38
+ ]
39
+ .iter()
40
+ .cloned()
41
+ .collect()
42
+ }
43
+
44
+ /// Ground truth keywords for climate change document.
45
+ #[allow(dead_code)]
46
+ fn get_climate_ground_truth() -> HashSet<&'static str> {
47
+ [
48
+ "climate change",
49
+ "global warming",
50
+ "greenhouse gases",
51
+ "greenhouse gas emissions",
52
+ "fossil fuels",
53
+ "burning fossil fuels",
54
+ "carbon dioxide",
55
+ "methane",
56
+ "temperatures",
57
+ "weather patterns",
58
+ "climate system",
59
+ "human activities",
60
+ "agriculture",
61
+ "deforestation",
62
+ "solar cycle",
63
+ "earth",
64
+ ]
65
+ .iter()
66
+ .cloned()
67
+ .collect()
68
+ }
69
+
70
+ #[derive(Debug)]
71
+ #[allow(dead_code)]
72
+ struct KeywordQualityScores {
73
+ precision: f64,
74
+ recall: f64,
75
+ f1: f64,
76
+ exact_matches: usize,
77
+ partial_matches: usize,
78
+ total_extracted: usize,
79
+ total_ground_truth: usize,
80
+ }
81
+
82
+ impl KeywordQualityScores {
83
+ fn new(exact_matches: usize, partial_matches: usize, total_extracted: usize, total_ground_truth: usize) -> Self {
84
+ let precision = if total_extracted > 0 {
85
+ (exact_matches + partial_matches) as f64 / total_extracted as f64
86
+ } else {
87
+ 0.0
88
+ };
89
+
90
+ let recall = if total_ground_truth > 0 {
91
+ (exact_matches + partial_matches) as f64 / total_ground_truth as f64
92
+ } else {
93
+ 0.0
94
+ };
95
+
96
+ let f1 = if precision + recall > 0.0 {
97
+ 2.0 * precision * recall / (precision + recall)
98
+ } else {
99
+ 0.0
100
+ };
101
+
102
+ Self {
103
+ precision,
104
+ recall,
105
+ f1,
106
+ exact_matches,
107
+ partial_matches,
108
+ total_extracted,
109
+ total_ground_truth,
110
+ }
111
+ }
112
+ }
113
+
114
+ /// Evaluate extracted keywords against ground truth.
115
+ ///
116
+ /// Supports both exact matches and partial matches:
117
+ /// - Exact: "machine learning" == "machine learning"
118
+ /// - Partial: "machine" matches "machine learning" (subset)
119
+ #[allow(dead_code)]
120
+ fn evaluate_keyword_quality(extracted: &[&str], ground_truth: &HashSet<&str>) -> KeywordQualityScores {
121
+ let extracted_lower: Vec<String> = extracted.iter().map(|s| s.to_lowercase()).collect();
122
+ let ground_truth_lower: HashSet<String> = ground_truth.iter().map(|s| s.to_lowercase()).collect();
123
+
124
+ let mut exact_matches = 0;
125
+ let mut partial_matches = 0;
126
+ let mut matched_ground_truth: HashSet<String> = HashSet::new();
127
+
128
+ for extracted_kw in &extracted_lower {
129
+ if ground_truth_lower.contains(extracted_kw) {
130
+ exact_matches += 1;
131
+ matched_ground_truth.insert(extracted_kw.clone());
132
+ continue;
133
+ }
134
+
135
+ let mut found_partial = false;
136
+ for gt_kw in &ground_truth_lower {
137
+ if (gt_kw.contains(extracted_kw) || extracted_kw.contains(gt_kw)) && !matched_ground_truth.contains(gt_kw) {
138
+ partial_matches += 1;
139
+ matched_ground_truth.insert(gt_kw.clone());
140
+ found_partial = true;
141
+ break;
142
+ }
143
+ }
144
+
145
+ if !found_partial {
146
+ for gt_kw in &ground_truth_lower {
147
+ let gt_words: Vec<&str> = gt_kw.split_whitespace().collect();
148
+ let ex_words: HashSet<&str> = extracted_kw.split_whitespace().collect();
149
+
150
+ let overlap = gt_words.iter().filter(|w| ex_words.contains(*w)).count();
151
+ if overlap >= gt_words.len() / 2 && overlap > 0 && !matched_ground_truth.contains(gt_kw) {
152
+ partial_matches += 1;
153
+ matched_ground_truth.insert(gt_kw.clone());
154
+ break;
155
+ }
156
+ }
157
+ }
158
+ }
159
+
160
+ KeywordQualityScores::new(
161
+ exact_matches,
162
+ partial_matches,
163
+ extracted_lower.len(),
164
+ ground_truth_lower.len(),
165
+ )
166
+ }
167
+
168
+ /// ML document text (subset for testing).
