igraph 0.3.3 → 0.9.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -30,6 +30,17 @@ VALUE cIGraph_alloc(VALUE klass);
30
30
  VALUE cIGraph_initialize(int argc, VALUE *argv, VALUE self);
31
31
  VALUE cIGraph_init_copy(VALUE copy, VALUE orig);
32
32
 
33
+ //Graph generators
34
+ VALUE cIGraph_adjacency(VALUE self, VALUE matrix, VALUE mode);
35
+ VALUE cIGraph_star (VALUE self, VALUE n, VALUE mode, VALUE center);
36
+ VALUE cIGraph_lattice (VALUE self, VALUE dim, VALUE directed, VALUE mutual, VALUE circular);
37
+ VALUE cIGraph_ring(VALUE self, VALUE n, VALUE directed, VALUE mutual, VALUE circular);
38
+ VALUE cIGraph_tree(VALUE self, VALUE n, VALUE children, VALUE type);
39
+ VALUE cIGraph_full(VALUE self, VALUE n, VALUE directed, VALUE loops);
40
+ VALUE cIGraph_atlas(VALUE self, VALUE n);
41
+ VALUE cIGraph_extended_chordal_ring(VALUE self, VALUE n, VALUE matrix);
42
+ VALUE cIGraph_connect_neighborhood(VALUE self, VALUE order, VALUE mode);
43
+
33
44
  //Random graph generators
34
45
  VALUE cIGraph_grg_game (VALUE self, VALUE nodes,
35
46
  VALUE radius, VALUE torus);
@@ -38,6 +49,21 @@ VALUE cIGraph_barabasi_game(VALUE self, VALUE nodes,
38
49
  VALUE cIGraph_nonlinear_barabasi_game(VALUE self, VALUE nodes, VALUE power,
39
50
  VALUE m, VALUE outpref, VALUE zeroappeal, VALUE directed);
40
51
  VALUE cIGraph_erdos_renyi_game (VALUE self, VALUE type, VALUE nodes, VALUE mp, VALUE directed, VALUE loops);
52
+ VALUE cIGraph_watts_strogatz_game(VALUE self, VALUE dim, VALUE size, VALUE nei, VALUE p);
53
+ VALUE cIGraph_degree_sequence_game(VALUE self, VALUE out_deg, VALUE in_deg);
54
+ VALUE cIGraph_growing_random_game(VALUE self, VALUE n, VALUE m, VALUE directed, VALUE citation);
55
+ VALUE cIGraph_callaway_traits_game(VALUE self, VALUE nodes, VALUE types, VALUE e_per_step, VALUE type_dist, VALUE pref_matrix, VALUE directed);
56
+ VALUE cIGraph_establishment_game(VALUE self, VALUE nodes, VALUE types, VALUE k, VALUE type_dist, VALUE pref_matrix, VALUE directed);
57
+ VALUE cIGraph_preference_game(VALUE self, VALUE nodes, VALUE types, VALUE type_dist, VALUE pref_matrix, VALUE directed, VALUE loops);
58
+ VALUE cIGraph_asymmetric_preference_game(VALUE self, VALUE nodes, VALUE types, VALUE type_dist_matrix, VALUE pref_matrix, VALUE loops);
59
+ VALUE cIGraph_recent_degree_game(VALUE self, VALUE n, VALUE power, VALUE window, VALUE m, VALUE outpref, VALUE zero_appeal, VALUE directed);
60
+ VALUE cIGraph_barabasi_aging_game(VALUE self, VALUE nodes, VALUE m, VALUE outpref, VALUE pa_exp, VALUE aging_exp, VALUE aging_bin, VALUE zero_deg_appeal, VALUE zero_age_appeal, VALUE deg_coef, VALUE age_coef, VALUE directed);
61
+ VALUE cIGraph_recent_degree_aging_game(VALUE self, VALUE nodes, VALUE m, VALUE outpref, VALUE pa_exp, VALUE aging_exp, VALUE aging_bin, VALUE time_window, VALUE zero_appeal, VALUE directed);
62
+ VALUE cIGraph_cited_type_game(VALUE self, VALUE nodes, VALUE types, VALUE pref, VALUE e_per_s, VALUE directed);
63
+ VALUE cIGraph_citing_cited_type_game(VALUE self, VALUE nodes, VALUE types, VALUE pref, VALUE e_per_s, VALUE directed);
64
+
65
+ VALUE cIGraph_rewire_edges(VALUE self, VALUE prop);
66
+ VALUE cIGraph_rewire(VALUE self, VALUE n);
41
67
 
