isotree 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,262 @@
1
+ /* Isolation forests and variations thereof, with adjustments for incorporation
2
+ * of categorical variables and missing values.
3
+ * Writen for C++11 standard and aimed at being used in R and Python.
4
+ *
5
+ * This library is based on the following works:
6
+ * [1] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou.
7
+ * "Isolation forest."
8
+ * 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008.
9
+ * [2] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou.
10
+ * "Isolation-based anomaly detection."
11
+ * ACM Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3.
12
+ * [3] Hariri, Sahand, Matias Carrasco Kind, and Robert J. Brunner.
13
+ * "Extended Isolation Forest."
14
+ * arXiv preprint arXiv:1811.02141 (2018).
15
+ * [4] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou.
16
+ * "On detecting clustered anomalies using SCiForest."
17
+ * Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2010.
18
+ * [5] https://sourceforge.net/projects/iforest/
19
+ * [6] https://math.stackexchange.com/questions/3388518/expected-number-of-paths-required-to-separate-elements-in-a-binary-tree
20
+ * [7] Quinlan, J. Ross. C4. 5: programs for machine learning. Elsevier, 2014.
21
+ * [8] Cortes, David. "Distance approximation using Isolation Forests." arXiv preprint arXiv:1910.12362 (2019).
22
+ * [9] Cortes, David. "Imputing missing values with unsupervised random trees." arXiv preprint arXiv:1911.06646 (2019).
23
+ *
24
+ * BSD 2-Clause License
25
+ * Copyright (c) 2019, David Cortes
26
+ * All rights reserved.
27
+ * Redistribution and use in source and binary forms, with or without
28
+ * modification, are permitted provided that the following conditions are met:
29
+ * * Redistributions of source code must retain the above copyright notice, this
30
+ * list of conditions and the following disclaimer.
31
+ * * Redistributions in binary form must reproduce the above copyright notice,
32
+ * this list of conditions and the following disclaimer in the documentation
33
+ * and/or other materials provided with the distribution.
34
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
35
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
37
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
38
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
40
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
41
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
42
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44
+ */
45
+ #include "isotree.hpp"
46
+
47
+ #ifdef _ENABLE_CEREAL
48
+
49
+
50
+ template <class T>
51
+ void serialize_obj(T &obj, std::ostream &output)
52
+ {
53
+ cereal::BinaryOutputArchive archive(output);
54
+ archive(obj);
55
+ }
56
+ template <class T>
57
+ std::string serialize_obj(T &obj)
58
+ {
59
+ std::stringstream ss;
60
+ {
61
+ cereal::BinaryOutputArchive archive(ss);
62
+ archive(obj);
63
+ }
64
+ return ss.str();
65
+ }
66
+ template <class T, class I>
67
+ void deserialize_obj(T &output, I &serialized)
68
+ {
69
+ cereal::BinaryInputArchive archive(serialized);
70
+ archive(output);
71
+ }
72
+ template <class T>
73
+ void deserialize_obj(T &output, std::string &serialized, bool move_str)
74
+ {
75
+ std::stringstream ss;
76
+ if (move_str)
77
+ ss.str(std::move(serialized));
78
+ else
79
+ /* Bug with GCC4 not implementing the move method for stringsreams
80
+ https://stackoverflow.com/questions/50926506/deleted-function-std-basic-stringstream-in-linux-with-g
81
+ https://github.com/david-cortes/isotree/issues/7 */
82
+ // ss = std::stringstream(serialized); /* <- fails with GCC4, CRAN complains */
83
+ {
84
+ std::string str_copy = serialized;
85
+ ss.str(str_copy);
86
+ }
87
+ deserialize_obj(output, ss);
88
+ }
89
+
90
+
91
+ /* Serialization and de-serialization functions using Cereal
92
+ *
93
+ * Parameters
94
+ * ==========
95
+ * - model (in)
96
+ * A model object to serialize, after being fitted through function 'fit_iforest'.
97
+ * - imputer (in)
98
+ * An imputer object to serialize, after being fitted through function 'fit_iforest'
99
+ * with 'build_imputer=true'.
100
+ * - output_obj (out)
101
+ * An already-allocated object into which a serialized object of the same class will
102
+ * be de-serialized. The contents of this object will be overwritten. Should be initialized
103
+ * through the default constructor (e.g. 'new ExtIsoForest' or 'ExtIsoForest()').
104
+ * - output (out)
105
+ * An output stream (any type will do) in which to save/persist/serialize the
106
+ * model or imputer object using the cereal library. In the functions that do not
107
+ * take this parameter, it will be returned as a string containing the raw bytes.
108
+ * - serialized (in)
109
+ * The input stream which contains the serialized/saved/persisted model or imputer object,
110
+ * which will be de-serialized into 'output'.
111
+ * - output_file_path
112
+ * File name into which to write the serialized model or imputer object as raw bytes.
113
+ * Note that, on Windows, passing non-ASCII characters will fail, and in such case,
114
+ * you might instead want to use instead the versions that take 'wchar_t', which are
115
+ * only available in the MSVC compiler (it uses 'std::ofstream' internally, which as
116
+ * of C++20, is not required by the standard to accept 'wchar_t' in its constructor).
117
+ * Be aware that it will only write raw bytes, thus metadata such as CPU endianness
118
+ * will be lost. If you need to transfer files berween e.g. an x86 computer and a SPARC
119
+ * server, you'll have to use other methods.
120
+ * This functionality is intended for being easily wrapper into scripting languages
121
+ * without having to copy the contents to to some intermediate language.
122
+ * - input_file_path
123
+ * File name from which to read a serialized model or imputer object as raw bytes.
124
+ * See the description for 'output_file_path' for more details.
125
+ * - move_str
126
+ * Whether to move ('std::move') the contents of the string passed as input in order
127
+ * to speed things up and avoid making a redundant copy of the raw bytes. If passing
128
+ * 'true', the input string will be rendered empty afterwards.
129
+ */
130
+ void serialize_isoforest(IsoForest &model, std::ostream &output)
131
+ {
132
+ serialize_obj(model, output);
133
+ }
134
+ void serialize_isoforest(IsoForest &model, const char *output_file_path)
135
+ {
136
+ std::ofstream output(output_file_path);
137
+ serialize_obj(model, output);
138
+ }
139
+ std::string serialize_isoforest(IsoForest &model)
140
+ {
141
+ return serialize_obj(model);
142
+ }
143
+ void deserialize_isoforest(IsoForest &output_obj, std::istream &serialized)
144
+ {
145
+ deserialize_obj(output_obj, serialized);
146
+ }
147
+ void deserialize_isoforest(IsoForest &output_obj, const char *input_file_path)
148
+ {
149
+ std::ifstream serialized(input_file_path);
150
+ deserialize_obj(output_obj, serialized);
151
+ }
152
+ void deserialize_isoforest(IsoForest &output_obj, std::string &serialized, bool move_str)
153
+ {
154
+ deserialize_obj(output_obj, serialized, move_str);
155
+ }
156
+
157
+
158
+
159
+ void serialize_ext_isoforest(ExtIsoForest &model, std::ostream &output)
160
+ {
161
+ serialize_obj(model, output);
162
+ }
163
+ void serialize_ext_isoforest(ExtIsoForest &model, const char *output_file_path)
164
+ {
165
+ std::ofstream output(output_file_path);
166
+ serialize_obj(model, output);
167
+ }
168
+ std::string serialize_ext_isoforest(ExtIsoForest &model)
169
+ {
170
+ return serialize_obj(model);
171
+ }
172
+ void deserialize_ext_isoforest(ExtIsoForest &output_obj, std::istream &serialized)
173
+ {
174
+ deserialize_obj(output_obj, serialized);
175
+ }
176
+ void deserialize_ext_isoforest(ExtIsoForest &output_obj, const char *input_file_path)
177
+ {
178
+ std::ifstream serialized(input_file_path);
179
+ deserialize_obj(output_obj, serialized);
180
+ }
181
+ void deserialize_ext_isoforest(ExtIsoForest &output_obj, std::string &serialized, bool move_str)
182
+ {
183
+ deserialize_obj(output_obj, serialized, move_str);
184
+ }
185
+
186
+
187
+
188
+
189
+ void serialize_imputer(Imputer &imputer, std::ostream &output)
190
+ {
191
+ serialize_obj(imputer, output);
192
+ }
193
+ void serialize_imputer(Imputer &imputer, const char *output_file_path)
194
+ {
195
+ std::ofstream output(output_file_path);
196
+ serialize_obj(imputer, output);
197
+ }
198
+ std::string serialize_imputer(Imputer &imputer)
199
+ {
200
+ return serialize_obj(imputer);
201
+ }
202
+ void deserialize_imputer(Imputer &output_obj, std::istream &serialized)
203
+ {
204
+ deserialize_obj(output_obj, serialized);
205
+ }
206
+ void deserialize_imputer(Imputer &output_obj, const char *input_file_path)
207
+ {
208
+ std::ifstream serialized(input_file_path);
209
+ deserialize_obj(output_obj, serialized);
210
+ }
211
+ void deserialize_imputer(Imputer &output_obj, std::string &serialized, bool move_str)
212
+ {
213
+ deserialize_obj(output_obj, serialized, move_str);
214
+ }
215
+
216
+
217
+ #ifdef _MSC_VER
218
+ void serialize_isoforest(IsoForest &model, const wchar_t *output_file_path)
219
+ {
220
+ std::ofstream output(output_file_path);
221
+ serialize_obj(model, output);
222
+ }
223
+ void deserialize_isoforest(IsoForest &output_obj, const wchar_t *input_file_path)
224
+ {
225
+ std::ifstream serialized(input_file_path);
226
+ deserialize_obj(output_obj, serialized);
227
+ }
228
+ void serialize_ext_isoforest(ExtIsoForest &model, const wchar_t *output_file_path)
229
+ {
230
+ std::ofstream output(output_file_path);
231
+ serialize_obj(model, output);
232
+ }
233
+ void deserialize_ext_isoforest(ExtIsoForest &output_obj, const wchar_t *input_file_path)
234
+ {
235
+ std::ifstream serialized(input_file_path);
236
+ deserialize_obj(output_obj, serialized);
237
+ }
238
+ void serialize_imputer(Imputer &imputer, const wchar_t *output_file_path)
239
+ {
240
+ std::ofstream output(output_file_path);
241
+ serialize_obj(imputer, output);
242
+ }
243
+ void deserialize_imputer(Imputer &output_obj, const wchar_t *input_file_path)
244
+ {
245
+ std::ifstream serialized(input_file_path);
246
+ deserialize_obj(output_obj, serialized);
247
+ }
248
+ bool has_msvc()
249
+ {
250
+ return true;
251
+ }
252
+
253
+ #else
254
+ bool has_msvc()
255
+ {
256
+ return false;
257
+ }
258
+
259
+ #endif /* ifdef _MSC_VER */
260
+
261
+
262
+ #endif /* _ENABLE_CEREAL */
@@ -0,0 +1,1574 @@
1
+ /* Isolation forests and variations thereof, with adjustments for incorporation
2
+ * of categorical variables and missing values.
