grammar_cop 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (344) hide show
  1. data/.DS_Store +0 -0
  2. data/.gitignore +4 -0
  3. data/Gemfile +4 -0
  4. data/Rakefile +8 -0
  5. data/data/.DS_Store +0 -0
  6. data/data/Makefile +511 -0
  7. data/data/Makefile.am +4 -0
  8. data/data/Makefile.in +511 -0
  9. data/data/de/.DS_Store +0 -0
  10. data/data/de/4.0.affix +7 -0
  11. data/data/de/4.0.dict +474 -0
  12. data/data/de/Makefile +387 -0
  13. data/data/de/Makefile.am +9 -0
  14. data/data/de/Makefile.in +387 -0
  15. data/data/en/.DS_Store +0 -0
  16. data/data/en/4.0.affix +26 -0
  17. data/data/en/4.0.batch +1002 -0
  18. data/data/en/4.0.biolg.batch +411 -0
  19. data/data/en/4.0.constituent-knowledge +127 -0
  20. data/data/en/4.0.dict +8759 -0
  21. data/data/en/4.0.dict.m4 +6928 -0
  22. data/data/en/4.0.enwiki.batch +14 -0
  23. data/data/en/4.0.fixes.batch +2776 -0
  24. data/data/en/4.0.knowledge +306 -0
  25. data/data/en/4.0.regex +225 -0
  26. data/data/en/4.0.voa.batch +114 -0
  27. data/data/en/Makefile +554 -0
  28. data/data/en/Makefile.am +19 -0
  29. data/data/en/Makefile.in +554 -0
  30. data/data/en/README +173 -0
  31. data/data/en/tiny.dict +157 -0
  32. data/data/en/words/.DS_Store +0 -0
  33. data/data/en/words/Makefile +456 -0
  34. data/data/en/words/Makefile.am +78 -0
  35. data/data/en/words/Makefile.in +456 -0
  36. data/data/en/words/currency +205 -0
  37. data/data/en/words/currency.p +28 -0
  38. data/data/en/words/entities.given-bisex.sing +39 -0
  39. data/data/en/words/entities.given-female.sing +4141 -0
  40. data/data/en/words/entities.given-male.sing +1633 -0
  41. data/data/en/words/entities.locations.sing +68 -0
  42. data/data/en/words/entities.national.sing +253 -0
  43. data/data/en/words/entities.organizations.sing +7 -0
  44. data/data/en/words/entities.us-states.sing +11 -0
  45. data/data/en/words/units.1 +45 -0
  46. data/data/en/words/units.1.dot +4 -0
  47. data/data/en/words/units.3 +2 -0
  48. data/data/en/words/units.4 +5 -0
  49. data/data/en/words/units.4.dot +1 -0
  50. data/data/en/words/words-medical.adv.1 +1191 -0
  51. data/data/en/words/words-medical.prep.1 +67 -0
  52. data/data/en/words/words-medical.v.4.1 +2835 -0
  53. data/data/en/words/words-medical.v.4.2 +2848 -0
  54. data/data/en/words/words-medical.v.4.3 +3011 -0
  55. data/data/en/words/words-medical.v.4.4 +3036 -0
  56. data/data/en/words/words-medical.v.4.5 +3050 -0
  57. data/data/en/words/words.adj.1 +6794 -0
  58. data/data/en/words/words.adj.2 +638 -0
  59. data/data/en/words/words.adj.3 +667 -0
  60. data/data/en/words/words.adv.1 +1573 -0
  61. data/data/en/words/words.adv.2 +67 -0
  62. data/data/en/words/words.adv.3 +157 -0
  63. data/data/en/words/words.adv.4 +80 -0
  64. data/data/en/words/words.n.1 +11464 -0
  65. data/data/en/words/words.n.1.wiki +264 -0
  66. data/data/en/words/words.n.2.s +2017 -0
  67. data/data/en/words/words.n.2.s.biolg +1 -0
  68. data/data/en/words/words.n.2.s.wiki +298 -0
  69. data/data/en/words/words.n.2.x +65 -0
  70. data/data/en/words/words.n.2.x.wiki +10 -0
  71. data/data/en/words/words.n.3 +5717 -0
  72. data/data/en/words/words.n.t +23 -0
  73. data/data/en/words/words.v.1.1 +1038 -0
  74. data/data/en/words/words.v.1.2 +1043 -0
  75. data/data/en/words/words.v.1.3 +1052 -0
  76. data/data/en/words/words.v.1.4 +1023 -0
  77. data/data/en/words/words.v.1.p +17 -0
  78. data/data/en/words/words.v.10.1 +14 -0
  79. data/data/en/words/words.v.10.2 +15 -0
  80. data/data/en/words/words.v.10.3 +88 -0
  81. data/data/en/words/words.v.10.4 +17 -0
  82. data/data/en/words/words.v.2.1 +1253 -0
  83. data/data/en/words/words.v.2.2 +1304 -0
  84. data/data/en/words/words.v.2.3 +1280 -0
  85. data/data/en/words/words.v.2.4 +1285 -0
  86. data/data/en/words/words.v.2.5 +1287 -0
  87. data/data/en/words/words.v.4.1 +2472 -0
  88. data/data/en/words/words.v.4.2 +2487 -0
  89. data/data/en/words/words.v.4.3 +2441 -0
  90. data/data/en/words/words.v.4.4 +2478 -0
  91. data/data/en/words/words.v.4.5 +2483 -0
  92. data/data/en/words/words.v.5.1 +98 -0
  93. data/data/en/words/words.v.5.2 +98 -0
  94. data/data/en/words/words.v.5.3 +103 -0
  95. data/data/en/words/words.v.5.4 +102 -0
  96. data/data/en/words/words.v.6.1 +388 -0
  97. data/data/en/words/words.v.6.2 +401 -0
  98. data/data/en/words/words.v.6.3 +397 -0
  99. data/data/en/words/words.v.6.4 +405 -0
  100. data/data/en/words/words.v.6.5 +401 -0
  101. data/data/en/words/words.v.8.1 +117 -0
  102. data/data/en/words/words.v.8.2 +118 -0
  103. data/data/en/words/words.v.8.3 +118 -0
  104. data/data/en/words/words.v.8.4 +119 -0
  105. data/data/en/words/words.v.8.5 +119 -0
  106. data/data/en/words/words.y +104 -0
  107. data/data/lt/.DS_Store +0 -0
  108. data/data/lt/4.0.affix +6 -0
  109. data/data/lt/4.0.constituent-knowledge +24 -0
  110. data/data/lt/4.0.dict +135 -0
  111. data/data/lt/4.0.knowledge +38 -0
  112. data/data/lt/Makefile +389 -0
  113. data/data/lt/Makefile.am +11 -0
  114. data/data/lt/Makefile.in +389 -0
  115. data/ext/.DS_Store +0 -0
  116. data/ext/link_grammar/.DS_Store +0 -0
  117. data/ext/link_grammar/extconf.rb +2 -0
  118. data/ext/link_grammar/link-grammar/.DS_Store +0 -0