42
68
  //Attribute accessors
43
69
  int replace_i(VALUE key, VALUE val, VALUE hash);
@@ -174,8 +200,17 @@ VALUE cIGraph_motifs_randesu_estimate(VALUE self, VALUE size, VALUE cuts,
174
200
  //File handling
175
201
  VALUE cIGraph_read_graph_edgelist (VALUE self, VALUE file, VALUE mode);
176
202
  VALUE cIGraph_write_graph_edgelist(VALUE self, VALUE file);
203
+ VALUE cIGraph_read_graph_ncol (VALUE self, VALUE file, VALUE predefnames, VALUE names, VALUE weights, VALUE directed);
204
+ VALUE cIGraph_write_graph_ncol (VALUE self, VALUE file, VALUE names, VALUE weights);
205
+ VALUE cIGraph_read_graph_lgl (VALUE self, VALUE file, VALUE names, VALUE weights);
206
+ VALUE cIGraph_write_graph_lgl (VALUE self, VALUE file, VALUE names, VALUE weights, VALUE isolates);
207
+ VALUE cIGraph_read_graph_dimacs (VALUE self, VALUE file, VALUE directed);
208
+ VALUE cIGraph_write_graph_dimacs (VALUE self, VALUE file, VALUE source, VALUE target, VALUE capacity);
209
+ VALUE cIGraph_read_graph_graphdb (VALUE self, VALUE file, VALUE directed);
177
210
  VALUE cIGraph_read_graph_graphml (VALUE self, VALUE file, VALUE index);
178
211
  VALUE cIGraph_write_graph_graphml (VALUE self, VALUE file);
212
+ VALUE cIGraph_read_graph_gml (VALUE self, VALUE file);
213
+ VALUE cIGraph_write_graph_gml (VALUE self, VALUE file);
179
214
  VALUE cIGraph_read_graph_pajek (VALUE self, VALUE file);
180
215
  VALUE cIGraph_write_graph_pajek (VALUE self, VALUE file);
181
216
 
@@ -216,6 +251,69 @@ VALUE cIGraph_layout_lgl(VALUE self,
216
251
  VALUE cellsize,
217
252
  VALUE proot);
218
253
 
254
+ VALUE cIGraph_layout_random_3d(VALUE self);
255
+ VALUE cIGraph_layout_sphere (VALUE self);
256
+ VALUE cIGraph_layout_fruchterman_reingold_3d(VALUE self,
257
+ VALUE niter,
258
+ VALUE maxdelta,
259
+ VALUE volume,
260
+ VALUE coolexp,
261
+ VALUE repulserad);
262
+ VALUE cIGraph_layout_kamada_kawai_3d (VALUE self,
263
+ VALUE niter,
264
+ VALUE sigma,
265
+ VALUE initemp,
266
+ VALUE coolexp,
267
+ VALUE kkconst);
268
+
269
+ VALUE cIGraph_layout_merge_dla(VALUE self, VALUE graphs, VALUE layouts);
270
+
271
+ //Min cuts
272
+ VALUE cIGraph_maxflow_value (VALUE self, VALUE source, VALUE target, VALUE capacity);
273
+ VALUE cIGraph_st_mincut_value(VALUE self, VALUE source, VALUE target, VALUE capacity);
274
+ VALUE cIGraph_mincut_value (VALUE self, VALUE capacity);
275
+ VALUE cIGraph_mincut (VALUE self, VALUE capacity);
276
+
277
+ //Connectivity
278
+ VALUE cIGraph_st_edge_connectivity (VALUE self, VALUE source, VALUE target);
279
+ VALUE cIGraph_edge_connectivity (VALUE self);
280
+ VALUE cIGraph_st_vertex_connectivity(VALUE self, VALUE source, VALUE target, VALUE neighbours);
281
+ VALUE cIGraph_vertex_connectivity (VALUE self);
282
+ VALUE cIGraph_edge_disjoint_paths (VALUE self, VALUE source, VALUE target);
283
+ VALUE cIGraph_vertex_disjoint_paths (VALUE self, VALUE source, VALUE target);
284
+ VALUE cIGraph_adhesion(VALUE self);
285
+ VALUE cIGraph_cohesion(VALUE self);
286
+
287
+ //Community
288
+ VALUE cIGraph_modularity (VALUE self, VALUE groups);
289
+ VALUE cIGraph_community_to_membership (VALUE self, VALUE merge,
290
+ VALUE steps);
291
+ VALUE cIGraph_community_spinglass (VALUE self, VALUE weights,
292
+ VALUE spins,
293
+ VALUE parupdate,
294
+ VALUE starttemp,
295
+ VALUE stoptemp,
296
+ VALUE coolfact,
297
+ VALUE update_rule,
298
+ VALUE gamma);
299
+ VALUE cIGraph_community_spinglass_single (VALUE self, VALUE weights,
300
+ VALUE vertex,
301
+ VALUE spins,
302
+ VALUE update_rule,
303
+ VALUE gamma);
304
+ VALUE cIGraph_community_leading_eigenvector (VALUE self, VALUE steps);
305
+ VALUE cIGraph_community_leading_eigenvector_naive(VALUE self, VALUE steps);
306
+ VALUE cIGraph_community_leading_eigenvector_step (VALUE self,
307
+ VALUE membership,
308
+ VALUE steps);
309
+ VALUE cIGraph_community_walktrap (VALUE self,
310
+ VALUE weights,
311
+ VALUE steps);
312
+ VALUE cIGraph_community_edge_betweenness (VALUE self,
313
+ VALUE directed);
314
+ VALUE cIGraph_community_eb_get_merges (VALUE self,
315
+ VALUE edges);
316
+ VALUE cIGraph_community_fastgreedy (VALUE self);
219
317
 
