igraph 0.3.3 → 0.9.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,324 @@
1
+ #include "igraph.h"
2
+ #include "ruby.h"
3
+ #include "cIGraph.h"
4
+
5
+ /* call-seq:
6
+ * IGraph::Generate.adjacency(matrix,mode) -> IGraph
7
+ *
8
+ * Creates a graph object from an adjacency matrix.
9
+ *
10
+ * matrix should be given as an IGraphMatrix object. mode controls how the
11
+ * matrix is interpreted:
12
+ *
13
+ * IGraph::ADJ_DIRECTED - The graph will be directed and an element
14
+ * gives the number of edges between two vertex.
15
+ *
16
+ * IGraph::ADJ_UNDIRECTED - This is the same as
17
+ * IGraph::ADJ_MAX, for convenience.
18
+ *
19
+ * IGraph::ADJ_MAX - Undirected graph will be created and the
20
+ * number of edges between vertex i and j is max(A(i,j), A(j,i)).
21
+ *
22
+ * IGraph::ADJ_MIN - Undirected graph will be created with
23
+ * min(A(i,j), A(j,i)) edges between vertex i and j.
24
+ *
25
+ * IGraph::ADJ_PLUS - Undirected graph will be created with
26
+ * A(i,j)+A(j,i) edges between vertex i and j.
27
+ *
28
+ * IGraph::ADJ_UPPER - Undirected graph will be created, only the
29
+ * upper right triangle (including the diagonal) is used for the number of
30
+ * edges.
31
+ *
32
+ * IGraph::ADJ_LOWER - Undirected graph will be created, only the
33
+ * lower left triangle (including th * e diagonal) is used for creating the
34
+ * edges.
35
+ */
36
+ VALUE cIGraph_adjacency(VALUE self, VALUE matrix, VALUE mode){
37
+
38
+ igraph_t *graph;
39
+ igraph_matrix_t *matrixp;
40
+ VALUE new_graph;
41
+
42
+ new_graph = cIGraph_alloc(cIGraph);
43
+ Data_Get_Struct(new_graph, igraph_t, graph);
44
+
45
+ Data_Get_Struct(matrix, igraph_matrix_t, matrixp);
46
+
47
+ igraph_destroy(graph);
48
+ igraph_adjacency(graph, matrixp, NUM2INT(mode));
49
+
50
+ return new_graph;
51
+
52
+ }
53
+
54
+ /* call-seq:
55
+ * IGraph::Generate.star(n,mode,center) -> IGraph
56
+ *
57
+ * Creates a star graph, every vertex connects only to the center.
58
+ *
59
+ * The number of vertices should be given in n. mode gives the type of the
60
+ * star graph to create. Possible values:
61
+ *
62
+ * IGraph::STAR_OUT - directed star graph, edges point from the center to the
63
+ * other vertices.
64
+ *
65
+ * IGraph::STAR_IN - directed star graph, edges point to the center from the
66
+ * other vertices.
67
+ *
68
+ * IGraph::STAR_UNDIRECTED - an undirected star graph is created.
69
+ *
70
+ * The id of the vertex which will be the center of the graph is given by
71
+ * center
72
+ */
73
+ VALUE cIGraph_star(VALUE self, VALUE n, VALUE mode, VALUE center){
74
+
75
+ igraph_t *graph;
76
+ VALUE new_graph;
77
+
78
+ new_graph = cIGraph_alloc(cIGraph);
79
+ Data_Get_Struct(new_graph, igraph_t, graph);
80
+
81
+ igraph_destroy(graph);
82
+ igraph_star(graph, NUM2INT(n), NUM2INT(mode), NUM2INT(center));
83
+
84
+ return new_graph;
85
+
86
+ }
87
+
88
+ /* call-seq:
89
+ * IGraph::Generate.lattice(dim,directed,mutual,circular) -> IGraph
90
+ *
91
+ * Creates most kind of lattices.
92
+ *
93
+ * The dimensions of the lattice should be given as an Array of Fixnums in dim
94
+ *
95
+ * directed: Boolean, whether to create a directed graph. The direction of
96
+ * the edges is determined by the generation algorithm and is unlikely to
97
+ * suit you, so this isn't a very useful option.
98
+ *
99
+ * mutual: Boolean, if the graph is directed this gives whether to create
100
+ * all connections as mutual.
101
+ *
102
+ * circular: Boolean, defines whether the generated lattice is periodic.
103
+ */
104
+ VALUE cIGraph_lattice(VALUE self, VALUE dim, VALUE directed, VALUE mutual, VALUE circular){
105
+
106
+ igraph_t *graph;
107
+ VALUE new_graph;
108
+ igraph_vector_t dimvector;
109
+ int i;
110
+
111
+ new_graph = cIGraph_alloc(cIGraph);
112
+ Data_Get_Struct(new_graph, igraph_t, graph);
113
+
114
+ igraph_vector_init(&dimvector,0);
115
+ for(i=0; i<RARRAY(dim)->len; i++){
116
+ igraph_vector_push_back(&dimvector,NUM2INT(RARRAY(dim)->ptr[i]));
117
+ }
118
+
119
+ igraph_destroy(graph);
120
+ igraph_lattice(graph, &dimvector, 0,
121
+ directed == Qtrue ? 1 : 0,
122
+ mutual == Qtrue ? 1 : 0,
123
+ circular == Qtrue ? 1 : 0);
124
+
125
+ igraph_vector_destroy(&dimvector);
126
+
127
+ return new_graph;
128
+
129
+ }
130
+
131
+ /* call-seq:
132
+ * IGraph::Generate.ring(n,directed,mutual,circular) -> IGraph
133
+ *
134
+ * Creates a ring graph, a one dimensional lattice.
135
+ *
136
+ * n: The number of vertices in the ring.
137
+ *
138
+ * directed: Logical, whether to create a directed ring.
139
+ *
140
+ * mutual: Logical, whether to create mutual edges in a directed ring. It is
141
+ * ignored for undirected graphs.
