igraph 0.1.1 → 0.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,43 @@
1
+ #include "igraph.h"
2
+ #include "ruby.h"
3
+ #include "cIGraph.h"
4
+
5
+ /* call-seq:
6
+ * graph.topological_sorting(mode) -> Array
7
+ *
8
+ * Calculate a possible topological sorting of the graph. A topological
9
+ * sorting of a directed acyclic graph is a linear ordering of its nodes
10
+ * where each node comes before all nodes to which it has edges. Every DAG
11
+ * has at least one topological sort, and may have many. This function
12
+ * returns a possible topological sort among them. If the graph is not
13
+ * acyclic (it has at least one cycle), a partial topological sort is
14
+ * returned and a warning is issued. mode specifies how to use the direction
15
+ * of the edges. For IGRAPH_OUT, the sorting order ensures that each node
16
+ * comes before all nodes to which it has edges, so nodes with no incoming
17
+ * edges go first. For IGRAPH_IN, it is quite the opposite: each node comes
18
+ * before all nodes from which it receives edges. Nodes with no outgoing
19
+ * edges go first.
20
+ */
21
+ VALUE cIGraph_topological_sorting(VALUE self, VALUE mode){
22
+
23
+ igraph_t *graph;
24
+ igraph_vector_t res;
25
+ igraph_neimode_t pmode = NUM2INT(mode);
26
+ VALUE result = rb_ary_new();
27
+ int i;
28
+
29
+ igraph_vector_init_int(&res,0);
30
+
31
+ Data_Get_Struct(self, igraph_t, graph);
32
+
33
+ igraph_topological_sorting(graph, &res, pmode);
34
+
35
+ for(i=0;i<igraph_vector_size(&res);i++){
36
+ rb_ary_push(result,cIGraph_get_vertex_object(self,VECTOR(res)[i]));
37
+ }
38
+
39
+ igraph_vector_destroy(&res);
40
+
41
+ return result;
42
+
43
+ }
@@ -4,12 +4,19 @@
4
4
 
5
5
  igraph_integer_t cIGraph_get_vertex_id(VALUE graph, VALUE v){
6
6
 
7
- VALUE vertex_h;
7
+ VALUE v_ary;
8
+ VALUE idx;
9
+ igraph_t *igraph;
8
10
 
9
- vertex_h = rb_iv_get(graph,"@object_ids");
11
+ Data_Get_Struct(graph, igraph_t, igraph);
12
+ v_ary = ((VALUE*)igraph->attr)[0];
10
13
 
11
- if(rb_funcall(vertex_h,rb_intern("has_key?"),1,v))
12
- return NUM2INT(rb_hash_aref(vertex_h,v));
14
+ idx = rb_funcall(v_ary,rb_intern("index"),1,v);
15
+
16
+ if(idx != Qnil)
17
+ return NUM2INT(idx);
18
+
19
+ rb_raise(cIGraphError, "Unable to find vertex\n");
13
20
 
14
21
  return -1;
15
22
 
@@ -17,14 +24,16 @@ igraph_integer_t cIGraph_get_vertex_id(VALUE graph, VALUE v){
17
24
 
18
25
  VALUE cIGraph_get_vertex_object(VALUE graph, igraph_integer_t n){
19
26
 
20
- VALUE vertex_h;
27
+ VALUE v_ary;
28
+ VALUE obj;
29
+ igraph_t *igraph;
21
30
 
22
- vertex_h = rb_iv_get(graph,"@id_objects");
31
+ Data_Get_Struct(graph, igraph_t, igraph);
32
+ v_ary = ((VALUE*)igraph->attr)[0];
23
33
 
24
- if(rb_funcall(vertex_h,rb_intern("has_key?"),1,INT2NUM(n)))
25
- return rb_hash_aref(vertex_h,INT2NUM(n));
34
+ obj = rb_ary_entry(v_ary,n);
26
35
 
27
- return Qnil;
36
+ return obj;
28
37
 
29
38
  }
30
39
 
@@ -32,6 +41,7 @@ int cIGraph_vertex_arr_to_id_vec(VALUE graph, VALUE va, igraph_vector_t *nv){
32
41
 
33
42
  VALUE vertex;
34
43
  VALUE tmp;
44
+ VALUE i;
35
45
 
36
46
  tmp = rb_check_array_type(va);
37
47
 
@@ -40,10 +50,9 @@ int cIGraph_vertex_arr_to_id_vec(VALUE graph, VALUE va, igraph_vector_t *nv){
40
50
 
