j1-template 2022.2.2 → 2022.2.3

Sign up to get free protection for your applications and to get access to all the features.
Files changed (62) hide show
  1. checksums.yaml +4 -4
  2. data/_includes/themes/j1/blocks/footer/boxes/contacts_box.proc +46 -18
  3. data/_includes/themes/j1/blocks/footer/boxes/links_box.proc +1 -0
  4. data/assets/data/fab.html +2 -2
  5. data/assets/data/footer.html +2 -2
  6. data/assets/themes/j1/core/css/themes/unolight/bootstrap.css +64 -206
  7. data/assets/themes/j1/core/css/themes/unolight/bootstrap.min.css +2 -2
  8. data/assets/themes/j1/modules/nbInteract/README.md +169 -0
  9. data/assets/themes/j1/modules/nbInteract/css/nbinteract-core.css +4 -0
  10. data/assets/themes/j1/modules/nbInteract/css/nbinteract-core.min.css +4 -0
  11. data/lib/j1/version.rb +1 -1
  12. data/lib/starter_web/Gemfile +1 -1
  13. data/lib/starter_web/_config.yml +1 -1
  14. data/lib/starter_web/_data/blocks/defaults/footer.yml +25 -17
  15. data/lib/starter_web/_data/blocks/footer.yml +78 -65
  16. data/lib/starter_web/_data/resources.yml +0 -22
  17. data/lib/starter_web/_includes/attributes.asciidoc +14 -0
  18. data/lib/starter_web/_plugins/lunr_index.rb +1 -1
  19. data/lib/starter_web/assets/images/pages/nbinteract/nbi-textbook-example.jpg +0 -0
  20. data/lib/starter_web/package.json +1 -1
  21. data/lib/starter_web/pages/public/jupyter/docs/_includes/documents/j1_docs_example_static.asciidoc +232 -232
  22. data/lib/starter_web/pages/public/jupyter/docs/j1-nbinteract-doc.adoc +135 -134
  23. data/lib/starter_web/pages/public/jupyter/docs/nbi-widget-manual.adoc +2 -4
  24. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_interactive_widgets-checkpoint.ipynb +170 -15
  25. data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_interactive_widgets.ipynb +170 -15
  26. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_interactive_questions-checkpoint.ipynb +185 -0
  27. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_recipes_interactive_questions.ipynb +19 -22
  28. data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/binder-launches.html +670 -546
  29. data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_docs_example_dynamic.html +186 -186
  30. data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_interactive_widgets.html +919 -702
  31. data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_ode_selected.html +186 -186
  32. data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/nbi_docs_recipes_interactive_questions.html +242 -243
  33. data/lib/starter_web/pages/public/jupyter/{apis/binderhub-api.adoc → services/binderhub.adoc} +22 -25
  34. data/lib/starter_web/pages/public/jupyter/{apis/jupyterhub-api.adoc → services/jupyterhub.adoc} +2 -2
  35. data/lib/starter_web/pages/public/learn/roundtrip/300_icon_fonts.adoc +11 -0
  36. data/lib/starter_web/utilsrv/_defaults/package.json +1 -1
  37. data/lib/starter_web/utilsrv/package.json +1 -1
  38. metadata +7 -28
  39. data/lib/starter_web/_data/_resources.yml +0 -1668
  40. data/lib/starter_web/assets/images/pages/nbinteract/binderhub-architecture.png +0 -0
  41. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/algebra_with_sympy-checkpoint.ipynb +0 -14488
  42. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/climate-change-forecast-checkpoint.ipynb +0 -916
  43. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/ipympl_test_plots-checkpoint.ipynb +0 -14517
  44. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_algebra_with_sympy-checkpoint.ipynb +0 -14517
  45. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_altair_interactive-checkpoint.ipynb +0 -16493
  46. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_altair_visualization-checkpoint.ipynb +0 -15358
  47. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_altair_visualization_full-checkpoint.ipynb +0 -2576
  48. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_climate_change_forecast-checkpoint.ipynb +0 -1058
  49. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_climate_change_forecast.ipynb +0 -1060
  50. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_docs_example_dynamic-checkpoint.ipynb +0 -14478
  51. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_docs_hist-checkpoint.ipynb +0 -98
  52. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_interactive-checkpoint.ipynb +0 -560
  53. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_ipympl_test_plots-checkpoint.ipynb +0 -14511
  54. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_ode_selected-checkpoint.ipynb +0 -14478
  55. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_odes_in_python-checkpoint.ipynb +0 -14818
  56. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_pandas_creating_reading_and_writing-checkpoint.ipynb +0 -328
  57. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_recipes_layout-checkpoint.ipynb +0 -341
