j1-template 2022.2.2 → 2022.2.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/_includes/themes/j1/blocks/footer/boxes/contacts_box.proc +46 -18
- data/_includes/themes/j1/blocks/footer/boxes/links_box.proc +1 -0
- data/assets/data/fab.html +2 -2
- data/assets/data/footer.html +2 -2
- data/assets/themes/j1/core/css/themes/unolight/bootstrap.css +64 -206
- data/assets/themes/j1/core/css/themes/unolight/bootstrap.min.css +2 -2
- data/assets/themes/j1/modules/nbInteract/README.md +169 -0
- data/assets/themes/j1/modules/nbInteract/css/nbinteract-core.css +4 -0
- data/assets/themes/j1/modules/nbInteract/css/nbinteract-core.min.css +4 -0
- data/lib/j1/version.rb +1 -1
- data/lib/starter_web/Gemfile +1 -1
- data/lib/starter_web/_config.yml +1 -1
- data/lib/starter_web/_data/blocks/defaults/footer.yml +25 -17
- data/lib/starter_web/_data/blocks/footer.yml +78 -65
- data/lib/starter_web/_data/resources.yml +0 -22
- data/lib/starter_web/_includes/attributes.asciidoc +14 -0
- data/lib/starter_web/_plugins/lunr_index.rb +1 -1
- data/lib/starter_web/assets/images/pages/nbinteract/nbi-textbook-example.jpg +0 -0
- data/lib/starter_web/package.json +1 -1
- data/lib/starter_web/pages/public/jupyter/docs/_includes/documents/j1_docs_example_static.asciidoc +232 -232
- data/lib/starter_web/pages/public/jupyter/docs/j1-nbinteract-doc.adoc +135 -134
- data/lib/starter_web/pages/public/jupyter/docs/nbi-widget-manual.adoc +2 -4
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_interactive_widgets-checkpoint.ipynb +170 -15
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/j1_interactive_widgets.ipynb +170 -15
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_interactive_questions-checkpoint.ipynb +185 -0
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/nbi_docs_recipes_interactive_questions.ipynb +19 -22
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/binder-launches.html +670 -546
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_docs_example_dynamic.html +186 -186
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_interactive_widgets.html +919 -702
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/j1_ode_selected.html +186 -186
- data/lib/starter_web/pages/public/jupyter/notebooks/textbooks/nbi_docs_recipes_interactive_questions.html +242 -243
- data/lib/starter_web/pages/public/jupyter/{apis/binderhub-api.adoc → services/binderhub.adoc} +22 -25
- data/lib/starter_web/pages/public/jupyter/{apis/jupyterhub-api.adoc → services/jupyterhub.adoc} +2 -2
- data/lib/starter_web/pages/public/learn/roundtrip/300_icon_fonts.adoc +11 -0
- data/lib/starter_web/utilsrv/_defaults/package.json +1 -1
- data/lib/starter_web/utilsrv/package.json +1 -1
- metadata +7 -28
- data/lib/starter_web/_data/_resources.yml +0 -1668
- data/lib/starter_web/assets/images/pages/nbinteract/binderhub-architecture.png +0 -0
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/algebra_with_sympy-checkpoint.ipynb +0 -14488
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/climate-change-forecast-checkpoint.ipynb +0 -916
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/ipympl_test_plots-checkpoint.ipynb +0 -14517
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_algebra_with_sympy-checkpoint.ipynb +0 -14517
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_altair_interactive-checkpoint.ipynb +0 -16493
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_altair_visualization-checkpoint.ipynb +0 -15358
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_altair_visualization_full-checkpoint.ipynb +0 -2576
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_climate_change_forecast-checkpoint.ipynb +0 -1058
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_climate_change_forecast.ipynb +0 -1060
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_docs_example_dynamic-checkpoint.ipynb +0 -14478