  119. data/ext/link_grammar/link-grammar/.deps/analyze-linkage.Plo +198 -0
  120. data/ext/link_grammar/link-grammar/.deps/and.Plo +202 -0
  121. data/ext/link_grammar/link-grammar/.deps/api.Plo +244 -0
  122. data/ext/link_grammar/link-grammar/.deps/build-disjuncts.Plo +212 -0
  123. data/ext/link_grammar/link-grammar/.deps/command-line.Plo +201 -0
  124. data/ext/link_grammar/link-grammar/.deps/constituents.Plo +201 -0
  125. data/ext/link_grammar/link-grammar/.deps/count.Plo +202 -0
  126. data/ext/link_grammar/link-grammar/.deps/disjunct-utils.Plo +126 -0
  127. data/ext/link_grammar/link-grammar/.deps/disjuncts.Plo +123 -0
  128. data/ext/link_grammar/link-grammar/.deps/error.Plo +121 -0
  129. data/ext/link_grammar/link-grammar/.deps/expand.Plo +133 -0
  130. data/ext/link_grammar/link-grammar/.deps/extract-links.Plo +198 -0
  131. data/ext/link_grammar/link-grammar/.deps/fast-match.Plo +200 -0
  132. data/ext/link_grammar/link-grammar/.deps/idiom.Plo +200 -0
  133. data/ext/link_grammar/link-grammar/.deps/jni-client.Plo +217 -0
  134. data/ext/link_grammar/link-grammar/.deps/link-parser.Po +1 -0
  135. data/ext/link_grammar/link-grammar/.deps/massage.Plo +202 -0
  136. data/ext/link_grammar/link-grammar/.deps/post-process.Plo +202 -0
  137. data/ext/link_grammar/link-grammar/.deps/pp_knowledge.Plo +202 -0
  138. data/ext/link_grammar/link-grammar/.deps/pp_lexer.Plo +201 -0
  139. data/ext/link_grammar/link-grammar/.deps/pp_linkset.Plo +200 -0
  140. data/ext/link_grammar/link-grammar/.deps/prefix.Plo +102 -0
  141. data/ext/link_grammar/link-grammar/.deps/preparation.Plo +202 -0
  142. data/ext/link_grammar/link-grammar/.deps/print-util.Plo +200 -0
  143. data/ext/link_grammar/link-grammar/.deps/print.Plo +201 -0
  144. data/ext/link_grammar/link-grammar/.deps/prune.Plo +202 -0
  145. data/ext/link_grammar/link-grammar/.deps/read-dict.Plo +223 -0
  146. data/ext/link_grammar/link-grammar/.deps/read-regex.Plo +123 -0
  147. data/ext/link_grammar/link-grammar/.deps/regex-morph.Plo +131 -0
  148. data/ext/link_grammar/link-grammar/.deps/resources.Plo +203 -0
  149. data/ext/link_grammar/link-grammar/.deps/spellcheck-aspell.Plo +1 -0
  150. data/ext/link_grammar/link-grammar/.deps/spellcheck-hun.Plo +115 -0
  151. data/ext/link_grammar/link-grammar/.deps/string-set.Plo +198 -0
  152. data/ext/link_grammar/link-grammar/.deps/tokenize.Plo +160 -0
  153. data/ext/link_grammar/link-grammar/.deps/utilities.Plo +222 -0
  154. data/ext/link_grammar/link-grammar/.deps/word-file.Plo +201 -0
  155. data/ext/link_grammar/link-grammar/.deps/word-utils.Plo +212 -0
  156. data/ext/link_grammar/link-grammar/.libs/analyze-linkage.o +0 -0
  157. data/ext/link_grammar/link-grammar/.libs/and.o +0 -0
  158. data/ext/link_grammar/link-grammar/.libs/api.o +0 -0
  159. data/ext/link_grammar/link-grammar/.libs/build-disjuncts.o +0 -0
  160. data/ext/link_grammar/link-grammar/.libs/command-line.o +0 -0
  161. data/ext/link_grammar/link-grammar/.libs/constituents.o +0 -0
  162. data/ext/link_grammar/link-grammar/.libs/count.o +0 -0
  163. data/ext/link_grammar/link-grammar/.libs/disjunct-utils.o +0 -0
  164. data/ext/link_grammar/link-grammar/.libs/disjuncts.o +0 -0
  165. data/ext/link_grammar/link-grammar/.libs/error.o +0 -0
  166. data/ext/link_grammar/link-grammar/.libs/expand.o +0 -0
  167. data/ext/link_grammar/link-grammar/.libs/extract-links.o +0 -0
  168. data/ext/link_grammar/link-grammar/.libs/fast-match.o +0 -0
  169. data/ext/link_grammar/link-grammar/.libs/idiom.o +0 -0
  170. data/ext/link_grammar/link-grammar/.libs/jni-client.o +0 -0
  171. data/ext/link_grammar/link-grammar/.libs/liblink-grammar-java-symbols.expsym +31 -0
  172. data/ext/link_grammar/link-grammar/.libs/liblink-grammar-java.4.dylib +0 -0
  173. data/ext/link_grammar/link-grammar/.libs/liblink-grammar-java.4.dylib.dSYM/Contents/Info.plist +20 -0
  174. data/ext/link_grammar/link-grammar/.libs/liblink-grammar-java.4.dylib.dSYM/Contents/Resources/DWARF/liblink-grammar-java.4.dylib +0 -0
  175. data/ext/link_grammar/link-grammar/.libs/liblink-grammar-java.a +0 -0
  176. data/ext/link_grammar/link-grammar/.libs/liblink-grammar-java.dylib +0 -0
  177. data/ext/link_grammar/link-grammar/.libs/liblink-grammar-symbols.expsym +194 -0
  178. data/ext/link_grammar/link-grammar/.libs/liblink-grammar.4.dylib +0 -0
  179. data/ext/link_grammar/link-grammar/.libs/liblink-grammar.4.dylib.dSYM/Contents/Info.plist +20 -0
  180. data/ext/link_grammar/link-grammar/.libs/liblink-grammar.4.dylib.dSYM/Contents/Resources/DWARF/liblink-grammar.4.dylib +0 -0
  181. data/ext/link_grammar/link-grammar/.libs/liblink-grammar.a +0 -0
  182. data/ext/link_grammar/link-grammar/.libs/liblink-grammar.dylib +0 -0
  183. data/ext/link_grammar/link-grammar/.libs/liblink-grammar.la +41 -0
  184. data/ext/link_grammar/link-grammar/.libs/liblink-grammar.lai +41 -0
  185. data/ext/link_grammar/link-grammar/.libs/massage.o +0 -0
  186. data/ext/link_grammar/link-grammar/.libs/post-process.o +0 -0
  187. data/ext/link_grammar/link-grammar/.libs/pp_knowledge.o +0 -0
  188. data/ext/link_grammar/link-grammar/.libs/pp_lexer.o +0 -0
  189. data/ext/link_grammar/link-grammar/.libs/pp_linkset.o +0 -0