  58. data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/nbi_docs_recipes_graphing-checkpoint.ipynb +0 -98
  59. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_examples_correlation-checkpoint.ipynb +0 -651
  60. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_examples_variability_of_the_sample_mean-checkpoint.ipynb +0 -323
  61. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_graphing-checkpoint.ipynb +0 -387
  62. data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_layout-checkpoint.ipynb +0 -384
@@ -1,232 +1,232 @@
1
- ++++
2
- <div class="jp-Cell-inputWrapper">
3
- <div class="jp-InputPrompt jp-InputArea-prompt"></div>
4
- <div class="cell border-box-sizing text_cell rendered">
5
- <div class="inner_cell">
6
- <div class="text_cell_render border-box-sizing rendered_html">
7
- <h4 id="Resources">Resources</h4>
8
- </div>
9
- </div>
10
- </div>
11
- </div>
12
- <div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs ">
13
- <div class="jp-Cell-inputWrapper">
14
- <div class="jp-InputArea jp-Cell-inputArea">
15
- <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
16
- <div class="CodeMirror cm-s-jupyter">
17
- <div class=" highlight hl-ipython3">
18
- <pre><span></span><span class="kn">import</span> <span class="nn">warnings</span>
19
- <span class="n">warnings</span><span class="o">.</span><span class="n">filterwarnings</span><span class="p">(</span><span class="s2">"ignore"</span><span class="p">)</span>
20
-
21
- <span class="c1">### General Purpose</span>
22
- <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
23
- <span class="kn">from</span> <span class="nn">matplotlib</span> <span class="kn">import</span> <span class="n">pyplot</span> <span class="k">as</span> <span class="n">plt</span>
24
- <span class="kn">from</span> <span class="nn">scipy.integrate</span> <span class="kn">import</span> <span class="n">odeint</span>
25
-
26
- <span class="c1">### Jupyter Specifics</span>
27
- <span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">HTML</span>
28
- <span class="kn">from</span> <span class="nn">ipywidgets.widgets</span> <span class="kn">import</span> <span class="n">interact</span><span class="p">,</span> <span class="n">IntSlider</span><span class="p">,</span> <span class="n">FloatSlider</span><span class="p">,</span> <span class="n">Layout</span>
29
-
30
- <span class="o">%</span><span class="k">matplotlib</span> inline
31
-
32
- <span class="n">style</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'description_width'</span><span class="p">:</span> <span class="s1">'150px'</span><span class="p">}</span>
33
- <span class="n">slider_layout</span> <span class="o">=</span> <span class="n">Layout</span><span class="p">(</span><span class="n">width</span><span class="o">=</span><span class="s1">'99%'</span><span class="p">)</span>
34
- </pre>
35
- </div>
36
- </div>
37
- </div>
38
- </div>
39
- </div>
40
- </div>
41
- <div class="jp-Cell-inputWrapper">
42
- <div class="jp-InputPrompt jp-InputArea-prompt"></div>
43
- <div class="cell border-box-sizing text_cell rendered">
44
- <div class="inner_cell">
45
- <div class="text_cell_render border-box-sizing rendered_html">
46
- <h4 id="Calculation">Calculation</h4>
47
- </div>
48
- </div>
49
- </div>
50
- </div>
51
- <div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs ">
52
- <div class="jp-Cell-inputWrapper">
53
- <div class="jp-InputArea jp-Cell-inputArea">
54
- <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
55
- <div class="CodeMirror cm-s-jupyter">
56
- <div class=" highlight hl-ipython3">
57
- <pre><span></span><span class="k">def</span> <span class="nf">main</span><span class="p">(</span><span class="n">rabbits_birthrate</span><span class="p">,</span> <span class="n">rabbits_deathrate</span><span class="p">,</span> <span class="n">foxes_birthrate</span><span class="p">,</span>
58
- <span class="n">foxes_deathrate</span><span class="p">,</span> <span class="n">initial_rabbits</span><span class="p">,</span> <span class="n">foxes_inicial</span><span class="p">,</span> <span class="n">days</span><span class="p">):</span>
59
-
60
- <span class="k">def</span> <span class="nf">function</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">):</span>
61
- <span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">s</span>
62
- <span class="n">dydt</span> <span class="o">=</span> <span class="p">[</span>
63
- <span class="n">rabbits_birthrate</span> <span class="o">*</span> <span class="n">x</span> <span class="o">-</span> <span class="n">rabbits_deathrate</span> <span class="o">*</span> <span class="n">x</span> <span class="o">*</span> <span class="n">y</span><span class="p">,</span> <span class="c1"># dx/dy -&gt; Change in Rabbits</span>
64
- <span class="n">foxes_birthrate</span> <span class="o">*</span> <span class="n">x</span> <span class="o">*</span> <span class="n">y</span> <span class="o">-</span> <span class="n">foxes_deathrate</span> <span class="o">*</span> <span class="n">y</span> <span class="c1"># dy/dt -&gt; Change in Foxes</span>