220
318
  //Attributes
221
319
  int cIGraph_attribute_init(igraph_t *graph,
@@ -497,9 +497,9 @@ igraph_bool_t cIGraph_attribute_has_attr(const igraph_t *graph,
497
497
  VALUE obj;
498
498
 
499
499
  switch (type) {
500
- case IGRAPH_ATTRIBUTE_GRAPH: attrnum=0; break;
501
- case IGRAPH_ATTRIBUTE_VERTEX: attrnum=1; break;
502
- case IGRAPH_ATTRIBUTE_EDGE: attrnum=2; break;
500
+ case IGRAPH_ATTRIBUTE_GRAPH: attrnum = 2; break;
501
+ case IGRAPH_ATTRIBUTE_VERTEX: attrnum = 0; break;
502
+ case IGRAPH_ATTRIBUTE_EDGE: attrnum = 1; break;
503
503
  default: return 0; break;
504
504
  }
505
505
 
@@ -507,14 +507,14 @@ igraph_bool_t cIGraph_attribute_has_attr(const igraph_t *graph,
507
507
  if (attrnum != 2)
508
508
  obj = RARRAY(obj)->ptr[0];
509
509
 
510
- if(rb_funcall(obj,rb_intern("include?"), 1, rb_str_new2(name))){
510
+ if(TYPE(obj) == T_HASH && rb_funcall(obj,rb_intern("include?"), 1, rb_str_new2(name))){
511
511
  res = 1;
512
512
  }
513
513
 
514
514
  #ifdef DEBUG
515
515
  printf("Leaving cIGraph_attribute_has_attr\n");
516
516
  #endif
517
-
517
+
518
518
  return res;
519
519
  }
520
520
 
@@ -533,9 +533,9 @@ int cIGraph_attribute_get_type(const igraph_t *graph,
533
533
  VALUE val;
534
534
 
535
535
  switch (elemtype) {
536
- case IGRAPH_ATTRIBUTE_GRAPH: attrnum=0; break;
537
- case IGRAPH_ATTRIBUTE_VERTEX: attrnum=1; break;
538
- case IGRAPH_ATTRIBUTE_EDGE: attrnum=2; break;
536
+ case IGRAPH_ATTRIBUTE_GRAPH: attrnum = 2; break;
537
+ case IGRAPH_ATTRIBUTE_VERTEX: attrnum = 0; break;
538
+ case IGRAPH_ATTRIBUTE_EDGE: attrnum = 1; break;
539
539
  default: return 0; break;
540
540
  }
541
541
 
@@ -543,7 +543,9 @@ int cIGraph_attribute_get_type(const igraph_t *graph,
543
543
  if (attrnum != 2)
544
544
  obj = RARRAY(obj)->ptr[0];
545
545
 
546
- if(rb_funcall(obj,rb_intern("includes"), rb_str_new2(name))){
546
+ rb_funcall(obj,rb_intern("include?"), 1, rb_str_new2(name));
547
+
548
+ if(rb_funcall(obj,rb_intern("include?"), 1, rb_str_new2(name))){
547
549
  val = rb_hash_aref(obj,rb_str_new2(name));
548
550
  if (TYPE(val) == T_STRING){
549
551
  *type = IGRAPH_ATTRIBUTE_STRING;
@@ -552,7 +554,9 @@ int cIGraph_attribute_get_type(const igraph_t *graph,
552
554
  } else {
553
555
  *type = IGRAPH_ATTRIBUTE_PY_OBJECT;
554
556
  }
555
- }
557
+ } else {
558
+ *type = IGRAPH_ATTRIBUTE_PY_OBJECT;
559
+ }
556
560
 
557
561
  #ifdef DEBUG
558
562
  printf("Leaving cIGraph_attribute_get_type\n");
@@ -736,7 +740,7 @@ int cIGraph_get_string_edge_attr(const igraph_t *graph,
736
740
  #endif
737
741
 
738
742
  VALUE array = ((VALUE*)graph->attr)[1];
739
- VALUE val, vertex;
743
+ VALUE val, edge;
740
744
  igraph_eit_t it;
741
745
  int i=0;
742
746
 
@@ -745,10 +749,16 @@ int cIGraph_get_string_edge_attr(const igraph_t *graph,
745
749
  IGRAPH_CHECK(igraph_strvector_resize(value, IGRAPH_EIT_SIZE(it)));
746
750
 
