isotree 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,771 @@
1
+ /* Isolation forests and variations thereof, with adjustments for incorporation
2
+ * of categorical variables and missing values.
3
+ * Writen for C++11 standard and aimed at being used in R and Python.
4
+ *
5
+ * This library is based on the following works:
6
+ * [1] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou.
7
+ * "Isolation forest."
8
+ * 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008.
9
+ * [2] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou.
10
+ * "Isolation-based anomaly detection."
11
+ * ACM Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3.
12
+ * [3] Hariri, Sahand, Matias Carrasco Kind, and Robert J. Brunner.
13
+ * "Extended Isolation Forest."
14
+ * arXiv preprint arXiv:1811.02141 (2018).
15
+ * [4] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou.
16
+ * "On detecting clustered anomalies using SCiForest."
17
+ * Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2010.
18
+ * [5] https://sourceforge.net/projects/iforest/
19
+ * [6] https://math.stackexchange.com/questions/3388518/expected-number-of-paths-required-to-separate-elements-in-a-binary-tree
20
+ * [7] Quinlan, J. Ross. C4. 5: programs for machine learning. Elsevier, 2014.
21
+ * [8] Cortes, David. "Distance approximation using Isolation Forests." arXiv preprint arXiv:1910.12362 (2019).
22
+ * [9] Cortes, David. "Imputing missing values with unsupervised random trees." arXiv preprint arXiv:1911.06646 (2019).
23
+ *
24
+ * BSD 2-Clause License
25
+ * Copyright (c) 2019, David Cortes
26
+ * All rights reserved.
27
+ * Redistribution and use in source and binary forms, with or without
28
+ * modification, are permitted provided that the following conditions are met:
29
+ * * Redistributions of source code must retain the above copyright notice, this
30
+ * list of conditions and the following disclaimer.
31
+ * * Redistributions in binary form must reproduce the above copyright notice,
32
+ * this list of conditions and the following disclaimer in the documentation
33
+ * and/or other materials provided with the distribution.
34
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
35
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
37
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
38
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
40
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
41
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
42
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44
+ */
45
+ #include "isotree.hpp"
46
+
47
+ void split_itree_recursive(std::vector<IsoTree> &trees,
48
+ WorkerMemory &workspace,
49
+ InputData &input_data,
50
+ ModelParams &model_params,
51
+ std::vector<ImputeNode> *impute_nodes,
52
+ size_t curr_depth)
53
+ {
54
+ long double sum_weight = -HUGE_VAL;
55
+
56
+ /* calculate imputation statistics if desired */
57
+ if (impute_nodes != NULL)
58
+ {
59
+ if (input_data.Xc != NULL)
60
+ std::sort(workspace.ix_arr.begin() + workspace.st,
61
+ workspace.ix_arr.begin() + workspace.end + 1);
62
+ build_impute_node(impute_nodes->back(), workspace,
63
+ input_data, model_params,
64
+ *impute_nodes, curr_depth,
65
+ model_params.min_imp_obs);
66
+ }
67
+
68
+ /* check for potential isolated leafs */
69
+ if (workspace.end == workspace.st || curr_depth >= model_params.max_depth)
70
+ goto terminal_statistics;
71
+
72
+ /* with 2 observations and no weights, there's only 1 potential or assumed split */
73
+ if ((workspace.end - workspace.st) == 1 && !workspace.weights_arr.size() && !workspace.weights_map.size())
74
+ goto terminal_statistics;
75
+
76
+ /* when using weights, the split should stop when the sum of weights is <= 2 */
77
+ sum_weight = calculate_sum_weights(workspace.ix_arr, workspace.st, workspace.end, curr_depth,
78
+ workspace.weights_arr, workspace.weights_map);
79
+
80
+ if (curr_depth > 0 && (workspace.weights_arr.size() || workspace.weights_map.size()) && sum_weight < 2.5)
81
+ goto terminal_statistics;
82
+
83
+ /* for sparse matrices, need to sort the indices */
84
+ if (input_data.Xc != NULL && impute_nodes == NULL)
85
+ std::sort(workspace.ix_arr.begin() + workspace.st, workspace.ix_arr.begin() + workspace.end + 1);