169
+ #[allow(dead_code)]
170
+ const ML_DOC_SAMPLE: &str = r#"
171
+ Machine learning is a branch of artificial intelligence and computer science which focuses on the use of data and algorithms to imitate the way that humans learn.
172
+ Machine learning algorithms build a model based on sample data, known as training data, to make predictions or decisions without being explicitly programmed to do so.
173
+ Deep learning is a type of machine learning based on artificial neural networks. The learning process is deep because the structure of artificial neural networks consists of multiple input, output, and hidden layers.
174
+ Neural networks can be used for supervised, semi-supervised, and unsupervised learning. Convolutional neural networks are commonly applied to analyzing visual imagery.
175
+ Natural language processing is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language.
176
+ "#;
177
+
178
+ /// Climate document text (subset for testing).
179
+ #[allow(dead_code)]
180
+ const CLIMATE_DOC_SAMPLE: &str = r#"
181
+ Climate change refers to long-term shifts in temperatures and weather patterns. These shifts may be natural, such as through variations in the solar cycle.
182
+ But since the 1800s, human activities have been the main driver of climate change, primarily due to burning fossil fuels like coal, oil, and gas.
183
+ Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun's heat and raising temperatures.
184
+ The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from burning fossil fuels for energy, agriculture, and deforestation.
185
+ Global warming is the long-term heating of Earth's climate system. Climate science reveals that human activity has been the dominant cause of climate change since the mid-20th century.
186
+ "#;
187
+
188
+ #[cfg(feature = "keywords-yake")]
189
+ #[test]
190
+ fn test_yake_quality_ml_document_default_config() {
191
+ let config = KeywordConfig::yake();
192
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
193
+
194
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
195
+
196
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
197
+ let ground_truth = get_ml_ground_truth();
198
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
199
+
200
+ println!("\nYAKE ML Document Quality (Default Config):");
201
+ println!(" Extracted: {} keywords", scores.total_extracted);
202
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
203
+ println!(" Exact matches: {}", scores.exact_matches);
204
+ println!(" Partial matches: {}", scores.partial_matches);
205
+ println!(" Precision: {:.3}", scores.precision);
206
+ println!(" Recall: {:.3}", scores.recall);
207
+ println!(" F1: {:.3}", scores.f1);
208
+ println!("\nExtracted keywords:");
209
+ for (i, kw) in keywords.iter().enumerate().take(10) {
210
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
211
+ }
212
+
213
+ assert!(
214
+ scores.precision >= 0.40,
215
+ "YAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
216
+ scores.precision,
217
+ scores.exact_matches + scores.partial_matches,
218
+ scores.total_extracted
219
+ );
220
+
221
+ assert!(
222
+ scores.recall >= 0.30,
223
+ "YAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
224
+ scores.recall,
225
+ scores.exact_matches + scores.partial_matches,
226
+ scores.total_ground_truth
227
+ );
228
+
229
+ assert!(
230
+ scores.f1 >= 0.30,
231
+ "YAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
232
+ scores.f1,
233
+ scores.precision,
234
+ scores.recall
235
+ );
236
+ }
237
+
238
+ #[cfg(feature = "keywords-rake")]
239
+ #[test]
240
+ fn test_rake_quality_ml_document_default_config() {
241
+ let config = KeywordConfig::rake();
242
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
243
+
244
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
245
+
246
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
247
+ let ground_truth = get_ml_ground_truth();
248
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
249
+
250
+ println!("\nRAKE ML Document Quality (Default Config):");
251
+ println!(" Extracted: {} keywords", scores.total_extracted);
252
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
253
+ println!(" Exact matches: {}", scores.exact_matches);
254
+ println!(" Partial matches: {}", scores.partial_matches);
255
+ println!(" Precision: {:.3}", scores.precision);
256