747
751
  while(!IGRAPH_EIT_END(it)){
748
- vertex = RARRAY(array)->ptr[(int)IGRAPH_EIT_GET(it)];
749
- val = rb_hash_aref(vertex,rb_str_new2(name));
752
+ edge = RARRAY(array)->ptr[(int)IGRAPH_EIT_GET(it)];
753
+
754
+ val = rb_hash_aref(edge,rb_str_new2(name));
755
+
750
756
  if(val == Qnil)
751
757
  val = rb_str_new2("");
758
+
759
+ //Fix for floats when required by ncol write
760
+ val = rb_funcall(val,rb_intern("to_s"),0);
761
+
752
762
  igraph_strvector_set(value,i,RSTRING(val)->ptr);
753
763
  IGRAPH_EIT_NEXT(it);
754
764
  i++;
@@ -0,0 +1,654 @@
1
+ #include "igraph.h"
2
+ #include "ruby.h"
3
+ #include "cIGraph.h"
4
+
5
+ /* call-seq:
6
+ * graph.modularity(groups) -> Float
7
+ *
8
+ * Calculate the modularity of a graph with respect to some vertex types.
9
+ * The modularity of a graph with respect to some division (or vertex types)
10
+ * measures how good the division is, or how separated are the different
11
+ * vertex types from each other.
12
+ *
13
+ */
14
+
15
+ VALUE cIGraph_modularity(VALUE self, VALUE groups){
16
+
17
+ igraph_t *graph;
18
+ igraph_real_t value;
19
+ igraph_vector_t membership;
20
+
21
+ VALUE group;
22
+
23
+ int i,j;
24
+
25
+ Data_Get_Struct(self, igraph_t, graph);
26
+
27
+ igraph_vector_init(&membership,igraph_vcount(graph));
28
+
29
+ for(i=0;i<RARRAY(groups)->len;i++){
30
+ group = RARRAY(groups)->ptr[i];
31
+ for(j=0;j<RARRAY(group)->len;j++){
32
+ igraph_vector_set(&membership,
33
+ cIGraph_get_vertex_id(self,RARRAY(group)->ptr[j]),i);
34
+ }
35
+ }
36
+
37
+ igraph_modularity(graph,&membership,&value);
38
+
39
+ igraph_vector_destroy(&membership);
40
+
41
+ return rb_float_new(value);
42
+
43
+ }
44
+
45
+ /* call-seq:
46
+ * graph.community_to_membership(merge,steps) -> Array
47
+ *
48
+ * Create membership vector from community structure dendrogram This function
49
+ * creates a membership vector from a community structure dendrogram.
50
+ * A membership vector contains for each vertex the id of its graph
51
+ * component, the graph components are numbered from zero, see the same
52
+ * argument of igraph_clusters() for an example of a membership vector.
53
+ *
54
+ */
55
+
56
+ VALUE cIGraph_community_to_membership(VALUE self, VALUE merge, VALUE steps){
57
+
58
+ igraph_t *graph;
59
+ igraph_matrix_t *merges;
60
+
61
+ igraph_vector_t membership;
62
+
63
+ VALUE groups;
64
+
65
+ int i,groupid,max_groupid;
66
+
67
+ Data_Get_Struct(self, igraph_t, graph);
68
+ Data_Get_Struct(merge, igraph_matrix_t, merges);
69
+
70
+ igraph_vector_init(&membership,0);
71
+
72
+ igraph_community_to_membership(graph,merges,NUM2INT(steps),&membership,NULL);
73
+
74
+ max_groupid = 0;
75
+ for(i=0;i<igraph_vector_size(&membership);i++){
76
+ if(VECTOR(membership)[i] > max_groupid)
77
+ max_groupid = VECTOR(membership)[i];
78
+ }
79
+
80
+ groups = rb_ary_new();
81
+ for(i=0;i<max_groupid+1;i++){
82
+ rb_ary_push(groups,rb_ary_new());
83
+ }
84
+
85
+ for(i=0;i<igraph_vector_size(&membership);i++){
86
+ groupid = VECTOR(membership)[i];
87
+ if(RARRAY(groups)->ptr[groupid] == Qnil){
88
+ RARRAY(groups)->ptr[groupid] = rb_ary_new();
89
+ }
90
+ rb_ary_push(RARRAY(groups)->ptr[groupid],
91
+ cIGraph_get_vertex_object(self, i));
92
+ }
93
+
94
+ igraph_vector_destroy(&membership);
95
+
96
+ return groups;
97
+
98
+ }
99
+
100
+ /* call-seq:
101
+ * graph.community_spinglass(weights,spins,parupdate,starttemp,stoptemp,coolfact,update_rule,gamma) -> Array
102
+ *
103
+ * Community detection based on statistical mechanics This function
104
+ * implements the community structure detection algorithm proposed by Joerg
105
+ * Reichardt and Stefan Bornholdt. The algorithm is described in their
106
+ * paper: Statistical Mechanics of Community Detection.
107
+ *
108
+ */
109
+
110
+ VALUE cIGraph_community_spinglass(VALUE self, VALUE weights, VALUE spins, VALUE parupdate, VALUE starttemp, VALUE stoptemp, VALUE coolfact, VALUE update_rule, VALUE gamma){