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_docs_hist-checkpoint.ipynb +0 -98
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_interactive-checkpoint.ipynb +0 -560
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_ipympl_test_plots-checkpoint.ipynb +0 -14511
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_ode_selected-checkpoint.ipynb +0 -14478
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_odes_in_python-checkpoint.ipynb +0 -14818
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_pandas_creating_reading_and_writing-checkpoint.ipynb +0 -328
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/j1_recipes_layout-checkpoint.ipynb +0 -341
- data/lib/starter_web/pages/public/jupyter/notebooks/j1/.ipynb_checkpoints/nbi_docs_recipes_graphing-checkpoint.ipynb +0 -98
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_examples_correlation-checkpoint.ipynb +0 -651
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_examples_variability_of_the_sample_mean-checkpoint.ipynb +0 -323
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_graphing-checkpoint.ipynb +0 -387
- data/lib/starter_web/pages/public/jupyter/notebooks/nbi-docs/.ipynb_checkpoints/nbi_docs_recipes_layout-checkpoint.ipynb +0 -384
@@ -1,651 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"metadata": {},
|
7
|
-
"outputs": [],
|
8
|
-
"source": [
|
9
|
-
"# HIDDEN\n",
|
10
|
-
"from datascience import *\n",
|
11
|
-
"%matplotlib inline\n",
|
12
|
-
"import matplotlib.pyplot as plots\n",
|
13
|
-
"plots.style.use('fivethirtyeight')\n",
|
14
|
-
"import math\n",
|
15
|
-
"import numpy as np\n",
|
16
|
-
"from scipy import stats\n",
|
17
|
-
"from ipywidgets import interact, interactive, fixed, interact_manual\n",
|
18
|
-
"import ipywidgets as widgets\n",
|
19
|
-
"import nbinteract as nbi"
|
20
|
-
]
|
21
|
-
},
|
22
|
-
{
|
23
|
-
"cell_type": "markdown",
|
24
|
-
"metadata": {},
|
25
|
-
"source": [
|
26
|
-
"### Correlation\n",
|
27
|
-
"In this section we will develop a measure of how tightly clustered a scatter diagram is about a straight line. Formally, this is called measuring *linear association*."
|
28
|
-
]
|
29
|
-
},
|
30
|
-
{
|
31
|
-
"cell_type": "markdown",
|
32
|
-
"metadata": {},
|
33
|
-
"source": [
|
34
|
-
"#### The correlation coefficient\n",
|
35
|
-
"\n",
|
36
|
-
"The *correlation coefficient* measures the strength of the linear relationship between two variables. Graphically, it measures how clustered the scatter diagram is around a straight line.\n",
|
37
|
-
"\n",
|
38
|
-
"The term *correlation coefficient* is a quite long word, so usually the term shortened to *correlation* and denoted by $r$.\n",
|
39
|
-
"\n",
|
40
|
-
"Here are some mathematical facts about $r$ that we will just observe by simulation.\n",
|
41
|
-
"\n",
|
42
|
-
"- The correlation coefficient $r$ is a number between -1 and 1.\n",
|
43
|
-
"- $r$ measures the extent to which the scatter plot clusters around a straight line.\n",
|
44
|
-
"- $r$ = 1 if the scatter diagram is a perfect straight line sloping upwards, and $r$ = -1 if the scatter diagram is a perfect straight line sloping downwards."
|
45
|
-
]
|
46
|
-
},
|
47
|
-
{
|
48
|
-
"cell_type": "markdown",
|
49
|
-
"metadata": {},
|
50
|
-
"source": [
|
51
|
-
"The function ``r_scatter`` takes a value of $r$ as its argument and simulates a scatter plot with a correlation very close to $r$. Because of randomness in the simulation, the correlation is not expected to be exactly equal to $r$.\n",
|
52
|
-
"\n",
|
53
|
-
"Call ``r_scatter`` a few times, with different values of $r$ as the argument, and see how the scatter plot changes. \n",
|
54
|
-
"\n",
|
55
|
-
"When $r$ = 1 the scatter plot is perfectly linear and slopes upward. When $r$ = -1, the scatter plot is perfectly linear and slopes downward. When $r$ = 0, the scatter plot is a formless cloud around the horizontal axis, and the variables are said to be *uncorrelated*."
