igraph 0.1.1 → 0.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/History.txt +14 -2
- data/Manifest.txt +17 -0
- data/README.txt +16 -11
- data/ext/cIGraph.c +197 -61
- data/ext/cIGraph.h +155 -8
- data/ext/cIGraph_add_delete.c +146 -66
- data/ext/cIGraph_attribute_handler.c +758 -0
- data/ext/cIGraph_centrality.c +264 -0
- data/ext/cIGraph_components.c +154 -0
- data/ext/cIGraph_file.c +213 -0
- data/ext/cIGraph_layout.c +77 -0
- data/ext/cIGraph_matrix.c +241 -0
- data/ext/cIGraph_selectors.c +95 -7
- data/ext/cIGraph_shortest_paths.c +196 -2
- data/ext/cIGraph_topological_sort.c +43 -0
- data/ext/cIGraph_utility.c +29 -14
- data/ext/cIGraph_vertex_neighbourhood.c +158 -0
- data/test/tc_add_delete.rb +37 -0
- data/test/tc_attributes.rb +29 -0
- data/test/tc_basic_properties.rb +1 -1
- data/test/tc_centrality.rb +33 -0
- data/test/tc_components.rb +25 -0
- data/test/tc_copy.rb +13 -0
- data/test/tc_file_read_write.rb +161 -0
- data/test/tc_layout.rb +26 -0
- data/test/tc_matrix.rb +32 -0
- data/test/tc_selectors.rb +15 -0
- data/test/tc_shortest_paths.rb +25 -2
- data/test/tc_topological_sort.rb +10 -0
- data/test/tc_vertex_neighbourhood.rb +29 -0
- data/test/test_all.rb +9 -0
- metadata +21 -4
@@ -0,0 +1,77 @@
|
|
1
|
+
#include "igraph.h"
|
2
|
+
#include "ruby.h"
|
3
|
+
#include "cIGraph.h"
|
4
|
+
|
5
|
+
/* call-seq:
|
6
|
+
* graph.layout_random -> IGraphMatrix
|
7
|
+
*
|
8
|
+
* Returns a random layout
|
9
|
+
*/
|
10
|
+
VALUE cIGraph_layout_random(VALUE self){
|
11
|
+
|
12
|
+
igraph_t *graph;
|
13
|
+
igraph_matrix_t *res = malloc(sizeof(igraph_matrix_t));
|
14
|
+
|
15
|
+
Data_Get_Struct(self, igraph_t, graph);
|
16
|
+
|
17
|
+
igraph_matrix_init(res,0,0);
|
18
|
+
igraph_layout_random(graph,res);
|
19
|
+
|
20
|
+
return Data_Wrap_Struct(cIGraphMatrix, 0, cIGraph_matrix_free, res);
|
21
|
+
|
22
|
+
}
|
23
|
+
|
24
|
+
/* call-seq:
|
25
|
+
* graph.layout_random -> IGraphMatrix
|
26
|
+
*
|
27
|
+
* Returns a layout with nodes laid out around a circle.
|
28
|
+
*/
|
29
|
+
VALUE cIGraph_layout_circle(VALUE self){
|
30
|
+
|
31
|
+
igraph_t *graph;
|
32
|
+
igraph_matrix_t *res = malloc(sizeof(igraph_matrix_t));
|
33
|
+
|
34
|
+
Data_Get_Struct(self, igraph_t, graph);
|
35
|
+
|
36
|
+
igraph_matrix_init(res,0,0);
|
37
|
+
igraph_layout_circle(graph,res);
|
38
|
+
|
39
|
+
return Data_Wrap_Struct(cIGraphMatrix, 0, cIGraph_matrix_free, res);
|
40
|
+
|
41
|
+
}
|
42
|
+
|
43
|
+
/* call-seq:
|
44
|
+
* graph.layout_random -> IGraphMatrix
|
45
|
+
*
|
46
|
+
* Places the vertices on a plane according to the Fruchterman-Reingold
|
47
|
+
* algorithm.
|
48
|
+
*
|
49
|
+
* This is a force-directed layout, see Fruchterman, T.M.J. and Reingold,
|
50
|
+
* E.M.: Graph Drawing by Force-directed Placement. Software -- Practice and
|
51
|
+
* Experience, 21/11, 1129--1164, 1991.