111
+
112
+ igraph_t *graph;
113
+
114
+ igraph_vector_t weights_vec;
115
+ igraph_vector_t membership;
116
+ igraph_real_t temperature;
117
+ igraph_real_t modularity;
118
+ igraph_bool_t parupdate_b;
119
+
120
+ VALUE group;
121
+ VALUE groups;
122
+ VALUE res;
123
+
124
+ VALUE str;
125
+
126
+ int i,groupid,max_groupid;
127
+
128
+ if(parupdate)
129
+ parupdate_b = 1;
130
+
131
+ Data_Get_Struct(self, igraph_t, graph);
132
+
133
+ igraph_vector_init(&membership,0);
134
+
135
+ igraph_vector_init(&weights_vec,RARRAY(weights)->len);
136
+ for(i=0;i<RARRAY(weights)->len;i++){
137
+ VECTOR(weights_vec)[i] = NUM2DBL(RARRAY(weights)->ptr[i]);
138
+ }
139
+
140
+ igraph_community_spinglass(graph,
141
+ igraph_vector_size(&weights_vec) > 0 ? &weights_vec : NULL,
142
+ &modularity,&temperature,
143
+ &membership,NULL,NUM2INT(spins),parupdate_b,
144
+ NUM2DBL(starttemp),NUM2DBL(stoptemp),
145
+ NUM2DBL(coolfact),NUM2INT(update_rule),
146
+ NUM2DBL(gamma));
147
+
148
+ max_groupid = 0;
149
+ for(i=0;i<igraph_vector_size(&membership);i++){
150
+ if(VECTOR(membership)[i] > max_groupid)
151
+ max_groupid = VECTOR(membership)[i];
152
+ }
153
+
154
+ groups = rb_ary_new();
155
+ for(i=0;i<max_groupid+1;i++){
156
+ rb_ary_push(groups,rb_ary_new());
157
+ }
158
+
159
+ for(i=0;i<igraph_vector_size(&membership);i++){
160
+
161
+ groupid = VECTOR(membership)[i];
162
+
163
+ if(groupid == -1)
164
+ groupid = 0;
165
+
166
+ group = RARRAY(groups)->ptr[groupid];
167
+ rb_ary_push(group,cIGraph_get_vertex_object(self, i));
168
+ }
169
+
170
+ res = rb_ary_new3(3,groups,
171
+ rb_float_new(modularity),
172
+ rb_float_new(temperature));
173
+
174
+ igraph_vector_destroy(&membership);
175
+ igraph_vector_destroy(&weights_vec);
176
+
177
+ return res;
178
+
179
+ }
180
+
181
+ /* call-seq:
182
+ * graph.community_spinglass_single(weights,vertex,spins,update_rule,gamma) -> Array
183
+ *
184
+ * Community detection based on statistical mechanics This function
185
+ * implements the community structure detection algorithm proposed by Joerg
186
+ * Reichardt and Stefan Bornholdt. The algorithm is described in their
187
+ * paper: Statistical Mechanics of Community Detection.
188
+ *
189
+ */
190
+
191
+ VALUE cIGraph_community_spinglass_single(VALUE self, VALUE weights, VALUE vertex, VALUE spins, VALUE update_rule, VALUE gamma){
192
+
193
+ igraph_t *graph;
194
+
195
+ igraph_vector_t weights_vec;
196
+ igraph_vector_t community;
197
+ igraph_real_t cohesion;
198
+ igraph_real_t adhesion;
199
+
200
+ VALUE group;
201
+ VALUE res;
202
+
203
+ int i;
204
+
205
+ Data_Get_Struct(self, igraph_t, graph);
206
+
207
+ igraph_vector_init(&community,0);
208
+
209
+ igraph_vector_init(&weights_vec,RARRAY(weights)->len);
210
+ for(i=0;i<RARRAY(weights)->len;i++){
211
+ VECTOR(weights_vec)[i] = NUM2DBL(RARRAY(weights)->ptr[i]);
212
+ }
213
+
214
+ igraph_community_spinglass_single(graph,
215
+ igraph_vector_size(&weights_vec) > 0 ? &weights_vec : NULL,
216
+ cIGraph_get_vertex_id(self, vertex),
217
+ &community, &cohesion, &adhesion,
218
+ NULL, NULL,
219
+ NUM2INT(spins),NUM2INT(update_rule),
220
+ NUM2DBL(gamma));
221
+
222
+ group = rb_ary_new();
223
+
224
+ for(i=0;i<igraph_vector_size(&community);i++){
225
+ rb_ary_push(group,cIGraph_get_vertex_object(self, i));
226
+ }
227
+
228
+ res = rb_ary_new3(3,group,
229
+ rb_float_new(cohesion),
230
+ rb_float_new(adhesion));
231
+
232
+ igraph_vector_destroy(&community);
233
+ igraph_vector_destroy(&weights_vec);
234
+
235
+ return res;
236
+
237
+ }
238
+
239
+ /* call-seq:
240
+ * graph.community_leading_eigenvector(steps) -> Array
241
+ *
242
+ * Newman's leading eigenvector method for detecting community structure.
243
+ * This is the proper implementation of the recursive, divisive algorithm:
244
+ * each split is done by maximizing the modularity regarding the original
245
+ * network, see MEJ Newman: Finding community structure in networks using