  190. data/ext/link_grammar/link-grammar/.libs/prefix.o +0 -0
  191. data/ext/link_grammar/link-grammar/.libs/preparation.o +0 -0
  192. data/ext/link_grammar/link-grammar/.libs/print-util.o +0 -0
  193. data/ext/link_grammar/link-grammar/.libs/print.o +0 -0
  194. data/ext/link_grammar/link-grammar/.libs/prune.o +0 -0
  195. data/ext/link_grammar/link-grammar/.libs/read-dict.o +0 -0
  196. data/ext/link_grammar/link-grammar/.libs/read-regex.o +0 -0
  197. data/ext/link_grammar/link-grammar/.libs/regex-morph.o +0 -0
  198. data/ext/link_grammar/link-grammar/.libs/resources.o +0 -0
  199. data/ext/link_grammar/link-grammar/.libs/spellcheck-aspell.o +0 -0
  200. data/ext/link_grammar/link-grammar/.libs/spellcheck-hun.o +0 -0
  201. data/ext/link_grammar/link-grammar/.libs/string-set.o +0 -0
  202. data/ext/link_grammar/link-grammar/.libs/tokenize.o +0 -0
  203. data/ext/link_grammar/link-grammar/.libs/utilities.o +0 -0
  204. data/ext/link_grammar/link-grammar/.libs/word-file.o +0 -0
  205. data/ext/link_grammar/link-grammar/.libs/word-utils.o +0 -0
  206. data/ext/link_grammar/link-grammar/Makefile +900 -0
  207. data/ext/link_grammar/link-grammar/Makefile.am +202 -0
  208. data/ext/link_grammar/link-grammar/Makefile.in +900 -0
  209. data/ext/link_grammar/link-grammar/analyze-linkage.c +1317 -0
  210. data/ext/link_grammar/link-grammar/analyze-linkage.h +24 -0
  211. data/ext/link_grammar/link-grammar/and.c +1603 -0
  212. data/ext/link_grammar/link-grammar/and.h +27 -0
  213. data/ext/link_grammar/link-grammar/api-structures.h +362 -0
  214. data/ext/link_grammar/link-grammar/api-types.h +72 -0
  215. data/ext/link_grammar/link-grammar/api.c +1887 -0
  216. data/ext/link_grammar/link-grammar/api.h +96 -0
  217. data/ext/link_grammar/link-grammar/autoit/.DS_Store +0 -0
  218. data/ext/link_grammar/link-grammar/autoit/README +10 -0
  219. data/ext/link_grammar/link-grammar/autoit/_LGTest.au3 +22 -0
  220. data/ext/link_grammar/link-grammar/autoit/_LinkGrammar.au3 +545 -0
  221. data/ext/link_grammar/link-grammar/build-disjuncts.c +487 -0
  222. data/ext/link_grammar/link-grammar/build-disjuncts.h +21 -0
  223. data/ext/link_grammar/link-grammar/command-line.c +458 -0
  224. data/ext/link_grammar/link-grammar/command-line.h +15 -0
  225. data/ext/link_grammar/link-grammar/constituents.c +1836 -0
  226. data/ext/link_grammar/link-grammar/constituents.h +26 -0
  227. data/ext/link_grammar/link-grammar/corpus/.DS_Store +0 -0
  228. data/ext/link_grammar/link-grammar/corpus/.deps/cluster.Plo +1 -0
  229. data/ext/link_grammar/link-grammar/corpus/.deps/corpus.Plo +1 -0
  230. data/ext/link_grammar/link-grammar/corpus/Makefile +527 -0
  231. data/ext/link_grammar/link-grammar/corpus/Makefile.am +46 -0
  232. data/ext/link_grammar/link-grammar/corpus/Makefile.in +527 -0
  233. data/ext/link_grammar/link-grammar/corpus/README +17 -0
  234. data/ext/link_grammar/link-grammar/corpus/cluster.c +286 -0
  235. data/ext/link_grammar/link-grammar/corpus/cluster.h +32 -0
  236. data/ext/link_grammar/link-grammar/corpus/corpus.c +483 -0
  237. data/ext/link_grammar/link-grammar/corpus/corpus.h +46 -0
  238. data/ext/link_grammar/link-grammar/count.c +828 -0
  239. data/ext/link_grammar/link-grammar/count.h +25 -0
  240. data/ext/link_grammar/link-grammar/disjunct-utils.c +261 -0
  241. data/ext/link_grammar/link-grammar/disjunct-utils.h +27 -0
  242. data/ext/link_grammar/link-grammar/disjuncts.c +138 -0
  243. data/ext/link_grammar/link-grammar/disjuncts.h +13 -0
  244. data/ext/link_grammar/link-grammar/error.c +92 -0
  245. data/ext/link_grammar/link-grammar/error.h +35 -0
  246. data/ext/link_grammar/link-grammar/expand.c +67 -0
  247. data/ext/link_grammar/link-grammar/expand.h +13 -0
  248. data/ext/link_grammar/link-grammar/externs.h +22 -0
  249. data/ext/link_grammar/link-grammar/extract-links.c +625 -0
  250. data/ext/link_grammar/link-grammar/extract-links.h +16 -0
  251. data/ext/link_grammar/link-grammar/fast-match.c +309 -0
  252. data/ext/link_grammar/link-grammar/fast-match.h +17 -0
  253. data/ext/link_grammar/link-grammar/idiom.c +373 -0
  254. data/ext/link_grammar/link-grammar/idiom.h +15 -0
  255. data/ext/link_grammar/link-grammar/jni-client.c +779 -0
  256. data/ext/link_grammar/link-grammar/jni-client.h +236 -0
  257. data/ext/link_grammar/link-grammar/liblink-grammar-java.la +42 -0
  258. data/ext/link_grammar/link-grammar/liblink-grammar.la +41 -0
  259. data/ext/link_grammar/link-grammar/link-features.h +37 -0
  260. data/ext/link_grammar/link-grammar/link-features.h.in +37 -0
  261. data/ext/link_grammar/link-grammar/link-grammar-java.def +31 -0
  262. data/ext/link_grammar/link-grammar/link-grammar.def +194 -0
  263. data/ext/link_grammar/link-grammar/link-includes.h +465 -0
  264. data/ext/link_grammar/link-grammar/link-parser.c +849 -0
  265. data/ext/link_grammar/link-grammar/massage.c +329 -0
  266. data/ext/link_grammar/link-grammar/massage.h +13 -0
  267. data/ext/link_grammar/link-grammar/post-process.c +1113 -0
  268. data/ext/link_grammar/link-grammar/post-process.h +45 -0
  269. data/ext/link_grammar/link-grammar/pp_knowledge.c +376 -0
  270. data/ext/link_grammar/link-grammar/pp_knowledge.h +14 -0