142
+ *
143
+ * circular: Logical, if false, the ring will be open (this is not a real
144
+ * ring actually).
145
+ */
146
+ VALUE cIGraph_ring(VALUE self, VALUE n, VALUE directed, VALUE mutual, VALUE circular){
147
+
148
+ igraph_t *graph;
149
+ VALUE new_graph;
150
+
151
+ new_graph = cIGraph_alloc(cIGraph);
152
+ Data_Get_Struct(new_graph, igraph_t, graph);
153
+
154
+ igraph_destroy(graph);
155
+ igraph_ring(graph, NUM2INT(n),
156
+ directed == Qtrue ? 1 : 0,
157
+ mutual == Qtrue ? 1 : 0,
158
+ circular == Qtrue ? 1 : 0);
159
+
160
+ return new_graph;
161
+
162
+ }
163
+
164
+ /* call-seq:
165
+ * IGraph::Generate.tree(n,children,type) -> IGraph
166
+ *
167
+ * Creates a tree in which almost all vertices have the same number of
168
+ * children.
169
+ *
170
+ * n: Integer, the number of vertices in the graph.
171
+ *
172
+ * children: Integer, the number of children of a vertex in the tree.
173
+ *
174
+ * type: Constant, gives whether to create a directed tree, and if this is
175
+ * the case, also its orientation. Possible values:
176
+ *
177
+ * IGraph::TREE_OUT - directed tree, the edges point from the parents to
178
+ * their children,
179
+ *
180
+ * IGraph::TREE_IN - directed tree, the edges point from the children to
181
+ * their parents.
182
+ *
183
+ * IGraph::TREE_UNDIRECTED - undirected tree.
184
+ */
185
+ VALUE cIGraph_tree(VALUE self, VALUE n, VALUE children, VALUE type){
186
+
187
+ igraph_t *graph;
188
+ VALUE new_graph;
189
+
190
+ new_graph = cIGraph_alloc(cIGraph);
191
+ Data_Get_Struct(new_graph, igraph_t, graph);
192
+
193
+ igraph_destroy(graph);
194
+ igraph_tree(graph, NUM2INT(n), NUM2INT(children), NUM2INT(type));
195
+
196
+ return new_graph;
197
+
198
+ }
199
+ /* call-seq:
200
+ * IGraph::Generate.full(n,directed,loops) -> IGraph
201
+ *
202
+ * Creates a full graph (directed or undirected, with or without loops).
203
+ *
204
+ * In a full graph every possible edge is present, every vertex is connected
205
+ * to every other vertex.
206
+ *
207
+ * n: Integer, the number of vertices in the graph.
208
+ *
209
+ * directed: Logical, whether to create a directed graph.
210
+ *
211
+ * loops: Logical, whether to include self-edges (loops).
212
+ */
213
+ VALUE cIGraph_full(VALUE self, VALUE n, VALUE directed, VALUE loops){
214
+
215
+ igraph_t *graph;
216
+ VALUE new_graph;
217
+
218
+ new_graph = cIGraph_alloc(cIGraph);
219
+ Data_Get_Struct(new_graph, igraph_t, graph);
220
+
221
+ igraph_destroy(graph);
222
+ igraph_full(graph, NUM2INT(n),
223
+ directed == Qtrue ? 1 : 0,
224
+ loops == Qtrue ? 1 : 0);
225
+
226
+ return new_graph;
227
+
228
+ }
229
+ /* call-seq:
230
+ * IGraph::Generate.atlas(number) -> IGraph
231
+ *
232
+ * Create a small graph from the $B!H(BGraph Atlas$B!I(B.
233
+ *
234
+ * The number of the graph is given as the parameter. The graphs are listed:
235
+ *
236
+ * 1. in increasing order of number of nodes
237
+ * 2. for a fixed number of nodes, in increasing order of the number of edges
238
+ * 3. for fixed numbers of nodes and edges, in increasing order of the degree
239
+ * sequence, for example 111223 < 112222;
240
+ * 4. for fixed degree sequence, in increasing number of automorphisms.
241
+ *
242
+ * The data was converted from the networkx software package, see
243
+ * http://networkx.lanl.gov.
244
+ *
245
+ * See An Atlas of Graphs by Ronald C. Read and Robin J. Wilson, Oxford
246
+ * University Press, 1998.
247
+ */
248
+ VALUE cIGraph_atlas(VALUE self, VALUE n){
249
+
250
+ igraph_t *graph;
251
+ VALUE new_graph;
252
+
253
+ new_graph = cIGraph_alloc(cIGraph);
254
+ Data_Get_Struct(new_graph, igraph_t, graph);
255
+
256
+ igraph_destroy(graph);
257
+ igraph_atlas(graph, NUM2INT(n));
258
+
259
+ return new_graph;
260
+
261
+ }
262
+ /* call-seq:
263
+ * IGraph::Generate.chordal_ring(nodes,w) -> IGraph
264
+ *
265
+ * Create an extended chordal ring. An extended chordal ring is regular graph,
266
+ * each node has the same degree. It can be obtained from a simple ring by
267
+ * adding some extra edges specified by a matrix. Let p denote the number of
268
+ * columns in the W matrix. The extra edges of vertex i are added according
269
+ * to column (i mod p) in W. The number of extra edges is the number of rows
270
+ * in W: for each row j an edge i->i+w[ij] is added if i+w[ij] is less than
271
+ * the number of total nodes.
272
+ *
273
+ * See also Kotsis, G: Interconnection Topologies for Parallel Processing
274
+ * Systems, PARS Mitteilungen 11, 1-6, 1993.
275
+ *
276
+ * nodes: Integer, the number of vertices in the graph. It must be at least 3.
277
+ *
278
+ * w: The matrix specifying the extra edges. The number of columns should
279
+ * divide the number of total vertices.