65
- <span class="p">]</span>
66
-
67
- <span class="k">return</span> <span class="n">dydt</span>
68
-
69
- <span class="n">time</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">days</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
70
- <span class="n">initial_conditions</span> <span class="o">=</span> <span class="p">[</span><span class="n">initial_rabbits</span><span class="p">,</span> <span class="n">foxes_inicial</span><span class="p">]</span>
71
- <span class="n">solution</span> <span class="o">=</span> <span class="n">odeint</span><span class="p">(</span><span class="n">function</span><span class="p">,</span> <span class="n">initial_conditions</span><span class="p">,</span> <span class="n">time</span><span class="p">)</span>
72
-
73
- <span class="c1">#Graphic details</span>
74
- <span class="n">fig</span><span class="p">,</span> <span class="n">axes</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
75
-
76
- <span class="n">ax</span> <span class="o">=</span> <span class="n">axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
77
-
78
- <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">time</span><span class="p">,</span> <span class="n">solution</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Rabbits(t)'</span><span class="p">)</span>
79
- <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">time</span><span class="p">,</span> <span class="n">solution</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Foxes(t)'</span><span class="p">)</span>
80
-
81
- <span class="k">if</span> <span class="n">days</span> <span class="o">&lt;=</span> <span class="mi">30</span><span class="p">:</span>
82
- <span class="n">step</span> <span class="o">=</span> <span class="mi">1</span>
83
- <span class="n">rotation</span> <span class="o">=</span> <span class="s2">"horizontal"</span>
84
- <span class="k">elif</span> <span class="n">days</span> <span class="o">&lt;=</span> <span class="mi">150</span><span class="p">:</span>
85
- <span class="n">step</span> <span class="o">=</span> <span class="mi">5</span>
86
- <span class="n">rotation</span> <span class="o">=</span> <span class="s2">"vertical"</span>
87
- <span class="k">else</span><span class="p">:</span>
88
- <span class="n">step</span> <span class="o">=</span> <span class="mi">10</span>
89
- <span class="n">rotation</span> <span class="o">=</span> <span class="s2">"vertical"</span>
90
-
91
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">days</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">),</span> <span class="n">rotation</span><span class="o">=</span><span class="n">rotation</span><span class="p">)</span>
92
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xticks</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">days</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="p">))</span>
93
-
94
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">days</span><span class="p">])</span>
95
- <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">solution</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]),</span> <span class="nb">max</span><span class="p">(</span><span class="n">solution</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]))</span> <span class="o">*</span> <span class="mf">1.05</span><span class="p">])</span>
96
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'Time'</span><span class="p">)</span>
97
- <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Population'</span><span class="p">)</span>
98
- <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">'best'</span><span class="p">)</span>
99
- <span class="n">ax</span><span class="o">.</span><span class="n">grid</span><span class="p">()</span>
100
-
101
-
102
- <span class="n">ax</span> <span class="o">=</span> <span class="n">axes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
103
-
104
- <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">solution</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">solution</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Foxes vs Rabbits'</span><span class="p">)</span>
105
-
106
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="p">(</span><span class="n">solution</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">])</span> <span class="o">*</span> <span class="mf">1.05</span><span class="p">])</span>
107
- <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="p">(</span><span class="n">solution</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">])</span> <span class="o">*</span> <span class="mf">1.05</span><span class="p">])</span>
108
- <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'Rabbits'</span><span class="p">)</span>
109
- <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Foxes'</span><span class="p">)</span>
110