+ println!(" Recall: {:.3}", scores.recall);
257
+ println!(" F1: {:.3}", scores.f1);
258
+ println!("\nExtracted keywords:");
259
+ for (i, kw) in keywords.iter().enumerate().take(10) {
260
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
261
+ }
262
+
263
+ assert!(
264
+ scores.precision >= 0.40,
265
+ "RAKE precision too low with default config: {:.3} (expected >= 0.40). Only {}/{} keywords were relevant.",
266
+ scores.precision,
267
+ scores.exact_matches + scores.partial_matches,
268
+ scores.total_extracted
269
+ );
270
+
271
+ assert!(
272
+ scores.recall >= 0.30,
273
+ "RAKE recall too low with default config: {:.3} (expected >= 0.30). Only {}/{} ground truth keywords found.",
274
+ scores.recall,
275
+ scores.exact_matches + scores.partial_matches,
276
+ scores.total_ground_truth
277
+ );
278
+
279
+ assert!(
280
+ scores.f1 >= 0.30,
281
+ "RAKE F1 score too low with default config: {:.3} (expected >= 0.30). Precision: {:.3}, Recall: {:.3}",
282
+ scores.f1,
283
+ scores.precision,
284
+ scores.recall
285
+ );
286
+ }
287
+
288
+ #[cfg(feature = "keywords-yake")]
289
+ #[test]
290
+ fn test_yake_quality_climate_document_default_config() {
291
+ let config = KeywordConfig::yake();
292
+ let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
293
+
294
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
295
+
296
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
297
+ let ground_truth = get_climate_ground_truth();
298
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
299
+
300
+ println!("\nYAKE Climate Document Quality (Default Config):");
301
+ println!(" Extracted: {} keywords", scores.total_extracted);
302
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
303
+ println!(" Exact matches: {}", scores.exact_matches);
304
+ println!(" Partial matches: {}", scores.partial_matches);
305
+ println!(" Precision: {:.3}", scores.precision);
306
+ println!(" Recall: {:.3}", scores.recall);
307
+ println!(" F1: {:.3}", scores.f1);
308
+ println!("\nExtracted keywords:");
309
+ for (i, kw) in keywords.iter().enumerate().take(10) {
310
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
311
+ }
312
+
313
+ assert!(
314
+ scores.precision >= 0.40,
315
+ "YAKE precision too low: {:.3} (expected >= 0.40)",
316
+ scores.precision
317
+ );
318
+ assert!(
319
+ scores.recall >= 0.30,
320
+ "YAKE recall too low: {:.3} (expected >= 0.30)",
321
+ scores.recall
322
+ );
323
+ assert!(
324
+ scores.f1 >= 0.30,
325
+ "YAKE F1 too low: {:.3} (expected >= 0.30)",
326
+ scores.f1
327
+ );
328
+ }
329
+
330
+ #[cfg(feature = "keywords-rake")]
331
+ #[test]
332
+ fn test_rake_quality_climate_document_default_config() {
333
+ let config = KeywordConfig::rake();
334
+ let keywords = extract_keywords(CLIMATE_DOC_SAMPLE, &config).unwrap();
335
+
336
+ assert!(!keywords.is_empty(), "Should extract keywords with default config");
337
+
338
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
339
+ let ground_truth = get_climate_ground_truth();
340
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
341
+
342
+ println!("\nRAKE Climate Document Quality (Default Config):");
343
+ println!(" Extracted: {} keywords", scores.total_extracted);
344
+ println!(" Ground truth: {} keywords", scores.total_ground_truth);
345
+ println!(" Exact matches: {}", scores.exact_matches);
346
+ println!(" Partial matches: {}", scores.partial_matches);
347
+ println!(" Precision: {:.3}", scores.precision);
348
+ println!(" Recall: {:.3}", scores.recall);
349
+ println!(" F1: {:.3}", scores.f1);
350
+ println!("\nExtracted keywords:");
351
+ for (i, kw) in keywords.iter().enumerate().take(10) {
352
+ println!(" {}: {} (score: {:.3})", i + 1, kw.text, kw.score);
353
+ }
354
+
355
+ assert!(
356
+ scores.precision >= 0.40,
357
+ "RAKE precision too low: {:.3} (expected >= 0.40)",
358
+ scores.precision
359
+ );
360
+ assert!(
361
+ scores.recall >= 0.30,
362
+ "RAKE recall too low: {:.3} (expected >= 0.30)",
363
+ scores.recall
364
+ );
365
+ assert!(
366
+ scores.f1 >= 0.30,
367
+ "RAKE F1 too low: {:.3} (expected >= 0.30)",
368
+ scores.f1
369
+ );
370
+ }
371
+
372
+ #[cfg(all(feature = "keywords-yake", feature = "keywords-rake"))]
373
+ #[test]
374
+ fn test_yake_vs_rake_quality_comparison() {
375
+ let yake_config = KeywordConfig::yake();
376
+ let rake_config = KeywordConfig::rake();
