igraph 0.3.3 → 0.9.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +5 -0
- data/Manifest.txt +12 -1
- data/README.txt +50 -10
- data/Rakefile.rb +1 -1
- data/ext/cIGraph.c +347 -110
- data/ext/cIGraph.h +98 -0
- data/ext/cIGraph_attribute_handler.c +23 -13
- data/ext/cIGraph_community.c +654 -0
- data/ext/cIGraph_connectivity.c +230 -0
- data/ext/cIGraph_file.c +634 -3
- data/ext/cIGraph_generators_deterministic.c +324 -0
- data/ext/cIGraph_generators_random.c +718 -0
- data/ext/cIGraph_layout.c +43 -0
- data/ext/cIGraph_layout3d.c +119 -0
- data/ext/cIGraph_min_cuts.c +195 -0
- data/ext/cIGraph_randomisation.c +57 -0
- data/ext/cIGraph_utility.c +2 -0
- data/test/tc_add_delete.rb +21 -0
- data/test/tc_community.rb +72 -0
- data/test/tc_connectivity.rb +22 -0
- data/test/tc_file_read_write.rb +193 -3
- data/test/tc_generators_deterministic.rb +61 -0
- data/test/tc_generators_random.rb +82 -8
- data/test/tc_isomorphic.rb +1 -1
- data/test/tc_layout.rb +10 -0
- data/test/tc_layout3d.rb +34 -0
- data/test/tc_mincuts.rb +20 -0
- data/test/tc_randomisation.rb +15 -0
- data/test/test_all.rb +6 -0
- metadata +15 -4
- data/test/test_draw.rb +0 -61
data/ext/cIGraph.h
CHANGED
@@ -30,6 +30,17 @@ VALUE cIGraph_alloc(VALUE klass);
|
|
30
30
|
VALUE cIGraph_initialize(int argc, VALUE *argv, VALUE self);
|
31
31
|
VALUE cIGraph_init_copy(VALUE copy, VALUE orig);
|
32
32
|
|
33
|
+
//Graph generators
|
34
|
+
VALUE cIGraph_adjacency(VALUE self, VALUE matrix, VALUE mode);
|
35
|
+
VALUE cIGraph_star (VALUE self, VALUE n, VALUE mode, VALUE center);
|
36
|
+
VALUE cIGraph_lattice (VALUE self, VALUE dim, VALUE directed, VALUE mutual, VALUE circular);
|
37
|
+
VALUE cIGraph_ring(VALUE self, VALUE n, VALUE directed, VALUE mutual, VALUE circular);
|
38
|
+
VALUE cIGraph_tree(VALUE self, VALUE n, VALUE children, VALUE type);
|
39
|
+
VALUE cIGraph_full(VALUE self, VALUE n, VALUE directed, VALUE loops);
|
40
|
+
VALUE cIGraph_atlas(VALUE self, VALUE n);
|
41
|
+
VALUE cIGraph_extended_chordal_ring(VALUE self, VALUE n, VALUE matrix);
|
42
|
+
VALUE cIGraph_connect_neighborhood(VALUE self, VALUE order, VALUE mode);
|
43
|
+
|
33
44
|
//Random graph generators
|
34
45
|
VALUE cIGraph_grg_game (VALUE self, VALUE nodes,
|
35
46
|
VALUE radius, VALUE torus);
|
@@ -38,6 +49,21 @@ VALUE cIGraph_barabasi_game(VALUE self, VALUE nodes,
|
|
38
49
|
VALUE cIGraph_nonlinear_barabasi_game(VALUE self, VALUE nodes, VALUE power,
|
39
50
|
VALUE m, VALUE outpref, VALUE zeroappeal, VALUE directed);
|
40
51
|
VALUE cIGraph_erdos_renyi_game (VALUE self, VALUE type, VALUE nodes, VALUE mp, VALUE directed, VALUE loops);
|
52
|
+
VALUE cIGraph_watts_strogatz_game(VALUE self, VALUE dim, VALUE size, VALUE nei, VALUE p);
|
53
|
+
VALUE cIGraph_degree_sequence_game(VALUE self, VALUE out_deg, VALUE in_deg);
|
54
|
+
VALUE cIGraph_growing_random_game(VALUE self, VALUE n, VALUE m, VALUE directed, VALUE citation);
|
55
|
+
VALUE cIGraph_callaway_traits_game(VALUE self, VALUE nodes, VALUE types, VALUE e_per_step, VALUE type_dist, VALUE pref_matrix, VALUE directed);
|
56
|
+
VALUE cIGraph_establishment_game(VALUE self, VALUE nodes, VALUE types, VALUE k, VALUE type_dist, VALUE pref_matrix, VALUE directed);
|
57
|
+
VALUE cIGraph_preference_game(VALUE self, VALUE nodes, VALUE types, VALUE type_dist, VALUE pref_matrix, VALUE directed, VALUE loops);
|
58
|
+
VALUE cIGraph_asymmetric_preference_game(VALUE self, VALUE nodes, VALUE types, VALUE type_dist_matrix, VALUE pref_matrix, VALUE loops);
|
59
|
+
VALUE cIGraph_recent_degree_game(VALUE self, VALUE n, VALUE power, VALUE window, VALUE m, VALUE outpref, VALUE zero_appeal, VALUE directed);
|
60
|
+
VALUE cIGraph_barabasi_aging_game(VALUE self, VALUE nodes, VALUE m, VALUE outpref, VALUE pa_exp, VALUE aging_exp, VALUE aging_bin, VALUE zero_deg_appeal, VALUE zero_age_appeal, VALUE deg_coef, VALUE age_coef, VALUE directed);
|
61
|
+
VALUE cIGraph_recent_degree_aging_game(VALUE self, VALUE nodes, VALUE m, VALUE outpref, VALUE pa_exp, VALUE aging_exp, VALUE aging_bin, VALUE time_window, VALUE zero_appeal, VALUE directed);
|
62
|
+
VALUE cIGraph_cited_type_game(VALUE self, VALUE nodes, VALUE types, VALUE pref, VALUE e_per_s, VALUE directed);
|