- <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">'best'</span><span class="p">)</span>
111
- <span class="n">ax</span><span class="o">.</span><span class="n">grid</span><span class="p">()</span>
112
-
113
- <span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
114
- <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
115
- </pre>
116
- </div>
117
- </div>
118
- </div>
119
- </div>
120
- </div>
121
- </div>
122
- <div class="jp-Cell-inputWrapper">
123
- <div class="jp-InputPrompt jp-InputArea-prompt"></div>
124
- <div class="cell border-box-sizing text_cell rendered">
125
- <div class="inner_cell">
126
- <div class="text_cell_render border-box-sizing rendered_html">
127
- <h4 id="Evaluation">Evaluation</h4>
128
- </div>
129
- </div>
130
- </div>
131
- </div>
132
- <div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
133
- <div class="jp-Cell-inputWrapper">
134
- <div class="jp-InputArea jp-Cell-inputArea">
135
- <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
136
- <div class="CodeMirror cm-s-jupyter">
137
- <div class=" highlight hl-ipython3">
138
- <pre><span></span><span class="n">interact</span><span class="p">(</span><span class="n">main</span><span class="p">,</span>
139
- <span class="n">rabbits_birthrate</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">25</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
140
- <span class="n">description</span><span class="o">=</span><span class="s1">'Birth Rate/Rabbits'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
141
- <span class="n">rabbits_deathrate</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">25</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
142
- <span class="n">description</span><span class="o">=</span><span class="s1">'Death Rate/Rabbits'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
143
- <span class="n">foxes_birthrate</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">25</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
144
- <span class="n">description</span><span class="o">=</span><span class="s1">'Birth Rate/Foxes'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
145
- <span class="n">foxes_deathrate</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">25</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
146
- <span class="n">description</span><span class="o">=</span><span class="s1">'Death Rate/Foxes'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
147
- <span class="n">initial_rabbits</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">2</span> <span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
148
- <span class="n">description</span><span class="o">=</span><span class="s1">'Initial Rabbits'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
149
- <span class="n">foxes_inicial</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">1</span> <span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
150
- <span class="n">description</span><span class="o">=</span><span class="s1">'Initial Foxes'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
151
- <span class="n">days</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">15</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">365</span> <span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">15</span><span class="p">,</span>
152
- <span class="n">description</span><span class="o">=</span><span class="s1">'Number of Days'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
153
- <span class="p">);</span>
154
- </pre>
155
- </div>
156
- </div>
157
- </div>
158
- </div>
159
- </div>
160
- <div class="jp-Cell-outputWrapper">
161
- <div class="jp-OutputArea jp-Cell-outputArea">
162
- <div class="jp-OutputArea-child">
163
- <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
164
- <div id="b6ce1d29-1fad-4a75-93ae-a8a86abd0aa4" class="jupyter-widgets jp-OutputArea-output ">
165
- <div class="widget-subarea">
166
- <div class="lm-Widget p-Widget lm-Panel p-Panel jupyter-widgets-disconnected jupyter-widgets widget-container widget-box widget-vbox widget-interact">
167
- <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
168
- <label class="widget-label" title="Birth Rate/Rabbits" style="width: 150px;">Birth Rate/Rabbits</label>
169
- <div class="slider-container">
170
- <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 0%;"></span></div>
171
- </div>
172
- <div class="widget-readout" contenteditable="true" style="">1.00</div>
173
- </div>
174
- <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
175
- <label class="widget-label" title="Death Rate/Rabbits" style="width: 150px;">Death Rate/Rabbits</label>
176
- <div class="slider-container">
177
- <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 0%;"></span></div>
178
- </div>
179
- <div class="widget-readout" contenteditable="true" style="">1.00</div>
180
- </div>
181
- <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
182