86
+
87
+ /* pick column to split according to criteria */
88
+ workspace.prob_split_type = workspace.rbin(workspace.rnd_generator);
89
+
90
+ /* case1: guided, pick column and point with best gain */
91
+ if (
92
+ workspace.prob_split_type
93
+ < (
94
+ model_params.prob_pick_by_gain_avg +
95
+ model_params.prob_pick_by_gain_pl
96
+ )
97
+ )
98
+ {
99
+ workspace.determine_split = false;
100
+
101
+ /* case 1.1: column is decided by averaged gain */
102
+ if (workspace.prob_split_type < model_params.prob_pick_by_gain_avg)
103
+ workspace.criterion = Averaged;
104
+
105
+ /* case 1.2: column is decided by pooled gain */
106
+ else
107
+ workspace.criterion = Pooled;
108
+
109
+ /* evaluate gain for all columns */
110
+ trees.back().score = -HUGE_VAL; /* this is used to track the best gain */
111
+ if (input_data.Xc == NULL)
112
+ {
113
+ for (size_t col = 0; col < input_data.ncols_numeric; col++)
114
+ {
115
+ workspace.this_gain = eval_guided_crit(workspace.ix_arr.data(), workspace.st, workspace.end,
116
+ input_data.numeric_data + col * input_data.nrows,
117
+ workspace.split_ix, workspace.this_split_point,
118
+ workspace.xmin, workspace.xmax,
119
+ workspace.criterion, model_params.min_gain,
120
+ model_params.missing_action);
121
+ if (workspace.this_gain <= -HUGE_VAL)
122
+ {
123
+ workspace.cols_possible[col] = false;
124
+ }
125
+
126
+ else if (workspace.this_gain > trees.back().score)
127
+ {
128
+ trees.back().score = workspace.this_gain;
129
+ trees.back().col_num = col;
130
+ trees.back().num_split = workspace.this_split_point;
131
+ if (model_params.penalize_range)
132
+ {
133
+ trees.back().range_low = workspace.xmin - workspace.xmax + trees.back().num_split;
134
+ trees.back().range_high = workspace.xmax - workspace.xmin + trees.back().num_split;
135
+ }
136
+ }
137
+ }
138
+
139
+ }
140
+
141
+ else
142
+ {
143
+ for (size_t col = 0; col < input_data.ncols_numeric; col++)
144
+ {
145
+ workspace.this_gain = eval_guided_crit(workspace.ix_arr.data(), workspace.st, workspace.end,
146
+ col, input_data.Xc, input_data.Xc_ind, input_data.Xc_indptr,
147
+ workspace.buffer_dbl.data(), workspace.buffer_szt.data(),
148
+ workspace.this_split_point, workspace.xmin, workspace.xmax,
149
+ workspace.criterion, model_params.min_gain, model_params.missing_action);
150
+ if (workspace.this_gain <= -HUGE_VAL)
151
+ {
152
+ workspace.cols_possible[col] = false;
153
+ }
154
+
155
+ else if (workspace.this_gain > trees.back().score)
156
+ {
157
+ trees.back().score = workspace.this_gain;
158
+ trees.back().col_num = col;
159
+ trees.back().num_split = workspace.this_split_point;
160
+ if (model_params.penalize_range)
161
+ {
162
+ trees.back().range_low = workspace.xmin - workspace.xmax + trees.back().num_split;
163
+ trees.back().range_high = workspace.xmax - workspace.xmin + trees.back().num_split;
164
+ }
165
+ }
166
+ }
167
+ }
168
+
169
+ for (size_t col = 0; col < input_data.ncols_categ; col++)
170
+ {
171
+ workspace.this_gain = eval_guided_crit(workspace.ix_arr.data(), workspace.st, workspace.end,
172
+ input_data.categ_data + col * input_data.nrows, input_data.ncat[col],
173
+ workspace.buffer_szt.data(), workspace.buffer_szt.data() + input_data.max_categ,
174
+ workspace.buffer_dbl.data(), workspace.this_categ, workspace.this_split_categ.data(),
175
+ workspace.buffer_chr.data(), workspace.criterion, model_params.min_gain,
176
+ model_params.all_perm, model_params.missing_action, model_params.cat_split_type);
177
+ if (workspace.this_gain <= -HUGE_VAL)
178
+ {
179
+ workspace.cols_possible[col + input_data.ncols_numeric] = false;
180
+ }
181
+
182
+ else if (workspace.this_gain > trees.back().score)
183
+ {
184
+ trees.back().score = workspace.this_gain;
185
+ trees.back().col_num = col + input_data.ncols_numeric;
186
+ switch(model_params.cat_split_type)
187
+ {
188
+ case SingleCateg:
189
+ {
190
+ trees.back().chosen_cat = workspace.this_categ;
191
+ break;
192
+ }
193
+
194
+ case SubSet:
195
+ {
196
+ trees.back().cat_split.assign(workspace.this_split_categ.begin(),
197
+ workspace.this_split_categ.begin() + input_data.ncat[col]);
198
+ break;
199
+ }
200
+ }
201
+ }
202
+ }
203
+
204
+
205
+ if (trees.back().score <= 0.)