280
+ */
281
+ VALUE cIGraph_extended_chordal_ring(VALUE self, VALUE n, VALUE matrix){
282
+
283
+ igraph_t *graph;
284
+ igraph_matrix_t *matrixp;
285
+ VALUE new_graph;
286
+
287
+ new_graph = cIGraph_alloc(cIGraph);
288
+ Data_Get_Struct(new_graph, igraph_t, graph);
289
+
290
+ Data_Get_Struct(matrix, igraph_matrix_t, matrixp);
291
+
292
+ igraph_destroy(graph);
293
+ igraph_extended_chordal_ring(graph, NUM2INT(n), matrixp);
294
+
295
+ return new_graph;
296
+
297
+ }
298
+
299
+ /* call-seq:
300
+ * g.connect_neighborhood(order,mode) -> nil
301
+ *
302
+ * Connects every vertex to its neighborhood This function adds new edges to
303
+ * graph. For each vertex vertices reachable by at most order steps and not
304
+ * yet connected to the vertex a new edge is created.
305
+ *
306
+ * order: Integer, it gives the distance within which the vertices will be
307
+ * connected to the source vertex.
308
+ *
309
+ * mode: Constant, it specifies how the neighborhood search is performed for
310
+ * directed graphs. If IGraph::OUT then vertices reachable from the source
311
+ * vertex will be connected, IGraph::IN is the opposite. If IGRAPH_ALL then
312
+ * the directed graph is considered as an undirected one.
313
+ */
314
+ VALUE cIGraph_connect_neighborhood(VALUE self, VALUE order, VALUE mode){
315
+
316
+ igraph_t *graph;
317
+
318
+ Data_Get_Struct(self, igraph_t, graph);
319
+
320
+ igraph_connect_neighborhood(graph, NUM2INT(order), NUM2INT(mode));
321
+
322
+ return Qnil;
323
+
324
+ }
@@ -2,6 +2,20 @@
2
2
  #include "ruby.h"
3
3
  #include "cIGraph.h"
4
4
 
5
+ /* call-seq:
6
+ * IGraph::GenerateRandom.grg_game(nodes,radius,torus) -> IGraph
7
+ *
8
+ * Generating geometric random graphs. A geometric random graph is created by
9
+ * dropping points (=vertices) randomly to the unit square and then
10
+ * connecting all those pairs which are less than radius apart in Euclidean
11
+ * norm.
12
+ *
13
+ * nodes: The number of vertices in the graph.
14
+ *
15
+ * radius: The radius within which the vertices will be connected.
16
+ * torus: Logical constant, if true periodic boundary conditions will be used,
17
+ * ie. the vertices are assumed to be on a torus instead of a square.
18
+ */
5
19
  VALUE cIGraph_grg_game(VALUE self, VALUE nodes, VALUE radius, VALUE torus){
6
20
 
7
21
  igraph_t *graph;
@@ -18,6 +32,20 @@ VALUE cIGraph_grg_game(VALUE self, VALUE nodes, VALUE radius, VALUE torus){
18
32
 
19
33
  }
20
34
 
35
+ /* call-seq:
36
+ * IGraph::GenerateRandom.barabasi_game(n,m,outpref,directed) -> IGraph
37
+ *
38
+ * Generates a graph based on the Barab�si-Albert model.
39
+ *
40
+ * n: The number of vertices in the graph.
41
+ * m: The number of outgoing edges generated for each vertex.
42
+ *
43
+ * outpref: Boolean, if true not only the in- but also the out-degree of a
44
+ * vertex increases its citation probability. Ie. the citation probability is
45
+ * determined by the total degree of the vertices.
46
+ *
47
+ * directed: Boolean, whether to generate a directed graph.
48
+ */
21
49
  VALUE cIGraph_barabasi_game(VALUE self, VALUE nodes, VALUE m, VALUE outpref, VALUE directed){
22
50
 
23
51
  igraph_t *graph;
@@ -34,6 +62,37 @@ VALUE cIGraph_barabasi_game(VALUE self, VALUE nodes, VALUE m, VALUE outpref, VAL
34
62
 
35
63
  }
36
64
 
65
+ /* call-seq:
66
+ * IGraph::GenerateRandom.nonlinear_barabasi_game(n,m,outpref,directed) -> IGraph
67
+ *
68
+ * Generates graph with non-linear preferential attachment.
69
+ *
70
+ * This function is very similar to barabasi_game(), only in this game the
71
+ * probability that a new vertex attaches to a given old vertex is not
72
+ * proportional to the degree of the old node, but some power of the degree
73
+ * of the old node.
74
+ *
75
+ * More precisely the attachment probability is the degree to the power of
76
+ * power plus zeroappeal.
77
+ *
78
+ * This function might generate graphs with multiple edges if the value of m
79
+ * is at least two. You can call simplify() to get rid of the multiple
80
+ * edges.
81
+ *
82
+ * n: The number of vertices in the generated graph.
83
+ *
84
+ * power: The power of the preferential attachment.
85
+ *
86
+ * m: The number of edges to generate in each time step.
87
+ *
88
+ * outpref: Logical constant, if TRUE then the preferential attachment is
89
+ * based on the total degree of the nodes instead of the in-degree.
90
+ *
91
+ * zeroappeal: Positive number, the attachment probability for vertices with
92
+ * degree zero.
93
+ *
94
+ * directed: Logical constant, whether to generate a directed graph.
95
+ */
37
96
  VALUE cIGraph_nonlinear_barabasi_game(VALUE self, VALUE nodes, VALUE power, VALUE m, VALUE outpref, VALUE zeroappeal, VALUE directed){
38
97
 
39
98
  igraph_t *graph;
@@ -53,6 +112,28 @@ VALUE cIGraph_nonlinear_barabasi_game(VALUE self, VALUE nodes, VALUE power, VALU
53
112
 
54
113
  }
55
114
 
115
+ /* call-seq:
116
+ * IGraph::GenerateRandom.erdos_renyi_game(type,n,p_or_m,directed,loops) -> IGraph
117
+ *
118
+ * Generates a random (Erdos-Renyi) graph.