|
52
|
+
*/
|
53
|
+
VALUE cIGraph_layout_fruchterman_reingold(VALUE self,
|
54
|
+
VALUE niter,
|
55
|
+
VALUE maxdelta,
|
56
|
+
VALUE area,
|
57
|
+
VALUE coolexp,
|
58
|
+
VALUE repulserad,
|
59
|
+
VALUE use_seed){
|
60
|
+
|
61
|
+
igraph_t *graph;
|
62
|
+
igraph_matrix_t *res = malloc(sizeof(igraph_matrix_t));
|
63
|
+
|
64
|
+
Data_Get_Struct(self, igraph_t, graph);
|
65
|
+
|
66
|
+
igraph_matrix_init(res,0,0);
|
67
|
+
igraph_layout_fruchterman_reingold(graph,res,
|
68
|
+
NUM2INT(niter),
|
69
|
+
NUM2DBL(maxdelta),
|
70
|
+
NUM2DBL(area),
|
71
|
+
NUM2DBL(coolexp),
|
72
|
+
NUM2DBL(repulserad),
|
73
|
+
use_seed == Qtrue ? 1: 0);
|
74
|
+
|
75
|
+
return Data_Wrap_Struct(cIGraphMatrix, 0, cIGraph_matrix_free, res);
|
76
|
+
|
77
|
+
}
|
@@ -0,0 +1,241 @@
|
|
1
|
+
#include "igraph.h"
|
2
|
+
#include "ruby.h"
|
3
|
+
#include "cIGraph.h"
|
4
|
+
|
5
|
+
//Classes
|
6
|
+
VALUE cIGraphMatrix;
|
7
|
+
|
8
|
+
void cIGraph_matrix_free(void *p){
|
9
|
+
igraph_matrix_destroy(p);
|
10
|
+
}
|
11
|
+
|
12
|
+
VALUE cIGraph_matrix_alloc(VALUE klass){
|
13
|
+
|
14
|
+
igraph_matrix_t *m = malloc(sizeof(igraph_matrix_t));
|
15
|
+
VALUE obj;
|
16
|
+
|
17
|
+
igraph_matrix_init(m, 0, 0);
|
18
|
+
|
19
|
+
obj = Data_Wrap_Struct(klass, 0, cIGraph_matrix_free, m);
|
20
|
+
|
21
|
+
return obj;
|
22
|
+
|
23
|
+
}
|
24
|
+
|
25
|
+
/* Document-method: initialize_copy
|
26
|
+
*
|
27
|
+
* Internal method for copying IGraph objects.
|
28
|
+
*/
|
29
|
+
VALUE cIGraph_matrix_init_copy(VALUE copy, VALUE orig){
|
30
|
+
|
31
|
+
igraph_matrix_t *orig_m;
|
32
|
+
igraph_matrix_t *copy_m;
|
33
|
+
|
34
|
+
if (copy == orig)
|
35
|
+
return copy;
|
36
|
+
|
37
|
+
if(TYPE(orig) != T_DATA || RDATA(orig)->dfree != (RUBY_DATA_FUNC)cIGraph_free){
|
38
|
+
rb_raise(rb_eTypeError, "Wrong argument type.");
|
39
|
+
}
|
40
|
+
|
41
|
+
Data_Get_Struct(copy, igraph_matrix_t, copy_m);
|
42
|
+
Data_Get_Struct(orig, igraph_matrix_t, orig_m);
|
43
|
+
|
44
|
+
igraph_matrix_copy(copy_m,orig_m);
|
45
|
+
|
46
|
+
return copy;
|
47
|
+
|
48
|
+
}
|
49
|
+
|
50
|
+
/* call-seq:
|
51
|
+
* IGraphMatrix.new([[x,y,...],...]) -> IGraphMatrix
|
52
|
+
*
|
53
|
+
* Creates a new IGraphMatrix object. The argument should be an Array of
|
54
|
+
* Arrays which each contain the data for a row of the matrix.
|
55
|
+
*/
|
56
|
+
VALUE cIGraph_matrix_initialize(int argc, VALUE *argv, VALUE self){
|
57
|
+
|
58
|
+
igraph_matrix_t *m;
|
59
|
+
VALUE rows;
|
60
|
+
int nrows;
|
61
|
+
int ncols;
|
62
|
+
int i;
|
63
|
+
int j;
|
64
|
+
|
65
|
+
rb_scan_args(argc,argv,"0*", &rows);
|
66
|
+
|
67
|
+
Data_Get_Struct(self, igraph_matrix_t, m);
|
68
|
+
|
69
|
+
nrows = RARRAY(rows)->len;
|
70
|
+
ncols = RARRAY(RARRAY(rows)->ptr[0])->len;
|
71
|
+
|
72
|
+
igraph_matrix_resize(m, nrows, ncols);
|
73
|
+
|
74
|
+
//Loop through rows
|
75
|
+
for (i=0; i<nrows; i++) {
|
76
|
+
for (j=0; j<ncols; j++){
|
77
|
+
MATRIX(*m,i,j) = NUM2DBL(RARRAY(RARRAY(rows)->ptr[i])->ptr[j]);
|
78
|
+
}
|
79
|
+
}
|
80
|
+
|
81
|
+
return self;
|
82
|
+
|
83
|
+
}
|
84
|
+
|
85
|
+
/* call-seq:
|
86
|
+
* matrix[i,j] -> Float
|
87
|
+
*
|
88
|
+
* Returns the value stored at row i and column j.