63
|
+
VALUE cIGraph_citing_cited_type_game(VALUE self, VALUE nodes, VALUE types, VALUE pref, VALUE e_per_s, VALUE directed);
|
64
|
+
|
65
|
+
VALUE cIGraph_rewire_edges(VALUE self, VALUE prop);
|
66
|
+
VALUE cIGraph_rewire(VALUE self, VALUE n);
|
41
67
|
|
42
68
|
//Attribute accessors
|
43
69
|
int replace_i(VALUE key, VALUE val, VALUE hash);
|
@@ -174,8 +200,17 @@ VALUE cIGraph_motifs_randesu_estimate(VALUE self, VALUE size, VALUE cuts,
|
|
174
200
|
//File handling
|
175
201
|
VALUE cIGraph_read_graph_edgelist (VALUE self, VALUE file, VALUE mode);
|
176
202
|
VALUE cIGraph_write_graph_edgelist(VALUE self, VALUE file);
|
203
|
+
VALUE cIGraph_read_graph_ncol (VALUE self, VALUE file, VALUE predefnames, VALUE names, VALUE weights, VALUE directed);
|
204
|
+
VALUE cIGraph_write_graph_ncol (VALUE self, VALUE file, VALUE names, VALUE weights);
|
205
|
+
VALUE cIGraph_read_graph_lgl (VALUE self, VALUE file, VALUE names, VALUE weights);
|
206
|
+
VALUE cIGraph_write_graph_lgl (VALUE self, VALUE file, VALUE names, VALUE weights, VALUE isolates);
|
207
|
+
VALUE cIGraph_read_graph_dimacs (VALUE self, VALUE file, VALUE directed);
|
208
|
+
VALUE cIGraph_write_graph_dimacs (VALUE self, VALUE file, VALUE source, VALUE target, VALUE capacity);
|
209
|
+
VALUE cIGraph_read_graph_graphdb (VALUE self, VALUE file, VALUE directed);
|
177
210
|
VALUE cIGraph_read_graph_graphml (VALUE self, VALUE file, VALUE index);
|
178
211
|
VALUE cIGraph_write_graph_graphml (VALUE self, VALUE file);
|
212
|
+
VALUE cIGraph_read_graph_gml (VALUE self, VALUE file);
|
213
|
+
VALUE cIGraph_write_graph_gml (VALUE self, VALUE file);
|
179
214
|
VALUE cIGraph_read_graph_pajek (VALUE self, VALUE file);
|
180
215
|
VALUE cIGraph_write_graph_pajek (VALUE self, VALUE file);
|
181
216
|
|
@@ -216,6 +251,69 @@ VALUE cIGraph_layout_lgl(VALUE self,
|
|
216
251
|
VALUE cellsize,
|
217
252
|
VALUE proot);
|
218
253
|
|
254
|
+
VALUE cIGraph_layout_random_3d(VALUE self);
|
255
|
+
VALUE cIGraph_layout_sphere (VALUE self);
|
256
|
+
VALUE cIGraph_layout_fruchterman_reingold_3d(VALUE self,
|
257
|
+
VALUE niter,
|
258
|
+
VALUE maxdelta,
|
259
|
+
VALUE volume,
|
260
|
+
VALUE coolexp,
|
261
|
+
VALUE repulserad);
|
262
|
+
VALUE cIGraph_layout_kamada_kawai_3d (VALUE self,
|
263
|
+
VALUE niter,
|
264
|
+
VALUE sigma,
|
265
|
+
VALUE initemp,
|
266
|
+
VALUE coolexp,
|
267
|
+
VALUE kkconst);
|
268
|
+
|
269
|
+
VALUE cIGraph_layout_merge_dla(VALUE self, VALUE graphs, VALUE layouts);
|
270
|
+
|
271
|
+
//Min cuts
|
272
|
+
VALUE cIGraph_maxflow_value (VALUE self, VALUE source, VALUE target, VALUE capacity);
|
273
|
+
VALUE cIGraph_st_mincut_value(VALUE self, VALUE source, VALUE target, VALUE capacity);
|
274
|
+
VALUE cIGraph_mincut_value (VALUE self, VALUE capacity);
|
275
|
+
VALUE cIGraph_mincut (VALUE self, VALUE capacity);
|
276
|
+
|
277
|
+
//Connectivity
|
278
|
+
VALUE cIGraph_st_edge_connectivity (VALUE self, VALUE source, VALUE target);
|
279
|
+
VALUE cIGraph_edge_connectivity (VALUE self);
|
280
|
+
VALUE cIGraph_st_vertex_connectivity(VALUE self, VALUE source, VALUE target, VALUE neighbours);
|
281
|
+
VALUE cIGraph_vertex_connectivity (VALUE self);
|
282
|
+
VALUE cIGraph_edge_disjoint_paths (VALUE self, VALUE source, VALUE target);
|
283
|
+
VALUE cIGraph_vertex_disjoint_paths (VALUE self, VALUE source, VALUE target);
|
284
|
+
VALUE cIGraph_adhesion(VALUE self);
|
285
|
+
VALUE cIGraph_cohesion(VALUE self);
|
286
|
+
|
287
|
+
//Community
|
288
|
+
VALUE cIGraph_modularity (VALUE self, VALUE groups);
|
289
|
+
VALUE cIGraph_community_to_membership (VALUE self, VALUE merge,
|
290
|
+
VALUE steps);
|
291
|
+
VALUE cIGraph_community_spinglass (VALUE self, VALUE weights,
|
292
|
+
VALUE spins,
|
293
|
+
VALUE parupdate,
|
294
|
+
VALUE starttemp,
|
295
|
+
VALUE stoptemp,
|
296
|
+
VALUE coolfact,
|
297
|
+
VALUE update_rule,
|
298
|
+
VALUE gamma);
|
299
|
+
VALUE cIGraph_community_spinglass_single (VALUE self, VALUE weights,
|
300
|
+
VALUE vertex,
|
301
|
+
VALUE spins,
|
302
|
+
VALUE update_rule,
|
303
|
+
VALUE gamma);
|
304
|
+
VALUE cIGraph_community_leading_eigenvector (VALUE self, VALUE steps);
|
305
|
+
VALUE cIGraph_community_leading_eigenvector_naive(VALUE self, VALUE steps);