|
56
|
-
]
|
57
|
-
},
|
58
|
-
{
|
59
|
-
"cell_type": "code",
|
60
|
-
"execution_count": 2,
|
61
|
-
"metadata": {},
|
62
|
-
"outputs": [
|
63
|
-
{
|
64
|
-
"data": {
|
65
|
-
"application/vnd.jupyter.widget-view+json": {
|
66
|
-
"model_id": "d40394e76601418f9eaad00c672f41d1",
|
67
|
-
"version_major": 2,
|
68
|
-
"version_minor": 0
|
69
|
-
},
|
70
|
-
"text/plain": [
|
71
|
-
"VBox(children=(interactive(children=(FloatSlider(value=0.0, description='r', max=1.0, min=-1.0, step=0.05), Ou…"
|
72
|
-
]
|
73
|
-
},
|
74
|
-
"metadata": {},
|
75
|
-
"output_type": "display_data"
|
76
|
-
}
|
77
|
-
],
|
78
|
-
"source": [
|
79
|
-
"z = np.random.normal(0, 1, 500)\n",
|
80
|
-
"def r_scatter(xs, r):\n",
|
81
|
-
" \"\"\"\n",
|
82
|
-
" Generate y-values for a scatter plot with correlation approximately r\n",
|
83
|
-
" \"\"\"\n",
|
84
|
-
" return r*xs + (np.sqrt(1-r**2))*z\n",
|
85
|
-
"\n",
|
86
|
-
"corr_opts = {\n",
|
87
|
-
" 'aspect_ratio': 1,\n",
|
88
|
-
" 'xlim': (-3.5, 3.5),\n",
|
89
|
-
" 'ylim': (-3.5, 3.5),\n",
|
90
|
-
"}\n",
|
91
|
-
"\n",
|
92
|
-
"nbi.scatter(np.random.normal(size=500), r_scatter, options=corr_opts, r=(-1, 1, 0.05))"
|
93
|
-
]
|
94
|
-
},
|
95
|
-
{
|
96
|
-
"cell_type": "markdown",
|
97
|
-
"metadata": {},
|
98
|
-
"source": [
|
99
|
-
"#### Calculating the correlation\n",
|
100
|
-
"\n",
|
101
|
-
"The formula for $r$ is not apparent from our observations so far. It has a mathematical basis that is outside the scope of this class. However, as you will see, the calculation is straightforward and helps us understand several of the properties of $r$.\n",
|
102
|
-
"\n",
|
103
|
-
"**Formula** for $r$:\n",
|
104
|
-
"\n",
|
105
|
-
"$r$ is the **average of the products of the two variables**, when both variables are measured in standard units.\n",
|
106
|
-
"\n",
|
107
|
-
"Here are the steps in the calculation. We will apply the steps to a simple table of values of **x** and **y**."
|
108
|
-
]
|
109
|
-
},
|
110
|
-
{
|
111
|
-
"cell_type": "code",
|
112
|
-
"execution_count": 3,
|
113
|
-
"metadata": {},
|
114
|
-
"outputs": [
|
115
|
-
{
|
116
|
-
"data": {
|
117
|
-
"text/html": [
|
118
|
-
"<table border=\"1\" class=\"dataframe\">\n",
|
119
|
-
" <thead>\n",
|
120
|
-
" <tr>\n",
|
121
|
-
" <th>x</th> <th>y</th>\n",
|
122
|
-
" </tr>\n",
|
123
|
-
" </thead>\n",
|
124
|
-
" <tbody>\n",
|
125
|
-
" <tr>\n",
|
126
|
-
" <td>1 </td> <td>2 </td>\n",
|
127
|
-
" </tr>\n",
|
128
|
-
" <tr>\n",
|
129
|
-
" <td>2 </td> <td>3 </td>\n",
|
130
|
-
" </tr>\n",
|
131
|
-
" <tr>\n",
|
132
|
-
" <td>3 </td> <td>1 </td>\n",
|
133
|
-
" </tr>\n",
|
134
|
-
" <tr>\n",
|
135
|
-
" <td>4 </td> <td>5 </td>\n",
|
136
|
-
" </tr>\n",
|
137
|
-
" <tr>\n",
|
138
|
-
" <td>5 </td> <td>2 </td>\n",
|
139
|
-
" </tr>\n",
|
140
|
-
" <tr>\n",
|
141
|
-
" <td>6 </td> <td>7 </td>\n",
|
142
|
-
" </tr>\n",
|
143
|
-
" </tbody>\n",
|
144
|
-
"</table>"
|
145
|
-
],
|
146
|
-
"text/plain": [
|
147
|
-
"x | y\n",
|
148
|
-
"1 | 2\n",
|
149
|
-
"2 | 3\n",
|
150
|
-
"3 | 1\n",
|
151
|
-
"4 | 5\n",
|
152
|
-
"5 | 2\n",
|
153
|
-
"6 | 7"
|
154
|
-
]
|
155
|
-
},
|
156
|
-
"execution_count": 3,
|
157
|
-
"metadata": {},
|
158
|
-
"output_type": "execute_result"
|
159
|
-
}
|
160
|
-
],
|
161
|
-
"source": [
|
162
|
-
"x = np.arange(1, 7, 1)\n",
|
163
|
-
"y = make_array(2, 3, 1, 5, 2, 7)\n",
|
164
|
-
"t = Table().with_columns(\n",
|
165
|
-
" 'x', x,\n",
|
166
|
-
" 'y', y\n",
|
167
|
-
" )\n",
|
168
|
-
"t"
|
169
|
-
]
|
170
|
-
},
|
171
|
-
{
|
172
|
-
"cell_type": "markdown",
|
173
|
-
"metadata": {},
|
174
|
-
"source": [
|
175
|
-
"Based on the scatter diagram, we expect that $r$ will be positive but not equal to 1."