206
+ goto terminal_statistics;
207
+ else
208
+ trees.back().score = 0.;
209
+
210
+ if (trees.back().col_num < input_data.ncols_numeric)
211
+ {
212
+ trees.back().col_type = Numeric;
213
+ }
214
+
215
+ else
216
+ {
217
+ trees.back().col_type = Categorical;
218
+ trees.back().col_num -= input_data.ncols_numeric;
219
+ }
220
+ }
221
+
222
+ /* case2: column is chosen at random */
223
+ else
224
+ {
225
+ workspace.determine_split = true;
226
+
227
+ /* case 2.1: split point is chosen according to gain (averaged) */
228
+ if (
229
+ workspace.prob_split_type
230
+ < (
231
+ model_params.prob_pick_by_gain_avg +
232
+ model_params.prob_pick_by_gain_pl +
233
+ model_params.prob_split_by_gain_avg
234
+ )
235
+ )
236
+ workspace.criterion = Averaged;
237
+
238
+ /* case 2.2: split point is chosen according to gain (pooled) */
239
+ else if (
240
+ workspace.prob_split_type
241
+ < (
242
+ model_params.prob_pick_by_gain_avg +
243
+ model_params.prob_pick_by_gain_pl +
244
+ model_params.prob_split_by_gain_avg +
245
+ model_params.prob_split_by_gain_pl
246
+ )
247
+ )
248
+ workspace.criterion = Pooled;
249
+
250
+ /* case 2.3: split point is chosen randomly (like in the original paper) */
251
+ else
252
+ workspace.criterion = NoCrit;
253
+
254
+
255
+ /* pick column at random */
256
+ decide_column(input_data.ncols_numeric, input_data.ncols_categ,
257
+ trees.back().col_num, trees.back().col_type,
258
+ workspace.rnd_generator, workspace.runif,
259
+ workspace.col_sampler);
260
+
261
+ /* get the range of possible splits */
262
+ get_split_range(workspace, input_data, model_params, trees.back());
263
+
264
+ /* if it's not possible to split, will have to try more */
265
+ if (workspace.unsplittable)
266
+ {
267
+ /* keep track of which columns are tried */
268
+ add_unsplittable_col(workspace, trees.back(), input_data);
269
+
270
+ /* try more random columns for {(1/2) * ncols} times */
271
+ workspace.ncols_tried = 1;
272
+ do
273
+ {
274
+ decide_column(input_data.ncols_numeric, input_data.ncols_categ,
275
+ trees.back().col_num, trees.back().col_type,
276
+ workspace.rnd_generator, workspace.runif,
277
+ workspace.col_sampler);
278
+ if (!check_is_not_unsplittable_col(workspace, trees.back(), input_data))
279
+ {
280
+ get_split_range(workspace, input_data, model_params, trees.back());
281
+ if (!workspace.unsplittable)
282
+ break;
283
+ else
284
+ add_unsplittable_col(workspace, trees.back(), input_data);
285
+ }
286
+ workspace.ncols_tried++;
287
+ }
288
+ while (workspace.ncols_tried < input_data.ncols_tot / 2);
289
+
290
+ /* if that didn't work, then check all the columns that are still splittable */
291
+ if (workspace.unsplittable)
292
+ {
293
+ workspace.ncols_tried = 0; /* note: this is used here as a counter for the number of still splittable columns */
294
+ if (input_data.Xc == NULL)
295
+ {
296
+ for (size_t col = 0; col < input_data.ncols_numeric; col++)
297
+ {
298
+ if (!workspace.cols_possible[col]) continue;
299
+ get_range(workspace.ix_arr.data(), input_data.numeric_data + input_data.nrows * col,
300
+ workspace.st, workspace.end, model_params.missing_action,
301
+ workspace.xmin, workspace.xmax, workspace.unsplittable);
302