|
89
|
+
*/
|
90
|
+
VALUE cIGraph_matrix_get(VALUE self, VALUE i, VALUE j){
|
91
|
+
|
92
|
+
igraph_matrix_t *m;
|
93
|
+
|
94
|
+
Data_Get_Struct(self, igraph_matrix_t, m);
|
95
|
+
return rb_float_new(MATRIX(*m,NUM2INT(i),NUM2INT(j)));
|
96
|
+
|
97
|
+
}
|
98
|
+
|
99
|
+
/* call-seq:
|
100
|
+
* matrix[i,j]= -> Float
|
101
|
+
*
|
102
|
+
* Sets the value stored at row i and column j.
|
103
|
+
*/
|
104
|
+
VALUE cIGraph_matrix_set(VALUE self, VALUE i, VALUE j, VALUE x){
|
105
|
+
|
106
|
+
igraph_matrix_t *m;
|
107
|
+
|
108
|
+
Data_Get_Struct(self, igraph_matrix_t, m);
|
109
|
+
MATRIX(*m,NUM2INT(i),NUM2INT(j)) = NUM2DBL(x);
|
110
|
+
return x;
|
111
|
+
|
112
|
+
}
|
113
|
+
|
114
|
+
/* call-seq:
|
115
|
+
* matrix.each{|v| } -> nil
|
116
|
+
*
|
117
|
+
* Iterates through each value in the matrix.
|
118
|
+
*/
|
119
|
+
VALUE cIGraph_matrix_each(VALUE self){
|
120
|
+
|
121
|
+
igraph_matrix_t *m;
|
122
|
+
int i;
|
123
|
+
int j;
|
124
|
+
|
125
|
+
Data_Get_Struct(self, igraph_matrix_t, m);
|
126
|
+
|
127
|
+
for(i=0;i < m->nrow;i++){
|
128
|
+
for(j=0;j < m->ncol;j++){
|
129
|
+
rb_yield(rb_float_new(MATRIX(*m,i,j)));
|
130
|
+
}
|
131
|
+
}
|
132
|
+
|
133
|
+
return Qnil;
|
134
|
+
|
135
|
+
}
|
136
|
+
|
137
|
+
/* call-seq:
|
138
|
+
* matrix.size -> Integer
|
139
|
+
*
|
140
|
+
* Returns the number of elements in the matrix.
|
141
|
+
*/
|
142
|
+
VALUE cIGraph_matrix_size(VALUE self){
|
143
|
+
|
144
|
+
igraph_matrix_t *m;
|
145
|
+
|
146
|
+
Data_Get_Struct(self, igraph_matrix_t, m);
|
147
|
+
return LONG2FIX(igraph_matrix_size(m));
|
148
|
+
|
149
|
+
}
|
150
|
+
|
151
|
+
/* call-seq:
|
152
|
+
* matrix.nrow -> Integer
|
153
|
+
*
|
154
|
+
* Returns the number of rows in the matrix.
|
155
|
+
*/
|
156
|
+
VALUE cIGraph_matrix_nrow(VALUE self){
|
157
|
+
|
158
|
+
igraph_matrix_t *m;
|
159
|
+
|
160
|
+
Data_Get_Struct(self, igraph_matrix_t, m);
|
161
|
+
return LONG2FIX(igraph_matrix_nrow(m));
|
162
|
+
|
163
|
+
}
|
164
|
+
|
165
|
+
/* call-seq:
|
166
|
+
* matrix.ncol -> Integer
|
167
|
+
*
|
168
|
+
* Returns the number of columns in the matrix.