|
306
|
+
VALUE cIGraph_community_leading_eigenvector_step (VALUE self,
|
307
|
+
VALUE membership,
|
308
|
+
VALUE steps);
|
309
|
+
VALUE cIGraph_community_walktrap (VALUE self,
|
310
|
+
VALUE weights,
|
311
|
+
VALUE steps);
|
312
|
+
VALUE cIGraph_community_edge_betweenness (VALUE self,
|
313
|
+
VALUE directed);
|
314
|
+
VALUE cIGraph_community_eb_get_merges (VALUE self,
|
315
|
+
VALUE edges);
|
316
|
+
VALUE cIGraph_community_fastgreedy (VALUE self);
|
219
317
|
|
220
318
|
//Attributes
|
221
319
|
int cIGraph_attribute_init(igraph_t *graph,
|
@@ -497,9 +497,9 @@ igraph_bool_t cIGraph_attribute_has_attr(const igraph_t *graph,
|
|
497
497
|
VALUE obj;
|
498
498
|
|
499
499
|
switch (type) {
|
500
|
-
case IGRAPH_ATTRIBUTE_GRAPH:
|
501
|
-
case IGRAPH_ATTRIBUTE_VERTEX: attrnum=
|
502
|
-
case IGRAPH_ATTRIBUTE_EDGE:
|
500
|
+
case IGRAPH_ATTRIBUTE_GRAPH: attrnum = 2; break;
|
501
|
+
case IGRAPH_ATTRIBUTE_VERTEX: attrnum = 0; break;
|
502
|
+
case IGRAPH_ATTRIBUTE_EDGE: attrnum = 1; break;
|
503
503
|
default: return 0; break;
|
504
504
|
}
|
505
505
|
|
@@ -507,14 +507,14 @@ igraph_bool_t cIGraph_attribute_has_attr(const igraph_t *graph,
|
|
507
507
|
if (attrnum != 2)
|
508
508
|
obj = RARRAY(obj)->ptr[0];
|
509
509
|
|
510
|
-
if(rb_funcall(obj,rb_intern("include?"), 1, rb_str_new2(name))){
|
510
|
+
if(TYPE(obj) == T_HASH && rb_funcall(obj,rb_intern("include?"), 1, rb_str_new2(name))){
|
511
511
|
res = 1;
|
512
512
|
}
|
513
513
|
|
514
514
|
#ifdef DEBUG
|
515
515
|
printf("Leaving cIGraph_attribute_has_attr\n");
|
516
516
|
#endif
|
517
|
-
|
517
|
+
|
518
518
|
return res;
|
519
519
|
}
|
520
520
|
|
@@ -533,9 +533,9 @@ int cIGraph_attribute_get_type(const igraph_t *graph,
|
|
533
533
|
VALUE val;
|
534
534
|
|
535
535
|
switch (elemtype) {
|
536
|
-
case IGRAPH_ATTRIBUTE_GRAPH:
|
537
|
-
case IGRAPH_ATTRIBUTE_VERTEX: attrnum=
|
538
|
-
case IGRAPH_ATTRIBUTE_EDGE:
|
536
|
+
case IGRAPH_ATTRIBUTE_GRAPH: attrnum = 2; break;
|
537
|
+
case IGRAPH_ATTRIBUTE_VERTEX: attrnum = 0; break;
|
538
|
+
case IGRAPH_ATTRIBUTE_EDGE: attrnum = 1; break;
|
539
539
|
default: return 0; break;
|
540
540
|
}
|
541
541
|
|
@@ -543,7 +543,9 @@ int cIGraph_attribute_get_type(const igraph_t *graph,
|
|
543
543
|
if (attrnum != 2)
|
544
544
|
obj = RARRAY(obj)->ptr[0];
|
545
545
|
|
546
|
-
|
546
|
+
rb_funcall(obj,rb_intern("include?"), 1, rb_str_new2(name));
|
547
|
+
|
548
|
+
if(rb_funcall(obj,rb_intern("include?"), 1, rb_str_new2(name))){
|
547
549
|
val = rb_hash_aref(obj,rb_str_new2(name));
|
548
550
|
if (TYPE(val) == T_STRING){
|
549
551
|
*type = IGRAPH_ATTRIBUTE_STRING;
|
@@ -552,7 +554,9 @@ int cIGraph_attribute_get_type(const igraph_t *graph,
|
|
552
554
|
} else {
|
553
555
|
*type = IGRAPH_ATTRIBUTE_PY_OBJECT;
|
554
556
|
}
|
555
|
-
}
|
557
|
+
} else {
|
558
|
+
*type = IGRAPH_ATTRIBUTE_PY_OBJECT;
|
559
|
+
}
|
556
560
|
|
557
561
|
#ifdef DEBUG
|
558
562
|
printf("Leaving cIGraph_attribute_get_type\n");
|
@@ -736,7 +740,7 @@ int cIGraph_get_string_edge_attr(const igraph_t *graph,
|
|
736
740
|
#endif
|
737
741
|
|
738
742
|
VALUE array = ((VALUE*)graph->attr)[1];
|
739
|
-
VALUE val,
|
743
|
+
VALUE val, edge;
|
740
744
|
igraph_eit_t it;
|
741
745
|
int i=0;
|
742
746
|
|
@@ -745,10 +749,16 @@ int cIGraph_get_string_edge_attr(const igraph_t *graph,
|
|
745
749
|
IGRAPH_CHECK(igraph_strvector_resize(value, IGRAPH_EIT_SIZE(it)));
|
746
750
|
|
747
751
|
while(!IGRAPH_EIT_END(it)){
|
748
|
-
|
749
|
-
|
752
|
+
edge = RARRAY(array)->ptr[(int)IGRAPH_EIT_GET(it)];
|
753
|
+
|
754
|
+
val = rb_hash_aref(edge,rb_str_new2(name));
|
755
|
+
|
750
756
|
if(val == Qnil)
|
751
757
|
val = rb_str_new2("");
|
758
|
+
|
759
|
+
//Fix for floats when required by ncol write
|
760
|
+
val = rb_funcall(val,rb_intern("to_s"),0);
|
761
|
+
|
752
762
|
igraph_strvector_set(value,i,RSTRING(val)->ptr);
|
753
763
|
IGRAPH_EIT_NEXT(it);
|
754
764
|
i++;
|
@@ -0,0 +1,654 @@
|
|
1
|
+
#include "igraph.h"
|
2
|
+
#include "ruby.h"
|
3
|
+
#include "cIGraph.h"
|
4
|
+
|
5
|
+
/* call-seq:
|
6
|
+
* graph.modularity(groups) -> Float
|
7
|
+
*
|
8
|
+
* Calculate the modularity of a graph with respect to some vertex types.