+ workspace.cols_possible[col] = !workspace.unsplittable;
303
+ workspace.ncols_tried += !workspace.unsplittable;
304
+ }
305
+ }
306
+
307
+ else
308
+ {
309
+ for (size_t col = 0; col < input_data.ncols_numeric; col++)
310
+ {
311
+ if (!workspace.cols_possible[col]) continue;
312
+ get_range(workspace.ix_arr.data(), workspace.st, workspace.end, col,
313
+ input_data.Xc, input_data.Xc_ind, input_data.Xc_indptr,
314
+ model_params.missing_action, workspace.xmin, workspace.xmax, workspace.unsplittable);
315
+ workspace.cols_possible[col] = !workspace.unsplittable;
316
+ workspace.ncols_tried += !workspace.unsplittable;
317
+ }
318
+ }
319
+
320
+ for (size_t col = 0; col < input_data.ncols_categ; col++)
321
+ {
322
+ if (!workspace.cols_possible[col + input_data.ncols_numeric]) continue;
323
+ get_categs(workspace.ix_arr.data(), input_data.categ_data + input_data.nrows * col,
324
+ workspace.st, workspace.end, input_data.ncat[col],
325
+ model_params.missing_action, workspace.categs.data(), workspace.npresent, workspace.unsplittable);
326
+ workspace.cols_possible[col + input_data.ncols_numeric] = !workspace.unsplittable;
327
+ workspace.ncols_tried += !workspace.unsplittable;
328
+ }
329
+
330
+
331
+ /* if no further splits are possible, end the procedure here */
332
+ workspace.npresent = workspace.ncols_tried;
333
+ if (!workspace.npresent) goto terminal_statistics;
334
+
335
+ /* otherwise, pick a column at random from the possible ones */
336
+ if (!workspace.col_sampler.max())
337
+ {
338
+ /* no weights by columns */
339
+ trees.back().col_num = std::uniform_int_distribution<size_t>
340
+ (0, workspace.npresent - 1)
341
+ (workspace.rnd_generator);
342
+ workspace.ncols_tried = 0;
343
+ for (size_t col = 0; col < input_data.ncols_tot; col++)
344
+ {
345
+
346
+ if (workspace.cols_possible[col])
347
+ {
348
+ if (workspace.ncols_tried == trees.back().col_num)
349
+ {
350
+ if (col < input_data.ncols_numeric)
351
+ {
352
+ trees.back().col_num = col;
353
+ trees.back().col_type = Numeric;
354
+ }
355
+
356
+ else
357
+ {
358
+ trees.back().col_num = col - input_data.ncols_numeric;
359
+ trees.back().col_type = Categorical;
360
+ }
361
+ break;
362
+ }
363
+ workspace.ncols_tried++;
364
+ }
365
+
366
+ }
367
+ }
368
+
369
+ else
370
+ {
371
+ /* weights by columns */
372
+ std::vector<double> col_weights = workspace.col_sampler.probabilities();
373
+ update_col_sampler(workspace, input_data);
374
+
375
+ decide_column(input_data.ncols_numeric, input_data.ncols_categ,
376
+ trees.back().col_num, trees.back().col_type,
377
+ workspace.rnd_generator, workspace.runif,
378
+ workspace.col_sampler);
379
+ }
380
+
381
+ }
382
+
383
+ /* finally, check the range if needed, and later decide on the split point */
384
+ if (workspace.criterion == NoCrit)
385
+ get_split_range(workspace, input_data, model_params, trees.back());
386
+
387
+ }
388
+
389
+ }
390
+
391
+
392
+ /* for numeric, choose a random point, or pick the best point as determined earlier */
393
+ if (trees.back().col_type == Numeric)
394
+ {
395
+ if (workspace.determine_split)
396
+ {
397
+ switch(workspace.criterion)
398
+ {
399
+ case NoCrit:
400
+ {
401
+ trees.back().num_split = std::uniform_real_distribution<double>