|
169
|
+
*/
|
170
|
+
VALUE cIGraph_matrix_ncol(VALUE self){
|
171
|
+
|
172
|
+
igraph_matrix_t *m;
|
173
|
+
|
174
|
+
Data_Get_Struct(self, igraph_matrix_t, m);
|
175
|
+
return LONG2FIX(igraph_matrix_ncol(m));
|
176
|
+
|
177
|
+
}
|
178
|
+
|
179
|
+
/* call-seq:
|
180
|
+
* matrix.max -> Float
|
181
|
+
*
|
182
|
+
* Returns the value of the maximum element in the matrix.
|
183
|
+
*/
|
184
|
+
VALUE cIGraph_matrix_max(VALUE self){
|
185
|
+
|
186
|
+
igraph_matrix_t *m;
|
187
|
+
|
188
|
+
Data_Get_Struct(self, igraph_matrix_t, m);
|
189
|
+
return rb_float_new(igraph_matrix_max(m));
|
190
|
+
|
191
|
+
}
|
192
|
+
|
193
|
+
/* call-seq:
|
194
|
+
* matrix * matrix -> IGraphMatrix
|
195
|
+
*
|
196
|
+
* Multiples two IGraphMatrix objects together
|
197
|
+
*/
|
198
|
+
VALUE cIGraph_matrix_multiply(VALUE self, VALUE x){
|
199
|
+
|
200
|
+
igraph_matrix_t *m;
|
201
|
+
igraph_matrix_t *n = malloc(sizeof(igraph_matrix_t));
|
202
|
+
VALUE nobj;
|
203
|
+
|
204
|
+
Data_Get_Struct(self, igraph_matrix_t, m);
|
205
|
+
|
206
|
+
igraph_matrix_copy(n,m);
|
207
|
+
igraph_matrix_multiply(n, NUM2DBL(x));
|
208
|
+
|
209
|
+
nobj = Data_Wrap_Struct(cIGraphMatrix, 0, cIGraph_matrix_free, n);
|
210
|
+
|
211
|
+
return nobj;
|
212
|
+
|
213
|
+
}
|
214
|
+
|
215
|
+
/* call-seq:
|
216
|
+
* matrix.to_a -> Array
|
217
|
+
*
|
218
|
+
* Returns the matrix represented as an Array of Arrays.
|
219
|
+
*/
|
220
|
+
VALUE cIGraph_matrix_toa(VALUE self){
|
221
|
+
|
222
|
+
igraph_matrix_t *m;
|
223
|
+
int i;
|
224
|
+
int j;
|
225
|
+
VALUE a = rb_ary_new();
|
226
|
+
VALUE row;
|
227
|
+
|
228
|
+
Data_Get_Struct(self, igraph_matrix_t, m);
|
229
|
+
|
230
|
+
for(i=0;i < m->nrow;i++){
|
231
|
+
row = rb_ary_new();
|
232
|
+
for(j=0;j < m->ncol;j++){
|
233
|
+
rb_ary_push(row,rb_float_new(MATRIX(*m,i,j)));
|
234
|
+
}
|
235
|
+
rb_ary_push(a,row);
|
236
|
+
}
|
237
|
+
|
238
|
+
return a;
|
239
|
+
|
240
|
+
}
|
241
|
+
|
data/ext/cIGraph_selectors.c
CHANGED
@@ -18,7 +18,7 @@ VALUE cIGraph_all_v(VALUE self){
|
|
18
18
|
igraph_t *graph;
|
19
19
|
|
20
20
|
Data_Get_Struct(self, igraph_t, graph);
|
21
|
-
return
|
21
|
+
return ((VALUE*)graph->attr)[0];
|
22
22
|
|
23
23
|
}
|
24
24
|
|
@@ -67,27 +67,115 @@ VALUE cIGraph_adj_v(VALUE self, VALUE v, VALUE mode){
|
|
67
67
|
|
68
68
|
}
|
69
69
|
|
70
|
+
/* call-seq:
|
71
|
+
* graph.noadjacent_vertices(v,mode) -> Array
|
72
|
+
*
|
73
|
+
* Returns all non-neighboring vertices of a given vertex (v). The mode
|
74
|
+
* argument controls the type of neighboring vertics not to select. Possible
|
75
|
+
* values: IGRAPH_OUT, all vertices will be selected except those to which
|
76
|
+
* there is a directed edge from vid. IGRAPH_IN, all vertices will be
|
77
|
+
* selected except those from which there is a directed edge to vid.
|
78
|
+
* IGRAPH_ALL, all vertices will be selected except those from or to which
|
79
|
+
* there is a directed edge to or from vid.