|
176
|
-
]
|
177
|
-
},
|
178
|
-
{
|
179
|
-
"cell_type": "code",
|
180
|
-
"execution_count": 4,
|
181
|
-
"metadata": {},
|
182
|
-
"outputs": [
|
183
|
-
{
|
184
|
-
"data": {
|
185
|
-
"application/vnd.jupyter.widget-view+json": {
|
186
|
-
"model_id": "562201223b3e4e31846c056f1b44b96e",
|
187
|
-
"version_major": 2,
|
188
|
-
"version_minor": 0
|
189
|
-
},
|
190
|
-
"text/plain": [
|
191
|
-
"VBox(children=(interactive(children=(Output(),), _dom_classes=('widget-interact',)), Figure(axes=[Axis(scale=L…"
|
192
|
-
]
|
193
|
-
},
|
194
|
-
"metadata": {},
|
195
|
-
"output_type": "display_data"
|
196
|
-
}
|
197
|
-
],
|
198
|
-
"source": [
|
199
|
-
"nbi.scatter(t.column(0), t.column(1), options={'aspect_ratio': 1})"
|
200
|
-
]
|
201
|
-
},
|
202
|
-
{
|
203
|
-
"cell_type": "markdown",
|
204
|
-
"metadata": {},
|
205
|
-
"source": [
|
206
|
-
"**Step 1.** Convert each variable to standard units."
|
207
|
-
]
|
208
|
-
},
|
209
|
-
{
|
210
|
-
"cell_type": "code",
|
211
|
-
"execution_count": 5,
|
212
|
-
"metadata": {},
|
213
|
-
"outputs": [],
|
214
|
-
"source": [
|
215
|
-
"def standard_units(nums):\n",
|
216
|
-
" return (nums - np.mean(nums)) / np.std(nums)"
|
217
|
-
]
|
218
|
-
},
|
219
|
-
{
|
220
|
-
"cell_type": "code",
|
221
|
-
"execution_count": 6,
|
222
|
-
"metadata": {},
|
223
|
-
"outputs": [
|
224
|
-
{
|
225
|
-
"data": {
|
226
|
-
"text/html": [
|
227
|
-
"<table border=\"1\" class=\"dataframe\">\n",
|
228
|
-
" <thead>\n",
|
229
|
-
" <tr>\n",
|
230
|
-
" <th>x</th> <th>y</th> <th>x (standard units)</th> <th>y (standard units)</th>\n",
|
231
|
-
" </tr>\n",
|
232
|
-
" </thead>\n",
|
233
|
-
" <tbody>\n",
|
234
|
-
" <tr>\n",
|
235
|
-
" <td>1 </td> <td>2 </td> <td>-1.46385 </td> <td>-0.648886 </td>\n",
|
236
|
-
" </tr>\n",
|
237
|
-
" <tr>\n",
|
238
|
-
" <td>2 </td> <td>3 </td> <td>-0.87831 </td> <td>-0.162221 </td>\n",
|
239
|
-
" </tr>\n",
|
240
|
-
" <tr>\n",
|
241
|
-
" <td>3 </td> <td>1 </td> <td>-0.29277 </td> <td>-1.13555 </td>\n",
|
242
|
-
" </tr>\n",
|
243
|
-
" <tr>\n",
|
244
|
-
" <td>4 </td> <td>5 </td> <td>0.29277 </td> <td>0.811107 </td>\n",
|
245
|
-
" </tr>\n",
|
246
|
-
" <tr>\n",
|
247
|
-
" <td>5 </td> <td>2 </td> <td>0.87831 </td> <td>-0.648886 </td>\n",
|
248
|
-
" </tr>\n",
|
249
|
-
" <tr>\n",
|
250
|
-
" <td>6 </td> <td>7 </td> <td>1.46385 </td> <td>1.78444 </td>\n",
|
251
|
-
" </tr>\n",
|
252
|
-
" </tbody>\n",
|
253
|
-
"</table>"
|
254
|
-
],
|
255
|
-
"text/plain": [
|
256
|
-
"x | y | x (standard units) | y (standard units)\n",
|
257
|
-
"1 | 2 | -1.46385 | -0.648886\n",
|
258
|
-
"2 | 3 | -0.87831 | -0.162221\n",
|
259
|
-
"3 | 1 | -0.29277 | -1.13555\n",
|
260
|
-
"4 | 5 | 0.29277 | 0.811107\n",
|
261
|
-
"5 | 2 | 0.87831 | -0.648886\n",
|
262
|
-
"6 | 7 | 1.46385 | 1.78444"
|
263
|
-
]
|
264
|
-
},
|
265
|
-
"execution_count": 6,
|
266
|
-
"metadata": {},
|
267
|
-
"output_type": "execute_result"
|
268
|
-
}
|
269
|
-
],
|
270
|
-
"source": [
|
271
|
-
"t_su = t.with_columns(\n",
|
272
|
-
" 'x (standard units)', standard_units(x),\n",
|
273
|
-
" 'y (standard units)', standard_units(y)\n",
|
274
|
-
" )\n",
|
275
|
-
"t_su"
|
276
|
-
]
|
277
|
-
},
|
278
|
-
{
|
279
|
-
"cell_type": "markdown",
|
280
|
-
"metadata": {},
|
281
|
-
"source": [
|
282
|
-
"**Step 2.** Multiply each pair of standard units."