- <label class="widget-label" title="Birth Rate/Foxes" style="width: 150px;">Birth Rate/Foxes</label>
183
- <div class="slider-container">
184
- <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 4%;"></span></div>
185
- </div>
186
- <div class="widget-readout" contenteditable="true" style="">1.00</div>
187
- </div>
188
- <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
189
- <label class="widget-label" title="Death Rate/Foxes" style="width: 150px;">Death Rate/Foxes</label>
190
- <div class="slider-container">
191
- <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 4%;"></span></div>
192
- </div>
193
- <div class="widget-readout" contenteditable="true" style="">1.00</div>
194
- </div>
195
- <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
196
- <label class="widget-label" title="Initial Rabbits" style="width: 150px;">Initial Rabbits</label>
197
- <div class="slider-container">
198
- <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 0%;"></span></div>
199
- </div>
200
- <div class="widget-readout" contenteditable="true" style="">2.00</div>
201
- </div>
202
- <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
203
- <label class="widget-label" title="Initial Foxes" style="width: 150px;">Initial Foxes</label>
204
- <div class="slider-container">
205
- <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 0%;"></span></div>
206
- </div>
207
- <div class="widget-readout" contenteditable="true" style="">1.00</div>
208
- </div>
209
- <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
210
- <label class="widget-label" title="Number of Days" style="width: 150px;">Number of Days</label>
211
- <div class="slider-container">
212
- <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 0%;"></span></div>
213
- </div>
214
- <div class="widget-readout" contenteditable="true" style="">15.00</div>
215
- </div>
216
- <div class="lm-Widget p-Widget lm-Panel p-Panel jupyter-widgets-disconnected jupyter-widgets widget-output">
217
- <div class="lm-Widget p-Widget jp-OutputArea">
218
- <div class="lm-Widget p-Widget lm-Panel p-Panel jp-OutputArea-child">
219
- <div class="lm-Widget p-Widget jp-OutputPrompt jp-OutputArea-prompt"></div>
220
- <div class="lm-Widget p-Widget jp-RenderedImage jp-mod-trusted jp-OutputArea-output" data-mime-type="image/png"><img src="
221
- " class="jp-needs-light-background"></div>
222
- </div>
223
- </div>
224
- </div>
225
- </div>
226
- </div>
227
- </div>
228
- </div>
229
- </div>
230
- </div>
231
- </div>
232
- ++++
1
+ ++++
2
+ <div class="jp-Cell-inputWrapper">
3
+ <div class="jp-InputPrompt jp-InputArea-prompt"></div>
4
+ <div class="cell border-box-sizing text_cell rendered">
5
+ <div class="inner_cell">
6
+ <div class="text_cell_render border-box-sizing rendered_html">
7
+ <h4 id="resources-static">Resources</h4>
8
+ </div>
9
+ </div>
10
+ </div>
11
+ </div>
12
+ <div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs ">
13
+ <div class="jp-Cell-inputWrapper">
14
+ <div class="jp-InputArea jp-Cell-inputArea">
15
+ <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
16
+ <div class="CodeMirror cm-s-jupyter">
17
+ <div class=" highlight hl-ipython3">
18
+ <pre><span></span><span class="kn">import</span> <span class="nn">warnings</span>
19
+ <span class="n">warnings</span><span class="o">.</span><span class="n">filterwarnings</span><span class="p">(</span><span class="s2">"ignore"</span><span class="p">)</span>
20
+
21
+ <span class="c1">### General Purpose</span>
22
+ <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
23
+ <span class="kn">from</span> <span class="nn">matplotlib</span> <span class="kn">import</span> <span class="n">pyplot</span> <span class="k">as</span> <span class="n">plt</span>
24
+ <span class="kn">from</span> <span class="nn">scipy.integrate</span> <span class="kn">import</span> <span class="n">odeint</span>
25
+
26
+ <span class="c1">### Jupyter Specifics</span>
27
+ <span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">HTML</span>
28
+ <span class="kn">from</span> <span class="nn">ipywidgets.widgets</span> <span class="kn">import</span> <span class="n">interact</span><span class="p">,</span> <span class="n">IntSlider</span><span class="p">,</span> <span class="n">FloatSlider</span><span class="p">,</span> <span class="n">Layout</span>
29
+
30
+ <span class="o">%</span><span class="k">matplotlib</span> inline
31
+
32
+ <span class="n">style</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'description_width'</span><span class="p">:</span> <span class="s1">'150px'</span><span class="p">}</span>
33
+ <span class="n">slider_layout</span> <span class="o">=</span> <span class="n">Layout</span><span class="p">(</span><span class="n">width</span><span class="o">=</span><span class="s1">'99%'</span><span class="p">)</span>
34
+ </pre>
35
+ </div>
36
+ </div>
37
+ </div>
38
+ </div>
39
+ </div>
40
+ </div>
41
+ <div class="jp-Cell-inputWrapper">
42