3
+ * Writen for C++11 standard and aimed at being used in R and Python.
4
+ *
5
+ * This library is based on the following works:
6
+ * [1] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou.
7
+ * "Isolation forest."
8
+ * 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008.
9
+ * [2] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou.
10
+ * "Isolation-based anomaly detection."
11
+ * ACM Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3.
12
+ * [3] Hariri, Sahand, Matias Carrasco Kind, and Robert J. Brunner.
13
+ * "Extended Isolation Forest."
14
+ * arXiv preprint arXiv:1811.02141 (2018).
15
+ * [4] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou.
16
+ * "On detecting clustered anomalies using SCiForest."
17
+ * Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2010.
18
+ * [5] https://sourceforge.net/projects/iforest/
19
+ * [6] https://math.stackexchange.com/questions/3388518/expected-number-of-paths-required-to-separate-elements-in-a-binary-tree
20
+ * [7] Quinlan, J. Ross. C4. 5: programs for machine learning. Elsevier, 2014.
21
+ * [8] Cortes, David. "Distance approximation using Isolation Forests." arXiv preprint arXiv:1910.12362 (2019).
22
+ * [9] Cortes, David. "Imputing missing values with unsupervised random trees." arXiv preprint arXiv:1911.06646 (2019).
23
+ *
24
+ * BSD 2-Clause License
25
+ * Copyright (c) 2019, David Cortes
26
+ * All rights reserved.
27
+ * Redistribution and use in source and binary forms, with or without
28
+ * modification, are permitted provided that the following conditions are met:
29
+ * * Redistributions of source code must retain the above copyright notice, this
30
+ * list of conditions and the following disclaimer.
31
+ * * Redistributions in binary form must reproduce the above copyright notice,
32
+ * this list of conditions and the following disclaimer in the documentation
33
+ * and/or other materials provided with the distribution.
34
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
35
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
37
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
38
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
40
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
41
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
42
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44
+ */
45
+ #include "isotree.hpp"
46
+
47
+ /* ceil(log2(x)) done with bit-wise operations ensures perfect precision (and it's faster too)
48
+ https://stackoverflow.com/questions/2589096/find-most-significant-bit-left-most-that-is-set-in-a-bit-array
49
+ https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers */
50
+ #if SIZE_MAX == UINT32_MAX /* 32-bit systems */
51
+ #ifdef __builtin_clz
52
+ size_t log2ceil(size_t x) {return (unsigned) (1 + (8*sizeof (uint32_t) - __builtin_clz(x-1) - 1));}
53
+ #else
54
+ static const int MultiplyDeBruijnBitPosition[32] =
55
+ {
56
+ 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30,
57
+ 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31
58
+ };
59
+ size_t log2ceil( size_t v )
60
+ {
61
+
62
+ v--;
63
+ v |= v >> 1; // first round down to one less than a power of 2
64
+ v |= v >> 2;
65
+ v |= v >> 4;
66
+ v |= v >> 8;
67
+ v |= v >> 16;
68
+
69
+ return MultiplyDeBruijnBitPosition[( uint32_t )( v * 0x07C4ACDDU ) >> 27] + 1;
70
+ }
71
+ #endif
72
+ #elif SIZE_MAX == UINT64_MAX /* 64-bit systems */
73
+ #ifdef __builtin_clzl
74
+ size_t log2ceil(size_t x) {return (unsigned) (1 + (8*sizeof (uint64_t) - __builtin_clzl(x-1) - 1));}
75
+ #else
76
+ static const uint64_t tab64[64] = {
77
+ 63, 0, 58, 1, 59, 47, 53, 2,
78
+ 60, 39, 48, 27, 54, 33, 42, 3,
79
+ 61, 51, 37, 40, 49, 18, 28, 20,
80
+ 55, 30, 34, 11, 43, 14, 22, 4,
81
+ 62, 57, 46, 52, 38, 26, 32, 41,
82
+ 50, 36, 17, 19, 29, 10, 13, 21,
83
+ 56, 45, 25, 31, 35, 16, 9, 12,
84
+ 44, 24, 15, 8, 23, 7, 6, 5};
85
+
86
+ size_t log2ceil(size_t value)
87
+ {
88
+ value--;
89
+ value |= value >> 1;
90
+ value |= value >> 2;
91
+ value |= value >> 4;
92
+ value |= value >> 8;
93
+ value |= value >> 16;
94
+ value |= value >> 32;
95
+ return tab64[((uint64_t)((value - (value >> 1))*0x07EDD5E59A4E28C2)) >> 58] + 1;
96
+ }
97
+ #endif
98
+ #else /* other architectures - might not be entirely precise, and will be slower */
99
+ size_t log2ceil(size_t x) {return (size_t)(ceill(log2l((long double) x)));}
100
+ #endif
101
+
102
+ /* http://fredrik-j.blogspot.com/2009/02/how-not-to-compute-harmonic-numbers.html
103
+ https://en.wikipedia.org/wiki/Harmonic_number */
104
+ #define THRESHOLD_EXACT_H 256 /* above this will get approximated */
105
+ double harmonic(size_t n)
106
+ {
107
+ if (n > THRESHOLD_EXACT_H)
108
+ return logl((long double)n) + (long double)0.5772156649;
109
+ else
110
+ return harmonic_recursive((double)1, (double)(n + 1));
111
+ }
112
+
113
+ double harmonic_recursive(double a, double b)
114
+ {
115
+ if (b == a + 1) return 1 / a;
116
+ double m = floor((a + b) / 2);
117
+ return harmonic_recursive(a, m) + harmonic_recursive(m, b);
118
+ }
119
+
120
+ /* https://stats.stackexchange.com/questions/423542/isolation-forest-and-average-expected-depth-formula
121
+ https://math.stackexchange.com/questions/3333220/expected-average-depth-in-random-binary-tree-constructed-top-to-bottom */
122
+ double expected_avg_depth(size_t sample_size)
123
+ {
124
+ switch(sample_size)
125
+ {
126
+ case 1: return 0.;
127
+ case 2: return 1.;
128
+ case 3: return 5.0/3.0;
129
+ case 4: return 13.0/6.0;
130
+ case 5: return 77.0/30.0;
131
+ case 6: return 29.0/10.0;
132
+ case 7: return 223.0/70.0;
133
+ case 8: return 481.0/140.0;
134
+ case 9: return 4609.0/1260.0;
135
+ default:
136
+ {
137
+ return 2 * (harmonic(sample_size) - 1);
138
+ }
139
+ }
140
+ }
141
+
142
+ double expected_avg_depth(long double approx_sample_size)
143
+ {
144
+ if (approx_sample_size < 1.5)
145
+ return 0;
146
+ else if (approx_sample_size < 2.5)
147
+ return 1;
148
+ else if (approx_sample_size <= THRESHOLD_EXACT_H)
149
+ return expected_avg_depth((size_t) roundl(approx_sample_size));
150
+ else
151
+ return 2 * logl(approx_sample_size) - (long double)1.4227843351;
152
+ }
153
+
154
+ /* https://math.stackexchange.com/questions/3388518/expected-number-of-paths-required-to-separate-elements-in-a-binary-tree */
155
+ #define THRESHOLD_EXACT_S 87670 /* difference is <5e-4 */
156
+ double expected_separation_depth(size_t n)
157
+ {
158
+ switch(n)
159
+ {
160
+ case 0: return 0.;
161
+ case 1: return 0.;
162
+ case 2: return 1.;
163
+ case 3: return 1. + (1./3.);
164