246
+ * the eigenvectors of matrices, arXiv:physics/0605087.
247
+ *
248
+ */
249
+
250
+ VALUE cIGraph_community_leading_eigenvector(VALUE self, VALUE steps){
251
+
252
+ igraph_t *graph;
253
+
254
+ igraph_vector_t membership;
255
+ igraph_matrix_t *merges = malloc(sizeof(igraph_matrix_t));
256
+
257
+ int i,groupid,max_groupid;
258
+
259
+ VALUE groups, group, res;
260
+
261
+ Data_Get_Struct(self, igraph_t, graph);
262
+
263
+ igraph_matrix_init(merges,0,0);
264
+ igraph_vector_init(&membership,0);
265
+
266
+ igraph_community_leading_eigenvector(graph,merges,&membership,
267
+ NUM2INT(steps));
268
+
269
+ max_groupid = 0;
270
+ for(i=0;i<igraph_vector_size(&membership);i++){
271
+ if(VECTOR(membership)[i] > max_groupid)
272
+ max_groupid = VECTOR(membership)[i];
273
+ }
274
+
275
+ groups = rb_ary_new();
276
+ for(i=0;i<max_groupid+1;i++){
277
+ rb_ary_push(groups,rb_ary_new());
278
+ }
279
+
280
+ for(i=0;i<igraph_vector_size(&membership);i++){
281
+
282
+ groupid = VECTOR(membership)[i];
283
+
284
+ if(groupid == -1)
285
+ groupid = 0;
286
+
287
+ group = RARRAY(groups)->ptr[groupid];
288
+ rb_ary_push(group,cIGraph_get_vertex_object(self, i));
289
+ }
290
+
291
+ res = rb_ary_new3(2,groups,
292
+ Data_Wrap_Struct(cIGraphMatrix, 0,
293
+ cIGraph_matrix_free, merges));
294
+
295
+ igraph_vector_destroy(&membership);
296
+
297
+ return res;
298
+
299
+ }
300
+
301
+ /* call-seq:
302
+ * graph.community_leading_eigenvector_naive(steps) -> Array
303
+ *
304
+ * Newman's leading eigenvector method for detecting community structure.
305
+ * This is the proper implementation of the recursive, divisive algorithm:
306
+ * each split is done by maximizing the modularity regarding the original
307
+ * network, see MEJ Newman: Finding community structure in networks using
308
+ * the eigenvectors of matrices, arXiv:physics/0605087.
309
+ *
310
+ */
311
+
312
+ VALUE cIGraph_community_leading_eigenvector_naive(VALUE self, VALUE steps){
313
+
314
+ igraph_t *graph;
315
+
316
+ igraph_vector_t membership;
317
+ igraph_matrix_t *merges = malloc(sizeof(igraph_matrix_t));
318
+
319
+ int i,groupid,max_groupid;
320
+
321
+ VALUE groups, group, res;
322
+
323
+ Data_Get_Struct(self, igraph_t, graph);
324
+
325
+ igraph_matrix_init(merges,0,0);
326
+ igraph_vector_init(&membership,0);
327
+
328
+ igraph_community_leading_eigenvector_naive(graph,merges,&membership,
329
+ NUM2INT(steps));
330
+
331
+ max_groupid = 0;
332
+ for(i=0;i<igraph_vector_size(&membership);i++){
333
+ if(VECTOR(membership)[i] > max_groupid)
334
+ max_groupid = VECTOR(membership)[i];
335
+ }
336
+
337
+ groups = rb_ary_new();
338
+ for(i=0;i<max_groupid+1;i++){
339
+ rb_ary_push(groups,rb_ary_new());
340
+ }
341
+
342
+ for(i=0;i<igraph_vector_size(&membership);i++){
343
+
344
+ groupid = VECTOR(membership)[i];
345
+
346
+ if(groupid == -1)
347
+ groupid = 0;
348
+
349
+ group = RARRAY(groups)->ptr[groupid];
350
+ rb_ary_push(group,cIGraph_get_vertex_object(self, i));
351
+ }
352
+
353
+ res = rb_ary_new3(2,groups,
354
+ Data_Wrap_Struct(cIGraphMatrix, 0,
355
+ cIGraph_matrix_free, merges));
356
+
357
+ igraph_vector_destroy(&membership);
358
+
359
+ return res;
360
+
361
+ }
362
+
363
+ /* call-seq:
364
+ * graph.community_leading_eigenvector_step(membership,community) -> Array
365
+ *
366
+ * Do one split according to Mark Newman's leading eigenvector community
367
+ * detection method. See MEJ Newman: Finding community structure in networks
368
+ * using the eigenvectors of matrices, arXiv:phyisics/0605087 for the details.
369
+ *
370
+ */
371
+
372
+ VALUE cIGraph_community_leading_eigenvector_step(VALUE self, VALUE membership, VALUE community){
373
+
374
+ igraph_t *graph;
375
+
376
+ igraph_vector_t membership_vec;
377
+ igraph_vector_t eigenvector;
378
+ igraph_real_t eigenvalue;
379
+ igraph_bool_t split;
380
+
381
+ int i,j,groupid,max_groupid,vid;
382
+