|
80
|
+
*/
|
81
|
+
|
70
82
|
VALUE cIGraph_nonadj_v(VALUE self, VALUE v, VALUE mode){
|
71
83
|
|
72
|
-
|
84
|
+
igraph_t *graph;
|
85
|
+
igraph_integer_t pnode;
|
86
|
+
VALUE nonadjacent = rb_ary_new();
|
87
|
+
igraph_neimode_t pmode = NUM2INT(mode);
|
88
|
+
igraph_vs_t vs;
|
89
|
+
igraph_vit_t vit;
|
90
|
+
|
91
|
+
Data_Get_Struct(self, igraph_t, graph);
|
92
|
+
|
93
|
+
pnode = cIGraph_get_vertex_id(self,v);
|
94
|
+
|
95
|
+
igraph_vs_nonadj(&vs,pnode,pmode);
|
96
|
+
igraph_vit_create(graph, vs, &vit);
|
97
|
+
|
98
|
+
while(!IGRAPH_VIT_END(vit)) {
|
99
|
+
rb_ary_push(nonadjacent,cIGraph_get_vertex_object(self,IGRAPH_VIT_GET(vit)));
|
100
|
+
IGRAPH_VIT_NEXT(vit);
|
101
|
+
}
|
102
|
+
|
103
|
+
igraph_vit_destroy(&vit);
|
104
|
+
igraph_vs_destroy(&vs);
|
105
|
+
|
106
|
+
return nonadjacent;
|
73
107
|
|
74
108
|
}
|
75
109
|
|
110
|
+
/* call-seq:
|
111
|
+
* graph.edges(mode) -> Array
|
112
|
+
*
|
113
|
+
* Returns an Array of all edge ids in the graph. The mode argument specifies
|
114
|
+
* the order the eids are returned. Possible values: IGRAPH_EDGEORDER_ID,
|
115
|
+
* edge id order. IGRAPH_EDGEORDER_FROM, vertex id order, the id of the
|
116
|
+
* source vertex counts for directed graphs. The order of the adjacent edges
|
117
|
+
* of a given vertex is arbitrary. IGRAPH_EDGEORDER_TO, vertex id order, the
|
118
|
+
* id of the target vertex counts for directed graphs. The order of the
|
119
|
+
* adjacent edges of a given vertex is arbitrary. For undirected graph the
|
120
|
+
* latter two is the same.
|
121
|
+
*/
|
76
122
|
VALUE cIGraph_all_e(VALUE self, VALUE mode){
|
77
123
|
|
78
|
-
|
124
|
+
igraph_t *graph;
|
125
|
+
igraph_es_t es;
|
126
|
+
igraph_eit_t eit;
|
127
|
+
igraph_edgeorder_type_t pmode = NUM2INT(mode);
|
128
|
+
VALUE edge_ids = rb_ary_new();
|
129
|
+
|
130
|
+
Data_Get_Struct(self, igraph_t, graph);
|
131
|
+
|
132
|
+
igraph_es_all(&es,pmode);
|
133
|
+
igraph_eit_create(graph, es, &eit);
|
134
|
+
|
135
|
+
while(!IGRAPH_EIT_END(eit)) {
|
136
|
+
rb_ary_push(edge_ids,INT2NUM(IGRAPH_EIT_GET(eit)));
|
137
|
+
IGRAPH_EIT_NEXT(eit);
|
138
|
+
}
|
139
|
+
|
140
|
+
igraph_eit_destroy(&eit);
|
141
|
+
igraph_es_destroy(&es);
|
142
|
+
|
143
|
+
return edge_ids;
|
144
|
+
|
79
145
|
|
80
146
|
}
|
81
147
|
|
148
|
+
/* call-seq:
|
149
|
+
* graph.adjacent_edges(v,mode) -> Array
|
150
|
+
*
|
151
|
+
* Returns an Array of the eids of the adjacent edges of a vertex (v). The
|
152
|
+
* mode argument gives the type of edges to select. Possible values:
|
153
|
+
* IGRAPH_OUT, outgoing edges IGRAPH_IN, incoming edges IGRAPH_ALL, all edges
|
154
|
+
*/
|
82
155
|
VALUE cIGraph_adj_e(VALUE self, VALUE v, VALUE mode){
|
83
156
|
|
84
|
-
|
157
|
+
igraph_t *graph;
|
158
|
+
igraph_es_t es;
|
159
|
+
igraph_eit_t eit;
|
85
160
|
|
86
|
-
|
161
|
+
VALUE adjacent = rb_ary_new();
|
87
162
|
|
88
|
-
|
163
|
+
Data_Get_Struct(self, igraph_t, graph);
|
89
164
|
|
90
|
-
|
165
|
+
igraph_es_none(&es);
|
166
|
+
igraph_es_adj(&es,cIGraph_get_vertex_id(self,v),NUM2INT(mode));
|
167
|
+
igraph_eit_create(graph, es, &eit);
|
168
|
+
|
169
|
+
while(!IGRAPH_EIT_END(eit)) {
|
170
|
+
rb_ary_push(adjacent,INT2NUM(IGRAPH_EIT_GET(eit)));
|
171
|
+
IGRAPH_EIT_NEXT(eit);
|
172
|
+
}
|
173
|
+
|
174
|
+
igraph_eit_destroy(&eit);
|
175
|
+
igraph_es_destroy(&es);
|
176
|
+
|
177
|
+
return adjacent;
|
91
178
|
|
92
179
|
}
|
93
180
|
|
181
|
+
|