  271. data/ext/link_grammar/link-grammar/pp_lexer.c +1920 -0
  272. data/ext/link_grammar/link-grammar/pp_lexer.h +19 -0
  273. data/ext/link_grammar/link-grammar/pp_linkset.c +158 -0
  274. data/ext/link_grammar/link-grammar/pp_linkset.h +20 -0
  275. data/ext/link_grammar/link-grammar/prefix.c +482 -0
  276. data/ext/link_grammar/link-grammar/prefix.h +139 -0
  277. data/ext/link_grammar/link-grammar/preparation.c +412 -0
  278. data/ext/link_grammar/link-grammar/preparation.h +20 -0
  279. data/ext/link_grammar/link-grammar/print-util.c +87 -0
  280. data/ext/link_grammar/link-grammar/print-util.h +32 -0
  281. data/ext/link_grammar/link-grammar/print.c +1085 -0
  282. data/ext/link_grammar/link-grammar/print.h +16 -0
  283. data/ext/link_grammar/link-grammar/prune.c +1864 -0
  284. data/ext/link_grammar/link-grammar/prune.h +17 -0
  285. data/ext/link_grammar/link-grammar/read-dict.c +1785 -0
  286. data/ext/link_grammar/link-grammar/read-dict.h +29 -0
  287. data/ext/link_grammar/link-grammar/read-regex.c +161 -0
  288. data/ext/link_grammar/link-grammar/read-regex.h +12 -0
  289. data/ext/link_grammar/link-grammar/regex-morph.c +126 -0
  290. data/ext/link_grammar/link-grammar/regex-morph.h +17 -0
  291. data/ext/link_grammar/link-grammar/resources.c +180 -0
  292. data/ext/link_grammar/link-grammar/resources.h +23 -0
  293. data/ext/link_grammar/link-grammar/sat-solver/.DS_Store +0 -0
  294. data/ext/link_grammar/link-grammar/sat-solver/.deps/fast-sprintf.Plo +1 -0
  295. data/ext/link_grammar/link-grammar/sat-solver/.deps/sat-encoder.Plo +1 -0
  296. data/ext/link_grammar/link-grammar/sat-solver/.deps/util.Plo +1 -0
  297. data/ext/link_grammar/link-grammar/sat-solver/.deps/variables.Plo +1 -0
  298. data/ext/link_grammar/link-grammar/sat-solver/.deps/word-tag.Plo +1 -0
  299. data/ext/link_grammar/link-grammar/sat-solver/Makefile +527 -0
  300. data/ext/link_grammar/link-grammar/sat-solver/Makefile.am +29 -0
  301. data/ext/link_grammar/link-grammar/sat-solver/Makefile.in +527 -0
  302. data/ext/link_grammar/link-grammar/sat-solver/clock.hpp +33 -0
  303. data/ext/link_grammar/link-grammar/sat-solver/fast-sprintf.cpp +26 -0
  304. data/ext/link_grammar/link-grammar/sat-solver/fast-sprintf.hpp +7 -0
  305. data/ext/link_grammar/link-grammar/sat-solver/guiding.hpp +244 -0
  306. data/ext/link_grammar/link-grammar/sat-solver/matrix-ut.hpp +79 -0
  307. data/ext/link_grammar/link-grammar/sat-solver/sat-encoder.cpp +2811 -0
  308. data/ext/link_grammar/link-grammar/sat-solver/sat-encoder.h +11 -0
  309. data/ext/link_grammar/link-grammar/sat-solver/sat-encoder.hpp +381 -0
  310. data/ext/link_grammar/link-grammar/sat-solver/trie.hpp +118 -0
  311. data/ext/link_grammar/link-grammar/sat-solver/util.cpp +23 -0
  312. data/ext/link_grammar/link-grammar/sat-solver/util.hpp +14 -0
  313. data/ext/link_grammar/link-grammar/sat-solver/variables.cpp +5 -0
  314. data/ext/link_grammar/link-grammar/sat-solver/variables.hpp +829 -0
  315. data/ext/link_grammar/link-grammar/sat-solver/word-tag.cpp +159 -0
  316. data/ext/link_grammar/link-grammar/sat-solver/word-tag.hpp +162 -0
  317. data/ext/link_grammar/link-grammar/spellcheck-aspell.c +148 -0
  318. data/ext/link_grammar/link-grammar/spellcheck-hun.c +136 -0
  319. data/ext/link_grammar/link-grammar/spellcheck.h +34 -0
  320. data/ext/link_grammar/link-grammar/string-set.c +169 -0
  321. data/ext/link_grammar/link-grammar/string-set.h +16 -0
  322. data/ext/link_grammar/link-grammar/structures.h +498 -0
  323. data/ext/link_grammar/link-grammar/tokenize.c +1049 -0
  324. data/ext/link_grammar/link-grammar/tokenize.h +15 -0
  325. data/ext/link_grammar/link-grammar/utilities.c +847 -0
  326. data/ext/link_grammar/link-grammar/utilities.h +281 -0
  327. data/ext/link_grammar/link-grammar/word-file.c +124 -0
  328. data/ext/link_grammar/link-grammar/word-file.h +15 -0
  329. data/ext/link_grammar/link-grammar/word-utils.c +526 -0
  330. data/ext/link_grammar/link-grammar/word-utils.h +152 -0
  331. data/ext/link_grammar/link_grammar.c +202 -0
  332. data/ext/link_grammar/link_grammar.h +99 -0
  333. data/grammar_cop.gemspec +24 -0
  334. data/lib/.DS_Store +0 -0
  335. data/lib/grammar_cop.rb +9 -0
  336. data/lib/grammar_cop/.DS_Store +0 -0
  337. data/lib/grammar_cop/dictionary.rb +19 -0
  338. data/lib/grammar_cop/linkage.rb +30 -0
  339. data/lib/grammar_cop/parse_options.rb +32 -0
  340. data/lib/grammar_cop/sentence.rb +36 -0
  341. data/lib/grammar_cop/version.rb +3 -0
  342. data/test/.DS_Store +0 -0
  343. data/test/grammar_cop_test.rb +27 -0
  344. metadata +407 -0
data/data/en/.DS_Store ADDED
Binary file
data/data/en/4.0.affix ADDED
@@ -0,0 +1,26 @@
1
+ %
2
+ % Affixes get stripped off the left and right side of words
3
+ % i.e. spaces are inserted between the affix and the word itself.
4
+ %
5
+ % Some of the funky UTF-8 parenthesis are used in Asian texts.
6
+ % In order to allow single straight quote ' and double straight quote ''
7
+ % to be sttripped off rom both the left and the right, they are
8
+ % distinguished by the suffix .x and .y (as as Mr.x Mrs.x or Jr.y Sr.y)
9
+ %
10
+ % 。is an end-of-sentence marker used in Japanese texts.