41
51
  //Initialize edge vector
42
52
  igraph_vector_init_int(nv,0);
43
- vertex = rb_ary_shift(va);
44
- while(vertex != Qnil){
53
+ for (i=0; i<RARRAY(va)->len; i++) {
54
+ vertex = RARRAY(va)->ptr[i];
45
55
  igraph_vector_push_back(nv,cIGraph_get_vertex_id(graph, vertex));
46
- vertex = rb_ary_shift(va);
47
56
  }
48
57
 
49
58
  return 0;
@@ -51,6 +60,12 @@ int cIGraph_vertex_arr_to_id_vec(VALUE graph, VALUE va, igraph_vector_t *nv){
51
60
  }
52
61
 
53
62
  VALUE cIGraph_include(VALUE self, VALUE v){
54
- VALUE vertex_h = rb_iv_get(self,"@object_ids");
55
- return rb_funcall(vertex_h,rb_intern("has_key?"),1,v);
63
+
64
+ VALUE v_ary;
65
+ igraph_t *igraph;
66
+
67
+ Data_Get_Struct(self, igraph_t, igraph);
68
+ v_ary = ((VALUE*)igraph->attr)[0];
69
+
70
+ return rb_ary_includes(v_ary,v);
56
71
  }
@@ -0,0 +1,158 @@
1
+ #include "igraph.h"
2
+ #include "ruby.h"
3
+ #include "cIGraph.h"
4
+
5
+ /* call-seq:
6
+ * graph.neighbourhood_size(vertices,order,mode) -> Array
7
+ *
8
+ * Calculates the length of the shortest paths from each of the vertices in
9
+ * the varray Array to all of the other vertices in the graph. The result
10
+ * is returned as an Array of Array. Each top-level Array contains the results
11
+ * for a vertex in the varray Array. Each entry in the Array is the path length
12
+ * to another vertex in the graph in vertex order (the order the vertices were
13
+ * added to the graph. (This should probalby be changed to give a Hash of Hash
14
+ * to allow easier look up.)
15
+ */
16
+ VALUE cIGraph_neighborhood_size(VALUE self, VALUE from, VALUE order, VALUE mode){
17
+
18
+ igraph_t *graph;
19
+ igraph_vs_t vids;
20
+ igraph_vector_t vidv;
21
+ igraph_neimode_t pmode = NUM2INT(mode);
22
+ igraph_vector_t res;
23
+ int i;
24
+
25
+ VALUE sizes = rb_ary_new();
26
+
27
+ Data_Get_Struct(self, igraph_t, graph);
28
+
29
+ igraph_vector_init(&res,0);
30
+
31
+ //Convert an array of vertices to a vector of vertex ids
32
+ cIGraph_vertex_arr_to_id_vec(self,from,&vidv);
33
+ //create vertex selector from the vecotr of ids
34
+ igraph_vs_vector(&vids,&vidv);
35
+
36
+ igraph_neighborhood_size(graph,&res,vids,NUM2INT(order),pmode);
37
+
38
+ for(i=0; i<igraph_vector_size(&res); i++){
39
+ rb_ary_push(sizes,INT2NUM(VECTOR(res)[i]));
40
+ }
41
+
42
+ igraph_vector_destroy(&vidv);
43
+ igraph_vector_destroy(&res);
44
+ igraph_vs_destroy(&vids);
45
+
46
+ return sizes;
47
+
48
+ }
49
+
50
+ /* call-seq:
51
+ * graph.neighbourhood(vertices,order,mode) -> Array
52
+ *
53
+ * Calculates the length of the shortest paths from each of the vertices in
54
+ * the varray Array to all of the other vertices in the graph. The result
55
+ * is returned as an Array of Array. Each top-level Array contains the results
56
+ * for a vertex in the varray Array. Each entry in the Array is the path length
57
+ * to another vertex in the graph in vertex order (the order the vertices were
58
+ * added to the graph. (This should probalby be changed to give a Hash of Hash
59
+ * to allow easier look up.)
60
+ */
61
+ VALUE cIGraph_neighborhood(VALUE self, VALUE from, VALUE order, VALUE mode){