+ case 4: return 1. + (1./3.) + (2./9.);
165
+ case 5: return 1.71666666667;
166
+ case 6: return 1.84;
167
+ case 7: return 1.93809524;
168
+ case 8: return 2.01836735;
169
+ case 9: return 2.08551587;
170
+ case 10: return 2.14268078;
171
+ default:
172
+ {
173
+ if (n >= THRESHOLD_EXACT_S)
174
+ return 3;
175
+ else
176
+ return expected_separation_depth_hotstart((double)2.14268078, (size_t)10, n);
177
+ }
178
+ }
179
+ }
180
+
181
+ double expected_separation_depth_hotstart(double curr, size_t n_curr, size_t n_final)
182
+ {
183
+ if (n_final >= 1360)
184
+ {
185
+ if (n_final >= THRESHOLD_EXACT_S)
186
+ return 3;
187
+ else if (n_final >= 40774)
188
+ return 2.999;
189
+ else if (n_final >= 18844)
190
+ return 2.998;
191
+ else if (n_final >= 11956)
192
+ return 2.997;
193
+ else if (n_final >= 8643)
194
+ return 2.996;
195
+ else if (n_final >= 6713)
196
+ return 2.995;
197
+ else if (n_final >= 4229)
198
+ return 2.9925;
199
+ else if (n_final >= 3040)
200
+ return 2.99;
201
+ else if (n_final >= 2724)
202
+ return 2.989;
203
+ else if (n_final >= 1902)
204
+ return 2.985;
205
+ else if (n_final >= 1360)
206
+ return 2.98;
207
+
208
+ /* Note on the chosen precision: when calling it on smaller sample sizes,
209
+ the standard error of the separation depth will be larger, thus it's less
210
+ critical to get it right down to the smallest possible precision, while for
211
+ larger samples the standard error of the separation depth will be smaller */
212
+ }
213
+
214
+ for (size_t i = n_curr + 1; i <= n_final; i++)
215
+ curr += (-curr * (double)i + 3. * (double)i - 4.) / ((double)i * ((double)(i-1)));
216
+ return curr;
217
+ }
218
+
219
+ /* linear interpolation */
220
+ double expected_separation_depth(long double n)
221
+ {
222
+ if (n >= THRESHOLD_EXACT_S)
223
+ return 3;
224
+ double s_l = expected_separation_depth((size_t) floorl(n));
225
+ long double u = ceill(n);
226
+ double s_u = s_l + (-s_l * u + 3. * u - 4.) / (u * (u - 1.));
227
+ double diff = n - floorl(n);
228
+ return s_l + diff * s_u;
229
+ }
230
+
231
+ #define ix_comb(i, j, n, ncomb) ( ((ncomb) + ((j) - (i))) - 1 - (((n) - (i)) * ((n) - (i) - 1)) / 2 )
232
+ void increase_comb_counter(size_t ix_arr[], size_t st, size_t end, size_t n, double counter[], double exp_remainder)
233
+ {
234
+ size_t i, j;
235
+ size_t ncomb = (n * (n - 1)) / 2;
236
+ if (exp_remainder <= 1)
237
+ for (size_t el1 = st; el1 < end; el1++)
238
+ {
239
+ for (size_t el2 = el1 + 1; el2 <= end; el2++)
240
+ {
241
+ i = std::min(ix_arr[el1], ix_arr[el2]);
242
+ j = std::max(ix_arr[el1], ix_arr[el2]);
243
+ // counter[i * (n - (i+1)/2) + j - i - 1]++; /* beaware integer division */
244
+ counter[ix_comb(i, j, n, ncomb)]++;
245
+ }
246
+ }
247
+ else
248
+ for (size_t el1 = st; el1 < end; el1++)
249
+ {
250
+ for (size_t el2 = el1 + 1; el2 <= end; el2++)
251
+ {
252
+ i = std::min(ix_arr[el1], ix_arr[el2]);
253
+ j = std::max(ix_arr[el1], ix_arr[el2]);
254
+ counter[ix_comb(i, j, n, ncomb)] += exp_remainder;
255
+ }
256
+ }
257
+ }
258
+
259
+ void increase_comb_counter(size_t ix_arr[], size_t st, size_t end, size_t n,
260
+ double *restrict counter, double *restrict weights, double exp_remainder)
261
+ {
262
+ size_t i, j;
263
+ size_t ncomb = (n * (n - 1)) / 2;
264
+ if (exp_remainder <= 1)
265
+ for (size_t el1 = st; el1 < end; el1++)
266
+ {
267
+ for (size_t el2 = el1 + 1; el2 <= end; el2++)
268
+ {
269
+ i = std::min(ix_arr[el1], ix_arr[el2]);
270
+ j = std::max(ix_arr[el1], ix_arr[el2]);
271
+ // counter[i * (n - (i+1)/2) + j - i - 1] += weights[i] * weights[j]; /* beaware integer division */
272
+ counter[ix_comb(i, j, n, ncomb)] += weights[i] * weights[j];
273
+ }
274
+ }
275
+ else
276
+ for (size_t el1 = st; el1 < end; el1++)
277
+ {
278
+ for (size_t el2 = el1 + 1; el2 <= end; el2++)
279
+ {
280
+ i = std::min(ix_arr[el1], ix_arr[el2]);
281
+ j = std::max(ix_arr[el1], ix_arr[el2]);
282
+ counter[ix_comb(i, j, n, ncomb)] += weights[i] * weights[j] * exp_remainder;
283
+ }
284
+ }
285
+ }
286
+
287
+ /* Note to self: don't try merge this into a template with the one above, as the other one has 'restrict' qualifier */
288
+ void increase_comb_counter(size_t ix_arr[], size_t st, size_t end, size_t n,
289
+ double counter[], std::unordered_map<size_t, double> &weights, double exp_remainder)
290
+ {
291
+ size_t i, j;
292
+ size_t ncomb = (n * (n - 1)) / 2;
293
+ if (exp_remainder <= 1)
294
+ for (size_t el1 = st; el1 < end; el1++)
295
+ {
296
+ for (size_t el2 = el1 + 1; el2 <= end; el2++)
297
+ {
298
+ i = std::min(ix_arr[el1], ix_arr[el2]);
299
+ j = std::max(ix_arr[el1], ix_arr[el2]);
300
+ // counter[i * (n - (i+1)/2) + j - i - 1] += weights[i] * weights[j]; /* beaware integer division */
301
+ counter[ix_comb(i, j, n, ncomb)] += weights[i] * weights[j];
302
+ }
303
+ }
304
+ else
305
+ for (size_t el1 = st; el1 < end; el1++)
306
+ {
307
+ for (size_t el2 = el1 + 1; el2 <= end; el2++)
308
+ {
309
+ i = std::min(ix_arr[el1], ix_arr[el2]);
310
+ j = std::max(ix_arr[el1], ix_arr[el2]);
311
+ counter[ix_comb(i, j, n, ncomb)] += weights[i] * weights[j] * exp_remainder;
312
+ }
313
+ }
314
+ }
315
+
316
+ void increase_comb_counter_in_groups(size_t ix_arr[], size_t st, size_t end, size_t split_ix, size_t n,
317
+ double counter[], double exp_remainder)
318
+ {
319
+ size_t n_group = 0;
320
+ for (size_t ix = st; ix <= end; ix++)
321
+ if (ix_arr[ix] < split_ix)
322
+ n_group++;
323
+ else
324
+ break;
325
+
326
+ n = n - split_ix;
327
+
328
+ if (exp_remainder <= 1)
329
+ for (size_t ix1 = st; ix1 < st + n_group; ix1++)
330
+ for (size_t ix2 = st + n_group; ix2 <= end; ix2++)
331
+ counter[ix_arr[ix1] * n + ix_arr[ix2] - split_ix]++;
332
+ else
333
+ for (size_t ix1 = st; ix1 < st + n_group; ix1++)
334
+ for (size_t ix2 = st + n_group; ix2 <= end; ix2++)
335
+ counter[ix_arr[ix1] * n + ix_arr[ix2] - split_ix] += exp_remainder;
336
+ }
337
+
338
+ void increase_comb_counter_in_groups(size_t ix_arr[], size_t st, size_t end, size_t split_ix, size_t n,
339
+ double *restrict counter, double *restrict weights, double exp_remainder)
340
+ {
341
+ size_t n_group = 0;
342
+ for (size_t ix = st; ix <= end; ix++)
343
+ if (ix_arr[ix] < split_ix)
344
+ n_group++;
345
+ else
346
+ break;
347
+
348
+ n = n - split_ix;
349
+
350
+ if (exp_remainder <= 1)
351
+ for (size_t ix1 = st; ix1 < st + n_group; ix1++)
352
+ for (size_t ix2 = st + n_group; ix2 <= end; ix2++)
353
+ counter[ix_arr[ix1] * n + ix_arr[ix2] - split_ix]
354
+ +=
355
+ weights[ix_arr[ix1]] * weights[ix_arr[ix2]];
356
+ else
357
+ for (size_t ix1 = st; ix1 < st + n_group; ix1++)