|
283
|
-
]
|
284
|
-
},
|
285
|
-
{
|
286
|
-
"cell_type": "code",
|
287
|
-
"execution_count": 7,
|
288
|
-
"metadata": {},
|
289
|
-
"outputs": [
|
290
|
-
{
|
291
|
-
"data": {
|
292
|
-
"text/html": [
|
293
|
-
"<table border=\"1\" class=\"dataframe\">\n",
|
294
|
-
" <thead>\n",
|
295
|
-
" <tr>\n",
|
296
|
-
" <th>x</th> <th>y</th> <th>x (standard units)</th> <th>y (standard units)</th> <th>product of standard units</th>\n",
|
297
|
-
" </tr>\n",
|
298
|
-
" </thead>\n",
|
299
|
-
" <tbody>\n",
|
300
|
-
" <tr>\n",
|
301
|
-
" <td>1 </td> <td>2 </td> <td>-1.46385 </td> <td>-0.648886 </td> <td>0.949871 </td>\n",
|
302
|
-
" </tr>\n",
|
303
|
-
" <tr>\n",
|
304
|
-
" <td>2 </td> <td>3 </td> <td>-0.87831 </td> <td>-0.162221 </td> <td>0.142481 </td>\n",
|
305
|
-
" </tr>\n",
|
306
|
-
" <tr>\n",
|
307
|
-
" <td>3 </td> <td>1 </td> <td>-0.29277 </td> <td>-1.13555 </td> <td>0.332455 </td>\n",
|
308
|
-
" </tr>\n",
|
309
|
-
" <tr>\n",
|
310
|
-
" <td>4 </td> <td>5 </td> <td>0.29277 </td> <td>0.811107 </td> <td>0.237468 </td>\n",
|
311
|
-
" </tr>\n",
|
312
|
-
" <tr>\n",
|
313
|
-
" <td>5 </td> <td>2 </td> <td>0.87831 </td> <td>-0.648886 </td> <td>-0.569923 </td>\n",
|
314
|
-
" </tr>\n",
|
315
|
-
" <tr>\n",
|
316
|
-
" <td>6 </td> <td>7 </td> <td>1.46385 </td> <td>1.78444 </td> <td>2.61215 </td>\n",
|
317
|
-
" </tr>\n",
|
318
|
-
" </tbody>\n",
|
319
|
-
"</table>"
|
320
|
-
],
|
321
|
-
"text/plain": [
|
322
|
-
"x | y | x (standard units) | y (standard units) | product of standard units\n",
|
323
|
-
"1 | 2 | -1.46385 | -0.648886 | 0.949871\n",
|
324
|
-
"2 | 3 | -0.87831 | -0.162221 | 0.142481\n",
|
325
|
-
"3 | 1 | -0.29277 | -1.13555 | 0.332455\n",
|
326
|
-
"4 | 5 | 0.29277 | 0.811107 | 0.237468\n",
|
327
|
-
"5 | 2 | 0.87831 | -0.648886 | -0.569923\n",
|
328
|
-
"6 | 7 | 1.46385 | 1.78444 | 2.61215"
|
329
|
-
]
|
330
|
-
},
|
331
|
-
"execution_count": 7,
|
332
|
-
"metadata": {},
|
333
|
-
"output_type": "execute_result"
|
334
|
-
}
|
335
|
-
],
|
336
|
-
"source": [
|
337
|
-
"t_product = t_su.with_column('product of standard units', t_su.column(2) * t_su.column(3))\n",
|
338
|
-
"t_product"
|
339
|
-
]
|
340
|
-
},
|
341
|
-
{
|
342
|
-
"cell_type": "markdown",
|
343
|
-
"metadata": {},
|
344
|
-
"source": [
|
345
|
-
"**Step 3.** $r$ is the average of the products computed in Step 2."