402
+ (workspace.xmin, workspace.xmax)
403
+ (workspace.rnd_generator);
404
+ break;
405
+ }
406
+
407
+ default:
408
+ {
409
+ if (input_data.Xc == NULL)
410
+ {
411
+ eval_guided_crit(workspace.ix_arr.data(), workspace.st, workspace.end,
412
+ input_data.numeric_data + trees.back().col_num * input_data.nrows,
413
+ workspace.split_ix, trees.back().num_split,
414
+ workspace.xmin, workspace.xmax,
415
+ workspace.criterion, model_params.min_gain,
416
+ model_params.missing_action);
417
+ if (model_params.missing_action == Fail) /* data is already split */
418
+ {
419
+ workspace.split_ix++;
420
+ goto follow_branches;
421
+ }
422
+ }
423
+
424
+ else
425
+ {
426
+ eval_guided_crit(workspace.ix_arr.data(), workspace.st, workspace.end,
427
+ trees.back().col_num, input_data.Xc, input_data.Xc_ind, input_data.Xc_indptr,
428
+ workspace.buffer_dbl.data(), workspace.buffer_szt.data(),
429
+ trees.back().num_split, workspace.xmin, workspace.xmax,
430
+ workspace.criterion, model_params.min_gain,
431
+ model_params.missing_action);
432
+ }
433
+ break;
434
+ }
435
+ }
436
+
437
+ if (model_params.penalize_range)
438
+ {
439
+ trees.back().range_low = workspace.xmin - workspace.xmax + trees.back().num_split;
440
+ trees.back().range_high = workspace.xmax - workspace.xmin + trees.back().num_split;
441
+ }
442
+ }
443
+
444
+ if (input_data.Xc == NULL)
445
+ divide_subset_split(workspace.ix_arr.data(), input_data.numeric_data + input_data.nrows * trees.back().col_num,
446
+ workspace.st, workspace.end, trees.back().num_split, model_params.missing_action,
447
+ workspace.st_NA, workspace.end_NA, workspace.split_ix);
448
+ else
449
+ divide_subset_split(workspace.ix_arr.data(), workspace.st, workspace.end, trees.back().col_num,
450
+ input_data.Xc, input_data.Xc_ind, input_data.Xc_indptr, trees.back().num_split,
451
+ model_params.missing_action, workspace.st_NA, workspace.end_NA, workspace.split_ix);
452
+ }
453
+
454
+ /* for categorical, there are different ways of splitting */
455
+ else
456
+ {
457
+ /* if the columns is binary, there's only one possible split */
458
+ if (input_data.ncat[trees.back().col_num] <= 2)
459
+ {
460
+ trees.back().chosen_cat = 0;
461
+ divide_subset_split(workspace.ix_arr.data(), input_data.categ_data + input_data.nrows * trees.back().col_num,
462
+ workspace.st, workspace.end, (int)0, model_params.missing_action,
463
+ workspace.st_NA, workspace.end_NA, workspace.split_ix);
464
+ trees.back().cat_split.clear();
465
+ trees.back().cat_split.shrink_to_fit();
466
+ }
467
+
468
+ /* otherwise, split according to desired type (single/subset) */
469
+ /* TODO: refactor this */
470
+ else
471
+ {
472
+
473
+ switch(model_params.cat_split_type)
474
+ {
475
+
476
+ case SingleCateg:
477
+ {
478
+
479
+ if (workspace.determine_split)
480
+ {
481
+ switch(workspace.criterion)
482
+ {
483
+ case NoCrit:
484
+ {
485
+ trees.back().chosen_cat = choose_cat_from_present(workspace, input_data, trees.back().col_num);
486
+ break;
487
+ }
488
+
489
+ default:
490
+ {
491
+ eval_guided_crit(workspace.ix_arr.data(), workspace.st, workspace.end,
492
+ input_data.categ_data + trees.back().col_num * input_data.nrows, input_data.ncat[trees.back().col_num],