377
+
378
+ let yake_keywords = extract_keywords(ML_DOC_SAMPLE, &yake_config).unwrap();
379
+ let rake_keywords = extract_keywords(ML_DOC_SAMPLE, &rake_config).unwrap();
380
+
381
+ let yake_extracted: Vec<&str> = yake_keywords.iter().map(|k| k.text.as_str()).collect();
382
+ let rake_extracted: Vec<&str> = rake_keywords.iter().map(|k| k.text.as_str()).collect();
383
+
384
+ let ground_truth = get_ml_ground_truth();
385
+ let yake_scores = evaluate_keyword_quality(&yake_extracted, &ground_truth);
386
+ let rake_scores = evaluate_keyword_quality(&rake_extracted, &ground_truth);
387
+
388
+ println!("\nYAKE vs RAKE Quality Comparison (ML Document):");
389
+ println!(
390
+ " YAKE F1: {:.3} (P: {:.3}, R: {:.3})",
391
+ yake_scores.f1, yake_scores.precision, yake_scores.recall
392
+ );
393
+ println!(
394
+ " RAKE F1: {:.3} (P: {:.3}, R: {:.3})",
395
+ rake_scores.f1, rake_scores.precision, rake_scores.recall
396
+ );
397
+
398
+ assert!(yake_scores.f1 >= 0.25, "YAKE F1 too low: {:.3}", yake_scores.f1);
399
+ assert!(rake_scores.f1 >= 0.25, "RAKE F1 too low: {:.3}", rake_scores.f1);
400
+
401
+ let best_f1 = yake_scores.f1.max(rake_scores.f1);
402
+ assert!(
403
+ best_f1 >= 0.30,
404
+ "Neither algorithm achieved F1 >= 0.30. Best: {:.3}",
405
+ best_f1
406
+ );
407
+ }
408
+
409
+ #[cfg(feature = "keywords-yake")]
410
+ #[test]
411
+ fn test_yake_quality_with_optimized_config() {
412
+ let config = KeywordConfig::yake()
413
+ .with_max_keywords(15)
414
+ .with_ngram_range(1, 3)
415
+ .with_min_score(0.0);
416
+
417
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
418
+
419
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
420
+ let ground_truth = get_ml_ground_truth();
421
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
422
+
423
+ println!("\nYAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
424
+ println!(
425
+ " F1: {:.3} (P: {:.3}, R: {:.3})",
426
+ scores.f1, scores.precision, scores.recall
427
+ );
428
+
429
+ assert!(
430
+ scores.recall >= 0.35,
431
+ "Optimized config should improve recall: {:.3} (expected >= 0.35)",
432
+ scores.recall
433
+ );
434
+ }
435
+
436
+ #[cfg(feature = "keywords-rake")]
437
+ #[test]
438
+ fn test_rake_quality_with_optimized_config() {
439
+ let config = KeywordConfig::rake()
440
+ .with_max_keywords(15)
441
+ .with_ngram_range(1, 3)
442
+ .with_min_score(0.0);
443
+
444
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
445
+
446
+ let extracted: Vec<&str> = keywords.iter().map(|k| k.text.as_str()).collect();
447
+ let ground_truth = get_ml_ground_truth();
448
+ let scores = evaluate_keyword_quality(&extracted, &ground_truth);
449
+
450
+ println!("\nRAKE ML Document Quality (Optimized Config - max 15, ngrams 1-3):");
451
+ println!(
452
+ " F1: {:.3} (P: {:.3}, R: {:.3})",
453
+ scores.f1, scores.precision, scores.recall
454
+ );
455
+
456
+ assert!(
457
+ scores.recall >= 0.35,
458
+ "Optimized config should improve recall: {:.3} (expected >= 0.35)",
459
+ scores.recall
460
+ );
461
+ }
462
+
463
+ #[cfg(any(feature = "keywords-yake", feature = "keywords-rake"))]
464
+ #[test]
465
+ fn test_extracted_keywords_are_domain_relevant() {
466
+ let config = KeywordConfig::default();
467
+ let keywords = extract_keywords(ML_DOC_SAMPLE, &config).unwrap();
468
+
469
+ let ml_terms = [
470
+ "machine",
471
+ "learning",
472
+ "artificial",
473
+ "intelligence",
474
+ "neural",
475
+ "network",
476
+ "deep",
477
+ "algorithm",
478
+ "data",
479
+ "model",
480
+ "training",
481
+ "supervised",
482
+ "unsupervised",
483
+ "language",
484
+ "processing",
485
+ ];
486
+
487
+ let relevant_count = keywords
488
+ .iter()
489
+ .filter(|kw| {
490
+ let kw_lower = kw.text.to_lowercase();
491
+ ml_terms.iter().any(|term| kw_lower.contains(term))
492
+ })
493
+ .count();
494
+
495
+ let relevance_ratio = relevant_count as f64 / keywords.len() as f64;
496
+
497
+ println!("\nDomain Relevance Check:");
498
+ println!(" Extracted keywords: {}", keywords.len());
499
+ println!(" Domain-relevant keywords: {}", relevant_count);
500
+ println!(" Relevance ratio: {:.3}", relevance_ratio);
501
+
502
+ assert!(
503
+ relevance_ratio >= 0.70,
504
+ "Too many irrelevant keywords extracted. Relevance: {:.3} (expected >= 0.70). Relevant: {}/{}",
505
+ relevance_ratio,
506
+ relevant_count,
507
+ keywords.len()
508
+ );
509
+ }