11
+
12
+ ")" "}" "]" ">" » 〉 〕 》 】 』 "’’" "’" ''.y '.y
13
+ "%" "," "." 。 ":" ";" "?" "!" "…" "”" "–" "‐"
14
+ 's 're 've 'd 'll 'm ’s ’re ’ve ’d ’ll ’m
15
+ ¢ ™: RPUNC+;
16
+
17
+ "(" "{" "[" "<" « 〈 〔 《 【 『 `` „ “ ‘ ''.x '.x
18
+ "$" US$ USD C$ £ ₤ € ₳ ฿ ₵ ₡ ₢ ₫ ₣ ₴ ₭ ℳ ₥ ₦ ₧ ₰ ₨ ₪ ৳ ₮ ₩ ¥ 호점
19
+ † †† ‡ § ¶ © № "#": LPUNC+;
20
+
21
+ /en/words/units.1: UNITS+;
22
+ /en/words/units.1.dot: UNITS+;
23
+ /en/words/units.3: UNITS+;
24
+ /en/words/units.4: UNITS+;
25
+ /en/words/units.4.dot: UNITS+;
26
+
data/data/en/4.0.batch ADDED
@@ -0,0 +1,1002 @@
1
+
2
+ !verbosity=1
3
+ !echo
4
+ !limit=1000
5
+ !batch
6
+ !short=20
7
+ !constituents=1
8
+ !spell=0
9
+ !use-fat=0
10
+
11
+ %NOUNS
12
+
13
+ The fact that he smiled at me gives me hope
14
+ *The event that he smiled at me gives me hope
15
+ But my efforts to win his heart have failed
16
+ *But my presents to win his heart have failed
17
+ Failure to comply may result in dismissal
18
+ *Absence to comply may result in dismissal
19
+ The question is who we should invite
20
+ *The party is who we should invite
21
+ The big question on everybody's mind is who killed OJ
22
+ *The big mind on everybody's question is who killed OJ
23
+ Do it the way you've always done it
24
+ I really like the way you do your hair
25
+ *I really like the fashion you do your hair
26
+ He made a request that there be an investigation
27
+ *He stated the fact that there be an investigation
28
+ He is the kind of person who would do that
29
+ *He is the character of person who would do that
30
+ An income tax increase may be necessary
31
+ *A tax on income increase may be necessary
32
+ Last week I saw a great movie
33
+
34
+ % currently finds a parse with roman numeral I
35
+ % i.e. "Last Dog the First saw a great movie"
36
+ *Last dog I saw a great movie
37
+ The party that night was a big success
38
+ *The party that dog was a big success
39
+ John Stuart Mill is an important author
40
+ The Richard Milhous Nixon Library has been a big success
41
+ The mystery of the Nixon tapes was never solved
42
+ High income taxes are important
43
+ Oil company stock prices rose in heavy trading today
44
+ Metals futures prices rose in heavy trading today
45
+ U.S. economic indicators fell sharply last month
46
+ Columbia medical and administrative workers continued their strike today
47
+ Janet, who is an expert on dogs, helped me choose one
48
+ *Janet who is an expert on dogs helped me choose one
49
+ The dog that we eventually bought was very expensive
50
+ *The dog, that we eventually bought, was very expensive
51
+ *The dog, we eventually bought, was very expensive
52
+ Have you ever seen the Pacific
53
+ The new David Letterman is a happy, relaxed David Letterman
54
+ Actress Whoopi Goldberg and singer Michael Jackson attended the ceremony
55
+ We are from the planet Gorpon
56
+ This is my friend Bob
57
+ John's family is renovating their kitchen
58
+ *A man I know's family is renovating their kitchen
59
+ The boys' bedrooms will be enlarged
60
+ *The boys's bedrooms will be enlarged
61
+ My uncle's mother's cousin is visiting us
62
+ *Emily's my cousin is visiting us
63
+ We ate at Joe's Diner last week
64
+ The buy-out caused a free-for-all in the mid-afternoon
65
+ Joan Smith is president of the company
66
+ *Joan Smith is tourist
67
+ Alfred Baird, formerly vice president of Beevil Corp., has been appointed as president
68
+ *Alfred Baird, man I know, has been described as good gardener
69
+ A bunch of dogs are in the yard
70
+ *A picture of dogs are in the yard
71
+
72
+ %DETERMINERS & PRONOUNS
73
+
74
+ Many people were angered by the hearings
75
+ *Many person were angered by the hearings
76
+ Many were angered by the hearings
77
+ My many female friends were angered by the hearings
78
+ *My some female friends were angered by the hearings
79
+ Many who initially supported Thomas later changed their minds
80
+ The stupidity of the senators annoyed all my friends
81
+ *The stupidity of the senators annoyed many my friends
82
+ I need to buy a present, but I want something inexpensive
83
+ *I need to buy a present, but I want a gift inexpensive
84
+ Anyone who thinks this will work is crazy
85
+ Their program is better than ours
86
+ Those that want to come can come
87
+ I read everything I could about the subject
88
+ I read whatever I could about the subjetc
89
+ *I read several books I could about the subject
90
+ the best costumes got prizes
91
+ *a best costume got prizes
92
+ *some best costumes got prizes
93
+ the best five costumes got prizes
94
+ the five best costumes got prizes
95
+ *the five best five costumes got prizes
96
+ *the hundreds of best costumes got prizes
97
+ *five best costumes got prizes
98
+ *best costumes got prizes
99
+ *best five costumes got prizes
100
+ five other costumes got prizes
101
+ the other five costumes got prizes
102
+ *other five costumes got prizes
103
+ the other candy was really disgusting
104
+ *the five other candy was really disgusting
105
+ other candy is really disgusting
106
+ *other piece of candy was really bad
107
+ other costumes were really bad
108
+ some other costumes were really bad
109
+
110
+ %NUMBERS
111
+
112
+ 2 million attended
113
+ 2863764 attended
114
+ 2 million people attended
115
+ *2 million person attended
116
+ a million attended
117
+ a million people attended
118
+ about 2 million people attended
119
+ about 2 million attended
120
+ *about people attended
121
+ a million such people attended
122
+ *a million such attended
123
+ 5 million of the people attended
124
+ 5 thousand invited by Bob attended
125
+ The 5 thousand invited by Bob attended
126
+ The thousands of people who attended enjoyed it
127
+ The 5 thousand people invited by Bob attended
128
+ The nearly 5 million people who attended enjoyed it
129
+ a few attended
130
+ a few million people attended
131
+ a few people attended
132
+ few attended
133
+ *few million people attended
134
+ millions attended
135
+ *5 millions attended
136
+ millions of people attended
137
+ hundreds of millions of people attended
138
+ 5 million years ago, the earth was covered with ice
139
+ millions of years ago, the earth was covered with ice
140
+ *dogs of years ago, the earth was covered with ice
141
+ *the five million years ago, the earth was covered with ice
142
+ *the other five million years ago, the earth was covered with ice
143
+ *5 million ago, the earth was covered with ice
144
+ The city of New York contains over one hundred million billion brain cells
145
+ Almost one third of the people in the country have no health insurance
146
+ Of all the people in this country, almost one third have no health insurance
147
+ Three quarters of a million people in this city have no health insurance
148
+ The price of the stock rose three tenths of one point
149
+ *The price of the stock rose three tenths of one dog
150
+ The nearest drug store is about three quarters of a mile away
151
+ The nearest drug store is about 3/4 of a mile away
152
+ Every morning I walk 3 1/2 miles
153
+ *Every morning I walk 1/2 3 miles
154
+ Nearly 1/2 million people work here every day
155
+ Nearly 1 1/4 million people work here every day
156
+ *Nearly 1 million 1/4 people work here every day
157
+ Between 500 and 1000 people pass through here every minute
158
+ They are the Number 3 auto maker and a Fortune 500 company