493
+ workspace.buffer_szt.data(), workspace.buffer_szt.data() + input_data.max_categ,
494
+ workspace.buffer_dbl.data(), trees.back().chosen_cat, workspace.this_split_categ.data(),
495
+ workspace.buffer_chr.data(), workspace.criterion, model_params.min_gain,
496
+ model_params.all_perm, model_params.missing_action, model_params.cat_split_type);
497
+ break;
498
+ }
499
+ }
500
+ }
501
+
502
+
503
+ divide_subset_split(workspace.ix_arr.data(), input_data.categ_data + input_data.nrows * trees.back().col_num,
504
+ workspace.st, workspace.end, trees.back().chosen_cat, model_params.missing_action,
505
+ workspace.st_NA, workspace.end_NA, workspace.split_ix);
506
+ break;
507
+ }
508
+
509
+
510
+ case SubSet:
511
+ {
512
+
513
+ if (workspace.determine_split)
514
+ {
515
+ switch(workspace.criterion)
516
+ {
517
+ case NoCrit:
518
+ {
519
+ workspace.unsplittable = true;
520
+ while(workspace.unsplittable)
521
+ {
522
+ workspace.npresent = 0;
523
+ workspace.ncols_tried = 0;
524
+ for (int cat = 0; cat < input_data.ncat[trees.back().col_num]; cat++)
525
+ {
526
+ if (workspace.categs[cat] >= 0)
527
+ {
528
+ workspace.categs[cat] = workspace.rbin(workspace.rnd_generator) < 0.5;
529
+ workspace.npresent += workspace.categs[cat];
530
+ workspace.ncols_tried += !workspace.categs[cat];
531
+ }
532
+ workspace.unsplittable = !(workspace.npresent && workspace.ncols_tried);
533
+ }
534
+ }
535
+
536
+ trees.back().cat_split.assign(workspace.categs.begin(), workspace.categs.begin() + input_data.ncat[trees.back().col_num]);
537
+ break; /* NoCrit */
538
+ }
539
+
540
+ default:
541
+ {
542
+ trees.back().cat_split.resize(input_data.ncat[trees.back().col_num]);
543
+ eval_guided_crit(workspace.ix_arr.data(), workspace.st, workspace.end,
544
+ input_data.categ_data + trees.back().col_num * input_data.nrows, input_data.ncat[trees.back().col_num],
545
+ workspace.buffer_szt.data(), workspace.buffer_szt.data() + input_data.max_categ,
546
+ workspace.buffer_dbl.data(), trees.back().chosen_cat, trees.back().cat_split.data(),
547
+ workspace.buffer_chr.data(), workspace.criterion, model_params.min_gain,
548
+ model_params.all_perm, model_params.missing_action, model_params.cat_split_type);
549
+ break;
550
+ }
551
+ }
552
+ }
553
+
554
+ if (model_params.new_cat_action == Random)
555
+ for (int cat = 0; cat < input_data.ncat[trees.back().col_num]; cat++)
556
+ if (trees.back().cat_split[cat] < 0)
557
+ trees.back().cat_split[cat] = workspace.rbin(workspace.rnd_generator) < 0.5;
558
+
559
+ divide_subset_split(workspace.ix_arr.data(), input_data.categ_data + input_data.nrows * trees.back().col_num,
560
+ workspace.st, workspace.end, trees.back().cat_split.data(), model_params.missing_action,
561
+ workspace.st_NA, workspace.end_NA, workspace.split_ix);
562
+ }
563
+
564
+ }
565
+
566
+ }
567
+
568
+ }
569
+
570
+
571
+ /* if it hasn't reached the limit, continue splitting from here */
572
+ follow_branches:
573
+ {
574
+ /* add another round of separation depth for distance */
575
+ if (model_params.calc_dist && curr_depth > 0)
576
+ add_separation_step(workspace, input_data, (double)(-1));
577
+
578
+ size_t tree_from = trees.size() - 1;
579