@@ -2,6 +2,17 @@
|
|
2
2
|
#include "ruby.h"
|
3
3
|
#include "cIGraph.h"
|
4
4
|
|
5
|
+
/* call-seq:
|
6
|
+
* graph.shortest_paths(varray,mode) -> Array
|
7
|
+
*
|
8
|
+
* Calculates the length of the shortest paths from each of the vertices in
|
9
|
+
* the varray Array to all of the other vertices in the graph. The result
|
10
|
+
* is returned as an Array of Array. Each top-level Array contains the results
|
11
|
+
* for a vertex in the varray Array. Each entry in the Array is the path length
|
12
|
+
* to another vertex in the graph in vertex order (the order the vertices were
|
13
|
+
* added to the graph. (This should probalby be changed to give a Hash of Hash
|
14
|
+
* to allow easier look up.)
|
15
|
+
*/
|
5
16
|
VALUE cIGraph_shortest_paths(VALUE self, VALUE from, VALUE mode){
|
6
17
|
|
7
18
|
igraph_t *graph;
|
@@ -49,6 +60,17 @@ VALUE cIGraph_shortest_paths(VALUE self, VALUE from, VALUE mode){
|
|
49
60
|
|
50
61
|
}
|
51
62
|
|
63
|
+
/* call-seq:
|
64
|
+
* graph.get_shortest_paths(from,to_array,mode) -> Array
|
65
|
+
*
|
66
|
+
* Calculates the paths from the vertex specified as from to each vertex in the
|
67
|
+
* to_array Array. Returns an Array of Arrays. Each top level Array represents
|
68
|
+
* a path and each entry in each Array is a vertex on the path. mode
|
69
|
+
* represents the type of shortest paths to be calculated: IGraph::OUT
|
70
|
+
* the outgoing paths are calculated. IGraph::IN the incoming paths are
|
71
|
+
* calculated. IGraph::ALL the directed graph is considered as an undirected
|
72
|
+
* one for the computation.
|
73
|
+
*/
|
52
74
|
VALUE cIGraph_get_shortest_paths(VALUE self, VALUE from, VALUE to, VALUE mode){
|
53
75
|
|
54
76
|
igraph_t *graph;
|
@@ -70,7 +92,7 @@ VALUE cIGraph_get_shortest_paths(VALUE self, VALUE from, VALUE to, VALUE mode){
|
|
70
92
|
|
71
93
|
Data_Get_Struct(self, igraph_t, graph);
|
72
94
|
|
73
|
-
n_paths =
|
95
|
+
n_paths = RARRAY(to)->len;
|
74
96
|
|
75
97
|
//vector to hold the results of the calculations
|
76
98
|
igraph_vector_ptr_init(&res,0);
|
@@ -93,8 +115,8 @@ VALUE cIGraph_get_shortest_paths(VALUE self, VALUE from, VALUE to, VALUE mode){
|
|
93
115
|
for(i=0; i<n_paths; i++){
|
94
116
|
path = rb_ary_new();
|
95
117
|
rb_ary_push(matrix,path);
|
118
|
+
path_v = VECTOR(res)[i];
|
96
119
|
for(j=0; j<igraph_vector_size(VECTOR(res)[i]); j++){
|
97
|
-
path_v = VECTOR(res)[i];
|
98
120
|
rb_ary_push(path,cIGraph_get_vertex_object(self,VECTOR(*path_v)[j]));
|
99
121
|
}
|
100
122
|
}
|
@@ -110,3 +132,175 @@ VALUE cIGraph_get_shortest_paths(VALUE self, VALUE from, VALUE to, VALUE mode){
|
|
110
132
|
return matrix;
|
111
133
|
|
112
134
|
}
|
135
|
+
|
136
|
+
/* call-seq:
|
137
|
+
* graph.get_all_shortest_paths(from,mode) -> Array
|
138
|
+
*
|
139
|
+
* Calculates the paths from the vertex specified as from to each vertex
|
140
|
+
* in the to_array Arrayevery other. Returns an Array of Arrays. Each top
|
141
|
+
* level Array represents a path and each entry in each Array is a vertex on
|
142
|
+
* the path. mode represents the type of shortest paths to be calculated:
|
143
|
+
* IGraph::OUT the outgoing paths are calculated. IGraph::IN the incoming
|
144
|
+
* paths are calculated. IGraph::ALL the directed graph is considered as an
|
145
|
+
* undirected one for the computation. In contrast to
|
146
|
+
* IGraph#get_shortest_paths all possible shortest paths are reported here.