119
+ *
120
+ * type: The type of the random graph, possible values:
121
+ *
122
+ * IGraph::ERDOS_RENYI_GNM - G(n,m) graph, m edges are selected uniformly
123
+ * randomly in a graph with n vertices.
124
+ *
125
+ * IGraph::ERDOS_RENYI_GNP - G(n,p) graph, every possible edge is included in
126
+ * the graph with probability p.
127
+ *
128
+ * n: The number of vertices in the graph.
129
+ *
130
+ * p_or_m: This is the p parameter for G(n,p) graphs and the m parameter
131
+ * for G(n,m) graphs.
132
+ *
133
+ * directed: Logical, whether to generate a directed graph.
134
+ *
135
+ * loops: Logical, whether to generate loops (self) edges.
136
+ */
56
137
  VALUE cIGraph_erdos_renyi_game(VALUE self, VALUE type, VALUE nodes, VALUE mp, VALUE directed, VALUE loops){
57
138
 
58
139
  igraph_t *graph;
@@ -70,3 +151,640 @@ VALUE cIGraph_erdos_renyi_game(VALUE self, VALUE type, VALUE nodes, VALUE mp, VA
70
151
  return new_graph;
71
152
 
72
153
  }
154
+
155
+ /* call-seq:
156
+ * IGraph::GenerateRandom.watts_strogatz_game(dim,size,nei,p) -> IGraph
157
+ *
158
+ * The Watts-Strogatz small-world model This function generates a graph
159
+ * according to the Watts-Strogatz model of small-world networks. The graph
160
+ * is obtained by creating a circular undirected lattice and then rewire the
161
+ * edges randomly with a constant probability.
162
+ *
163
+ * dim: The dimension of the lattice.
164
+ *
165
+ * size: The size of the lattice along each dimension.
166
+ *
167
+ * nei: The size of the neighborhood for each vertex.
168
+ *
169
+ * p: The rewiring probability. A real number between zero and one (inclusive).
170
+ */
171
+ VALUE cIGraph_watts_strogatz_game(VALUE self, VALUE dim, VALUE size, VALUE nei, VALUE p){
172
+
173
+ igraph_t *graph;
174
+ VALUE new_graph;
175
+
176
+ new_graph = cIGraph_alloc(cIGraph);
177
+ Data_Get_Struct(new_graph, igraph_t, graph);
178
+
179
+ igraph_destroy(graph);
180
+ igraph_watts_strogatz_game(graph, NUM2INT(dim), NUM2INT(size),
181
+ NUM2INT(nei), NUM2DBL(p));
182
+
183
+ return new_graph;
184
+
185
+ }
186
+
187
+ /* call-seq:
188
+ * IGraph::GenerateRandom.degree_sequence_game(out_deg,in_deg) -> IGraph
189
+ *
190
+ * Generates a random graph with a given degree sequence
191
+ *
192
+ * out_deg: The degree sequence for an undirected graph (if in_seq is of
193
+ * length zero), or the out-degree sequence of a directed graph (if in_deq is
194
+ * not of length zero.
195
+ *
196
+ * in_deg: It is either a zero-length Array or the in-degree sequence.
197
+ */
198
+ VALUE cIGraph_degree_sequence_game(VALUE self, VALUE out_deg, VALUE in_deg){
199
+
200
+ igraph_t *graph;
201
+ VALUE new_graph;
202
+ igraph_vector_t out_degv;
203
+ igraph_vector_t in_degv;
204
+ int i;
205
+
206
+ new_graph = cIGraph_alloc(cIGraph);
207
+ Data_Get_Struct(new_graph, igraph_t, graph);
208
+
209
+ igraph_vector_init(&out_degv,0);
210
+ igraph_vector_init(&in_degv,0);
211
+
212
+ for(i=0;i<RARRAY(out_deg)->len;i++){
213
+ igraph_vector_push_back(&out_degv,NUM2INT(RARRAY(out_deg)->ptr[i]));
214
+ }
215
+ for(i=0;i<RARRAY(in_deg)->len;i++){
216
+ igraph_vector_push_back(&in_degv,NUM2INT(RARRAY(in_deg)->ptr[i]));
217
+ }
218
+
219
+ igraph_destroy(graph);
220
+ igraph_degree_sequence_game(graph, &out_degv, &in_degv, 0);
221
+
222
+ igraph_vector_destroy(&out_degv);
223
+ igraph_vector_destroy(&in_degv);
224
+
225
+ return new_graph;
226
+
227
+ }
228
+
229
+ /* call-seq:
230
+ * IGraph::GenerateRandom.growing_random_game(n,m,directed,citation) -> IGraph
231
+ *
232
+ * Generates a growing random graph.
233
+ *
234
+ * This function simulates a growing random graph. In each discrete time
235
+ * step a new vertex is added and a number of new edges are also added.
236
+ * These graphs are known to be different from standard (not growing) random
237
+ * graphs.
238
+ *
239
+ * n: The number of vertices in the graph.
240
+ *
241
+ * m: The number of edges to add in a time step (ie. after adding a vertex).
242
+ *
243
+ * directed: Boolean, whether to generate a directed graph.
244
+ *
245
+ * citation: Boolean, if TRUE, the edges always originate from the most
246
+ * recently added vertex.
247
+ */
248
+ VALUE cIGraph_growing_random_game(VALUE self, VALUE n, VALUE m, VALUE directed, VALUE citation){
249
+
250
+ igraph_t *graph;
251
+ VALUE new_graph;
252
+
253
+ new_graph = cIGraph_alloc(cIGraph);
254
+ Data_Get_Struct(new_graph, igraph_t, graph);
255
+
256
+ igraph_destroy(graph);
257
+ igraph_growing_random_game(graph, NUM2INT(n), NUM2INT(m),
258
+ directed == Qtrue ? 1: 0,
259
+ citation == Qtrue ? 1: 0);
260
+
261
+ return new_graph;
262
+
263
+ }
264
+
265
+ /* call-seq:
266
+ * IGraph::GenerateRandom.callaway_traits_game(nodes,types,edges_per_step,type_dist,pref_matrix,directed) -> IGraph
267
+ *
268
+ * This function simulates a growing network with vertex types. The different
269
+ * types of vertices prefer to connect other types of vertices with a given
270
+ * probability.