|
9
|
+
* The modularity of a graph with respect to some division (or vertex types)
|
10
|
+
* measures how good the division is, or how separated are the different
|
11
|
+
* vertex types from each other.
|
12
|
+
*
|
13
|
+
*/
|
14
|
+
|
15
|
+
VALUE cIGraph_modularity(VALUE self, VALUE groups){
|
16
|
+
|
17
|
+
igraph_t *graph;
|
18
|
+
igraph_real_t value;
|
19
|
+
igraph_vector_t membership;
|
20
|
+
|
21
|
+
VALUE group;
|
22
|
+
|
23
|
+
int i,j;
|
24
|
+
|
25
|
+
Data_Get_Struct(self, igraph_t, graph);
|
26
|
+
|
27
|
+
igraph_vector_init(&membership,igraph_vcount(graph));
|
28
|
+
|
29
|
+
for(i=0;i<RARRAY(groups)->len;i++){
|
30
|
+
group = RARRAY(groups)->ptr[i];
|
31
|
+
for(j=0;j<RARRAY(group)->len;j++){
|
32
|
+
igraph_vector_set(&membership,
|
33
|
+
cIGraph_get_vertex_id(self,RARRAY(group)->ptr[j]),i);
|
34
|
+
}
|
35
|
+
}
|
36
|
+
|
37
|
+
igraph_modularity(graph,&membership,&value);
|
38
|
+
|
39
|
+
igraph_vector_destroy(&membership);
|
40
|
+
|
41
|
+
return rb_float_new(value);
|
42
|
+
|
43
|
+
}
|
44
|
+
|
45
|
+
/* call-seq:
|
46
|
+
* graph.community_to_membership(merge,steps) -> Array
|
47
|
+
*
|
48
|
+
* Create membership vector from community structure dendrogram This function
|
49
|
+
* creates a membership vector from a community structure dendrogram.
|
50
|
+
* A membership vector contains for each vertex the id of its graph
|
51
|
+
* component, the graph components are numbered from zero, see the same
|
52
|
+
* argument of igraph_clusters() for an example of a membership vector.
|
53
|
+
*
|
54
|
+
*/
|
55
|
+
|
56
|
+
VALUE cIGraph_community_to_membership(VALUE self, VALUE merge, VALUE steps){
|
57
|
+
|
58
|
+
igraph_t *graph;
|
59
|
+
igraph_matrix_t *merges;
|
60
|
+
|
61
|
+
igraph_vector_t membership;
|
62
|
+
|
63
|
+
VALUE groups;
|
64
|
+
|
65
|
+
int i,groupid,max_groupid;
|
66
|
+
|
67
|
+
Data_Get_Struct(self, igraph_t, graph);
|
68
|
+
Data_Get_Struct(merge, igraph_matrix_t, merges);
|
69
|
+
|
70
|
+
igraph_vector_init(&membership,0);
|
71
|
+
|
72
|
+
igraph_community_to_membership(graph,merges,NUM2INT(steps),&membership,NULL);
|
73
|
+
|
74
|
+
max_groupid = 0;
|
75
|
+
for(i=0;i<igraph_vector_size(&membership);i++){
|
76
|
+
if(VECTOR(membership)[i] > max_groupid)
|
77
|
+
max_groupid = VECTOR(membership)[i];
|
78
|
+
}
|
79
|
+
|
80
|
+
groups = rb_ary_new();
|
81
|
+
for(i=0;i<max_groupid+1;i++){
|
82
|
+
rb_ary_push(groups,rb_ary_new());
|
83
|
+
}
|
84
|
+
|
85
|
+
for(i=0;i<igraph_vector_size(&membership);i++){
|
86
|
+
groupid = VECTOR(membership)[i];
|
87
|
+
if(RARRAY(groups)->ptr[groupid] == Qnil){
|
88
|
+
RARRAY(groups)->ptr[groupid] = rb_ary_new();
|
89
|
+
}
|
90
|
+
rb_ary_push(RARRAY(groups)->ptr[groupid],
|
91
|
+
cIGraph_get_vertex_object(self, i));
|
92
|
+
}
|
93
|
+
|
94
|
+
igraph_vector_destroy(&membership);
|
95
|
+
|
96
|
+
return groups;
|
97
|
+
|
98
|
+
}
|
99
|
+
|
100
|
+
/* call-seq:
|
101
|
+
* graph.community_spinglass(weights,spins,parupdate,starttemp,stoptemp,coolfact,update_rule,gamma) -> Array
|
102
|
+
*
|
103
|
+
* Community detection based on statistical mechanics This function
|
104
|
+
* implements the community structure detection algorithm proposed by Joerg
|
105
|
+
* Reichardt and Stefan Bornholdt. The algorithm is described in their
|
106
|
+
* paper: Statistical Mechanics of Community Detection.