+ <div class="jp-InputPrompt jp-InputArea-prompt"></div>
43
+ <div class="cell border-box-sizing text_cell rendered">
44
+ <div class="inner_cell">
45
+ <div class="text_cell_render border-box-sizing rendered_html">
46
+ <h4 id="calculation-static">Calculation</h4>
47
+ </div>
48
+ </div>
49
+ </div>
50
+ </div>
51
+ <div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs ">
52
+ <div class="jp-Cell-inputWrapper">
53
+ <div class="jp-InputArea jp-Cell-inputArea">
54
+ <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
55
+ <div class="CodeMirror cm-s-jupyter">
56
+ <div class=" highlight hl-ipython3">
57
+ <pre><span></span><span class="k">def</span> <span class="nf">main</span><span class="p">(</span><span class="n">rabbits_birthrate</span><span class="p">,</span> <span class="n">rabbits_deathrate</span><span class="p">,</span> <span class="n">foxes_birthrate</span><span class="p">,</span>
58
+ <span class="n">foxes_deathrate</span><span class="p">,</span> <span class="n">initial_rabbits</span><span class="p">,</span> <span class="n">foxes_inicial</span><span class="p">,</span> <span class="n">days</span><span class="p">):</span>
59
+
60
+ <span class="k">def</span> <span class="nf">function</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">t</span><span class="p">):</span>
61
+ <span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">s</span>
62
+ <span class="n">dydt</span> <span class="o">=</span> <span class="p">[</span>
63
+ <span class="n">rabbits_birthrate</span> <span class="o">*</span> <span class="n">x</span> <span class="o">-</span> <span class="n">rabbits_deathrate</span> <span class="o">*</span> <span class="n">x</span> <span class="o">*</span> <span class="n">y</span><span class="p">,</span> <span class="c1"># dx/dy -&gt; Change in Rabbits</span>
64
+ <span class="n">foxes_birthrate</span> <span class="o">*</span> <span class="n">x</span> <span class="o">*</span> <span class="n">y</span> <span class="o">-</span> <span class="n">foxes_deathrate</span> <span class="o">*</span> <span class="n">y</span> <span class="c1"># dy/dt -&gt; Change in Foxes</span>
65
+ <span class="p">]</span>
66
+
67
+ <span class="k">return</span> <span class="n">dydt</span>
68
+
69
+ <span class="n">time</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">days</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
70
+ <span class="n">initial_conditions</span> <span class="o">=</span> <span class="p">[</span><span class="n">initial_rabbits</span><span class="p">,</span> <span class="n">foxes_inicial</span><span class="p">]</span>
71
+ <span class="n">solution</span> <span class="o">=</span> <span class="n">odeint</span><span class="p">(</span><span class="n">function</span><span class="p">,</span> <span class="n">initial_conditions</span><span class="p">,</span> <span class="n">time</span><span class="p">)</span>
72
+
73
+ <span class="c1">#Graphic details</span>
74
+ <span class="n">fig</span><span class="p">,</span> <span class="n">axes</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
75
+
76
+ <span class="n">ax</span> <span class="o">=</span> <span class="n">axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
77
+
78
+ <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">time</span><span class="p">,</span> <span class="n">solution</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Rabbits(t)'</span><span class="p">)</span>
79
+ <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">time</span><span class="p">,</span> <span class="n">solution</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Foxes(t)'</span><span class="p">)</span>
80
+
81
+ <span class="k">if</span> <span class="n">days</span> <span class="o">&lt;=</span> <span class="mi">30</span><span class="p">:</span>
82
+ <span class="n">step</span> <span class="o">=</span> <span class="mi">1</span>
83
+ <span class="n">rotation</span> <span class="o">=</span> <span class="s2">"horizontal"</span>
84
+ <span class="k">elif</span> <span class="n">days</span> <span class="o">&lt;=</span> <span class="mi">150</span><span class="p">:</span>
85
+ <span class="n">step</span> <span class="o">=</span> <span class="mi">5</span>
86
+ <span class="n">rotation</span> <span class="o">=</span> <span class="s2">"vertical"</span>
87
+ <span class="k">else</span><span class="p">:</span>
88
+ <span class="n">step</span> <span class="o">=</span> <span class="mi">10</span>
89
+ <span class="n">rotation</span> <span class="o">=</span> <span class="s2">"vertical"</span>
90
+
91
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">days</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">),</span> <span class="n">rotation</span><span class="o">=</span><span class="n">rotation</span><span class="p">)</span>
92
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_xticks</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">days</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="p">))</span>