62
+
63
+ igraph_t *graph;
64
+ igraph_vs_t vids;
65
+ igraph_vector_t vidv;
66
+ igraph_neimode_t pmode = NUM2INT(mode);
67
+ igraph_vector_ptr_t res;
68
+ igraph_vector_t *path_v;
69
+ int i;
70
+ int j;
71
+
72
+ VALUE matrix = rb_ary_new();
73
+ VALUE neighbourhood;
74
+
75
+ Data_Get_Struct(self, igraph_t, graph);
76
+
77
+ igraph_vector_ptr_init(&res,0);
78
+
79
+ //Convert an array of vertices to a vector of vertex ids
80
+ cIGraph_vertex_arr_to_id_vec(self,from,&vidv);
81
+ //create vertex selector from the vecotr of ids
82
+ igraph_vs_vector(&vids,&vidv);
83
+
84
+ igraph_neighborhood(graph,&res,vids,NUM2INT(order),pmode);
85
+
86
+ for(i=0; i<igraph_vector_ptr_size(&res); i++){
87
+ neighbourhood = rb_ary_new();
88
+ rb_ary_push(matrix,neighbourhood);
89
+ path_v = VECTOR(res)[i];
90
+ for(j=0; j<igraph_vector_size(VECTOR(res)[i]); j++){
91
+ rb_ary_push(neighbourhood,cIGraph_get_vertex_object(self,VECTOR(*path_v)[j]));
92
+ }
93
+ }
94
+
95
+ for(i=0;i<igraph_vector_ptr_size(&res);i++){
96
+ igraph_vector_destroy(VECTOR(res)[i]);
97
+ }
98
+
99
+ igraph_vector_destroy(&vidv);
100
+ igraph_vector_ptr_destroy(&res);
101
+ igraph_vs_destroy(&vids);
102
+
103
+ return matrix;
104
+
105
+ }
106
+
107
+ /* call-seq:
108
+ * graph.neighbourhood_graph(vertices,order,mode) -> Array
109
+ *
110
+ * Calculates the length of the shortest paths from each of the vertices in
111
+ * the varray Array to all of the other vertices in the graph. The result
112
+ * is returned as an Array of Array. Each top-level Array contains the results
113
+ * for a vertex in the varray Array. Each entry in the Array is the path length
114
+ * to another vertex in the graph in vertex order (the order the vertices were
115
+ * added to the graph. (This should probalby be changed to give a Hash of Hash
116
+ * to allow easier look up.)
117
+ */
118
+ VALUE cIGraph_neighborhood_graphs(VALUE self, VALUE from, VALUE order, VALUE mode){
119
+
120
+ igraph_t *graph;
121
+ igraph_t *n_graph;
122
+ igraph_vs_t vids;
123
+ igraph_vector_t vidv;
124
+ igraph_neimode_t pmode = NUM2INT(mode);
125
+ igraph_vector_ptr_t res;
126
+ int i;
127
+
128
+ VALUE n_graph_obj;
129
+ VALUE result = rb_ary_new();
130
+
131
+ Data_Get_Struct(self, igraph_t, graph);
132
+
133
+ igraph_vector_ptr_init(&res,0);
134
+
135
+ //Convert an array of vertices to a vector of vertex ids
136
+ cIGraph_vertex_arr_to_id_vec(self,from,&vidv);
137
+ //create vertex selector from the vecotr of ids
138
+ igraph_vs_vector(&vids,&vidv);
139
+
140
+ igraph_neighborhood_graphs(graph,&res,vids,NUM2INT(order),pmode);
141
+
142
+ for(i=0; i<igraph_vector_ptr_size(&res); i++){
143
+ n_graph = VECTOR(res)[i];
144
+ n_graph_obj = Data_Wrap_Struct(cIGraph, cIGraph_mark, cIGraph_free, n_graph);
145
+ rb_ary_push(result,n_graph_obj);
146
+ }
147
+
148
+ igraph_vector_destroy(&vidv);
149
+ igraph_vector_ptr_destroy(&res);
150
+ igraph_vs_destroy(&vids);
151
+
152
+ return result;
153
+
154
+ }
155
+
156
+
157
+
158
+
@@ -46,4 +46,41 @@ class TestGraph < Test::Unit::TestCase
46
46
  assert_equal [0], graph.degree(['E'],IGraph::ALL,true)
47
47
  end
48
48
 