|
107
|
+
*
|
108
|
+
*/
|
109
|
+
|
110
|
+
VALUE cIGraph_community_spinglass(VALUE self, VALUE weights, VALUE spins, VALUE parupdate, VALUE starttemp, VALUE stoptemp, VALUE coolfact, VALUE update_rule, VALUE gamma){
|
111
|
+
|
112
|
+
igraph_t *graph;
|
113
|
+
|
114
|
+
igraph_vector_t weights_vec;
|
115
|
+
igraph_vector_t membership;
|
116
|
+
igraph_real_t temperature;
|
117
|
+
igraph_real_t modularity;
|
118
|
+
igraph_bool_t parupdate_b;
|
119
|
+
|
120
|
+
VALUE group;
|
121
|
+
VALUE groups;
|
122
|
+
VALUE res;
|
123
|
+
|
124
|
+
VALUE str;
|
125
|
+
|
126
|
+
int i,groupid,max_groupid;
|
127
|
+
|
128
|
+
if(parupdate)
|
129
|
+
parupdate_b = 1;
|
130
|
+
|
131
|
+
Data_Get_Struct(self, igraph_t, graph);
|
132
|
+
|
133
|
+
igraph_vector_init(&membership,0);
|
134
|
+
|
135
|
+
igraph_vector_init(&weights_vec,RARRAY(weights)->len);
|
136
|
+
for(i=0;i<RARRAY(weights)->len;i++){
|
137
|
+
VECTOR(weights_vec)[i] = NUM2DBL(RARRAY(weights)->ptr[i]);
|
138
|
+
}
|
139
|
+
|
140
|
+
igraph_community_spinglass(graph,
|
141
|
+
igraph_vector_size(&weights_vec) > 0 ? &weights_vec : NULL,
|
142
|
+
&modularity,&temperature,
|
143
|
+
&membership,NULL,NUM2INT(spins),parupdate_b,
|
144
|
+
NUM2DBL(starttemp),NUM2DBL(stoptemp),
|
145
|
+
NUM2DBL(coolfact),NUM2INT(update_rule),
|
146
|
+
NUM2DBL(gamma));
|
147
|
+
|
148
|
+
max_groupid = 0;
|
149
|
+
for(i=0;i<igraph_vector_size(&membership);i++){
|
150
|
+
if(VECTOR(membership)[i] > max_groupid)
|
151
|
+
max_groupid = VECTOR(membership)[i];
|
152
|
+
}
|
153
|
+
|
154
|
+
groups = rb_ary_new();
|
155
|
+
for(i=0;i<max_groupid+1;i++){
|
156
|
+
rb_ary_push(groups,rb_ary_new());
|
157
|
+
}
|
158
|
+
|
159
|
+
for(i=0;i<igraph_vector_size(&membership);i++){
|
160
|
+
|
161
|
+
groupid = VECTOR(membership)[i];
|
162
|
+
|
163
|
+
if(groupid == -1)
|
164
|
+
groupid = 0;
|
165
|
+
|
166
|
+
group = RARRAY(groups)->ptr[groupid];
|
167
|
+
rb_ary_push(group,cIGraph_get_vertex_object(self, i));
|
168
|
+
}
|
169
|
+
|
170
|
+
res = rb_ary_new3(3,groups,
|
171
|
+
rb_float_new(modularity),
|
172
|
+
rb_float_new(temperature));
|
173
|
+
|
174
|
+
igraph_vector_destroy(&membership);
|
175
|
+
igraph_vector_destroy(&weights_vec);
|
176
|
+
|
177
|
+
return res;
|
178
|
+
|
179
|
+
}
|
180
|
+
|
181
|
+
/* call-seq:
|
182
|
+
* graph.community_spinglass_single(weights,vertex,spins,update_rule,gamma) -> Array
|
183
|
+
*
|
184
|
+
* Community detection based on statistical mechanics This function
|
185
|
+
* implements the community structure detection algorithm proposed by Joerg
|
186
|
+
* Reichardt and Stefan Bornholdt. The algorithm is described in their
|
187
|
+
* paper: Statistical Mechanics of Community Detection.
|
188
|
+
*
|
189
|
+
*/
|
190
|
+
|
191
|
+
VALUE cIGraph_community_spinglass_single(VALUE self, VALUE weights, VALUE vertex, VALUE spins, VALUE update_rule, VALUE gamma){
|
192
|
+
|
193
|
+
igraph_t *graph;
|
194
|
+
|
195
|
+
igraph_vector_t weights_vec;
|
196
|
+
igraph_vector_t community;
|
197
|
+
igraph_real_t cohesion;
|
198
|
+
igraph_real_t adhesion;
|
199
|
+
|
200
|
+
VALUE group;
|
201
|
+
VALUE res;
|
202
|
+
|
203
|
+
int i;
|
204
|
+
|
205
|
+
Data_Get_Struct(self, igraph_t, graph);
|
206
|
+
|
207
|
+
igraph_vector_init(&community,0);
|
208
|
+
|
209
|
+
igraph_vector_init(&weights_vec,RARRAY(weights)->len);
|
210
|
+
for(i=0;i<RARRAY(weights)->len;i++){
|
211
|
+
VECTOR(weights_vec)[i] = NUM2DBL(RARRAY(weights)->ptr[i]);
|
212
|
+
}
|
213
|
+
|
214
|
+
igraph_community_spinglass_single(graph,
|
215
|
+
igraph_vector_size(&weights_vec) > 0 ? &weights_vec : NULL,
|
216
|
+
cIGraph_get_vertex_id(self, vertex),
|
217
|
+
&community, &cohesion, &adhesion,
|
218
|
+
NULL, NULL,
|
219
|
+
NUM2INT(spins),NUM2INT(update_rule),
|
220
|
+
NUM2DBL(gamma));
|
221
|
+
|
222
|
+
group = rb_ary_new();
|
223
|
+
|
224
|
+
for(i=0;i<igraph_vector_size(&community);i++){
|
225
|
+
rb_ary_push(group,cIGraph_get_vertex_object(self, i));
|
226
|
+
}
|
227
|
+
|
228
|
+
res = rb_ary_new3(3,group,
|
229
|
+
rb_float_new(cohesion),
|
230
|
+
rb_float_new(adhesion));
|
231
|
+
|
232
|
+
igraph_vector_destroy(&community);
|
233
|
+
igraph_vector_destroy(&weights_vec);
|
234
|
+
|
235
|
+
return res;
|
236
|
+
|
237
|
+
}
|
238
|
+
|
239
|
+
/* call-seq:
|
240
|
+
* graph.community_leading_eigenvector(steps) -> Array
|
241
|
+
*
|
242
|
+
* Newman's leading eigenvector method for detecting community structure.
|
243
|
+
* This is the proper implementation of the recursive, divisive algorithm:
|
244
|
+
* each split is done by maximizing the modularity regarding the original
|
245
|
+
* network, see MEJ Newman: Finding community structure in networks using
|
246
|
+
* the eigenvectors of matrices, arXiv:physics/0605087.