383
+ VALUE groups, group, res, eigenvector_a, obj;
384
+
385
+ Data_Get_Struct(self, igraph_t, graph);
386
+
387
+ igraph_vector_init(&membership_vec,igraph_vcount(graph));
388
+ igraph_vector_init(&eigenvector,0);
389
+
390
+ for(i=0;i<RARRAY(membership)->len;i++){
391
+ group = RARRAY(membership)->ptr[i];
392
+
393
+ for(j=0;j<RARRAY(group)->len;j++){
394
+
395
+ obj = RARRAY(group)->ptr[j];
396
+ vid = cIGraph_get_vertex_id(self,obj);
397
+
398
+ VECTOR(membership_vec)[vid] = i;
399
+
400
+ }
401
+ }
402
+
403
+ igraph_community_leading_eigenvector_step(graph,&membership_vec,
404
+ NUM2INT(community),
405
+ &split,&eigenvector,&eigenvalue);
406
+
407
+ max_groupid = 0;
408
+ for(i=0;i<igraph_vector_size(&membership_vec);i++){
409
+ if(VECTOR(membership_vec)[i] > max_groupid)
410
+ max_groupid = VECTOR(membership_vec)[i];
411
+ }
412
+
413
+ groups = rb_ary_new();
414
+ for(i=0;i<max_groupid+1;i++){
415
+ rb_ary_push(groups,rb_ary_new());
416
+ }
417
+
418
+ for(i=0;i<igraph_vector_size(&membership_vec);i++){
419
+
420
+ groupid = VECTOR(membership_vec)[i];
421
+
422
+ if(groupid == -1)
423
+ groupid = 0;
424
+
425
+ group = RARRAY(groups)->ptr[groupid];
426
+ rb_ary_push(group,cIGraph_get_vertex_object(self, i));
427
+ }
428
+
429
+ eigenvector_a = rb_ary_new();
430
+ for(i=0;i<igraph_vector_size(&eigenvector);i++){
431
+ rb_ary_push(eigenvector_a,rb_float_new(VECTOR(eigenvector)[i]));
432
+ }
433
+
434
+ res = rb_ary_new3(4,groups,split==0 ? Qfalse : Qtrue,
435
+ eigenvector_a,rb_float_new(eigenvalue));
436
+
437
+
438
+ igraph_vector_destroy(&membership_vec);
439
+ igraph_vector_destroy(&eigenvector);
440
+
441
+ return res;
442
+
443
+ }
444
+
445
+ /* call-seq:
446
+ * graph.community_walktrap(weights,steps) -> Array
447
+ *
448
+ * This function is the implementation of the Walktrap community finding
449
+ * algorithm, see Pascal Pons, Matthieu Latapy: Computing communities in
450
+ * large networks using random walks, http://arxiv.org/abs/physics/0512106
451
+ *
452
+ */
453
+
454
+ VALUE cIGraph_community_walktrap(VALUE self, VALUE weights, VALUE steps){
455
+
456
+ igraph_t *graph;
457
+
458
+ igraph_vector_t weights_vec;
459
+ igraph_vector_t modularity;
460
+ igraph_matrix_t *merges = malloc(sizeof(igraph_matrix_t));
461
+
462
+ int i;
463
+
464
+ VALUE modularity_a, res;
465
+
466
+ Data_Get_Struct(self, igraph_t, graph);
467
+
468
+ igraph_matrix_init(merges,0,0);
469
+ igraph_vector_init(&weights_vec,0);
470
+ igraph_vector_init(&modularity,0);
471
+
472
+ for(i=0;i<RARRAY(weights)->len;i++){
473
+ VECTOR(weights_vec)[i] = NUM2DBL(RARRAY(weights)->ptr[i]);
474
+ }
475
+
476
+ igraph_community_walktrap(graph,
477
+ igraph_vector_size(&weights_vec) > 0 ? &weights_vec : NULL,
478
+ NUM2INT(steps),merges,&modularity);
479
+
480
+ modularity_a = rb_ary_new();
481
+ for(i=0;i<igraph_vector_size(&modularity);i++){
482
+ rb_ary_push(modularity_a,rb_float_new(VECTOR(modularity)[i]));
483
+ }
484
+
485
+ res = rb_ary_new3(2,
486
+ Data_Wrap_Struct(cIGraphMatrix, 0,
487
+ cIGraph_matrix_free, merges),
488
+ modularity_a);
489
+
490
+ igraph_vector_destroy(&weights_vec);
491
+ igraph_vector_destroy(&modularity);
492
+
493
+ return res;
494
+
495
+ }
496
+
497
+ /* call-seq:
498
+ * graph.community_edge_betweenness(directed) -> Array
499
+ *
500
+ * Community structure detection based on the betweenness of the edges in the
501
+ * network. The algorithm was invented by M. Girvan and M. Newman, see:
502
+ * M. Girvan and M. E. J. Newman: Community structure in social and
503
+ * biological networks, Proc. Nat. Acad. Sci. USA 99, 7821-7826 (2002).
504
+ *
505
+ */
506
+
507
+ VALUE cIGraph_community_edge_betweenness(VALUE self, VALUE directed){
508
+
509
+ igraph_t *graph;
510
+
511
+ igraph_vector_t result_vec;
512
+ igraph_vector_t edge_betw_vec;
513
+ igraph_vector_t bridges_vec;
514
+ igraph_matrix_t *merges = malloc(sizeof(igraph_matrix_t));
515