271
+ *
272
+ * The simulation goes like this: in each discrete time step a new vertex is
273
+ * added to the graph. The type of this vertex is generated based on
274
+ * type_dist. Then two vertices are selected uniformly randomly from the
275
+ * graph. The probability that they will be connected depends on the types
276
+ * of these vertices and is taken from pref_matrix. Then another two vertices
277
+ * are selected and this is repeated edges_per_step times in each time step.
278
+ *
279
+ * nodes: The number of nodes in the graph.
280
+ *
281
+ * types: Number of node types.
282
+ *
283
+ * edges_per_step: The number of edges to be add per time step.
284
+ *
285
+ * type_dist: Array giving the distribution of the vertex types.
286
+ *
287
+ * pref_matrix: IGraphMatrix giving the connection probabilities for the
288
+ * vertex types.
289
+ *
290
+ * directed: Logical, whether to generate a directed graph.
291
+ */
292
+ VALUE cIGraph_callaway_traits_game(VALUE self, VALUE nodes, VALUE types, VALUE e_per_step, VALUE type_dist, VALUE pref_matrix, VALUE directed){
293
+
294
+ igraph_t *graph;
295
+ VALUE new_graph;
296
+ igraph_vector_t type_distv;
297
+ igraph_matrix_t *pref_matrixm;
298
+ int i;
299
+
300
+ new_graph = cIGraph_alloc(cIGraph);
301
+ Data_Get_Struct(new_graph, igraph_t, graph);
302
+
303
+ Data_Get_Struct(pref_matrix, igraph_matrix_t, pref_matrixm);
304
+
305
+ igraph_vector_init(&type_distv,0);
306
+
307
+ for(i=0;i<RARRAY(type_dist)->len;i++){
308
+ igraph_vector_push_back(&type_distv,NUM2DBL(RARRAY(type_dist)->ptr[i]));
309
+ }
310
+
311
+ igraph_destroy(graph);
312
+ igraph_callaway_traits_game(graph, NUM2INT(nodes), NUM2INT(types),
313
+ NUM2INT(e_per_step), &type_distv,
314
+ pref_matrixm,
315
+ directed == Qtrue ? 1: 0);
316
+
317
+ igraph_vector_destroy(&type_distv);
318
+
319
+ return new_graph;
320
+
321
+
322
+ }
323
+
324
+ /* call-seq:
325
+ * IGraph::GenerateRandom.establishment_game(nodes,types,k,type_dist,pref_matrix,directed) -> IGraph
326
+ *
327
+ * Generates a graph with a simple growing model with vertex types
328
+ *
329
+ * The simulation goes like this: a single vertex is added at each time step.
330
+ * This new vertex tries to connect to k vertices in the graph. The
331
+ * probability that such a connection is realized depends on the types of the
332
+ * vertices involved.
333
+ *
334
+ * nodes: The number of vertices in the graph.
335
+ *
336
+ * types: The number of vertex types.
337
+ *
338
+ * k: The number of connections tried in each time step.
339
+ *
340
+ * type_dist: Array giving the distribution of vertex types.
341
+ *
342
+ * pref_matrix: IGraphMatrix giving the connection probabilities for
343
+ * different vertex types.
344
+ *
345
+ * directed: Logical, whether to generate a directed graph.
346
+ */
347
+ VALUE cIGraph_establishment_game(VALUE self, VALUE nodes, VALUE types, VALUE k, VALUE type_dist, VALUE pref_matrix, VALUE directed){
348
+
349
+ igraph_t *graph;
350
+ VALUE new_graph;
351
+ igraph_vector_t type_distv;
352
+ igraph_matrix_t *pref_matrixm;
353
+ int i;
354
+
355
+ new_graph = cIGraph_alloc(cIGraph);
356
+ Data_Get_Struct(new_graph, igraph_t, graph);
357
+
358
+ Data_Get_Struct(pref_matrix, igraph_matrix_t, pref_matrixm);
359
+
360
+ igraph_vector_init(&type_distv,0);
361
+
362
+ for(i=0;i<RARRAY(type_dist)->len;i++){
363
+ igraph_vector_push_back(&type_distv,NUM2DBL(RARRAY(type_dist)->ptr[i]));
364
+ }
365
+
366
+ igraph_destroy(graph);
367
+ igraph_establishment_game(graph, NUM2INT(nodes), NUM2INT(types),
368
+ NUM2INT(k), &type_distv,
369
+ pref_matrixm,
370
+ directed == Qtrue ? 1: 0);
371
+
372
+ igraph_vector_destroy(&type_distv);
373
+
374
+ return new_graph;
375
+
376
+
377
+ }
378
+
379
+ /* call-seq:
380
+ * IGraph::GenerateRandom.preference_game(nodes,types,type_dist,pref_matrixdirected,loops) -> IGraph
381
+ *
382
+ * Generates a graph with vertex types and connection preferences
383
+ *
384
+ * This is practically the nongrowing variant of igraph_establishment_game.
385
+ * A given number of vertices are generated. Every vertex is assigned to a
386
+ * vertex type according to the given type probabilities. Finally, every
387
+ * vertex pair is evaluated and an edge is created between them with a
388
+ * probability depending on the types of the vertices involved.
389
+ *
390
+ * nodes: The number of vertices in the graph.
391
+ *
392
+ * types: The number of vertex types.
393
+ *
394
+ * type_dist: Vector giving the distribution of vertex types.
395
+ *
396
+ * pref_matrix: IGraphMatrix giving the connection probabilities for
397
+ * different vertex types.
398
+ *
399
+ * directed: Logical, whether to generate a directed graph. If undirected
400
+ * graphs are requested, only the lower left triangle of the preference
401
+ * matrix is considered.