358
+ for (size_t ix2 = st + n_group; ix2 <= end; ix2++)
359
+ counter[ix_arr[ix1] * n + ix_arr[ix2] - split_ix]
360
+ +=
361
+ weights[ix_arr[ix1]] * weights[ix_arr[ix2]] * exp_remainder;
362
+ }
363
+
364
+ void tmat_to_dense(double *restrict tmat, double *restrict dmat, size_t n, bool diag_to_one)
365
+ {
366
+ size_t ncomb = (n * (n - 1)) / 2;
367
+ for (size_t i = 0; i < (n-1); i++)
368
+ {
369
+ for (size_t j = i + 1; j < n; j++)
370
+ {
371
+ // dmat[i + j * n] = dmat[j + i * n] = tmat[i * (n - (i+1)/2) + j - i - 1];
372
+ dmat[i + j * n] = dmat[j + i * n] = tmat[ix_comb(i, j, n, ncomb)];
373
+ }
374
+ }
375
+ if (diag_to_one)
376
+ for (size_t i = 0; i < n; i++)
377
+ dmat[i + i * n] = 1;
378
+ else
379
+ for (size_t i = 0; i < n; i++)
380
+ dmat[i + i * n] = 0;
381
+ }
382
+
383
+ /* Note: do NOT divide by (n-1) as in some situations it will still need to calculate
384
+ the standard deviation with 1-2 observations only (e.g. when using the extended model
385
+ and some column has many rows but only 2 non-missing values, or when using the non-pooled
386
+ std criterion) */
387
+ #define SD_MIN 1e-12
388
+ double calc_sd_raw(size_t cnt, long double sum, long double sum_sq)
389
+ {
390
+ if (cnt <= 1)
391
+ return 0.;
392
+ else
393
+ return sqrtl(fmax(SD_MIN, (sum_sq - (square(sum) / (long double)cnt)) / (long double)cnt ));
394
+ }
395
+
396
+ long double calc_sd_raw_l(size_t cnt, long double sum, long double sum_sq)
397
+ {
398
+ if (cnt <= 1)
399
+ return 0.;
400
+ else
401
+ return sqrtl(fmaxl(SD_MIN, (sum_sq - (square(sum) / (long double)cnt)) / (long double)cnt ));
402
+ }
403
+
404
+ void build_btree_sampler(std::vector<double> &btree_weights, double *restrict sample_weights,
405
+ size_t nrows, size_t &log2_n, size_t &btree_offset)
406
+ {
407
+ /* build a perfectly-balanced binary search tree in which each node will
408
+ hold the sum of the weights of its children */
409
+ log2_n = log2ceil(nrows);
410
+ if (!btree_weights.size())
411
+ btree_weights.resize(pow2(log2_n + 1), 0);
412
+ else
413
+ btree_weights.assign(btree_weights.size(), 0);
414
+ btree_offset = pow2(log2_n) - 1;
415
+
416
+ std::copy(sample_weights, sample_weights + nrows, btree_weights.begin() + btree_offset);
417
+ for (size_t ix = btree_weights.size() - 1; ix > 0; ix--)
418
+ btree_weights[ix_parent(ix)] += btree_weights[ix];
419
+
420
+ if (is_na_or_inf(btree_weights[0]))
421
+ {
422
+ fprintf(stderr, "Numeric precision error with sample weights, will not use them.\n");
423
+ log2_n = 0;
424
+ btree_weights.clear();
425
+ btree_weights.shrink_to_fit();
426
+ }
427
+ }
428
+
429
+ void sample_random_rows(std::vector<size_t> &ix_arr, size_t nrows, bool with_replacement,
430
+ RNG_engine &rnd_generator, std::vector<size_t> &ix_all,
431
+ double sample_weights[], std::vector<double> &btree_weights,
432
+ size_t log2_n, size_t btree_offset, std::vector<bool> &is_repeated)
433
+ {
434
+ size_t ntake = ix_arr.size();
435
+
436
+ /* if with replacement, just generate random uniform numbers */
437
+ if (with_replacement)
438
+ {
439
+ if (sample_weights == NULL)
440
+ {
441
+ std::uniform_int_distribution<size_t> runif(0, nrows - 1);
442
+ for (size_t &ix : ix_arr)
443
+ ix = runif(rnd_generator);
444
+ }
445
+
446
+ else
447
+ {
448
+ std::discrete_distribution<size_t> runif(sample_weights, sample_weights + nrows);
449
+ for (size_t &ix : ix_arr)
450
+ ix = runif(rnd_generator);
451
+ }
452
+ }
453
+
454
+ /* if all the elements are needed, don't bother with any sampling */
455
+ else if (ntake == nrows)
456
+ {
457
+ std::iota(ix_arr.begin(), ix_arr.end(), (size_t)0);
458
+ }
459
+
460
+
461
+ /* if there are sample weights, use binary trees to keep track and update weight
462
+ https://stackoverflow.com/questions/57599509/c-random-non-repeated-integers-with-weights */
463
+ else if (sample_weights != NULL)
464
+ {
465
+ double rnd_subrange, w_left;
466
+ double curr_subrange;
467
+ size_t curr_ix;
468
+ for (size_t &ix : ix_arr)
469
+ {
470
+ /* go down the tree by drawing a random number and
471
+ checking if it falls in the left or right ranges */
472
+ curr_ix = 0;
473
+ curr_subrange = btree_weights[0];
474
+ for (size_t lev = 0; lev < log2_n; lev++)
475
+ {
476
+ rnd_subrange = std::uniform_real_distribution<double>(0, curr_subrange)(rnd_generator);
477
+ w_left = btree_weights[ix_child(curr_ix)];
478
+ curr_ix = ix_child(curr_ix) + (rnd_subrange >= w_left);
479
+ curr_subrange = btree_weights[curr_ix];
480
+ }
481
+
482
+ /* finally, determine element to choose in this iteration */
483
+ ix = curr_ix - btree_offset;
484
+
485
+ /* now remove the weight of the chosen element */
486
+ btree_weights[curr_ix] = 0;
487
+ for (size_t lev = 0; lev < log2_n; lev++)
488
+ {
489
+ curr_ix = ix_parent(curr_ix);
490
+ btree_weights[curr_ix] = btree_weights[ix_child(curr_ix)]
491
+ + btree_weights[ix_child(curr_ix) + 1];
492
+ }
493
+ }
494
+ }
495
+
496
+ /* if no sample weights and not with replacement (most common case expected),
497
+ then use different algorithms depending on the sampled fraction */
498
+ else
499
+ {
500
+
501
+ /* if sampling a larger fraction, fill an array enumerating the rows, shuffle, and take first N */
502
+ if (ntake >= (nrows / 2))
503
+ {
504
+
505
+ if (!ix_all.size())
506
+ ix_all.resize(nrows);
507
+
508
+ /* in order for random seeds to always be reproducible, don't re-use previous shuffles */
509
+ std::iota(ix_all.begin(), ix_all.end(), (size_t)0);
510
+
511
+ /* If the number of sampled elements is large, do a full shuffle, enjoy simd-instructs when copying over */
512
+ if (ntake >= ((nrows * 3)/4))
513
+ {
514
+ std::shuffle(ix_all.begin(), ix_all.end(), rnd_generator);
515
+ ix_arr.assign(ix_all.begin(), ix_all.begin() + ntake);
516
+ }
517
+
518
+ /* otherwise, do only a partial shuffle (use Yates algorithm) and copy elements along the way */
519
+ else
520
+ {
521
+ size_t chosen;
522
+ for (size_t i = nrows - 1; i >= nrows - ntake; i--)
523
+ {
524
+ chosen = std::uniform_int_distribution<size_t>(0, i)(rnd_generator);
525
+ ix_arr[nrows - i - 1] = ix_all[chosen];
526
+ ix_all[chosen] = ix_all[i];
527
+ }
528
+ }
529
+
530
+ }
531
+
532
+ /* If the sample size is small, use Floyd's random sampling algorithm
533
+ https://stackoverflow.com/questions/2394246/algorithm-to-select-a-single-random-combination-of-values */
534
+ else
535
+ {
536
+
537
+ size_t candidate;
538
+
539
+ /* if the sample size is relatively large, use a temporary boolean vector */
540
+ if (((long double)ntake / (long double)nrows) > (1. / 20.))