|
346
|
-
]
|
347
|
-
},
|
348
|
-
{
|
349
|
-
"cell_type": "code",
|
350
|
-
"execution_count": 8,
|
351
|
-
"metadata": {},
|
352
|
-
"outputs": [
|
353
|
-
{
|
354
|
-
"data": {
|
355
|
-
"text/plain": [
|
356
|
-
"0.6174163971897709"
|
357
|
-
]
|
358
|
-
},
|
359
|
-
"execution_count": 8,
|
360
|
-
"metadata": {},
|
361
|
-
"output_type": "execute_result"
|
362
|
-
}
|
363
|
-
],
|
364
|
-
"source": [
|
365
|
-
"# r is the average of the products of standard units\n",
|
366
|
-
"\n",
|
367
|
-
"r = np.mean(t_product.column(4))\n",
|
368
|
-
"r"
|
369
|
-
]
|
370
|
-
},
|
371
|
-
{
|
372
|
-
"cell_type": "markdown",
|
373
|
-
"metadata": {},
|
374
|
-
"source": [
|
375
|
-
"As expected, $r$ is positive but not equal to 1."
|
376
|
-
]
|
377
|
-
},
|
378
|
-
{
|
379
|
-
"cell_type": "markdown",
|
380
|
-
"metadata": {},
|
381
|
-
"source": [
|
382
|
-
"#### Properties of $r$\n",
|
383
|
-
"\n",
|
384
|
-
"The calculation shows that:\n",
|
385
|
-
"\n",
|
386
|
-
"- $r$ is a pure number. It has no units. This is because $r$ is based on standard units.\n",
|
387
|
-
"- $r$ is unaffected by changing the units on either axis. This too is because $r$ is based on standard units.\n",
|
388
|
-
"- $r$ is unaffected by switching the axes. Algebraically, this is because the product of standard units does not depend on which variable is called **x** and which **y**. Geometrically, switching axes reflects the scatter plot about the line **y = x**, but does not change the amount of clustering nor the sign of the association."
|
389
|
-
]
|
390
|
-
},
|
391
|
-
{
|
392
|
-
"cell_type": "code",
|
393
|
-
"execution_count": 9,
|
394
|
-
"metadata": {},
|
395
|
-
"outputs": [
|
396
|
-
{
|
397
|
-
"data": {
|
398
|
-
"application/vnd.jupyter.widget-view+json": {
|
399
|
-
"model_id": "7373845f9f4c4826a8b60afd4df3cbc6",
|
400
|
-
"version_major": 2,
|
401
|
-
"version_minor": 0
|
402
|
-
},
|
403
|
-
"text/plain": [
|
404
|
-
"VBox(children=(interactive(children=(Output(),), _dom_classes=('widget-interact',)), Figure(axes=[Axis(scale=L…"
|
405
|
-
]
|
406
|
-
},
|
407
|
-
"metadata": {},
|
408
|
-
"output_type": "display_data"
|
409
|
-
}
|
410
|
-
],
|
411
|
-
"source": [
|
412
|
-
"nbi.scatter(t.column(1), t.column(0), options={'aspect_ratio': 1})"
|
413
|
-
]
|
414
|
-
},
|
415
|
-
{
|
416
|
-
"cell_type": "markdown",
|
417
|
-
"metadata": {},
|
418
|
-
"source": [
|
419
|
-
"#### The correlation function\n",
|
420
|
-
"We are going to be calculating correlations repeatedly, so it will help to define a function that computes it by performing all the steps described above. Let's define a function ``correlation`` that takes a table and the labels of two columns in the table. The function returns $r$, the mean of the products of those column values in standard units."