|
147
|
+
*/
|
148
|
+
VALUE cIGraph_get_all_shortest_paths(VALUE self, VALUE from, VALUE to, VALUE mode){
|
149
|
+
|
150
|
+
igraph_t *graph;
|
151
|
+
|
152
|
+
igraph_integer_t from_vid;
|
153
|
+
igraph_neimode_t pmode = NUM2INT(mode);
|
154
|
+
|
155
|
+
igraph_vs_t to_vids;
|
156
|
+
igraph_vector_t to_vidv;
|
157
|
+
|
158
|
+
igraph_vector_ptr_t res;
|
159
|
+
igraph_vector_t *path_v;
|
160
|
+
|
161
|
+
int i;
|
162
|
+
int j;
|
163
|
+
VALUE path;
|
164
|
+
VALUE matrix = rb_ary_new();
|
165
|
+
|
166
|
+
Data_Get_Struct(self, igraph_t, graph);
|
167
|
+
|
168
|
+
//vector to hold the results of the calculations
|
169
|
+
igraph_vector_ptr_init(&res,0);
|
170
|
+
|
171
|
+
//The id of the vertex from where we are counting
|
172
|
+
from_vid = cIGraph_get_vertex_id(self, from);
|
173
|
+
|
174
|
+
//Convert an array of vertices to a vector of vertex ids
|
175
|
+
cIGraph_vertex_arr_to_id_vec(self,to,&to_vidv);
|
176
|
+
//create vertex selector from the vecotr of ids
|
177
|
+
igraph_vs_vector(&to_vids,&to_vidv);
|
178
|
+
|
179
|
+
igraph_get_all_shortest_paths(graph,&res,NULL,from_vid,to_vids,pmode);
|
180
|
+
|
181
|
+
for(i=0; i< igraph_vector_ptr_size(&res); i++){
|
182
|
+
path = rb_ary_new();
|
183
|
+
rb_ary_push(matrix,path);
|
184
|
+
for(j=0; j<igraph_vector_size(VECTOR(res)[i]); j++){
|
185
|
+
path_v = VECTOR(res)[i];
|
186
|
+
rb_ary_push(path,cIGraph_get_vertex_object(self,VECTOR(*path_v)[j]));
|
187
|
+
}
|
188
|
+
}
|
189
|
+
|
190
|
+
for(i=0;i<igraph_vector_ptr_size(&res);i++){
|
191
|
+
igraph_vector_destroy(VECTOR(res)[i]);
|
192
|
+
}
|
193
|
+
|
194
|
+
igraph_vector_ptr_destroy(&res);
|
195
|
+
|
196
|
+
return matrix;
|
197
|
+
|
198
|
+
}
|
199
|
+
|
200
|
+
/* call-seq:
|
201
|
+
* graph.average_path_length(directed,uncon) -> Float
|
202
|
+
*
|
203
|
+
* Calculates the average geodesic length in a graph. directed should be a
|
204
|
+
* boolean specifying whether to consider directed paths. unconn is another
|
205
|
+
* boolean specifying what to do about unconnected graphs. If TRUE the
|
206
|
+
* average of the geodesics within the components will be returned,
|
207
|
+
* otherwise the number of vertices is used for the length of non-existing
|
208
|
+
* geodesics. (The rationale behind this is that this is always longer than
|
209
|
+
* the longest possible geodesic in a graph.)