541
+ {
542
+
543
+ if (!is_repeated.size())
544
+ is_repeated.resize(nrows, false);
545
+ else
546
+ is_repeated.assign(is_repeated.size(), false);
547
+
548
+ for (size_t rnd_ix = nrows - ntake; rnd_ix < nrows; rnd_ix++)
549
+ {
550
+ candidate = std::uniform_int_distribution<size_t>(0, rnd_ix)(rnd_generator);
551
+ if (is_repeated[candidate])
552
+ {
553
+ ix_arr[ntake - (nrows - rnd_ix)] = rnd_ix;
554
+ is_repeated[rnd_ix] = true;
555
+ }
556
+
557
+ else
558
+ {
559
+ ix_arr[ntake - (nrows - rnd_ix)] = candidate;
560
+ is_repeated[candidate] = true;
561
+ }
562
+ }
563
+
564
+ }
565
+
566
+ /* if the sample size is very small, use an unordered set */
567
+ else
568
+ {
569
+
570
+ std::unordered_set<size_t> repeated_set;
571
+ for (size_t rnd_ix = nrows - ntake; rnd_ix < nrows; rnd_ix++)
572
+ {
573
+ candidate = std::uniform_int_distribution<size_t>(0, rnd_ix)(rnd_generator);
574
+ if (repeated_set.find(candidate) == repeated_set.end()) /* TODO: switch to C++20 'contains' */
575
+ {
576
+ ix_arr[ntake - (nrows - rnd_ix)] = candidate;
577
+ repeated_set.insert(candidate);
578
+ }
579
+
580
+ else
581
+ {
582
+ ix_arr[ntake - (nrows - rnd_ix)] = rnd_ix;
583
+ repeated_set.insert(rnd_ix);
584
+ }
585
+ }
586
+
587
+ }
588
+
589
+ }
590
+
591
+ }
592
+ }
593
+
594
+ /* https://stackoverflow.com/questions/57599509/c-random-non-repeated-integers-with-weights */
595
+ void weighted_shuffle(size_t *restrict outp, size_t n, double *restrict weights, double *restrict buffer_arr, RNG_engine &rnd_generator)
596
+ {
597
+ /* determine smallest power of two that is larger than N */
598
+ size_t tree_levels = log2ceil(n);
599
+
600
+ /* initialize vector with place-holders for perfectly-balanced tree */
601
+ std::fill(buffer_arr, buffer_arr + pow2(tree_levels + 1), (double)0);
602
+
603
+ /* compute sums for the tree leaves at each node */
604
+ size_t offset = pow2(tree_levels) - 1;
605
+ for (size_t ix = 0; ix < n; ix++) {
606
+ buffer_arr[ix + offset] = weights[ix];
607
+ }
608
+ for (size_t ix = pow2(tree_levels+1) - 1; ix > 0; ix--) {
609
+ buffer_arr[ix_parent(ix)] += buffer_arr[ix];
610
+ }
611
+
612
+ /* sample according to uniform distribution */
613
+ double rnd_subrange, w_left;
614
+ double curr_subrange;
615
+ int curr_ix;
616
+
617
+ for (size_t el = 0; el < n; el++)
618
+ {
619
+ /* go down the tree by drawing a random number and
620
+ checking if it falls in the left or right sub-ranges */
621
+ curr_ix = 0;
622
+ curr_subrange = buffer_arr[0];
623
+ for (size_t lev = 0; lev < tree_levels; lev++)
624
+ {
625
+ rnd_subrange = std::uniform_real_distribution<double>(0., curr_subrange)(rnd_generator);
626
+ w_left = buffer_arr[ix_child(curr_ix)];
627
+ curr_ix = ix_child(curr_ix) + (rnd_subrange >= w_left);
628
+ curr_subrange = buffer_arr[curr_ix];
629
+ }
630
+
631
+ /* finally, add element from this iteration */
632
+ outp[el] = curr_ix - offset;
633
+
634
+ /* now remove the weight of the chosen element */
635
+ buffer_arr[curr_ix] = 0;
636
+ for (size_t lev = 0; lev < tree_levels; lev++)
637
+ {
638
+ curr_ix = ix_parent(curr_ix);
639
+ buffer_arr[curr_ix] = buffer_arr[ix_child(curr_ix)]
640
+ + buffer_arr[ix_child(curr_ix) + 1];
641
+ }
642
+ }
643
+
644
+ }
645
+
646
+ /* For hyperplane intersections */
647
+ size_t divide_subset_split(size_t ix_arr[], double x[], size_t st, size_t end, double split_point)
648
+ {
649
+ size_t temp;
650
+ size_t st_orig = st;
651
+ for (size_t row = st_orig; row <= end; row++)
652
+ {
653
+ if (x[row - st_orig] <= split_point)
654
+ {
655
+ temp = ix_arr[st];
656
+ ix_arr[st] = ix_arr[row];
657
+ ix_arr[row] = temp;
658
+ st++;
659
+ }
660
+ }
661
+ return st;
662
+ }
663
+
664
+ /* For numerical columns */
665
+ void divide_subset_split(size_t ix_arr[], double x[], size_t st, size_t end, double split_point,
666
+ MissingAction missing_action, size_t &st_NA, size_t &end_NA, size_t &split_ix)
667
+ {
668
+ size_t temp;
669
+
670
+ /* if NAs are not to be bothered with, just need to do a single pass */
671
+ if (missing_action == Fail)
672
+ {
673
+ /* move to the left if it's l.e. split point */
674
+ for (size_t row = st; row <= end; row++)
675
+ {
676
+ if (x[ix_arr[row]] <= split_point)
677
+ {
678
+ temp = ix_arr[st];
679
+ ix_arr[st] = ix_arr[row];
680
+ ix_arr[row] = temp;
681
+ st++;
682
+ }
683
+ }
684
+ split_ix = st;
685
+ }
686
+
687
+ /* otherwise, first put to the left all l.e. and not NA, then all NAs to the end of the left */
688
+ else
689
+ {
690
+ for (size_t row = st; row <= end; row++)
691
+ {
692
+ if (!isnan(x[ix_arr[row]]) && x[ix_arr[row]] <= split_point)
693
+ {
694
+ temp = ix_arr[st];
695
+ ix_arr[st] = ix_arr[row];
696
+ ix_arr[row] = temp;
697
+ st++;
698
+ }
699
+ }
700
+ st_NA = st;
701
+
702
+ for (size_t row = st; row <= end; row++)
703
+ {
704
+ if (isnan(x[ix_arr[row]]))
705
+ {
706
+ temp = ix_arr[st];
707
+ ix_arr[st] = ix_arr[row];
708
+ ix_arr[row] = temp;
709
+ st++;
710
+ }
711
+ }
712
+ end_NA = st;
713
+ }
714
+ }
715
+
716
+ /* For sparse numeric columns */
717
+ void divide_subset_split(size_t ix_arr[], size_t st, size_t end, size_t col_num,
718
+ double Xc[], sparse_ix Xc_ind[], sparse_ix Xc_indptr[], double split_point,
719
+ MissingAction missing_action, size_t &st_NA, size_t &end_NA, size_t &split_ix)
720
+ {
721
+ /* TODO: this is a mess, needs refactoring */
722
+ /* TODO: when moving zeros, would be better to instead move by '>' (opposite as in here) */
723
+ if (Xc_indptr[col_num] == Xc_indptr[col_num + 1])
724
+ {
725
+ if (missing_action == Fail)
726
+ {
727
+ split_ix = (0 <= split_point)? (end+1) : st;
728
+ }
729
+
730
+ else
731
+ {
732
+ st_NA = (0 <= split_point)? (end+1) : st;
733
+ end_NA = (0 <= split_point)? (end+1) : st;
734
+ }
735
+
736
+ }
737
+
738
+ size_t st_col = Xc_indptr[col_num];
739
+ size_t end_col = Xc_indptr[col_num + 1] - 1;
740
+ size_t curr_pos = st_col;
741
+ size_t ind_end_col = Xc_ind[end_col];
742
+ size_t temp;
743
+ bool move_zeros = 0 <= split_point;
744
+ size_t *ptr_st = std::lower_bound(ix_arr + st, ix_arr + end + 1, Xc_ind[st_col]);
745
+
746
+ if (move_zeros && ptr_st > ix_arr + st)
747
+ st = ptr_st - ix_arr;
748
+
749
+ if (missing_action == Fail)
750
+ {
751
+ if (move_zeros)
752
+ {
753
+ for (size_t *row = ptr_st;
754
+ row != ix_arr + end + 1;
755
+ )
756
+ {
757
+ if (curr_pos >= end_col + 1)
758
+ {
759
+ for (size_t *r = row; r <= ix_arr + end; r++)
760
+ {
761
+ temp = ix_arr[st];
762
+ ix_arr[st] = *r;
763
+ *r = temp;
764
+ st++;
765
+ }
766
+ break;
767
+ }
768
+
769
+ if (Xc_ind[curr_pos] == *row)
770
+ {
771
+ if (Xc[curr_pos] <= split_point)
772
+ {
773
+ temp = ix_arr[st];
774
+ ix_arr[st] = *row;
775
+ *row = temp;
776
+ st++;
777
+ }
778
+ if (curr_pos == end_col && row < ix_arr + end)
779
+ for (size_t *r = row + 1; r <= ix_arr + end; r++)
780
+ {
781
+ temp = ix_arr[st];
782
+ ix_arr[st] = *r;
783
+ *r = temp;
784
+ st++;
785
+ }
786
+ if (row == ix_arr + end || curr_pos == end_col) break;
787