49
+ def test_delete_vertex
50
+ graph = IGraph.new(['A','B','C','D'],true,[1,2])
51
+ assert_nothing_raised do
52
+ graph.delete_vertex('A')
53
+ end
54
+ assert_equal false, graph.include?('A')
55
+ assert_equal 3, graph.vcount
56
+ assert_equal 1, graph.ecount
57
+ end
58
+
59
+ def test_delete_edge
60
+ graph = IGraph.new(['A','B','C','D'],true)
61
+ assert_equal true, graph.are_connected?('A','B')
62
+ assert_nothing_raised do
63
+ graph.delete_edge('A','B')
64
+ end
65
+ assert_equal false, graph.are_connected?('A','B')
66
+ end
67
+
68
+ def test_delete_edge_attr
69
+ graph = IGraph.new(['A','B','C','D'],true,[1,2])
70
+ assert_equal 1, graph['A','B']
71
+ assert_nothing_raised do
72
+ graph.delete_edge('A','B')
73
+ end
74
+ assert_equal false, graph.are_connected?('A','B')
75
+ assert_equal 2, graph['C','D']
76
+ end
77
+
78
+ def test_delete_missing_edge
79
+ graph = IGraph.new(['A','B','C','D'],true)
80
+ assert_equal true, graph.are_connected?('A','B')
81
+ assert_raises(IGraphError) do
82
+ graph.delete_edge('A','C')
83
+ end
84
+ end
85
+
49
86
  end
@@ -0,0 +1,29 @@
1
+ require 'test/unit'
2
+ require 'igraph'
3
+
4
+ class TestGraph < Test::Unit::TestCase
5
+ def test_get_attributes
6
+ graph = IGraph.new(['A','B','C','D'],true,[1,2])
7
+ assert_equal 2, graph.get_edge_attr('C','D')
8
+ assert_equal 2, graph['C','D']
9
+ end
10
+ def test_set_attributes
11
+ graph = IGraph.new(['A','B','C','D'],true,[1,2])
12
+ graph.set_edge_attr('C','D',3)
13
+ assert_equal 3, graph.get_edge_attr('C','D')
14
+ graph['C','D'] = 4
15
+ assert_equal 4, graph['C','D']
16
+ end
17
+ def test_new_edges
18
+ graph = IGraph.new(['A','B','C','D'],true,[1,2])
19
+ graph.add_edges(['A','C'],[3])
20
+ assert_equal 3, graph['A','C']
21
+ graph.add_edge('A','D',4)
22
+ assert_equal 4, graph['A','D']
23
+ end
24
+ def test_graph_attr
25
+ graph = IGraph.new(['A','B','C','D'],true,[1,2])
26
+ graph.attributes['test'] = 1
27
+ assert_equal 1, graph.attributes['test']
28
+ end
29
+ end
@@ -3,7 +3,7 @@ require 'igraph'
3
3
 