402
+ *
403
+ * loops: Logical, whether loop edges are allowed.
404
+ */
405
+ VALUE cIGraph_preference_game(VALUE self, VALUE nodes, VALUE types, VALUE type_dist, VALUE pref_matrix, VALUE directed, VALUE loops){
406
+
407
+ igraph_t *graph;
408
+ VALUE new_graph;
409
+ igraph_vector_t type_distv;
410
+ igraph_matrix_t *pref_matrixm;
411
+ int i;
412
+
413
+ new_graph = cIGraph_alloc(cIGraph);
414
+ Data_Get_Struct(new_graph, igraph_t, graph);
415
+
416
+ Data_Get_Struct(pref_matrix, igraph_matrix_t, pref_matrixm);
417
+
418
+ igraph_vector_init(&type_distv,0);
419
+
420
+ for(i=0;i<RARRAY(type_dist)->len;i++){
421
+ igraph_vector_push_back(&type_distv,NUM2DBL(RARRAY(type_dist)->ptr[i]));
422
+ }
423
+
424
+ igraph_destroy(graph);
425
+ igraph_preference_game(graph, NUM2INT(nodes), NUM2INT(types),
426
+ &type_distv,
427
+ pref_matrixm,
428
+ NULL,
429
+ directed == Qtrue ? 1: 0,
430
+ loops == Qtrue ? 1 : 0);
431
+
432
+ igraph_vector_destroy(&type_distv);
433
+
434
+ return new_graph;
435
+
436
+
437
+ }
438
+
439
+ /* call-seq:
440
+ * IGraph::GenerateRandom.asymmetric_preference_game(nodes,types,type_dist_matrix,pref_matrix,loops) -> IGraph
441
+ *
442
+ * Generates a graph with asymmetric vertex types and connection preferences
443
+ *
444
+ * This is the asymmetric variant of preference_game() . A given number of
445
+ * vertices are generated. Every vertex is assigned to an "incoming" and an
446
+ * "outgoing" vertex type according to the given joint type probabilities.
447
+ * Finally, every vertex pair is evaluated and a directed edge is created
448
+ * between them with a probability depending on the "outgoing" type of the
449
+ * source vertex and the "incoming" type of the target vertex.
450
+ *
451
+ * nodes: The number of vertices in the graph.
452
+ *
453
+ * types: The number of vertex types.
454
+ *
455
+ * type_dist_matrix: IGraphMatrix giving the joint distribution of vertex
456
+ * types.
457
+ *
458
+ * pref_matrix: IGraphMatrix giving the connection probabilities for different
459
+ * vertex types.
460
+ *
461
+ * loops: Logical, whether loop edges are allowed.
462
+ */
463
+ VALUE cIGraph_asymmetric_preference_game(VALUE self, VALUE nodes, VALUE types, VALUE type_dist_matrix, VALUE pref_matrix, VALUE loops){
464
+
465
+ igraph_t *graph;
466
+ VALUE new_graph;
467
+ igraph_matrix_t *type_dist_matrixm;
468
+ igraph_matrix_t *pref_matrixm;
469
+
470
+ new_graph = cIGraph_alloc(cIGraph);
471
+ Data_Get_Struct(new_graph, igraph_t, graph);
472
+
473
+ Data_Get_Struct(pref_matrix, igraph_matrix_t, pref_matrixm);
474
+ Data_Get_Struct(type_dist_matrix, igraph_matrix_t, type_dist_matrixm);
475
+
476
+ igraph_destroy(graph);
477
+ igraph_asymmetric_preference_game(graph, NUM2INT(nodes), NUM2INT(types),
478
+ type_dist_matrixm,
479
+ pref_matrixm,
480
+ NULL, NULL,
481
+ loops == Qtrue ? 1 : 0);
482
+
483
+ return new_graph;
484
+
485
+ }
486
+
487
+ /* call-seq:
488
+ * IGraph::GenerateRandom.recent_degree_game(n,power,window,m,outseq,outpref,zero_appeal,directed) -> IGraph
489
+ *
490
+ * Stochastic graph generator based on the number of adjacent edges a node
491
+ * has gained recently
492
+ *
493
+ * n: The number of vertices in the graph, this is the same as the number of
494
+ * time steps.
495
+ *
496
+ * power: The exponent, the probability that a node gains a new edge is
497
+ * proportional to the number of edges it has gained recently (in the last
498
+ * window time steps) to power.
499
+ *
500
+ * window: Integer constant, the size of the time window to use to count the
501
+ * number of recent edges.
502
+ *
503
+ * m: Integer constant, the number of edges to add per time step
504
+ *
505
+ * outpref: Logical constant, if true the edges originated by a vertex also
506
+ * count as recent adjacent edges. It is false in most cases.
507
+ *
508
+ * zero_appeal: Constant giving the attractiveness of the vertices which
509
+ * haven't gained any edge recently.
510
+
511
+ * directed: Logical constant, whether to generate a directed graph.
512
+ */
513
+ VALUE cIGraph_recent_degree_game(VALUE self, VALUE n, VALUE power, VALUE window, VALUE m, VALUE outpref, VALUE zero_appeal, VALUE directed){
514
+
515
+ igraph_t *graph;
516
+ VALUE new_graph;
517
+
518
+ new_graph = cIGraph_alloc(cIGraph);
519
+ Data_Get_Struct(new_graph, igraph_t, graph);
520
+
521
+ igraph_destroy(graph);
522
+ igraph_recent_degree_game(graph, NUM2INT(n), NUM2DBL(power),
523
+ NUM2INT(window), NUM2INT(m),
524
+ NULL,
525
+ outpref == Qtrue ? 1: 0,
526
+ NUM2DBL(zero_appeal),
527
+ directed == Qtrue ? 1: 0);
528
+
529
+ return new_graph;
530
+
531
+ }
532
+
533
+ /* call-seq:
534
+ * IGraph::GenerateRandom.barabasi_aging_game(nodes,m,outpref,pa_exp,aging_exp,aging_bin,zero_deg_appeal,zero_age_appeal,deg_coef,age_coef,directed) -> IGraph
535
+ *
536
+ * Preferential attachment with aging of vertices.