|
421
|
-
]
|
422
|
-
},
|
423
|
-
{
|
424
|
-
"cell_type": "code",
|
425
|
-
"execution_count": 10,
|
426
|
-
"metadata": {},
|
427
|
-
"outputs": [],
|
428
|
-
"source": [
|
429
|
-
"def correlation(t, x, y):\n",
|
430
|
-
" return np.mean(standard_units(t.column(x))*standard_units(t.column(y)))"
|
431
|
-
]
|
432
|
-
},
|
433
|
-
{
|
434
|
-
"cell_type": "code",
|
435
|
-
"execution_count": 11,
|
436
|
-
"metadata": {},
|
437
|
-
"outputs": [
|
438
|
-
{
|
439
|
-
"data": {
|
440
|
-
"application/vnd.jupyter.widget-view+json": {
|
441
|
-
"model_id": "a229a4df59044f0887272fa2fa7cf8d2",
|
442
|
-
"version_major": 2,
|
443
|
-
"version_minor": 0
|
444
|
-
},
|
445
|
-
"text/plain": [
|
446
|
-
"interactive(children=(ToggleButtons(description='x-axis', options=('x', 'y'), value='x'), ToggleButtons(descri…"
|
447
|
-
]
|
448
|
-
},
|
449
|
-
"metadata": {},
|
450
|
-
"output_type": "display_data"
|
451
|
-
},
|
452
|
-
{
|
453
|
-
"data": {
|
454
|
-
"text/plain": [
|
455
|
-
"<function __main__.correlation(t, x, y)>"
|
456
|
-
]
|
457
|
-
},
|
458
|
-
"execution_count": 11,
|
459
|
-
"metadata": {},
|
460
|
-
"output_type": "execute_result"
|
461
|
-
}
|
462
|
-
],
|
463
|
-
"source": [
|
464
|
-
"interact(correlation, t=fixed(t),\n",
|
465
|
-
" x=widgets.ToggleButtons(options=['x', 'y'], description='x-axis'),\n",
|
466
|
-
" y=widgets.ToggleButtons(options=['x', 'y'], description='y-axis'))"
|
467
|
-
]
|
468
|
-
},
|
469
|
-
{
|
470
|
-
"cell_type": "markdown",
|
471
|
-
"metadata": {},
|
472
|
-
"source": [
|
473
|
-
"Let's call the function on the ``x`` and ``y`` columns of ``t``. The function returns the same answer to the correlation between $x$ and $y$ as we got by direct application of the formula for $r$. "
|
474
|
-
]
|
475
|
-
},
|
476
|
-
{
|
477
|
-
"cell_type": "code",
|
478
|
-
"execution_count": 12,
|
479
|
-
"metadata": {},
|
480
|
-
"outputs": [
|
481
|
-
{
|
482
|
-
"data": {
|
483
|
-
"text/plain": [
|
484
|
-
"0.6174163971897709"
|
485
|
-
]
|
486
|
-
},
|
487
|
-
"execution_count": 12,
|
488
|
-
"metadata": {},
|
489
|
-
"output_type": "execute_result"
|
490
|
-
}
|
491
|
-
],
|
492
|
-
"source": [
|
493
|
-
"correlation(t, 'x', 'y')"
|
494
|
-
]
|
495
|
-
},
|
496
|
-
{
|
497
|
-
"cell_type": "markdown",
|
498
|
-
"metadata": {},
|
499
|
-
"source": [
|
500
|
-
"As we noticed, the order in which the variables are specified doesn't matter."
|
501
|
-
]
|
502
|
-
},
|
503
|
-
{
|
504
|
-
"cell_type": "code",
|
505
|
-
"execution_count": 13,
|
506
|
-
"metadata": {},
|
507
|
-
"outputs": [
|
508
|
-
{
|
509
|
-
"data": {
|
510
|
-
"text/plain": [
|
511
|
-
"0.6174163971897709"
|
512
|
-
]
|
513
|
-
},
|
514
|
-
"execution_count": 13,
|
515
|
-
"metadata": {},
|
516
|
-
"output_type": "execute_result"
|
517
|
-
}
|
518
|
-
],
|
519
|
-
"source": [
|
520
|
-
"correlation(t, 'y', 'x')"
|
521
|
-
]
|
522
|
-
},
|
523
|
-
{
|
524
|
-
"cell_type": "markdown",
|
525
|
-
"metadata": {},
|
526
|
-
"source": [
|
527
|
-
"Calling ``correlation`` on columns of the table ``suv`` gives us the correlation between price and mileage as well as the correlation between price and acceleration."