4
4
  class TestGraph < Test::Unit::TestCase
5
5
  def test_are_connected
6
- graph = IGraph.new(['A','B','C','D'],true)
6
+ graph = IGraph.new(['A','B','B','C','C','D'],true)
7
7
  assert graph.are_connected('A','B')
8
8
  assert !(graph.are_connected('A','C'))
9
9
  end
@@ -0,0 +1,33 @@
1
+ require 'test/unit'
2
+ require 'igraph'
3
+
4
+ class TestGraph < Test::Unit::TestCase
5
+ def test_closeness
6
+ g = IGraph.new(['A','B','B','C','C','D'],true)
7
+ assert_equal [0.75], g.closeness(['B'],IGraph::ALL)
8
+ end
9
+ def test_betweenness
10
+ g = IGraph.new(['A','B','B','C','C','D'],true)
11
+ assert_equal [0,2], g.betweenness(['A','B'],true)
12
+ end
13
+ def test_edge_betweenness
14
+ g = IGraph.new(['A','B','C','D'],true)
15
+ assert_equal [1,1], g.edge_betweenness(true)
16
+ end
17
+ def test_pagerank
18
+ g = IGraph.new(['A','B','C','D','E','B','F','B'],true)
19
+ assert_equal 67, (g.pagerank(['B'],true,100,0.01,0.8)[0] * 100).to_i
20
+ end
21
+ def test_constraint
22
+ g = IGraph.new(['A','B','C','D'],true)
23
+ assert_equal [1], g.constraint(['A'])
24
+ assert_raises IGraphError do
25
+ g.constraint(['A'],[3])
26
+ end
27
+ assert_equal [1], g.constraint(['A'],[2,3])
28
+ end
29
+ def test_maxdegree
30
+ g = IGraph.new(['A','B','C','D','A','E','A','F'],true)
31
+ assert_equal 3, g.maxdegree(g.vertices,IGraph::ALL,true)
32
+ end
33
+ end
@@ -0,0 +1,25 @@
1
+ require 'test/unit'
2
+ require 'igraph'
3
+
4
+ class TestGraph < Test::Unit::TestCase
5
+ def test_subcomponent
6
+ g = IGraph.new([1,2,3,4])
7
+ assert_equal [1,2], g.subcomponent(1,IGraph::ALL)
8
+ end
9
+ def test_subgraph
10
+ g = IGraph.new([1,2,3,4])
11
+ h = g.subgraph([1,2])
12
+ assert_equal 2, h.vcount
13
+ assert_equal [1,2], h.vertices
14
+ end
15
+ def test_clusters
16
+ g = IGraph.new([1,2,3,4])
17
+ assert_equal 2, g.clusters(IGraph::WEAK).length
18
+ assert_equal [1,2], g.clusters(IGraph::WEAK)[0]
19
+ end
20
+ def test_decompose
21
+ g = IGraph.new([1,2,3,4])
22
+ assert_equal 2, g.decompose(IGraph::WEAK).length
23
+ assert_equal [1,2], g.decompose(IGraph::WEAK)[0].vertices
24
+ end
25
+ end
@@ -0,0 +1,13 @@
1
+ require 'test/unit'
2
+ require 'igraph'
3
+
4
+ class TestGraph < Test::Unit::TestCase
5
+ def test_copy
6
+ g = IGraph.new(['A','B','C','D'],true,[1,2]);
7
+ h = g.dup
8
+ assert g.vcount == h.vcount
9
+ assert g['A','B'] == h['A','B']
10
+ h['A','B'] = g['A','B'] + 1
11
+ assert g['A','B'] != h['A','B']
12
+ end
13
+ end
@@ -0,0 +1,161 @@
1
+ require 'test/unit'
2
+ require 'igraph'
3
+ require 'stringio'
4
+
5
+ class TestGraph < Test::Unit::TestCase
6
+ def test_edgelist_read
7
+ g = nil
8
+ assert_nothing_raised{
9
+ g = IGraph.read_graph_edgelist(StringIO.new("0 1 2 3"),true)
10
+ }
11
+ assert_instance_of IGraph, g
12
+ assert_equal 4, g.vcount
13
+ assert g.are_connected?(0,1)
14
+ end
15
+
16
+ def test_edgelist_write
17
+ g = IGraph.new([0,1,2,3])
18
+ s = StringIO.new("")
19
+ str = g.write_graph_edgelist(s)
20
+ s.rewind
21
+ assert_equal "0 1\n2 3\n", s.read
22
+ end
23
+
24
+ def test_graphml_read
25
+ g = nil
26
+ g = IGraph.read_graph_graphml(StringIO.new(Graphml),0)
27
+ assert_instance_of IGraph, g
28
+ assert_equal '2006-11-12', g.attributes['date']
29
+ h = g.dup
30
+ assert_equal g.to_a,h.to_a
31
+ assert_equal g.attributes['date'], h.attributes['date']
32
+ end
33
+
34
+ def test_graphml_write
35
+ g = IGraph.new([{'id'=>0,'name'=>'a','type' => 4.0},
36
+ {'id'=>1,'name'=>'b','type' => 5},
37
+ {'id'=>2,'type' => 6},
38
+ {'id'=>3,'name'=>'d'}],
39
+ true,
40
+ [{'eid'=>'e1'},
41
+ {'eid'=>'e2'}])
42
+ g.attributes['date'] = 'Friday'
43
+ s = StringIO.new("")