159
+ I live at 805 West Indiana Street
160
+
161
+ %TIME EXPRESSIONS
162
+
163
+ We're thinking about going to a movie this evening
164
+ *We're thinking about going to a movie this theater
165
+ I've been grading these stupid exams all day
166
+ *I've been grading these stupid days all exam
167
+ We're having a big party Tuesday
168
+ *We're having a big party our house
169
+ *There is going to be an important meeting January
170
+ There is going to be an important meeting in January
171
+ There is going to be an important meeting next January
172
+ The party last week was a big success
173
+ John last week threw a great party
174
+ Until recently, these fossils were believed to belong to different species
175
+ *Until initially, these fossils were believed to belong to different species
176
+ *Until for many years, these fossils were believed to belong to different species
177
+ Until last week, these fossils were believed to belong to different species
178
+ *Until last meeting, these fossils were believed to belong to different species
179
+ I'm quite excited about next week
180
+ Monday sounds good for the meeting
181
+ Tomorrow might be a good time for the meeting
182
+ Last Tuesday was really fun
183
+ *Three days ago was really fun
184
+ Almost three years after our first date, I saw Ruth again
185
+ Almost three years after I first met her, I saw Ruth again
186
+ *Almost three years, I saw Ruth again
187
+ Almost three years later, I saw Ruth again
188
+ *Almost three years for our first date, I saw Ruth again
189
+ I saw her again a year and a half later
190
+ *I saw her again a year and a dog later
191
+ He left here a quarter of an hour ago
192
+ *He left here a quarter of a dog ago
193
+ *He left here a picture of an hour ago
194
+ I still remember the day I kissed him
195
+ *I still remember the room I kissed him
196
+ I'm going to Europe the day I graduate
197
+ Clinton is expected to return to Washington Thursday morning
198
+ *Clinton is expected to return to Thursday Washington office
199
+ Clinton is expected to return to Washington on Thursday morning
200
+ Clinton is expected to return to Washington late Thursday morning
201
+ Clinton is expected to return to Washington next Thursday morning
202
+ She walked out of the room the minute I saw her
203
+ *She walked out of the room two minutes I saw her
204
+ I was crazy about him the first time I saw him
205
+ *I was crazy about him the first party I saw him
206
+ In January 1990, a historic new law was passed
207
+ *In Washington 1990, a historic new law was passed
208
+ On January 15, 1990, a historic new law was passed
209
+ *On January 320, 1990, a historic new law was passed
210
+ He was convicted under an obscure 1990 law
211
+ *He was convicted under an obscure 50 law
212
+ I wish I could see him 100 times a day
213
+ *I wish I could see him 3 meals a day
214
+ *I wish I could see him 100 times a dog
215
+ *I wish I could see him 100 times 2 days
216
+ It's good to eat three big meals a day
217
+ Someone is mugged in New York every five minutes
218
+ Her career lasted almost thirty years
219
+ *Her career lasted almost thirty books
220
+ Every morning at 5 a.m., Ken gets up and runs for five miles
221
+ At 4:52 p.m., on Monday, December 26, 1997, nothing happened
222
+
223
+ %QUESTIONS AND RELATIVE CLAUSES
224
+
225
+ Which dog did you chase
226
+ *Which dog you chased
227
+ Which dog did you say you chased
228
+ *Which dog you said you chased
229
+ *Which dog did you say did you chase
230
+ I wonder which dog he said you chased
231
+ *I wonder which dog did he say you chased
232
+ *I wonder which dog did he say did you chase
233
+ What did John say he thought you should do
234
+ *What did John say did he think you should do
235
+ *What John said he thought you should do
236
+ What Alice did really annoyed me
237
+ *Who Alice did really annoyed me
238
+ Whoever designed this program didn't know what they were doing
239
+ *Who designed this program didn't know what they were doing
240
+ Invite John and whoever else you want to invite
241
+ The dog which Chris bought is really ugly
242
+ *The dog what Chris bought is really ugly
243
+ I wonder whether we should go
244
+ *Whether should we go
245
+ We can't decide whether to go to the party
246
+ *We can't decide who to go the party
247
+ *We can't decide whether to go the the party with
248
+ I am wondering who to go to the party with
249
+ I am wondering who to invite to the party
250
+ *I am wondering whether to invite to the party
251
+ *I am wondering the people to invite to the party
252
+ *Whether to go to the party
253
+ *Who to invite to the party
254
+ Do you think we should go to the party
255
+ *What do you think we should go to the party
256
+ How do you operate this machine
257
+ How fast is the program
258
+ How certain are you that John is coming
259
+ *How tired are you that John is coming
260
+ How likely is it that he will come
261
+ *How likely is John that he will come
262
+ How certain does he seem to be that John is coming
263
+ How efficient a program is it
264
+ *Efficient a program is it
265
+ *How fast programs are they
266
+ *How fast the program is it
267
+ How fast a program does he think it is
268
+ *How fast a program he thinks it is
269
+ *How fast programs does he think they are
270
+ *How big a dog chased you
271
+ I wonder how fast a program he thinks it is
272
+ *I wonder how fast a program does he think it is
273
+ How much money did you earn
274
+ *How much money you earn
275
+ I wonder how much money you earned
276
+ *I wonder how much money have you earned
277
+ How much oil spilled
278
+ How much do you swim
279
+ *How much you swim
280
+ I wonder how much you swim
281
+ *I wonder how much do you swim
282
+ *I don't have how much money
283
+ I don't have very much money
284
+ I don't have much money
285
+ How much did you read
286
+ *How much of the book you read
287
+ How much of the book did you read
288
+ I wonder how much of the book you read
289
+ How many people died
290
+ How many people did you see
291
+ *How many people you saw
292
+ I wonder how many people you saw
293
+ I wonder how many of the people you saw were students
294
+ How did John do it
295
+ I wonder how John did it
296
+ How long will it last
297
+ *How big will it last
298
+ How many years did it take to do it
299
+ How big is the department
300
+ *How big the department is
301
+ *I wonder how big is the department
302
+ I wonder how big the department is
303
+ *I wonder how big departments they are
304
+ *I wonder how a department it is
305
+ I wonder how big a department it is
306
+ How important is it to turn the computer off
307
+ I wonder how important it is to turn off the computer
308
+ *I wonder how important is it to turn off the computer
309
+ How quickly did Joe run
310
+ *How quickly Joe ran
311
+ I know how quickly you ran
312
+ *I know how quickly did you run
313
+ *He ran I know how quickly
314
+ *Quickly did Joe run
315
+ *Very quickly did Joe run
316
+ *I know very quickly did Joe run
317
+ *I know quickly did John run
318
+ How much more quickly did you run
319
+ *How much more quickly you run
320
+ *I wonder how much more quickly did he run
321
+ I wonder how much more quickly he ran
322
+ How much more quickly did he run than Joe
323
+ How much more should we work on this