|
210
|
+
*/
|
211
|
+
VALUE cIGraph_average_path_length(VALUE self, VALUE directed, VALUE unconn){
|
212
|
+
|
213
|
+
igraph_t *graph;
|
214
|
+
igraph_bool_t directed_b = 0;
|
215
|
+
igraph_bool_t unconn_b = 0;
|
216
|
+
igraph_real_t res;
|
217
|
+
|
218
|
+
if(directed)
|
219
|
+
directed_b = 1;
|
220
|
+
if(unconn)
|
221
|
+
unconn_b = 1;
|
222
|
+
|
223
|
+
Data_Get_Struct(self, igraph_t, graph);
|
224
|
+
|
225
|
+
igraph_average_path_length(graph,&res,directed_b,unconn_b);
|
226
|
+
|
227
|
+
return rb_float_new(res);
|
228
|
+
|
229
|
+
}
|
230
|
+
|
231
|
+
/* call-seq:
|
232
|
+
* graph.diameter(directed,uncon) -> Array
|
233
|
+
*
|
234
|
+
* Returns the longest path in the graph. directed should be a
|
235
|
+
* boolean specifying whether to consider directed paths. unconn is another
|
236
|
+
* boolean specifying what to do about unconnected graphs. If TRUE the
|
237
|
+
* average of the geodesics within the components will be returned,
|
238
|
+
* otherwise the number of vertices is used for the length of non-existing
|
239
|
+
* geodesics. (The rationale behind this is that this is always longer than
|
240
|
+
* the longest possible diamter in a graph.)
|
241
|
+
*/
|
242
|
+
VALUE cIGraph_diameter(VALUE self, VALUE directed, VALUE unconn){
|
243
|
+
|
244
|
+
igraph_t *graph;
|
245
|
+
igraph_bool_t directed_b = 0;
|
246
|
+
igraph_bool_t unconn_b = 0;
|
247
|
+
igraph_vector_t res;
|
248
|
+
int i;
|
249
|
+
VALUE path = rb_ary_new();
|
250
|
+
|
251
|
+
if(directed)
|
252
|
+
directed_b = 1;
|
253
|
+
if(unconn)
|
254
|
+
unconn_b = 1;
|
255
|
+
|
256
|
+
Data_Get_Struct(self, igraph_t, graph);
|
257
|
+
|
258
|
+
//vector to hold the results of the calculations
|
259
|
+
igraph_vector_init(&res,0);
|
260
|
+
|
261
|
+
igraph_diameter(graph,NULL,NULL,NULL,&res,directed_b,unconn_b);
|
262
|
+
|
263
|
+
for(i=0; i<igraph_vector_size(&res); i++){
|
264
|
+
rb_ary_push(path,cIGraph_get_vertex_object(self,VECTOR(res)[i]));
|
265
|
+
}
|
266
|
+
|
267
|
+
igraph_vector_destroy(&res);
|
268
|
+
|
269
|
+
return path;
|
270
|
+
|
271
|
+
}
|
272
|
+
|
273
|
+
/* call-seq:
|
274
|
+
* graph.diameter(directed,uncon) -> Array
|
275
|
+
*
|
276
|
+
* Returns the shortest cycle in the graph. directed should be a
|
277
|
+
* boolean specifying whether to consider directed paths. unconn is another
|
278
|
+
* boolean specifying what to do about unconnected graphs. If TRUE the
|
279
|
+
* average of the geodesics within the components will be returned,
|
280
|
+
* otherwise the number of vertices is used for the length of non-existing
|
281
|
+
* geodesics. (The rationale behind this is that this is always longer than
|
282
|
+
* the longest possible diamter in a graph.)
|
283
|
+
*/
|
284
|
+
VALUE cIGraph_girth(VALUE self){
|
285
|
+
|
286
|
+
igraph_t *graph;
|
287
|
+
igraph_vector_t res;
|
288
|
+
int i;
|
289
|
+
VALUE path = rb_ary_new();
|
290
|
+
|
291
|
+
Data_Get_Struct(self, igraph_t, graph);
|
292
|
+
|
293
|
+
//vector to hold the results of the calculations
|
294
|
+
igraph_vector_init(&res,0);
|
295
|
+
|
296
|
+
igraph_girth(graph,NULL,&res);
|
297
|
+
|
298
|
+
for(i=0; i<igraph_vector_size(&res); i++){
|
299
|
+
rb_ary_push(path,cIGraph_get_vertex_object(self,VECTOR(res)[i]));
|
300
|
+
}
|
301
|
+
|
302
|
+
igraph_vector_destroy(&res);
|
303
|
+
|
304
|
+
return path;
|
305
|
+
|
306
|
+
}
|