93
+
94
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">days</span><span class="p">])</span>
95
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">solution</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]),</span> <span class="nb">max</span><span class="p">(</span><span class="n">solution</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]))</span> <span class="o">*</span> <span class="mf">1.05</span><span class="p">])</span>
96
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'Time'</span><span class="p">)</span>
97
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Population'</span><span class="p">)</span>
98
+ <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">'best'</span><span class="p">)</span>
99
+ <span class="n">ax</span><span class="o">.</span><span class="n">grid</span><span class="p">()</span>
100
+
101
+
102
+ <span class="n">ax</span> <span class="o">=</span> <span class="n">axes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
103
+
104
+ <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">solution</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">solution</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Foxes vs Rabbits'</span><span class="p">)</span>
105
+
106
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="p">(</span><span class="n">solution</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">])</span> <span class="o">*</span> <span class="mf">1.05</span><span class="p">])</span>
107
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="p">(</span><span class="n">solution</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">])</span> <span class="o">*</span> <span class="mf">1.05</span><span class="p">])</span>
108
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">'Rabbits'</span><span class="p">)</span>
109
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'Foxes'</span><span class="p">)</span>
110
+ <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">'best'</span><span class="p">)</span>
111
+ <span class="n">ax</span><span class="o">.</span><span class="n">grid</span><span class="p">()</span>
112
+
113
+ <span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
114
+ <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
115
+ </pre>
116
+ </div>
117
+ </div>
118
+ </div>
119
+ </div>
120
+ </div>
121
+ </div>
122
+ <div class="jp-Cell-inputWrapper">
123
+ <div class="jp-InputPrompt jp-InputArea-prompt"></div>
124
+ <div class="cell border-box-sizing text_cell rendered">
125
+ <div class="inner_cell">
126
+ <div class="text_cell_render border-box-sizing rendered_html">
127
+ <h4 id="evaluation-static">Evaluation</h4>
128
+ </div>
129
+ </div>
130
+ </div>
131
+ </div>
132
+ <div class="jp-Cell jp-CodeCell jp-Notebook-cell ">
133
+ <div class="jp-Cell-inputWrapper">
134
+ <div class="jp-InputArea jp-Cell-inputArea">
135
+ <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
136
+ <div class="CodeMirror cm-s-jupyter">
137
+ <div class=" highlight hl-ipython3">
138
+ <pre><span></span><span class="n">interact</span><span class="p">(</span><span class="n">main</span><span class="p">,</span>
139
+ <span class="n">rabbits_birthrate</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">25</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
140
+ <span class="n">description</span><span class="o">=</span><span class="s1">'Birth Rate/Rabbits'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
141
+ <span class="n">rabbits_deathrate</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">25</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
142
+ <span class="n">description</span><span class="o">=</span><span class="s1">'Death Rate/Rabbits'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
143
+ <span class="n">foxes_birthrate</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">25</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
144
+ <span class="n">description</span><span class="o">=</span><span class="s1">'Birth Rate/Foxes'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
145
+ <span class="n">foxes_deathrate</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">25</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
146
+ <span class="n">description</span><span class="o">=</span><span class="s1">'Death Rate/Foxes'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
147
+ <span class="n">initial_rabbits</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">2</span> <span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
148
+ <span class="n">description</span><span class="o">=</span><span class="s1">'Initial Rabbits'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
149
+ <span class="n">foxes_inicial</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">1</span> <span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
150