324
+ How much further do you think we should drive tonight
325
+ I don't know how much longer I can tolerate this
326
+ How much bigger is the dog
327
+ *How much bigger dogs are they
328
+ *How much bigger dogs ran
329
+ *How big dogs run
330
+ How much further did you run
331
+ How much more oil spilled
332
+ How much more spilled
333
+ How much more oil did they spill
334
+ How much more did they spill
335
+ *How much more they spilled
336
+ I wonder how much oil spilled
337
+ I wonder how much oil they spilled
338
+ *How much more efficient programs are available
339
+ How many dogs ran
340
+ How many ran
341
+ How many dogs did you see
342
+ How many more people did you see
343
+ How many more people do you think will come
344
+ I wonder how many more people he thinks will come
345
+ *I wonder how many more people does he think will come
346
+ How many times did you do it
347
+ *How many times you did it
348
+ I wonder how many times you did it
349
+ *How many more stupid times did you do it
350
+ How many years ago did you do it
351
+ *Many years ago did you do it
352
+ *How many years did you do it
353
+ I wonder how many years ago you did it
354
+ *How many years ago you did it
355
+ I'll show you the house where I met your mother
356
+ *I'll show you the house which I met your mother
357
+ This is the man whose dog I bought
358
+ *This is the man which dog I bought
359
+ I wonder where John is
360
+ *I wonder where John hit
361
+ The dogs, some of which were very large, ran after the man
362
+ The dogs, some of which I had seen before, ran after the man
363
+ *The dogs some of which were very large ran after the man
364
+ The box contained many books, some of which were badly damaged
365
+ *Some of which were badly damaged
366
+ *The box contained many books, some were badly damaged
367
+ *The box contained many books, some of the books were badly damaged
368
+ The dogs, some of them very large, ran after the man
369
+ *The dogs, some of the dogs very large, ran after the man
370
+ *Some of them very large ran after the man
371
+ The man was chased by dogs, some of them very large
372
+ I believe it was John who stole the priceless documents
373
+ *I believe Fred was John who stole the priceless documents
374
+ It seems to have been Einstein who first came up with the idea
375
+ *There seems to have been Einstein who first came up with the idea
376
+ *It hopes to have been Einstein who first came up with the idea
377
+ *The book discussed Einstein who first came up with the idea
378
+ *Stravinsky was in Paris that Debussy first heard Balinese music
379
+ It was in Paris that Debussy first heard Balinese music
380
+ It must have been there that he realized his destiny
381
+ *It tried to have been there that he realized his destiny
382
+ *He composed some good music that he realized his destiny
383
+ *It was quickly that he wrote his first symphony
384
+ Wasn't it in 1955 that Sally first met Joe
385
+ Whatever the outcome, I'm sure he'll still be popular
386
+ *Whatever an outcome, I'm sure he'll still be popular
387
+ Whatever the outcome is, I'm sure he'll still be popular
388
+ *What the outcome is, I'm sure he'll still be popular
389
+
390
+ %CONJUNCTIONS
391
+
392
+ The man we saw when we went to Paris is here
393
+ *The man we saw but we went to Paris is here
394
+ You should see a play while in London
395
+ *You should see a play after in London
396
+ I left the party after seeing Ann there
397
+ *I left the party because seeing Ann there
398
+ *I left the party despite I saw Ann there
399
+ Because I didn't see Ann, I left
400
+ *Therefore I didn't see Ann, I left
401
+ I left, therefore I didn't see Ann
402
+ But I really wanted to see her
403
+ *After I really wanted to see her
404
+ As I suspected, he had already left
405
+ *Because I suspected, he had already left
406
+ *I suspected, he had already left
407
+ *I suspected
408
+ Some grammars are better than others, as we have proved
409
+ As had been expected, the party was a big success
410
+ *As had been green, the party was a big success
411
+ *As had wanted to be expected, the party was a big success
412
+ *As had expected the party to be a success, it was a success
413
+ In the event that the case goes to trial, I'm sure Clinton will be acquitted
414
+ *In the scandal that the case goes to trial, I'm sure Clinton will be acquitted
415
+ He should be acquitted, on the grounds that there's no evidence
416
+ The public seem to love him, no matter what he does
417
+ *The public seem to love him, no matter the stupid things he does
418
+
419
+ %VERBS
420
+
421
+ Abrams does like programming
422
+ *Abrams does be a good programmer
423
+ He is being hired by another company
424
+ He is looking for another job
425
+ Fred has had five years of experience as a programmer
426
+ *Fred has had been a programmer for five years
427
+ I gave my mother the present I bought for her
428
+ I gave her the present I bought for her
429
+ *I gave my mother it
430
+ We picked out some beautiful flowers for her
431
+ We picked some beautiful flowers out for her
432
+ We picked them out for her
433
+ *We picked out them for her
434
+ Did you put the milk in the refrigerator
435
+ *Did you put the milk
436
+ Where did you put the milk
437
+ I hope he comes to the party tomorrow
438
+ I hope that he comes to the party tomorrow
439
+ *I hope him to come to the party tomorrow
440
+ I expect him to come to the party tomorrow
441
+ I expect to go to the party tomorrow
442
+ *I expect
443
+ *I expected who would come to the party
444
+ I knew who would come to the party
445
+ *I expected he go to the party
446
+ I suggested he go to the party
447
+ *He knew me how to use the program
448
+ He asked me how to use the program
449
+ *He disputed our program was superior
450
+ He disputed that our program was superior
451
+ Anne told me I would almost certainly be hired
452
+ *Anne expected me I would almost certainly be hired
453
+ *We argued adding new features to the program
454
+ We discussed adding new features to the program
455
+ *I thought terrible after our discussion
456
+ I felt terrible after our discussion
457
+ I made him make some changes in the program
458
+ *I encouraged him make some changes in the program
459
+ I helped him make some changes in the program
460
+ I helped make some changes in the program
461
+ *I saw make some changes in the program
462
+ *I made him telling her about the party
463
+ I saw him telling her about the party
464
+ Phil gave me a sweater which he bought in Paris
465
+ *Phil chose me a sweater which he bought in Paris
466
+ Alan bet me five dollars Clinton would lose the election
467
+ *Alan offered me five dollars Clinton would lose the election
468
+ She said she didn't approve of my behavior
469
+ *She said she didn't like of my behavior
470
+ The results are in, the game is up and the truth is out
471
+ *The in results show the out truth about the up game
472
+ *The results became in and the truth seemed out
473
+ He sold for five dollars the ring his mother had given him
474
+ Clinton announced on Tuesday a bold new proposal
475
+ *Clinton announced on Tuesday it
476
+ I gave my brother an expensive present
477
+ I gave him an expensive present
478
+ I gave an expensive present
479
+ I gave it
480
+ *I gave my brother it
481