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *(++row)) - Xc_ind;
788
+ }
789
+
790
+ else
791
+ {
792
+ if (Xc_ind[curr_pos] > *row)
793
+ {
794
+ while (row <= ix_arr + end && Xc_ind[curr_pos] > *row)
795
+ {
796
+ temp = ix_arr[st];
797
+ ix_arr[st] = *row;
798
+ *row = temp;
799
+ st++; row++;
800
+ }
801
+ }
802
+
803
+ else
804
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *row) - Xc_ind;
805
+ }
806
+ }
807
+ }
808
+
809
+ else /* don't move zeros */
810
+ {
811
+ for (size_t *row = ptr_st;
812
+ row != ix_arr + end + 1 && curr_pos != end_col + 1 && ind_end_col >= *row;
813
+ )
814
+ {
815
+ if (Xc_ind[curr_pos] == *row)
816
+ {
817
+ if (Xc[curr_pos] <= split_point)
818
+ {
819
+ temp = ix_arr[st];
820
+ ix_arr[st] = *row;
821
+ *row = temp;
822
+ st++;
823
+ }
824
+ if (row == ix_arr + end || curr_pos == end_col) break;
825
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *(++row)) - Xc_ind;
826
+ }
827
+
828
+ else
829
+ {
830
+ if (Xc_ind[curr_pos] > *row)
831
+ row = std::lower_bound(row + 1, ix_arr + end + 1, Xc_ind[curr_pos]);
832
+ else
833
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *row) - Xc_ind;
834
+ }
835
+ }
836
+ }
837
+
838
+ split_ix = st;
839
+ }
840
+
841
+ else /* can have NAs */
842
+ {
843
+
844
+ bool has_NAs = false;
845
+ if (move_zeros)
846
+ {
847
+ for (size_t *row = ptr_st;
848
+ row != ix_arr + end + 1;
849
+ )
850
+ {
851
+ if (curr_pos >= end_col + 1)
852
+ {
853
+ for (size_t *r = row; r <= ix_arr + end; r++)
854
+ {
855
+ temp = ix_arr[st];
856
+ ix_arr[st] = *r;
857
+ *r = temp;
858
+ st++;
859
+ }
860
+ break;
861
+ }
862
+
863
+ if (Xc_ind[curr_pos] == *row)
864
+ {
865
+ if (isnan(Xc[curr_pos]))
866
+ has_NAs = true;
867
+ else if (Xc[curr_pos] <= split_point)
868
+ {
869
+ temp = ix_arr[st];
870
+ ix_arr[st] = *row;
871
+ *row = temp;
872
+ st++;
873
+ }
874
+ if (curr_pos == end_col && row < ix_arr + end)
875
+ for (size_t *r = row + 1; r <= ix_arr + end; r++)
876
+ {
877
+ temp = ix_arr[st];
878
+ ix_arr[st] = *r;
879
+ *r = temp;
880
+ st++;
881
+ }
882
+ if (row == ix_arr + end || curr_pos == end_col) break;
883
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *(++row)) - Xc_ind;
884
+ }
885
+
886
+ else
887
+ {
888
+ if (Xc_ind[curr_pos] > *row)
889
+ {
890
+ while (row <= ix_arr + end && Xc_ind[curr_pos] > *row)
891
+ {
892
+ temp = ix_arr[st];
893
+ ix_arr[st] = *row;
894
+ *row = temp;
895
+ st++; row++;
896
+ }
897
+ }
898
+
899
+ else
900
+ {
901
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *row) - Xc_ind;
902
+ }
903
+ }
904
+ }
905
+ }
906
+
907
+ else /* don't move zeros */
908
+ {
909
+ for (size_t *row = ptr_st;
910
+ row != ix_arr + end + 1 && curr_pos != end_col + 1 && ind_end_col >= *row;
911
+ )
912
+ {
913
+ if (Xc_ind[curr_pos] == *row)
914
+ {
915
+ if (isnan(Xc[curr_pos])) has_NAs = true;
916
+ if (Xc[curr_pos] <= split_point && !isnan(Xc[curr_pos]))
917
+ {
918
+ temp = ix_arr[st];
919
+ ix_arr[st] = *row;
920
+ *row = temp;
921
+ st++;
922
+ }
923
+ if (row == ix_arr + end || curr_pos == end_col) break;
924
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *(++row)) - Xc_ind;
925
+ }
926
+
927
+ else
928
+ {
929
+ if (Xc_ind[curr_pos] > *row)
930
+ row = std::lower_bound(row + 1, ix_arr + end + 1, Xc_ind[curr_pos]);
931
+ else
932
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *row) - Xc_ind;
933
+ }
934
+ }
935
+ }
936
+
937
+
938
+ st_NA = st;
939
+ if (has_NAs)
940
+ {
941
+ curr_pos = st_col;
942
+ std::sort(ix_arr + st, ix_arr + end + 1);
943
+ for (size_t *row = ix_arr + st;
944
+ row != ix_arr + end + 1 && curr_pos != end_col + 1 && ind_end_col >= *row;
945
+ )
946
+ {
947
+ if (Xc_ind[curr_pos] == *row)
948
+ {
949
+ if (isnan(Xc[curr_pos]))
950
+ {
951
+ temp = ix_arr[st];
952
+ ix_arr[st] = *row;
953
+ *row = temp;
954
+ st++;
955
+ }
956
+ if (row == ix_arr + end || curr_pos == end_col) break;
957
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *(++row)) - Xc_ind;
958
+ }
959
+
960
+ else
961
+ {
962
+ if (Xc_ind[curr_pos] > *row)
963
+ row = std::lower_bound(row + 1, ix_arr + end + 1, Xc_ind[curr_pos]);
964
+ else
965
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *row) - Xc_ind;
966
+ }
967
+ }
968
+ }
969
+ end_NA = st;
970
+
971
+ }
972
+
973
+ }
974
+
975
+ /* For categorical columns split by subset */
976
+ void divide_subset_split(size_t ix_arr[], int x[], size_t st, size_t end, char split_categ[],
977
+ MissingAction missing_action, size_t &st_NA, size_t &end_NA, size_t &split_ix)
978
+ {
979
+ size_t temp;
980
+
981
+ /* if NAs are not to be bothered with, just need to do a single pass */
982
+ if (missing_action == Fail)
983
+ {
984
+ /* move to the left if it's l.e. than the split point */
985
+ for (size_t row = st; row <= end; row++)
986
+ {
987
+ if (split_categ[ x[ix_arr[row]] ] == 1)
988
+ {
989
+ temp = ix_arr[st];
990
+ ix_arr[st] = ix_arr[row];
991
+ ix_arr[row] = temp;
992
+ st++;
993
+ }
994
+ }
995
+ split_ix = st;
996
+ }
997
+
998
+ /* otherwise, first put to the left all l.e. and not NA, then all NAs to the end of the left */
999
+ else
1000
+ {
1001
+ for (size_t row = st; row <= end; row++)
1002
+ {
1003
+ if (x[ix_arr[row]] >= 0 && split_categ[ x[ix_arr[row]] ] == 1)
1004
+ {
1005
+ temp = ix_arr[st];
1006
+ ix_arr[st] = ix_arr[row];
1007
+ ix_arr[row] = temp;
1008
+ st++;
1009
+ }
1010
+ }
1011
+ st_NA = st;
1012
+
1013
+ for (size_t row = st; row <= end; row++)
1014
+ {
1015
+ if (x[ix_arr[row]] < 0)
1016
+ {
1017
+ temp = ix_arr[st];
1018
+ ix_arr[st] = ix_arr[row];
1019
+ ix_arr[row] = temp;
1020
+ st++;
1021
+ }
1022
+ }
1023
+ end_NA = st;
1024
+ }
1025
+ }
1026
+
1027
+ /* For categorical columns split by subset, used at prediction time (with similarity) */
1028
+ void divide_subset_split(size_t ix_arr[], int x[], size_t st, size_t end, char split_categ[],
1029
+ int ncat, MissingAction missing_action, NewCategAction new_cat_action,
1030
+ bool move_new_to_left, size_t &st_NA, size_t &end_NA, size_t &split_ix)
1031
+ {
1032
+ size_t temp;
1033
+
1034
+ /* if NAs are not to be bothered with, just need to do a single pass */
1035
+ if (missing_action == Fail && new_cat_action != Weighted)
1036
+ {
1037
+ if (new_cat_action == Smallest && move_new_to_left)
1038
+ {
1039
+ for (size_t row = st; row <= end; row++)
1040
+ {
1041
+ if (split_categ[ x[ix_arr[row]] ] == 1 || x[ix_arr[row]] >= ncat)
1042
+ {
1043
+ temp = ix_arr[st];
1044
+ ix_arr[st] = ix_arr[row];
1045
+ ix_arr[row] = temp;
1046
+ st++;
1047
+ }
1048
+ }
1049
+ }
1050
+
1051
+ else
1052
+ {
1053
+ for (size_t row = st; row <= end; row++)
1054
+ {
1055
+ if (split_categ[ x[ix_arr[row]] ] == 1)
1056
+ {
1057
+ temp = ix_arr[st];
1058
+ ix_arr[st] = ix_arr[row];
1059
+ ix_arr[row] = temp;
1060
+ st++;
1061
+ }
1062
+ }
1063
+ }
1064
+
1065
+ split_ix = st;
1066
+ }
1067
+
1068
+ /* otherwise, first put to the left all l.e. and not NA, then all NAs to the end of the left */
1069
+ else
1070
+ {
1071
+ for (size_t row = st; row <= end; row++)
1072
+ {
1073