+ <span class="n">description</span><span class="o">=</span><span class="s1">'Initial Foxes'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
151
+ <span class="n">days</span><span class="o">=</span><span class="n">FloatSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">15</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">365</span> <span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">15</span><span class="p">,</span>
152
+ <span class="n">description</span><span class="o">=</span><span class="s1">'Number of Days'</span><span class="p">,</span> <span class="n">style</span><span class="o">=</span><span class="n">style</span><span class="p">,</span> <span class="n">layout</span><span class="o">=</span><span class="n">slider_layout</span><span class="p">),</span>
153
+ <span class="p">);</span>
154
+ </pre>
155
+ </div>
156
+ </div>
157
+ </div>
158
+ </div>
159
+ </div>
160
+ <div class="jp-Cell-outputWrapper">
161
+ <div class="jp-OutputArea jp-Cell-outputArea">
162
+ <div class="jp-OutputArea-child">
163
+ <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
164
+ <div id="b6ce1d29-1fad-4a75-93ae-a8a86abd0aa4" class="jupyter-widgets jp-OutputArea-output ">
165
+ <div class="widget-subarea">
166
+ <div class="lm-Widget p-Widget lm-Panel p-Panel jupyter-widgets-disconnected jupyter-widgets widget-container widget-box widget-vbox widget-interact">
167
+ <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
168
+ <label class="widget-label" title="Birth Rate/Rabbits" style="width: 150px;">Birth Rate/Rabbits</label>
169
+ <div class="slider-container">
170
+ <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 0%;"></span></div>
171
+ </div>
172
+ <div class="widget-readout" contenteditable="true" style="">1.00</div>
173
+ </div>
174
+ <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
175
+ <label class="widget-label" title="Death Rate/Rabbits" style="width: 150px;">Death Rate/Rabbits</label>
176
+ <div class="slider-container">
177
+ <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 0%;"></span></div>
178
+ </div>
179
+ <div class="widget-readout" contenteditable="true" style="">1.00</div>
180
+ </div>
181
+ <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
182
+ <label class="widget-label" title="Birth Rate/Foxes" style="width: 150px;">Birth Rate/Foxes</label>
183
+ <div class="slider-container">
184
+ <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 4%;"></span></div>
185
+ </div>
186
+ <div class="widget-readout" contenteditable="true" style="">1.00</div>
187
+ </div>
188
+ <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
189
+ <label class="widget-label" title="Death Rate/Foxes" style="width: 150px;">Death Rate/Foxes</label>
190
+ <div class="slider-container">
191
+ <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 4%;"></span></div>
192
+ </div>
193
+ <div class="widget-readout" contenteditable="true" style="">1.00</div>
194
+ </div>
195
+ <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
196
+ <label class="widget-label" title="Initial Rabbits" style="width: 150px;">Initial Rabbits</label>
197
+ <div class="slider-container">
198
+ <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 0%;"></span></div>
199
+ </div>
200
+ <div class="widget-readout" contenteditable="true" style="">2.00</div>
201
+ </div>
202
+ <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
203
+ <label class="widget-label" title="Initial Foxes" style="width: 150px;">Initial Foxes</label>
204
+ <div class="slider-container">
205
+ <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 0%;"></span></div>
206
+ </div>
207
+ <div class="widget-readout" contenteditable="true" style="">1.00</div>
208
+ </div>
209
+ <div class="lm-Widget p-Widget jupyter-widgets-disconnected jupyter-widgets widget-inline-hbox widget-slider widget-hslider" style="width: 99%;">
210
+ <label class="widget-label" title="Number of Days" style="width: 150px;">Number of Days</label>
211
+ <div class="slider-container">
212
+ <div class="ui-slider ui-corner-all ui-widget ui-widget-content slider ui-slider-horizontal"><span tabindex="0" class="ui-slider-handle ui-corner-all ui-state-default" style="left: 0%;"></span></div>
213
+ </div>
214
+ <div class="widget-readout" contenteditable="true" style="">15.00</div>
215
+ </div>
216
+ <div class="lm-Widget p-Widget lm-Panel p-Panel jupyter-widgets-disconnected jupyter-widgets widget-output">
217
+ <div class="lm-Widget p-Widget jp-OutputArea">
218
+ <div class="lm-Widget p-Widget lm-Panel p-Panel jp-OutputArea-child">
219
+ <div class="lm-Widget p-Widget jp-OutputPrompt jp-OutputArea-prompt"></div>
220
+ <div class="lm-Widget p-Widget jp-RenderedImage jp-mod-trusted jp-OutputArea-output" data-mime-type="image/png"><img src="
221
+ " class="jp-needs-light-background"></div>
222
+ </div>
223
+ </div>
224
+ </div>
225
+ </div>
226
+ </div>
227
+ </div>
228
+ </div>
229
+ </div>
230
+ </div>
231
+ </div>
232
+ ++++