+ igraph_bool_t directed_b = 0;
516
+
517
+ int i;
518
+
519
+ VALUE result_a, edge_betw_a, bridges_a, res;
520
+
521
+ if(directed)
522
+ directed_b = 1;
523
+
524
+ Data_Get_Struct(self, igraph_t, graph);
525
+
526
+ igraph_matrix_init(merges,0,0);
527
+ igraph_vector_init(&result_vec,0);
528
+ igraph_vector_init(&edge_betw_vec,0);
529
+ igraph_vector_init(&bridges_vec,0);
530
+
531
+ igraph_community_edge_betweenness(graph,
532
+ &result_vec,&edge_betw_vec,
533
+ merges,&bridges_vec,directed_b);
534
+
535
+ result_a = rb_ary_new();
536
+ for(i=0;i<igraph_vector_size(&result_vec);i++){
537
+ rb_ary_push(result_a,INT2NUM(VECTOR(result_vec)[i]));
538
+ }
539
+ edge_betw_a = rb_ary_new();
540
+ for(i=0;i<igraph_vector_size(&edge_betw_vec);i++){
541
+ rb_ary_push(edge_betw_a,INT2NUM(VECTOR(edge_betw_vec)[i]));
542
+ }
543
+ bridges_a = rb_ary_new();
544
+ for(i=0;i<igraph_vector_size(&bridges_vec);i++){
545
+ rb_ary_push(bridges_a,INT2NUM(VECTOR(bridges_vec)[i]));
546
+ }
547
+
548
+ res = rb_ary_new3(4,
549
+ Data_Wrap_Struct(cIGraphMatrix, 0,
550
+ cIGraph_matrix_free, merges),
551
+ result_a, edge_betw_a, bridges_a);
552
+
553
+ igraph_vector_destroy(&result_vec);
554
+ igraph_vector_destroy(&edge_betw_vec);
555
+ igraph_vector_destroy(&bridges_vec);
556
+
557
+ return res;
558
+
559
+ }
560
+
561
+ /* call-seq:
562
+ * graph.community_eb_get_merges(edges) -> Array
563
+ *
564
+ * Calculating the merges, ie. the dendrogram for an edge betweenness
565
+ * community structure
566
+ *
567
+ */
568
+
569
+ VALUE cIGraph_community_eb_get_merges(VALUE self, VALUE edges){
570
+
571
+ igraph_t *graph;
572
+ igraph_matrix_t *res = malloc(sizeof(igraph_matrix_t));
573
+
574
+ igraph_vector_t edges_vec;
575
+ igraph_vector_t bridges_vec;
576
+
577
+ VALUE result,bridges_a;
578
+
579
+ int i;
580
+
581
+ Data_Get_Struct(self, igraph_t, graph);
582
+
583
+ igraph_matrix_init(res,0,0);
584
+ igraph_vector_init(&edges_vec,0);
585
+ igraph_vector_init(&bridges_vec,0);
586
+
587
+ for(i=0;i<RARRAY(edges)->len;i++){
588
+ igraph_vector_push_back(&edges_vec,NUM2INT(RARRAY(edges)->ptr[i]));
589
+ }
590
+
591
+ igraph_community_eb_get_merges(graph,&edges_vec,res,&bridges_vec);
592
+
593
+ bridges_a = rb_ary_new();
594
+ for(i=0;i<igraph_vector_size(&bridges_vec);i++){
595
+ rb_ary_push(bridges_a,INT2NUM(VECTOR(bridges_vec)[i]));
596
+ }
597
+
598
+ igraph_vector_destroy(&bridges_vec);
599
+ igraph_vector_destroy(&edges_vec);
600
+
601
+ result = rb_ary_new3(2,
602
+ Data_Wrap_Struct(cIGraphMatrix, 0,
603
+ cIGraph_matrix_free, res),
604
+ bridges_a);
605
+
606
+ return result;
607
+
608
+ }
609
+
610
+ /* call-seq:
611
+ * graph.community_fastgreedy() -> Array
612
+ *
613
+ * Finding community structure by greedy optimization of modularity.
614
+ * This function implements the fast greedy modularity optimization algorithm
615
+ * for finding community structure, see A Clauset, MEJ Newman, C Moore:
616
+ * Finding community structure in very large networks,
617
+ * http://www.arxiv.org/abs/cond-mat/0408187 for the details.
618
+ *
619
+ */
620
+
621
+ VALUE cIGraph_community_fastgreedy(VALUE self){
622
+
623
+ igraph_t *graph;
624
+
625
+ igraph_vector_t modularity;
626
+ igraph_matrix_t *merges = malloc(sizeof(igraph_matrix_t));
627
+
628
+ int i;
629
+
630
+ VALUE modularity_a, res;
631
+
632
+ Data_Get_Struct(self, igraph_t, graph);
633
+
634
+ igraph_matrix_init(merges,0,0);
635
+ igraph_vector_init(&modularity,0);
636
+
637
+ igraph_community_fastgreedy(graph,
638
+ merges,&modularity);
639
+
640
+ modularity_a = rb_ary_new();
641
+ for(i=0;i<igraph_vector_size(&modularity);i++){
642
+ rb_ary_push(modularity_a,rb_float_new(VECTOR(modularity)[i]));
643
+ }
644
+
645
+ res = rb_ary_new3(2,
646
+ Data_Wrap_Struct(cIGraphMatrix, 0,
647
+ cIGraph_matrix_free, merges),
648
+ modularity_a);
649
+
650
+ igraph_vector_destroy(&modularity);
651
+
652
+ return res;
653
+
654
+ }