+ if (x[ix_arr[row]] >= 0 && split_categ[ x[ix_arr[row]] ] == 1)
1074
+ {
1075
+ temp = ix_arr[st];
1076
+ ix_arr[st] = ix_arr[row];
1077
+ ix_arr[row] = temp;
1078
+ st++;
1079
+ }
1080
+ }
1081
+ st_NA = st;
1082
+
1083
+ if (new_cat_action == Weighted)
1084
+ {
1085
+ for (size_t row = st; row <= end; row++)
1086
+ {
1087
+ if (x[ix_arr[row]] < 0 || split_categ[ x[ix_arr[row]] ] == (-1))
1088
+ {
1089
+ temp = ix_arr[st];
1090
+ ix_arr[st] = ix_arr[row];
1091
+ ix_arr[row] = temp;
1092
+ st++;
1093
+ }
1094
+ }
1095
+ }
1096
+
1097
+ else
1098
+ {
1099
+ for (size_t row = st; row <= end; row++)
1100
+ {
1101
+ if (x[ix_arr[row]] < 0)
1102
+ {
1103
+ temp = ix_arr[st];
1104
+ ix_arr[st] = ix_arr[row];
1105
+ ix_arr[row] = temp;
1106
+ st++;
1107
+ }
1108
+ }
1109
+ }
1110
+
1111
+ end_NA = st;
1112
+ }
1113
+ }
1114
+
1115
+ /* For categoricals split on a single category */
1116
+ void divide_subset_split(size_t ix_arr[], int x[], size_t st, size_t end, int split_categ,
1117
+ MissingAction missing_action, size_t &st_NA, size_t &end_NA, size_t &split_ix)
1118
+ {
1119
+ size_t temp;
1120
+
1121
+ /* if NAs are not to be bothered with, just need to do a single pass */
1122
+ if (missing_action == Fail)
1123
+ {
1124
+ /* move to the left if it's l.e. than the split point */
1125
+ for (size_t row = st; row <= end; row++)
1126
+ {
1127
+ if (x[ix_arr[row]] == split_categ)
1128
+ {
1129
+ temp = ix_arr[st];
1130
+ ix_arr[st] = ix_arr[row];
1131
+ ix_arr[row] = temp;
1132
+ st++;
1133
+ }
1134
+ }
1135
+ split_ix = st;
1136
+ }
1137
+
1138
+ /* otherwise, first put to the left all l.e. and not NA, then all NAs to the end of the left */
1139
+ else
1140
+ {
1141
+ for (size_t row = st; row <= end; row++)
1142
+ {
1143
+ if (x[ix_arr[row]] == split_categ)
1144
+ {
1145
+ temp = ix_arr[st];
1146
+ ix_arr[st] = ix_arr[row];
1147
+ ix_arr[row] = temp;
1148
+ st++;
1149
+ }
1150
+ }
1151
+ st_NA = st;
1152
+
1153
+ for (size_t row = st; row <= end; row++)
1154
+ {
1155
+ if (x[ix_arr[row]] < 0)
1156
+ {
1157
+ temp = ix_arr[st];
1158
+ ix_arr[st] = ix_arr[row];
1159
+ ix_arr[row] = temp;
1160
+ st++;
1161
+ }
1162
+ }
1163
+ end_NA = st;
1164
+ }
1165
+ }
1166
+
1167
+ /* For categoricals split on sub-set that turned out to have 2 categories only (prediction-time) */
1168
+ void divide_subset_split(size_t ix_arr[], int x[], size_t st, size_t end,
1169
+ MissingAction missing_action, NewCategAction new_cat_action,
1170
+ bool move_new_to_left, size_t &st_NA, size_t &end_NA, size_t &split_ix)
1171
+ {
1172
+ size_t temp;
1173
+
1174
+ /* if NAs are not to be bothered with, just need to do a single pass */
1175
+ if (missing_action == Fail)
1176
+ {
1177
+ /* move to the left if it's l.e. than the split point */
1178
+ if (new_cat_action == Smallest && move_new_to_left)
1179
+ {
1180
+ for (size_t row = st; row <= end; row++)
1181
+ {
1182
+ if (x[ix_arr[row]] == 0 || x[ix_arr[row]] > 1)
1183
+ {
1184
+ temp = ix_arr[st];
1185
+ ix_arr[st] = ix_arr[row];
1186
+ ix_arr[row] = temp;
1187
+ st++;
1188
+ }
1189
+ }
1190
+ }
1191
+
1192
+ else
1193
+ {
1194
+ for (size_t row = st; row <= end; row++)
1195
+ {
1196
+ if (x[ix_arr[row]] == 0)
1197
+ {
1198
+ temp = ix_arr[st];
1199
+ ix_arr[st] = ix_arr[row];
1200
+ ix_arr[row] = temp;
1201
+ st++;
1202
+ }
1203
+ }
1204
+ }
1205
+ split_ix = st;
1206
+ }
1207
+
1208
+ /* otherwise, first put to the left all l.e. and not NA, then all NAs to the end of the left */
1209
+ else
1210
+ {
1211
+ if (new_cat_action == Smallest && move_new_to_left)
1212
+ {
1213
+ for (size_t row = st; row <= end; row++)
1214
+ {
1215
+ if (x[ix_arr[row]] == 0 || x[ix_arr[row]] > 1)
1216
+ {
1217
+ temp = ix_arr[st];
1218
+ ix_arr[st] = ix_arr[row];
1219
+ ix_arr[row] = temp;
1220
+ st++;
1221
+ }
1222
+ }
1223
+ st_NA = st;
1224
+
1225
+ for (size_t row = st; row <= end; row++)
1226
+ {
1227
+ if (x[ix_arr[row]] < 0)
1228
+ {
1229
+ temp = ix_arr[st];
1230
+ ix_arr[st] = ix_arr[row];
1231
+ ix_arr[row] = temp;
1232
+ st++;
1233
+ }
1234
+ }
1235
+ end_NA = st;
1236
+ }
1237
+
1238
+ else
1239
+ {
1240
+ for (size_t row = st; row <= end; row++)
1241
+ {
1242
+ if (x[ix_arr[row]] == 0)
1243
+ {
1244
+ temp = ix_arr[st];
1245
+ ix_arr[st] = ix_arr[row];
1246
+ ix_arr[row] = temp;
1247
+ st++;
1248
+ }
1249
+ }
1250
+ st_NA = st;
1251
+
1252
+ for (size_t row = st; row <= end; row++)
1253
+ {
1254
+ if (x[ix_arr[row]] < 0)
1255
+ {
1256
+ temp = ix_arr[st];
1257
+ ix_arr[st] = ix_arr[row];
1258
+ ix_arr[row] = temp;
1259
+ st++;
1260
+ }
1261
+ }
1262
+ end_NA = st;
1263
+ }
1264
+ }
1265
+ }
1266
+
1267
+ /* for regular numeric columns */
1268
+ void get_range(size_t ix_arr[], double x[], size_t st, size_t end,
1269
+ MissingAction missing_action, double &xmin, double &xmax, bool &unsplittable)
1270
+ {
1271
+ xmin = HUGE_VAL;
1272
+ xmax = -HUGE_VAL;
1273
+
1274
+ if (missing_action == Fail)
1275
+ {
1276
+ for (size_t row = st; row <= end; row++)
1277
+ {
1278
+ xmin = (x[ix_arr[row]] < xmin)? x[ix_arr[row]] : xmin;
1279
+ xmax = (x[ix_arr[row]] > xmax)? x[ix_arr[row]] : xmax;
1280
+ }
1281
+ }
1282
+
1283
+
1284
+ else
1285
+ {
1286
+ for (size_t row = st; row <= end; row++)
1287
+ {
1288
+ xmin = fmin(xmin, x[ix_arr[row]]);
1289
+ xmax = fmax(xmax, x[ix_arr[row]]);
1290
+ }
1291
+ }
1292
+
1293
+ unsplittable = (xmin == xmax) || (xmin == HUGE_VAL && xmax == -HUGE_VAL);
1294
+ }
1295
+
1296
+ /* for sparse inputs */
1297
+ void get_range(size_t ix_arr[], size_t st, size_t end, size_t col_num,
1298
+ double Xc[], sparse_ix Xc_ind[], sparse_ix Xc_indptr[],
1299
+ MissingAction missing_action, double &xmin, double &xmax, bool &unsplittable)
1300
+ {
1301
+ /* ix_arr must already be sorted beforehand */
1302
+ xmin = HUGE_VAL;
1303
+ xmax = -HUGE_VAL;
1304
+
1305
+ size_t st_col = Xc_indptr[col_num];
1306
+ size_t end_col = Xc_indptr[col_num + 1];
1307
+ size_t nnz_col = end_col - st_col;
1308
+ end_col--;
1309
+ size_t curr_pos = st_col;
1310
+
1311
+ if (!nnz_col ||
1312
+ Xc_ind[st_col] > ix_arr[end] ||
1313
+ ix_arr[st] > Xc_ind[end_col]
1314
+ )
1315
+ {
1316
+ unsplittable = true;
1317
+ return;
1318
+ }
1319
+
1320
+ if (nnz_col < end - st + 1 ||
1321
+ Xc_ind[st_col] > ix_arr[st] ||
1322
+ Xc_ind[end_col] < ix_arr[end]
1323
+ )
1324
+ {
1325
+ xmin = 0;
1326
+ xmax = 0;
1327
+ }
1328
+
1329
+ size_t ind_end_col = Xc_ind[end_col];
1330
+ size_t nmatches = 0;
1331
+
1332
+ if (missing_action == Fail)
1333
+ {
1334
+ for (size_t *row = std::lower_bound(ix_arr + st, ix_arr + end + 1, Xc_ind[st_col]);
1335
+ row != ix_arr + end + 1 && curr_pos != end_col + 1 && ind_end_col >= *row;
1336
+ )
1337
+ {
1338
+ if (Xc_ind[curr_pos] == *row)
1339
+ {
1340
+ nmatches++;
1341
+ xmin = (Xc[curr_pos] < xmin)? Xc[curr_pos] : xmin;
1342
+ xmax = (Xc[curr_pos] > xmax)? Xc[curr_pos] : xmax;
1343
+ if (row == ix_arr + end || curr_pos == end_col) break;
1344
+ curr_pos = std::lower_bound(Xc_ind + curr_pos, Xc_ind + end_col + 1, *(++row)) - Xc_ind;
1345
+ }
1346
+
1347
+ else
1348
+ {
1349