+ size_t ix2, ix3;
580
+ std::unique_ptr<std::vector<bool>> cols_possible_ptr;
581
+ std::unique_ptr<std::discrete_distribution<size_t>> col_sampler_ptr;
582
+ trees.back().score = -1;
583
+
584
+ /* compute statistics for NAs and remember recursion indices/weights */
585
+ std::unique_ptr<RecursionState> recursion_state;
586
+ if (model_params.missing_action != Fail)
587
+ {
588
+ recursion_state = std::unique_ptr<RecursionState>(new RecursionState);
589
+ backup_recursion_state(workspace, *recursion_state);
590
+
591
+ trees.back().pct_tree_left = (long double)(workspace.st_NA - workspace.st)
592
+ /
593
+ (long double)(workspace.end - workspace.st + 1 - (workspace.end_NA - workspace.st_NA));
594
+
595
+ switch(model_params.missing_action)
596
+ {
597
+ case Impute:
598
+ {
599
+ if (trees.back().pct_tree_left >= .5)
600
+ workspace.end = workspace.end_NA - 1;
601
+ else
602
+ workspace.end = workspace.st_NA - 1;
603
+ break;
604
+ }
605
+
606
+
607
+ case Divide:
608
+ {
609
+ if (workspace.weights_map.size())
610
+ for (size_t row = workspace.st_NA; row < workspace.end_NA; row++)
611
+ workspace.weights_map[workspace.ix_arr[row]] *= trees.back().pct_tree_left;
612
+ else
613
+ for (size_t row = workspace.st_NA; row < workspace.end_NA; row++)
614
+ workspace.weights_arr[workspace.ix_arr[row]] *= trees.back().pct_tree_left;
615
+ workspace.end = workspace.end_NA - 1;
616
+ break;
617
+ }
618
+ }
619
+ }
620
+
621
+ else
622
+ {
623
+ trees.back().pct_tree_left = (long double) (workspace.split_ix - workspace.st)
624
+ /
625
+ (long double) (workspace.end - workspace.st + 1);
626
+
627
+ ix2 = workspace.split_ix;
628
+ ix3 = workspace.end;
629
+ cols_possible_ptr = std::unique_ptr<std::vector<bool>>(new std::vector<bool>);
630
+ *cols_possible_ptr = workspace.cols_possible;
631
+ if (workspace.col_sampler.max())
632
+ {
633
+ col_sampler_ptr = std::unique_ptr<std::discrete_distribution<size_t>>(new std::discrete_distribution<size_t>);
634
+ *col_sampler_ptr = workspace.col_sampler;
635
+ }
636
+ workspace.end = workspace.split_ix - 1;
637
+ }
638
+
639
+ /* Branch where to assign new categories can be pre-determined in this case */
640
+ if (
641
+ trees.back().col_type == Categorical &&
642
+ model_params.cat_split_type == SubSet &&
643
+ input_data.ncat[trees.back().col_num] > 2 &&
644
+ model_params.new_cat_action == Smallest
645
+ )
646
+ {
647
+ bool new_to_left = trees.back().pct_tree_left < 0.5;
648
+ for (int cat = 0; cat < input_data.ncat[trees.back().col_num]; cat++)
649
+ if (trees.back().cat_split[cat] < 0)
650
+ trees.back().cat_split[cat] = new_to_left;
651
+ }
652
+
653
+ /* left branch */
654
+ trees.back().tree_left = trees.size();
655
+ trees.emplace_back();
656
+ if (impute_nodes != NULL) impute_nodes->emplace_back(tree_from);
657
+ split_itree_recursive(trees,
658
+ workspace,
659
+ input_data,
660
+ model_params,
661
+ impute_nodes,
662
+ curr_depth + 1);
663
+
664
+
665
+ /* right branch */
666
+ if (model_params.missing_action != Fail)
667
+ {
668
+ restore_recursion_state(workspace, *recursion_state);
669
+
670
+ switch(model_params.missing_action)
671
+ {
672
+ case Impute:
673
+ {
674
+ if (trees[tree_from].pct_tree_left >= .5)