44
+ str = g.write_graph_graphml(s)
45
+ s.rewind
46
+ assert_equal Graphml_out, s.read
47
+ end
48
+
49
+ def test_pajek_read_write
50
+ g = nil
51
+ g = IGraph.read_graph_pajek(StringIO.new(Pajek),0)
52
+ assert_instance_of IGraph, g
53
+ assert_equal 4, g.vcount
54
+ assert_equal 1, g[4,1]['weight']
55
+ h = g.dup
56
+ s = StringIO.new('')
57
+ h.write_graph_pajek(s)
58
+ s.rewind
59
+ str = s.read
60
+ str.gsub!(/\r/,'')
61
+ #assert_equal Pajek, str
62
+ end
63
+
64
+ Graphml = %q{<?xml version="1.0" encoding="UTF-8"?>
65
+ <!-- This file was written by the JAVA GraphML Library.-->
66
+ <graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3
67
+ .org/2001/XMLSchema-instance"
68
+ xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdr
69
+ awing.org/xmlns/1.0/graphml.xsd">
70
+ <key id="d0" for="node" attr.name="color" attr.type="string">yellow</key>
71
+ <key id="d1" for="edge" attr.name="weight" attr.type="double"/>
72
+ <key id="d2" for="graph" attr.name="date" attr.type="string"></key>
73
+ <graph id="G" edgedefault="undirected">
74
+ <data key="d2">2006-11-12</data>
75
+ <node id="n0">
76
+ <data key="d0">green</data>
77
+ <data key="d3">incorrect</data>
78
+ <!-- incorrect attribute key, should issue a warning -->
79
+ </node>
80
+ <node id="n1"/>
81
+ <node id="n2">
82
+ <data key="d0">blue</data>
83
+ </node>
84
+ <node id="n3">
85
+ <data key="d0">red</data>
86
+ </node>
87
+ <node id="n4"/>
88
+ <node id="n5">
89
+ <data key="d0">turquoise</data>
90
+ </node>
91
+ <edge id="e0" source="n0" target="n2">
92
+ <data key="d1">1.0</data>
93
+ </edge>
94
+ <edge id="e1" source="n0" target="n1">
95
+ <data key="d1">1.0</data>
96
+ </edge>
97
+ <edge id="e2" source="n1" target="n3">
98
+ <data key="d1">2.0</data>
99
+ </edge>
100
+ <edge id="e3" source="n3" target="n2"/>
101
+ <edge id="e4" source="n2" target="n4"/>
102
+ <edge id="e5" source="n3" target="n5"/>
103
+ <edge id="e6" source="n5" target="n4">
104
+ <data key="d1">1.1</data>
105
+ </edge>
106
+ </graph>
107
+ </graphml>
108
+ }
109
+
110
+
111
+ Graphml_out = %q{<?xml version="1.0" encoding="UTF-8"?>
112
+ <graphml xmlns="http://graphml.graphdrawing.org/xmlns"
113
+ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
114
+ xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
115
+ http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
116
+ <!-- Created by igraph -->
117
+ <key id="date" for="graph" attr.name="date" attr.type="string"/>
118
+ <key id="name" for="node" attr.name="name" attr.type="string"/>
119
+ <key id="type" for="node" attr.name="type" attr.type="double"/>
120
+ <key id="id" for="node" attr.name="id" attr.type="double"/>
121
+ <key id="eid" for="edge" attr.name="eid" attr.type="string"/>
122
+ <graph id="G" edgedefault="directed">
123
+ <data key="date">Friday</data>
124
+ <node id="n0">
125
+ <data key="name">a</data>
126
+ <data key="type">4</data>
127
+ <data key="id">0</data>
128
+ </node>
129
+ <node id="n1">
130
+ <data key="name">b</data>
131
+ <data key="type">5</data>
132
+ <data key="id">1</data>
133
+ </node>
134
+ <node id="n2">
135
+ <data key="name"></data>
136
+ <data key="type">6</data>
137
+ <data key="id">2</data>
138
+ </node>
139
+ <node id="n3">
140
+ <data key="name">d</data>
141
+ <data key="id">3</data>
142
+ </node>
143
+ <edge source="n0" target="n1">
144
+ <data key="eid">e1</data>
145
+ </edge>
146
+ <edge source="n2" target="n3">
147
+ <data key="eid">e2</data>
148
+ </edge>
149
+ </graph>
150
+ </graphml>
151
+ }
152
+
153
+ Pajek = %q{*Vertices 4
154
+ *Edges
155
+ 4 1 1
156
+ 1 2 4
157
+ 1 3 2
158
+ 2 3 2
159
+ }
160
+
161
+ end