+ if (Xc_ind[curr_pos] > *row)
1350
+ row = std::lower_bound(row + 1, ix_arr + end + 1, Xc_ind[curr_pos]);
1351
+ else
1352
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *row) - Xc_ind;
1353
+ }
1354
+ }
1355
+ }
1356
+
1357
+ else /* can have NAs */
1358
+ {
1359
+ for (size_t *row = std::lower_bound(ix_arr + st, ix_arr + end + 1, Xc_ind[st_col]);
1360
+ row != ix_arr + end + 1 && curr_pos != end_col + 1 && ind_end_col >= *row;
1361
+ )
1362
+ {
1363
+ if (Xc_ind[curr_pos] == *row)
1364
+ {
1365
+ nmatches++;
1366
+ xmin = fmin(xmin, Xc[curr_pos]);
1367
+ xmax = fmax(xmax, Xc[curr_pos]);
1368
+ if (row == ix_arr + end || curr_pos == end_col) break;
1369
+ curr_pos = std::lower_bound(Xc_ind + curr_pos, Xc_ind + end_col + 1, *(++row)) - Xc_ind;
1370
+ }
1371
+
1372
+ else
1373
+ {
1374
+ if (Xc_ind[curr_pos] > *row)
1375
+ row = std::lower_bound(row + 1, ix_arr + end + 1, Xc_ind[curr_pos]);
1376
+ else
1377
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *row) - Xc_ind;
1378
+ }
1379
+ }
1380
+
1381
+ }
1382
+
1383
+ if (nmatches < (end - st + 1))
1384
+ {
1385
+ xmin = fmin(xmin, 0);
1386
+ xmax = fmax(xmax, 0);
1387
+ }
1388
+ unsplittable = (xmin == xmax) || (xmin == HUGE_VAL && xmax == -HUGE_VAL);
1389
+
1390
+ }
1391
+
1392
+
1393
+ void get_categs(size_t ix_arr[], int x[], size_t st, size_t end, int ncat,
1394
+ MissingAction missing_action, char categs[], size_t &npresent, bool &unsplittable)
1395
+ {
1396
+ std::fill(categs, categs + ncat, -1);
1397
+ npresent = 0;
1398
+ for (size_t row = st; row <= end; row++)
1399
+ if (x[ix_arr[row]] >= 0)
1400
+ categs[x[ix_arr[row]]] = 1;
1401
+
1402
+ npresent = std::accumulate(categs,
1403
+ categs + ncat,
1404
+ (size_t)0,
1405
+ [](const size_t a, const char b){return a + (b > 0);}
1406
+ );
1407
+
1408
+ unsplittable = npresent < 2;
1409
+ }
1410
+
1411
+ long double calculate_sum_weights(std::vector<size_t> &ix_arr, size_t st, size_t end, size_t curr_depth,
1412
+ std::vector<double> &weights_arr, std::unordered_map<size_t, double> &weights_map)
1413
+ {
1414
+ if (curr_depth > 0 && weights_arr.size())
1415
+ return std::accumulate(ix_arr.begin() + st,
1416
+ ix_arr.begin() + end + 1,
1417
+ (long double)0,
1418
+ [&weights_arr](const long double a, const size_t ix){return a + weights_arr[ix];});
1419
+ else if (curr_depth > 0 && weights_map.size())
1420
+ return std::accumulate(ix_arr.begin() + st,
1421
+ ix_arr.begin() + end + 1,
1422
+ (long double)0,
1423
+ [&weights_map](const long double a, const size_t ix){return a + weights_map[ix];});
1424
+ else
1425
+ return -HUGE_VAL;
1426
+ }
1427
+
1428
+ size_t move_NAs_to_front(size_t ix_arr[], size_t st, size_t end, double x[])
1429
+ {
1430
+ size_t st_non_na = st;
1431
+ size_t temp;
1432
+
1433
+ for (size_t row = st; row <= end; row++)
1434
+ {
1435
+ if (is_na_or_inf(x[ix_arr[row]]))
1436
+ {
1437
+ temp = ix_arr[st_non_na];
1438
+ ix_arr[st_non_na] = ix_arr[row];
1439
+ ix_arr[row] = temp;
1440
+ st_non_na++;
1441
+ }
1442
+ }
1443
+
1444
+ return st_non_na;
1445
+ }
1446
+
1447
+ size_t move_NAs_to_front(size_t ix_arr[], size_t st, size_t end, size_t col_num, double Xc[], sparse_ix Xc_ind[], sparse_ix Xc_indptr[])
1448
+ {
1449
+ size_t st_non_na = st;
1450
+ size_t temp;
1451
+
1452
+ size_t st_col = Xc_indptr[col_num];
1453
+ size_t end_col = Xc_indptr[col_num + 1] - 1;
1454
+ size_t curr_pos = st_col;
1455
+ size_t ind_end_col = Xc_ind[end_col];
1456
+ std::sort(ix_arr + st, ix_arr + end + 1);
1457
+ size_t *ptr_st = std::lower_bound(ix_arr + st, ix_arr + end + 1, Xc_ind[st_col]);
1458
+
1459
+ for (size_t *row = ptr_st;
1460
+ row != ix_arr + end + 1 && curr_pos != end_col + 1 && ind_end_col >= *row;
1461
+ )
1462
+ {
1463
+ if (Xc_ind[curr_pos] == *row)
1464
+ {
1465
+ if (is_na_or_inf(Xc[curr_pos]))
1466
+ {
1467
+ temp = ix_arr[st_non_na];
1468
+ ix_arr[st_non_na] = *row;
1469
+ *row = temp;
1470
+ st_non_na++;
1471
+ }
1472
+
1473
+ if (row == ix_arr + end || curr_pos == end_col) break;
1474
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *(++row)) - Xc_ind;
1475
+ }
1476
+
1477
+ else
1478
+ {
1479
+ if (Xc_ind[curr_pos] > *row)
1480
+ row = std::lower_bound(row + 1, ix_arr + end + 1, Xc_ind[curr_pos]);
1481
+ else
1482
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *row) - Xc_ind;
1483
+ }
1484
+ }
1485
+
1486
+ return st_non_na;
1487
+ }
1488
+
1489
+ size_t move_NAs_to_front(size_t ix_arr[], size_t st, size_t end, int x[])
1490
+ {
1491
+ size_t st_non_na = st;
1492
+ size_t temp;
1493
+
1494
+ for (size_t row = st; row <= end; row++)
1495
+ {
1496
+ if (x[ix_arr[row]] < 0)
1497
+ {
1498
+ temp = ix_arr[st_non_na];
1499
+ ix_arr[st_non_na] = ix_arr[row];
1500
+ ix_arr[row] = temp;
1501
+ st_non_na++;
1502
+ }
1503
+ }
1504
+
1505
+ return st_non_na;
1506
+ }
1507
+
1508
+ size_t center_NAs(size_t *restrict ix_arr, size_t st_left, size_t st, size_t curr_pos)
1509
+ {
1510
+ size_t temp;
1511
+ for (size_t row = st_left; row < st; row++)
1512
+ {
1513
+ temp = ix_arr[--curr_pos];
1514
+ ix_arr[curr_pos] = ix_arr[row];
1515
+ ix_arr[row] = temp;
1516
+ }
1517
+
1518
+ return curr_pos;
1519
+ }
1520
+
1521
+ void todense(size_t ix_arr[], size_t st, size_t end,
1522
+ size_t col_num, double *restrict Xc, sparse_ix Xc_ind[], sparse_ix Xc_indptr[],
1523
+ double *restrict buffer_arr)
1524
+ {
1525
+ std::fill(buffer_arr, buffer_arr + (end - st + 1), (double)0);
1526
+
1527
+ size_t st_col = Xc_indptr[col_num];
1528
+ size_t end_col = Xc_indptr[col_num + 1] - 1;
1529
+ size_t curr_pos = st_col;
1530
+ size_t ind_end_col = Xc_ind[end_col];
1531
+ size_t *ptr_st = std::lower_bound(ix_arr + st, ix_arr + end + 1, Xc_ind[st_col]);
1532
+
1533
+ for (size_t *row = ptr_st;
1534
+ row != ix_arr + end + 1 && curr_pos != end_col + 1 && ind_end_col >= *row;
1535
+ )
1536
+ {
1537
+ if (Xc_ind[curr_pos] == *row)
1538
+ {
1539
+ buffer_arr[row - (ix_arr + st)] = Xc[curr_pos];
1540
+ if (row == ix_arr + end || curr_pos == end_col) break;
1541
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *(++row)) - Xc_ind;
1542
+ }
1543
+
1544
+ else
1545
+ {
1546
+ if (Xc_ind[curr_pos] > *row)
1547
+ row = std::lower_bound(row + 1, ix_arr + end + 1, Xc_ind[curr_pos]);
1548
+ else
1549
+ curr_pos = std::lower_bound(Xc_ind + curr_pos + 1, Xc_ind + end_col + 1, *row) - Xc_ind;
1550
+ }
1551
+ }
1552
+ }
1553
+
1554
+ /* Function to handle interrupt signals */
1555
+ void set_interrup_global_variable(int s)
1556
+ {
1557
+ fprintf(stderr, "Error: procedure was interrupted\n");
1558
+ #pragma omp critical
1559
+ {
1560
+ interrupt_switch = true;
1561
+ }
1562
+ }
1563
+
1564
+ /* Return the #def'd constants from standard header. This is in order to determine if the return
1565
+ value from the 'fit_model' function is a success or failure within Cython, which does not
1566
+ allow importing #def'd macro values. */
1567
+ int return_EXIT_SUCCESS()
1568
+ {
1569
+ return EXIT_SUCCESS;
1570
+ }
1571
+ int return_EXIT_FAILURE()
1572
+ {
1573
+ return EXIT_FAILURE;
1574
+ }