537
+ *
538
+ * In this game, the probability that a node gains a new edge is given by
539
+ * its (in-)degree (k) and age (l). This probability has a degree dependent
540
+ * component multiplied by an age dependent component. The degree dependent
541
+ * part is: deg_coef times k to the power of pa_exp plus zero_deg_appeal; and
542
+ * the age dependent part is age_coef times l to the power of aging_exp plus
543
+ * zero_age_appeal.
544
+ *
545
+ * The age is based on the number of vertices in the network and the
546
+ * aging_bin argument: vertices grew one unit older after each aging_bin
547
+ * vertices added to the network.
548
+ *
549
+ * nodes: The number of vertices in the graph.
550
+ *
551
+ * m: The number of edges to add in each time step.
552
+ *
553
+ * outpref: Logical constant, whether the edges initiated by a vertex
554
+ * contribute to the probability to gain a new edge.
555
+ *
556
+ * pa_exp: The exponent of the preferential attachment, a small positive
557
+ * number usually, the value 1 yields the classic linear preferential
558
+ * attachment.
559
+ *
560
+ * aging_exp: The exponent of the aging, this is a negative number usually.
561
+ *
562
+ * aging_bin: Integer constant, the number of vertices to add before vertices
563
+ * in the network grew one unit older.
564
+ *
565
+ * zero_deg_appeal: The degree dependent part of the attractiveness of the
566
+ * zero degree vertices.
567
+ *
568
+ * zero_age_appeal: The age dependent part of the attractiveness of the
569
+ * vertices of age zero. This parameter is usually zero.
570
+ *
571
+ * deg_coef: The coefficient for the degree.
572
+ *
573
+ * age_coef: The coefficient for the age.
574
+ *
575
+ * directed: Logical constant, whether to generate a directed graph.
576
+ */
577
+ VALUE cIGraph_barabasi_aging_game(VALUE self, VALUE nodes, VALUE m, VALUE outpref, VALUE pa_exp, VALUE aging_exp, VALUE aging_bin, VALUE zero_deg_appeal, VALUE zero_age_appeal, VALUE deg_coef, VALUE age_coef, VALUE directed){
578
+
579
+ igraph_t *graph;
580
+ VALUE new_graph;
581
+
582
+ new_graph = cIGraph_alloc(cIGraph);
583
+ Data_Get_Struct(new_graph, igraph_t, graph);
584
+
585
+ igraph_destroy(graph);
586
+ igraph_barabasi_aging_game(graph, NUM2INT(nodes), NUM2INT(m),
587
+ NULL,
588
+ outpref == Qtrue ? 1: 0,
589
+ NUM2DBL(pa_exp), NUM2DBL(aging_exp),
590
+ NUM2INT(aging_bin),
591
+ NUM2DBL(zero_deg_appeal),
592
+ NUM2DBL(zero_age_appeal),
593
+ NUM2DBL(deg_coef),
594
+ NUM2DBL(age_coef),
595
+ directed == Qtrue ? 1: 0);
596
+
597
+ return new_graph;
598
+
599
+ }
600
+
601
+ /* call-seq:
602
+ * IGraph::GenerateRandom.recent_degree_aging_game(nodes,m,outpref,pa_exp,aging_exp,aging_bin,time_window,zero_appeal,directed) -> IGraph
603
+ *
604
+ * Preferential attachment based on the number of edges gained recently, with
605
+ * aging of vertices
606
+ *
607
+ * This game is very similar to igraph_barabasi_aging_game(), except that
608
+ * instead of the total number of adjacent edges the number of edges gained
609
+ * in the last time_window time steps are counted.
610
+ *
611
+ * The degree dependent part of the attractiveness is given by k to the power
612
+ * of pa_exp plus zero_appeal; the age dependent part is l to the power to
613
+ * aging_exp. k is the number of edges gained in the last time_window time
614
+ * steps, l is the age of the vertex.
615
+ *
616
+ * nodes: The number of vertices in the graph.
617
+ *
618
+ * m: The number of edges to add in each time step.
619
+ *
620
+ * outpref: Logical constant, whether the edges initiated by a vertex
621
+ * contribute to the probability to gain a new edge.
622
+ *
623
+ * pa_exp: The exponent of the preferential attachment, a small positive
624
+ * number usually, the value 1 yields the classic linear preferential
625
+ * attachment.
626
+ *
627
+ * aging_exp: The exponent of the aging, this is a negative number usually.
628
+ *
629
+ * aging_bin: Integer constant, the number of vertices to add before vertices
630
+ * in the network grew one unit older.
631
+ *
632
+ * zero_appeal: The degree dependent part of the attractiveness of the
633
+ * zero degree vertices.
634
+ *
635
+ * time_window: The time window to use to count the number of adjacent edges
636
+ * for the vertices.
637
+ *
638
+ * directed: Logical constant, whether to generate a directed graph.
639
+ */
640
+ VALUE cIGraph_recent_degree_aging_game(VALUE self, VALUE nodes, VALUE m, VALUE outpref, VALUE pa_exp, VALUE aging_exp, VALUE aging_bin, VALUE time_window, VALUE zero_appeal, VALUE directed){
641
+
642
+ igraph_t *graph;
643
+ VALUE new_graph;
644
+
645
+ new_graph = cIGraph_alloc(cIGraph);
646
+ Data_Get_Struct(new_graph, igraph_t, graph);
647
+
648
+ igraph_destroy(graph);
649
+ igraph_recent_degree_aging_game(graph, NUM2INT(nodes), NUM2INT(m),
650
+ NULL,
651
+ outpref == Qtrue ? 1: 0,
652
+ NUM2DBL(pa_exp), NUM2DBL(aging_exp),
653
+ NUM2INT(aging_bin),
654
+ NUM2INT(time_window),
655
+ NUM2DBL(zero_appeal),
656
+ directed == Qtrue ? 1: 0);
657
+
658
+ return new_graph;
659
+
660
+ }
661
+
662
+ /* call-seq:
663
+ * IGraph::GenerateRandom.cited_type_game(nodes,types,pref,edges_per_step_directed) -> IGraph
664
+ *
665
+ * Function to create a network based on some vertex categories. This function
666
+ * creates a citation network, in each step a single vertex and edges_per_step
667
+ * citating edges are added, nodes with different categories (may) have
668
+ * different probabilities to get cited, as given by the pref vector.