675
+ workspace.st = workspace.end_NA;
676
+ else
677
+ workspace.st = workspace.st_NA;
678
+ break;
679
+ }
680
+
681
+ case Divide:
682
+ {
683
+ if (workspace.weights_map.size())
684
+ for (size_t row = workspace.st_NA; row < workspace.end_NA; row++)
685
+ workspace.weights_map[workspace.ix_arr[row]] *= (1 - trees[tree_from].pct_tree_left);
686
+ else
687
+ for (size_t row = workspace.st_NA; row < workspace.end_NA; row++)
688
+ workspace.weights_arr[workspace.ix_arr[row]] *= (1 - trees[tree_from].pct_tree_left);
689
+ workspace.st = workspace.st_NA;
690
+ break;
691
+ }
692
+ }
693
+ }
694
+
695
+ else
696
+ {
697
+ workspace.st = ix2;
698
+ workspace.end = ix3;
699
+ workspace.cols_possible = std::move(*cols_possible_ptr);
700
+ if (col_sampler_ptr)
701
+ workspace.col_sampler = std::move(*col_sampler_ptr);
702
+ }
703
+
704
+ trees[tree_from].tree_right = trees.size();
705
+ trees.emplace_back();
706
+ if (impute_nodes != NULL) impute_nodes->emplace_back(tree_from);
707
+ split_itree_recursive(trees,
708
+ workspace,
709
+ input_data,
710
+ model_params,
711
+ impute_nodes,
712
+ curr_depth + 1);
713
+ }
714
+ return;
715
+
716
+ /* if it reached the limit, calculate terminal statistics */
717
+ terminal_statistics:
718
+ {
719
+ if (!workspace.weights_arr.size() && !workspace.weights_map.size())
720
+ {
721
+ trees.back().score = (double)(curr_depth + expected_avg_depth(workspace.end - workspace.st + 1));
722
+ }
723
+
724
+ else
725
+ {
726
+ if (sum_weight == -HUGE_VAL)
727
+ sum_weight = calculate_sum_weights(workspace.ix_arr, workspace.st, workspace.end, curr_depth,
728
+ workspace.weights_arr, workspace.weights_map);
729
+ trees.back().score = (double)(curr_depth + expected_avg_depth(sum_weight));
730
+ }
731
+
732
+ trees.back().cat_split.clear();
733
+ trees.back().cat_split.shrink_to_fit();
734
+
735
+ trees.back().remainder = workspace.weights_arr.size()?
736
+ sum_weight : (workspace.weights_map.size()?
737
+ sum_weight : ((double)(workspace.end - workspace.st + 1))
738
+ );
739
+
740
+ /* for distance, assume also the elements keep being split */
741
+ if (model_params.calc_dist)
742
+ add_remainder_separation_steps(workspace, input_data, sum_weight);
743
+
744
+ /* add this depth right away if requested */
745
+ if (workspace.row_depths.size())
746
+ {
747
+ if (!workspace.weights_arr.size() && !workspace.weights_map.size())
748
+ {
749
+ for (size_t row = workspace.st; row <= workspace.end; row++)
750
+ workspace.row_depths[workspace.ix_arr[row]] += trees.back().score;
751
+ }
752
+
753
+ else if (workspace.weights_arr.size())
754
+ {
755
+ for (size_t row = workspace.st; row <= workspace.end; row++)
756
+ workspace.row_depths[workspace.ix_arr[row]] += workspace.weights_arr[workspace.ix_arr[row]] * trees.back().score;
757
+ }
758
+
759
+ else
760
+ {
761
+ for (size_t row = workspace.st; row <= workspace.end; row++)
762
+ workspace.row_depths[workspace.ix_arr[row]] += workspace.weights_map[workspace.ix_arr[row]] * trees.back().score;
763
+ }
764
+ }
765
+
766
+ /* add imputations from node if requested */
767
+ if (model_params.impute_at_fit)
768
+ add_from_impute_node(impute_nodes->back(), workspace, input_data);
769
+ }
770
+
771
+ }