|
528
|
-
]
|
529
|
-
},
|
530
|
-
{
|
531
|
-
"cell_type": "code",
|
532
|
-
"execution_count": 14,
|
533
|
-
"metadata": {},
|
534
|
-
"outputs": [
|
535
|
-
{
|
536
|
-
"data": {
|
537
|
-
"application/vnd.jupyter.widget-view+json": {
|
538
|
-
"model_id": "c82ed7aaa9184cf083050fe0e369211b",
|
539
|
-
"version_major": 2,
|
540
|
-
"version_minor": 0
|
541
|
-
},
|
542
|
-
"text/plain": [
|
543
|
-
"interactive(children=(ToggleButtons(description='x-axis', options=('mpg', 'msrp', 'acceleration'), value='mpg'…"
|
544
|
-
]
|
545
|
-
},
|
546
|
-
"metadata": {},
|
547
|
-
"output_type": "display_data"
|
548
|
-
},
|
549
|
-
{
|
550
|
-
"data": {
|
551
|
-
"text/plain": [
|
552
|
-
"<function __main__.correlation(t, x, y)>"
|
553
|
-
]
|
554
|
-
},
|
555
|
-
"execution_count": 14,
|
556
|
-
"metadata": {},
|
557
|
-
"output_type": "execute_result"
|
558
|
-
}
|
559
|
-
],
|
560
|
-
"source": [
|
561
|
-
"suv = (Table.read_table('https://raw.githubusercontent.com/data-8/materials-fa17/master/lec/hybrid.csv')\n",
|
562
|
-
" .where('class', 'SUV'))\n",
|
563
|
-
"\n",
|
564
|
-
"interact(correlation, t=fixed(suv),\n",
|
565
|
-
" x=widgets.ToggleButtons(options=['mpg', 'msrp', 'acceleration'],\n",
|
566
|
-
" description='x-axis'),\n",
|
567
|
-
" y=widgets.ToggleButtons(options=['mpg', 'msrp', 'acceleration'],\n",
|
568
|
-
" description='y-axis'))"
|
569
|
-
]
|
570
|
-
},
|
571
|
-
{
|
572
|
-
"cell_type": "code",
|
573
|
-
"execution_count": 15,
|
574
|
-
"metadata": {},
|
575
|
-
"outputs": [
|
576
|
-
{
|
577
|
-
"data": {
|
578
|
-
"text/plain": [
|
579
|
-
"-0.6667143635709919"
|
580
|
-
]
|
581
|
-
},
|
582
|
-
"execution_count": 15,
|
583
|
-
"metadata": {},
|
584
|
-
"output_type": "execute_result"
|
585
|
-
}
|
586
|
-
],
|
587
|
-
"source": [
|
588
|
-
"correlation(suv, 'mpg', 'msrp')"
|
589
|
-
]
|
590
|
-
},
|
591
|
-
{
|
592
|
-
"cell_type": "code",
|
593
|
-
"execution_count": 16,
|
594
|
-
"metadata": {},
|
595
|
-
"outputs": [
|
596
|
-
{
|
597
|
-
"data": {
|
598
|
-
"text/plain": [
|
599
|
-
"0.48699799279959155"
|
600
|
-
]
|
601
|
-
},
|
602
|
-
"execution_count": 16,
|
603
|
-
"metadata": {},
|
604
|
-
"output_type": "execute_result"
|
605
|
-
}
|
606
|
-
],
|
607
|
-
"source": [
|
608
|
-
"correlation(suv, 'acceleration', 'msrp')"
|
609
|
-
]
|
610
|
-
},
|
611
|
-
{
|
612
|
-
"cell_type": "markdown",
|
613
|
-
"metadata": {},
|
614
|
-
"source": [
|
615
|
-
"These values confirm what we had observed: \n",
|
616
|
-
"\n",
|
617
|
-
"- There is a negative association between price and efficiency, whereas the association between price and acceleration is positive.\n",
|
618
|
-
"- The linear relation between price and acceleration is a little weaker (correlation about 0.5) than between price and mileage (correlation about -0.67). "
|
619
|
-
]
|
620
|
-
},
|
621
|
-
{
|
622
|
-
"cell_type": "markdown",
|
623
|
-
"metadata": {},
|
624
|
-
"source": [
|
625
|
-
"Correlation is a simple and powerful concept, but it is sometimes misused. Before using $r$, it is important to be aware of what correlation does and does not measure."
|
626
|
-
]
|
627
|
-
}
|
628
|
-
],
|
629
|
-
"metadata": {
|
630
|
-
"anaconda-cloud": {},
|
631
|
-
"kernelspec": {
|
632
|
-
"display_name": "Python 3",
|
633
|
-
"language": "python",
|
634
|
-
"name": "python3"
|
635
|
-
},
|
636
|
-
"language_info": {
|
637
|
-
"codemirror_mode": {
|
638
|
-
"name": "ipython",
|
639
|
-
"version": 3
|
640
|
-
},
|
641
|
-
"file_extension": ".py",
|
642
|
-
"mimetype": "text/x-python",
|
643
|
-
"name": "python",
|
644
|
-
"nbconvert_exporter": "python",
|
645
|
-
"pygments_lexer": "ipython3",
|
646
|
-
"version": "3.7.9"
|
647
|
-
}
|
648
|
-
},
|
649
|
-
"nbformat": 4,
|
650
|
-
"nbformat_minor": 1
|
651
|
-
}
|