669
+ *
670
+ * Note that this function might generate networks with multiple edges if
671
+ * edges_per_step is greater than one. You might want to call
672
+ * igraph_simplify() on the result to remove multiple edges.
673
+ *
674
+ * nodes: The number of vertices in the network.
675
+ *
676
+ * types: Numeric Array giving the categories of the vertices, so it should
677
+ * contain nodes non-negative integer numbers. Types are numbered from zero.
678
+ *
679
+ * pref: The attractivity of the different vertex categories in an Array. Its
680
+ * length should be the maximum element in types plus one (types are numbered
681
+ * from zero).
682
+ *
683
+ * edges_per_step: Integer constant, the number of edges to add in each time
684
+ * step.
685
+ *
686
+ * directed: Logical constant, whether to create a directed network.
687
+ */
688
+ VALUE cIGraph_cited_type_game(VALUE self, VALUE nodes, VALUE types, VALUE pref, VALUE e_per_s, VALUE directed){
689
+
690
+ igraph_t *graph;
691
+ VALUE new_graph;
692
+ igraph_vector_t type_distv;
693
+ igraph_vector_t prefv;
694
+ int i;
695
+
696
+ new_graph = cIGraph_alloc(cIGraph);
697
+ Data_Get_Struct(new_graph, igraph_t, graph);
698
+
699
+ igraph_vector_init(&type_distv,0);
700
+ igraph_vector_init(&prefv,0);
701
+
702
+ for(i=0;i<RARRAY(types)->len;i++){
703
+ igraph_vector_push_back(&type_distv,NUM2DBL(RARRAY(types)->ptr[i]));
704
+ }
705
+ for(i=0;i<RARRAY(pref)->len;i++){
706
+ igraph_vector_push_back(&prefv,NUM2DBL(RARRAY(pref)->ptr[i]));
707
+ }
708
+
709
+ igraph_destroy(graph);
710
+ igraph_cited_type_game(graph, NUM2INT(nodes),
711
+ &type_distv,
712
+ &prefv,
713
+ NUM2INT(e_per_s),
714
+ directed == Qtrue ? 1: 0);
715
+
716
+ igraph_vector_destroy(&type_distv);
717
+ igraph_vector_destroy(&prefv);
718
+
719
+ return new_graph;
720
+
721
+
722
+ }
723
+ /* call-seq:
724
+ * IGraph::GenerateRandom.citing_cited_type_game(nodes,types,pref,edges_per_step_directed) -> IGraph
725
+ *
726
+ * This game is similar to igraph_cited_type_game() but here the category of
727
+ * the citing vertex is also considered.
728
+ *
729
+ * An evolving citation network is modeled here, a single vertex and its
730
+ * edges_per_step citation are added in each time step. The odds the a given
731
+ * vertex is cited by the new vertex depends on the category of both the
732
+ * citing and the cited vertex and is given in the pref matrix. The categories
733
+ * of the citing vertex correspond to the rows, the categories of the cited
734
+ * vertex to the columns of this matrix. Ie. the element in row i and column
735
+ * j gives the probability that a j vertex is cited, if the category of the
736
+ * citing vertex is i.
737
+ *
738
+ * Note that this function might generate networks with multiple edges if
739
+ * edges_per_step is greater than one. You might want to call
740
+ * igraph_simplify() on the result to remove multiple edges.
741
+ *
742
+ * nodes: The number of vertices in the network.
743
+ *
744
+ * types: A numeric IGraphMatrix of length nodes, containing the categories
745
+ * of the vertices. The categories are numbered from zero.
746
+ *
747
+ * pref: The preference IGraphMatrix, a square matrix is required, both the
748
+ * number of rows and columns should be the maximum element in types plus
749
+ * one (types are numbered from zero).
750
+ *
751
+ * edges_per_step: Integer constant, the number of edges to add in each time
752
+ * step.
753
+ *
754
+ * directed: Logical constant, whether to create a directed network.
755
+ */
756
+ VALUE cIGraph_citing_cited_type_game(VALUE self, VALUE nodes, VALUE types, VALUE pref, VALUE e_per_s, VALUE directed){
757
+
758
+ igraph_t *graph;
759
+ VALUE new_graph;
760
+ igraph_vector_t typev;
761
+ igraph_matrix_t *prefm;
762
+ int i;
763
+
764
+ new_graph = cIGraph_alloc(cIGraph);
765
+ Data_Get_Struct(new_graph, igraph_t, graph);
766
+ Data_Get_Struct(pref, igraph_matrix_t, prefm);
767
+
768
+ igraph_vector_init(&typev,0);
769
+
770
+ for(i=0;i<RARRAY(types)->len;i++){
771
+ igraph_vector_push_back(&typev,NUM2INT(RARRAY(types)->ptr[i]));
772
+ }
773
+
774
+ printf("ok\n");
775
+
776
+ igraph_destroy(graph);
777
+ igraph_citing_cited_type_game(graph, NUM2INT(nodes),
778
+ &typev,
779
+ prefm,
780
+ NUM2INT(e_per_s),
781
+ directed == Qtrue ? 1: 0);
782
+
783
+ printf("death\n");
784
+
785
+ igraph_vector_destroy(&typev);
786
+
787
+ return new_graph;
788
+
789
+
790
+ }