|
247
|
+
*
|
248
|
+
*/
|
249
|
+
|
250
|
+
VALUE cIGraph_community_leading_eigenvector(VALUE self, VALUE steps){
|
251
|
+
|
252
|
+
igraph_t *graph;
|
253
|
+
|
254
|
+
igraph_vector_t membership;
|
255
|
+
igraph_matrix_t *merges = malloc(sizeof(igraph_matrix_t));
|
256
|
+
|
257
|
+
int i,groupid,max_groupid;
|
258
|
+
|
259
|
+
VALUE groups, group, res;
|
260
|
+
|
261
|
+
Data_Get_Struct(self, igraph_t, graph);
|
262
|
+
|
263
|
+
igraph_matrix_init(merges,0,0);
|
264
|
+
igraph_vector_init(&membership,0);
|
265
|
+
|
266
|
+
igraph_community_leading_eigenvector(graph,merges,&membership,
|
267
|
+
NUM2INT(steps));
|
268
|
+
|
269
|
+
max_groupid = 0;
|
270
|
+
for(i=0;i<igraph_vector_size(&membership);i++){
|
271
|
+
if(VECTOR(membership)[i] > max_groupid)
|
272
|
+
max_groupid = VECTOR(membership)[i];
|
273
|
+
}
|
274
|
+
|
275
|
+
groups = rb_ary_new();
|
276
|
+
for(i=0;i<max_groupid+1;i++){
|
277
|
+
rb_ary_push(groups,rb_ary_new());
|
278
|
+
}
|
279
|
+
|
280
|
+
for(i=0;i<igraph_vector_size(&membership);i++){
|
281
|
+
|
282
|
+
groupid = VECTOR(membership)[i];
|
283
|
+
|
284
|
+
if(groupid == -1)
|
285
|
+
groupid = 0;
|
286
|
+
|
287
|
+
group = RARRAY(groups)->ptr[groupid];
|
288
|
+
rb_ary_push(group,cIGraph_get_vertex_object(self, i));
|
289
|
+
}
|
290
|
+
|
291
|
+
res = rb_ary_new3(2,groups,
|
292
|
+
Data_Wrap_Struct(cIGraphMatrix, 0,
|
293
|
+
cIGraph_matrix_free, merges));
|
294
|
+
|
295
|
+
igraph_vector_destroy(&membership);
|
296
|
+
|
297
|
+
return res;
|
298
|
+
|
299
|
+
}
|
300
|
+
|
301
|
+
/* call-seq:
|
302
|
+
* graph.community_leading_eigenvector_naive(steps) -> Array
|
303
|
+
*
|
304
|
+
* Newman's leading eigenvector method for detecting community structure.
|
305
|
+
* This is the proper implementation of the recursive, divisive algorithm:
|
306
|
+
* each split is done by maximizing the modularity regarding the original
|
307
|
+
* network, see MEJ Newman: Finding community structure in networks using
|
308
|
+
* the eigenvectors of matrices, arXiv:physics/0605087.
|
309
|
+
*
|
310
|
+
*/
|
311
|
+
|
312
|
+
VALUE cIGraph_community_leading_eigenvector_naive(VALUE self, VALUE steps){
|
313
|
+
|
314
|
+
igraph_t *graph;
|
315
|
+
|
316
|
+
igraph_vector_t membership;
|
317
|
+
igraph_matrix_t *merges = malloc(sizeof(igraph_matrix_t));
|
318
|
+
|
319
|
+
int i,groupid,max_groupid;
|
320
|
+
|
321
|
+
VALUE groups, group, res;
|
322
|
+
|
323
|
+
Data_Get_Struct(self, igraph_t, graph);
|
324
|
+
|
325
|
+
igraph_matrix_init(merges,0,0);
|
326
|
+
igraph_vector_init(&membership,0);
|
327
|
+
|
328
|
+
igraph_community_leading_eigenvector_naive(graph,merges,&membership,
|
329
|
+
NUM2INT(steps));
|
330
|
+
|
331
|
+
max_groupid = 0;
|
332
|
+
for(i=0;i<igraph_vector_size(&membership);i++){
|
333
|
+
if(VECTOR(membership)[i] > max_groupid)
|
334
|
+
max_groupid = VECTOR(membership)[i];
|
335
|
+
}
|
336
|
+
|
337
|
+
groups = rb_ary_new();
|
338
|
+
for(i=0;i<max_groupid+1;i++){
|
339
|
+
rb_ary_push(groups,rb_ary_new());
|
340
|
+
}
|
341
|
+
|
342
|
+
for(i=0;i<igraph_vector_size(&membership);i++){
|
343
|
+
|
344
|
+
groupid = VECTOR(membership)[i];
|
345
|
+
|
346
|
+
if(groupid == -1)
|
347
|
+
groupid = 0;
|
348
|
+
|
349
|
+
group = RARRAY(groups)->ptr[groupid];
|
350
|
+
rb_ary_push(group,cIGraph_get_vertex_object(self, i));
|
351
|
+
}
|
352
|
+
|
353
|
+
res = rb_ary_new3(2,groups,
|
354
|
+
Data_Wrap_Struct(cIGraphMatrix, 0,
|
355
|
+
cIGraph_matrix_free, merges));
|
356
|
+
|
357
|
+
igraph_vector_destroy(&membership);
|
358
|
+
|
359
|
+
return res;
|
360
|
+
|
361
|
+
}
|
362
|
+
|
363
|
+
/* call-seq:
|
364
|
+
* graph.community_leading_eigenvector_step(membership,community) -> Array
|
365
|
+
*
|
366
|
+
* Do one split according to Mark Newman's leading eigenvector community
|
367
|
+
* detection method. See MEJ Newman: Finding community structure in networks
|
368
|
+
* using the eigenvectors of matrices, arXiv:phyisics/0605087 for the details.
|
369
|
+
*
|
370
|
+
*/
|
371
|
+
|
372
|
+
VALUE cIGraph_community_leading_eigenvector_step(VALUE self, VALUE membership, VALUE community){
|
373
|
+
|
374
|
+
igraph_t *graph;
|
375
|
+
|
376
|
+
igraph_vector_t membership_vec;
|
377
|
+
igraph_vector_t eigenvector;
|
378
|
+
igraph_real_t eigenvalue;
|
379
|
+
igraph_bool_t split;
|
380
|
+
|
381
|
+
int i,j,groupid,max_groupid,vid;
|
382
|
+
|
383
|
+
VALUE groups, group, res, eigenvector_a, obj;
|
384
|
+
|
385
|
+
Data_Get_Struct(self, igraph_t, graph);
|
386
|
+
|
387
|
+
igraph_vector_init(&membership_vec,igraph_vcount(graph));
|
388
|
+
igraph_vector_init(&eigenvector,0);
|
389
|
+
|
390
|
+
for(i=0;i<RARRAY(membership)->len;i++){
|
391
|
+
group = RARRAY(membership)->ptr[i];
|
392
|
+
|
393
|
+
for(j=0;j<RARRAY(group)->len;j++){
|
394
|
+
|
395
|
+
obj = RARRAY(group)->ptr[j];
|
396
|
+
vid = cIGraph_get_vertex_id(self,obj);
|
397
|
+
|
398
|
+
VECTOR(membership_vec)[vid] = i;
|
399
|
+
|
400
|
+
}
|
401
|
+
}
|
402
|
+
|
403
|
+
igraph_community_leading_eigenvector_step(graph,&membership_vec,
|
404
|
+
NUM2INT(community),
|
405
|
+
&split,&eigenvector,&eigenvalue);
|
406
|
+
|
407
|
+
max_groupid = 0;
|
408
|
+
for(i=0;i<igraph_vector_size(&membership_vec);i++){
|
409
|
+
if(VECTOR(membership_vec)[i] > max_groupid)
|
410
|
+
max_groupid = VECTOR(membership_vec)[i];
|
411
|
+
}
|
412
|
+
|
413
|
+
groups = rb_ary_new();
|
414
|
+
for(i=0;i<max_groupid+1;i++){
|
415
|
+
rb_ary_push(groups,rb_ary_new());
|
416
|
+
}
|
417
|
+
|
418
|
+
for(i=0;i<igraph_vector_size(&membership_vec);i++){
|
419
|
+
|
420
|
+
groupid = VECTOR(membership_vec)[i];
|
421
|
+
|
422
|
+
if(groupid == -1)
|
423
|
+
groupid = 0;
|
424
|
+
|
425
|
+
group = RARRAY(groups)->ptr[groupid];
|
426
|
+
rb_ary_push(group,cIGraph_get_vertex_object(self, i));
|
427
|
+
}
|
428
|
+
|
429
|
+
eigenvector_a = rb_ary_new();
|
430
|
+
for(i=0;i<igraph_vector_size(&eigenvector);i++){
|
431
|
+
rb_ary_push(eigenvector_a,rb_float_new(VECTOR(eigenvector)[i]));
|
432
|
+
}
|
433
|
+
|
434
|
+
res = rb_ary_new3(4,groups,split==0 ? Qfalse : Qtrue,
|
435
|
+
eigenvector_a,rb_float_new(eigenvalue));
|
436
|
+
|
437
|
+
|
438
|
+
igraph_vector_destroy(&membership_vec);
|
439
|
+
igraph_vector_destroy(&eigenvector);
|
440
|
+
|
441
|
+
return res;
|
442
|
+
|
443
|
+
}
|
444
|
+
|
445
|
+
/* call-seq:
|
446
|
+
* graph.community_walktrap(weights,steps) -> Array
|
447
|
+
*
|
448
|
+
* This function is the implementation of the Walktrap community finding
|
449
|
+
* algorithm, see Pascal Pons, Matthieu Latapy: Computing communities in
|
450
|
+
* large networks using random walks, http://arxiv.org/abs/physics/0512106
|
451
|
+
*
|
452
|
+
*/
|
453
|
+
|
454
|
+
VALUE cIGraph_community_walktrap(VALUE self, VALUE weights, VALUE steps){
|
455
|
+
|
456
|
+
igraph_t *graph;
|
457
|
+
|
458
|
+
igraph_vector_t weights_vec;
|
459
|
+
igraph_vector_t modularity;
|
460
|
+
igraph_matrix_t *merges = malloc(sizeof(igraph_matrix_t));
|
461
|
+
|
462
|
+
int i;
|
463
|
+
|
464
|
+
VALUE modularity_a, res;
|
465
|
+
|
466
|
+
Data_Get_Struct(self, igraph_t, graph);
|
467
|
+
|
468
|
+
igraph_matrix_init(merges,0,0);
|
469
|
+
igraph_vector_init(&weights_vec,0);
|
470
|
+
igraph_vector_init(&modularity,0);
|
471
|
+
|
472
|
+
for(i=0;i<RARRAY(weights)->len;i++){
|
473
|
+
VECTOR(weights_vec)[i] = NUM2DBL(RARRAY(weights)->ptr[i]);
|
474
|
+
}
|
475
|
+
|
476
|
+
igraph_community_walktrap(graph,
|
477
|
+
igraph_vector_size(&weights_vec) > 0 ? &weights_vec : NULL,
|
478
|
+
NUM2INT(steps),merges,&modularity);
|
479
|
+
|
480
|
+
modularity_a = rb_ary_new();
|
481
|
+
for(i=0;i<igraph_vector_size(&modularity);i++){
|
482
|
+
rb_ary_push(modularity_a,rb_float_new(VECTOR(modularity)[i]));
|
483
|
+
}
|
484
|
+
|
485
|
+
res = rb_ary_new3(2,
|
486
|
+
Data_Wrap_Struct(cIGraphMatrix, 0,
|
487
|
+
cIGraph_matrix_free, merges),
|
488
|
+
modularity_a);
|
489
|
+
|
490
|
+
igraph_vector_destroy(&weights_vec);
|
491
|
+
igraph_vector_destroy(&modularity);
|
492
|
+
|
493
|
+
return res;
|
494
|
+
|
495
|
+
}
|
496
|
+
|
497
|
+
/* call-seq:
|
498
|
+
* graph.community_edge_betweenness(directed) -> Array
|
499
|
+
*
|
500
|
+
* Community structure detection based on the betweenness of the edges in the
|
501
|
+
* network. The algorithm was invented by M. Girvan and M. Newman, see:
|
502
|
+
* M. Girvan and M. E. J. Newman: Community structure in social and
|
503
|
+
* biological networks, Proc. Nat. Acad. Sci. USA 99, 7821-7826 (2002).
|
504
|
+
*
|
505
|
+
*/
|
506
|
+
|
507
|
+
VALUE cIGraph_community_edge_betweenness(VALUE self, VALUE directed){
|
508
|
+
|
509
|
+
igraph_t *graph;
|
510
|
+
|
511
|
+
igraph_vector_t result_vec;
|
512
|
+
igraph_vector_t edge_betw_vec;
|
513
|
+
igraph_vector_t bridges_vec;
|
514
|
+
igraph_matrix_t *merges = malloc(sizeof(igraph_matrix_t));
|
515
|
+
igraph_bool_t directed_b = 0;
|
516
|
+
|
517
|
+
int i;
|
518
|
+
|
519
|
+
VALUE result_a, edge_betw_a, bridges_a, res;
|
520
|
+
|
521
|
+
if(directed)
|
522
|
+
directed_b = 1;
|
523
|
+
|
524
|
+
Data_Get_Struct(self, igraph_t, graph);
|
525
|
+
|
526
|
+
igraph_matrix_init(merges,0,0);
|
527
|
+
igraph_vector_init(&result_vec,0);
|
528
|
+
igraph_vector_init(&edge_betw_vec,0);
|
529
|
+
igraph_vector_init(&bridges_vec,0);
|
530
|
+
|
531
|
+
igraph_community_edge_betweenness(graph,
|
532
|
+
&result_vec,&edge_betw_vec,
|
533
|
+
merges,&bridges_vec,directed_b);
|
534
|
+
|
535
|
+
result_a = rb_ary_new();
|
536
|
+
for(i=0;i<igraph_vector_size(&result_vec);i++){
|
537
|
+
rb_ary_push(result_a,INT2NUM(VECTOR(result_vec)[i]));
|
538
|
+
}
|
539
|
+
edge_betw_a = rb_ary_new();
|
540
|
+
for(i=0;i<igraph_vector_size(&edge_betw_vec);i++){
|
541
|
+
rb_ary_push(edge_betw_a,INT2NUM(VECTOR(edge_betw_vec)[i]));
|
542
|
+
}
|
543
|
+
bridges_a = rb_ary_new();
|
544
|
+
for(i=0;i<igraph_vector_size(&bridges_vec);i++){
|
545
|
+
rb_ary_push(bridges_a,INT2NUM(VECTOR(bridges_vec)[i]));
|
546
|
+
}
|
547
|
+
|
548
|
+
res = rb_ary_new3(4,
|
549
|
+
Data_Wrap_Struct(cIGraphMatrix, 0,
|
550
|
+
cIGraph_matrix_free, merges),
|
551
|
+
result_a, edge_betw_a, bridges_a);
|
552
|
+
|
553
|
+
igraph_vector_destroy(&result_vec);
|
554
|
+
igraph_vector_destroy(&edge_betw_vec);
|
555
|
+
igraph_vector_destroy(&bridges_vec);
|
556
|
+
|
557
|
+
return res;
|
558
|
+
|
559
|
+
}
|
560
|
+
|
561
|
+
/* call-seq:
|
562
|
+
* graph.community_eb_get_merges(edges) -> Array
|
563
|
+
*
|
564
|
+
* Calculating the merges, ie. the dendrogram for an edge betweenness
|
565
|
+
* community structure
|
566
|
+
*
|
567
|
+
*/
|
568
|
+
|
569
|
+
VALUE cIGraph_community_eb_get_merges(VALUE self, VALUE edges){
|
570
|
+
|
571
|
+
igraph_t *graph;
|
572
|
+
igraph_matrix_t *res = malloc(sizeof(igraph_matrix_t));
|
573
|
+
|
574
|
+
igraph_vector_t edges_vec;
|
575
|
+
igraph_vector_t bridges_vec;
|
576
|
+
|
577
|
+
VALUE result,bridges_a;
|
578
|
+
|
579
|
+
int i;
|
580
|
+
|
581
|
+
Data_Get_Struct(self, igraph_t, graph);
|
582
|
+
|
583
|
+
igraph_matrix_init(res,0,0);
|
584
|
+
igraph_vector_init(&edges_vec,0);
|
585
|
+
igraph_vector_init(&bridges_vec,0);
|
586
|
+
|
587
|
+
for(i=0;i<RARRAY(edges)->len;i++){
|
588
|
+
igraph_vector_push_back(&edges_vec,NUM2INT(RARRAY(edges)->ptr[i]));
|
589
|
+
}
|
590
|
+
|
591
|
+
igraph_community_eb_get_merges(graph,&edges_vec,res,&bridges_vec);
|
592
|
+
|
593
|
+
bridges_a = rb_ary_new();
|
594
|
+
for(i=0;i<igraph_vector_size(&bridges_vec);i++){
|
595
|
+
rb_ary_push(bridges_a,INT2NUM(VECTOR(bridges_vec)[i]));
|
596
|
+
}
|
597
|
+
|
598
|
+
igraph_vector_destroy(&bridges_vec);
|
599
|
+
igraph_vector_destroy(&edges_vec);
|
600
|
+
|
601
|
+
result = rb_ary_new3(2,
|
602
|
+
Data_Wrap_Struct(cIGraphMatrix, 0,
|
603
|
+
cIGraph_matrix_free, res),
|
604
|
+
bridges_a);
|
605
|
+
|
606
|
+
return result;
|
607
|
+
|
608
|
+
}
|
609
|
+
|
610
|
+
/* call-seq:
|
611
|
+
* graph.community_fastgreedy() -> Array
|
612
|
+
*
|
613
|
+
* Finding community structure by greedy optimization of modularity.
|
614
|
+
* This function implements the fast greedy modularity optimization algorithm
|
615
|
+
* for finding community structure, see A Clauset, MEJ Newman, C Moore:
|
616
|
+
* Finding community structure in very large networks,
|
617
|
+
* http://www.arxiv.org/abs/cond-mat/0408187 for the details.
|
618
|
+
*
|
619
|
+
*/
|
620
|
+
|
621
|
+
VALUE cIGraph_community_fastgreedy(VALUE self){
|
622
|
+
|
623
|
+
igraph_t *graph;
|
624
|
+
|
625
|
+
igraph_vector_t modularity;
|
626
|
+
igraph_matrix_t *merges = malloc(sizeof(igraph_matrix_t));
|
627
|
+
|
628
|
+
int i;
|
629
|
+
|
630
|
+
VALUE modularity_a, res;
|
631
|
+
|
632
|
+
Data_Get_Struct(self, igraph_t, graph);
|
633
|
+
|
634
|
+
igraph_matrix_init(merges,0,0);
|
635
|
+
igraph_vector_init(&modularity,0);
|
636
|
+
|
637
|
+
igraph_community_fastgreedy(graph,
|
638
|
+
merges,&modularity);
|
639
|
+
|
640
|
+
modularity_a = rb_ary_new();
|
641
|
+
for(i=0;i<igraph_vector_size(&modularity);i++){
|
642
|
+
rb_ary_push(modularity_a,rb_float_new(VECTOR(modularity)[i]));
|
643
|
+
}
|
644
|
+
|
645
|
+
res = rb_ary_new3(2,
|
646
|
+
Data_Wrap_Struct(cIGraphMatrix, 0,
|
647
|
+
cIGraph_matrix_free, merges),
|
648
|
+
modularity_a);
|
649
|
+
|
650
|
+
igraph_vector_destroy(&modularity);
|
651
|
+
|
652
|
+
return res;
|
653
|
+
|
654
|
+
}
|