+ I gave him for his birthday a very expensive present
482
+ *I gave him for his birthday it
483
+ I gave for his birthday an expensive present
484
+ *I gave for his birthday it
485
+ The President announced on Monday that several more bases would be closed
486
+ He had attempted for years to make a career as a concert pianist
487
+ *He had attempted for years
488
+ I asked him when I saw him at the party yesterday what he was working on
489
+ *I talked to him when I saw him at the party yesterday what he was working on
490
+ I wondered for a long time why everyone liked her so much
491
+ *I thought for a long time why everyone liked her so much
492
+ I told Margaret that I thought she would probably be hired
493
+ *I told on Tuesday Margaret that I thought she would probably be hired
494
+ I told Margaret on Tuesday that I thought she would probably be hired
495
+ We discussed at the meeting hiring a new secretary
496
+ *We discussed at the meeting
497
+ We informed the new employees that no salary increase would be possible
498
+ We informed at the meeting the new employees
499
+ *We informed at the meeting the new employees that no salary increase would be possible
500
+ They were asked that he be allowed to go
501
+ If his calculations were correct, Copernicus reasoned, the earth must revolve around the sun
502
+ The earth, Copernicus reasoned, must revolve around the sun
503
+ The earth must revolve around the sun, Copernicus reasoned
504
+ *The earth must revolve around the sun, Copernicus was happy
505
+ *The earth must revolve around the sun, Copernicus destroyed
506
+ *The earth, the pope cringed when Copernicus reasoned, revolves around the sun
507
+ Abortion was legal until the third month, the court ruled
508
+ If the pregnancy was within the first three months, the court ruled, abortion was legal
509
+ Nobody, it seems, wants to be a liberal
510
+ *Nobody, John seems, wants to be a liberal
511
+ Business is booming, Joe Smith, a car dealer, says
512
+ Business is booming, says Joe Smith, a car dealer
513
+ You can do anything you want, I told her
514
+ In the last few years, it seems, nobody wants to be a liberal
515
+ Also invited to the meeting were several prominent scientists
516
+ *Also invited to the meeting invited several prominent scientists
517
+ Also awarded the prize was Jean Smith, a prominent computer scientist
518
+ Chosen to lead the commission was Fred Schultz, a former Federal judge
519
+ *Chosen to lead the commission seemed likely to be Fred Schultz, a former Federal judge
520
+ *Chooses to lead the investigation Fred Schultz
521
+ *Choose to lead the investigation did Fred Schultz
522
+ Also recommended in the report was a new initiative to combat crime
523
+ *Also chosen the leader for the commission was Fred Schultz
524
+ Included in our paper is a summary of the features of our program
525
+ Also performing in the concert were members of the Budapest Quartet
526
+ *Were performing in the concert members of the Budapest Quartet
527
+ Voting in favor of the bill were 36 Republicans and 4 moderate Democrats
528
+ Glaring coldly at Sarah, he walked out of the room
529
+ He walked out of the room, glaring coldly at Sarah
530
+ *Glaring coldly at Sarah, walking out of the room
531
+ Finding that it was impossible to get work as a waiter, he worked as a janitor
532
+ He had hoped to get work as a waiter, but, finding this was impossible, he worked as a janitor
533
+ *He said that, finding that it was impossible to get work as a waiter, he would work as a janitor
534
+ Used by some of the finest pianists in the country, Baldwin pianos are technical marvels
535
+ Using specially designed parts, Baldwin pianos are technical marvels
536
+ *Used specially designed parts, Baldwin pianos are technical marvels
537
+ Sending a message of discontent to Washington, voters overwhelmingly rejected the Clinton administration
538
+ She's a really good player
539
+ John's coming to the party tonight
540
+ He's usually gone to Boston for Thanksgiving
541
+ *Do you know where John's
542
+ Who's afraid of the big bad wolf
543
+ That's just the kind of person he is
544
+ *That's just the kind of person he's
545
+ There's no reason to get so upset about it
546
+ I didn't think he would do it, but he did
547
+ *I didn't think he would invite her, but he invited
548
+ If you don't want to do it, you should find someone who will
549
+ If you don't want to do it, you should find someone who does
550
+ Find someone who does
551
+ *Find someone who wants to do
552
+ I don't like programming, and someone who does may be difficult to find
553
+ The price of the stock more than doubled in two days
554
+ *The price of the stock more than increased in two days
555
+ I finally figured out why this program is so slow
556
+ *I finally flipped out why this program is so slow
557
+ It turns out that Clinton didn't actually kiss Monica
558
+ If you go around doing that, you're going to end up making people mad
559
+ The lawyer pointed out that Clinton didn't actually kiss Monica
560
+ A party is taking place, so if you'd like to show up, you should do so
561
+
562
+ %PREPOSITIONS
563
+
564
+ I have doubts about inviting him
565
+ *I have doubts during inviting him
566
+ I prevented her from doing it by praising her for not doing it
567
+ From your description, I don't think I would enjoy it
568
+ We had an argument over whether it was a good movie
569
+ *We had an argument at whether it was a good movie
570
+ Because of the rain, we decided to stay home
571
+ They're having a party in front of the building
572
+ The man with whom I play tennis is here
573
+ The man I play tennis with is here
574
+ *The man whom I play tennis is here
575
+ *The man with whom I play tennis with is here
576
+ With whom did you play tennis
577
+ Who did you play tennis with
578
+ The data on file will be used for the project at hand, which is already under way
579
+ *The data on project will be used for the file at program
580
+ The project was finished on schedule, as usual
581
+ *The project as usual and the report on schedule were finished
582
+ I told him by telephone that I was coming by car
583
+ From in back of the shed, I heard a scream that seemed to come from on top of the garage
584
+ The university spends $5 per student
585
+ *The university spends $5 per the student
586
+ They're building a gigantic mall five miles from here
587
+ *They're building a gigantic mall five mistakes from here
588
+ The 7-11 is half a mile up the road, but the supermarket is a long way away
589
+ I'm sure things will get done with Janet running the company
590
+ *I'm sure things will get done by Janet running the company
591
+ *I'm sure things will get done because Janet running the company
592
+ With Janet in charge, I'm sure things will get done
593
+
594
+ %ADJECTIVES
595
+
596
+ You are lucky that there is no exam today
597
+ *You are stupid that there is no exam today
598
+ You are lucky I am here
599
+ *You are right I am here
600
+ This is something we should be happy about
601
+ *This is something we should be happy
602
+ *The happy about it man kissed his wife
603
+ Is he sure how to find the house
604
+ *Is he correct how to find the house
605
+ You should be proud of your achievement
606
+ *You should be happy of your achievement
607
+ He is the smartest man I know
608
+ *They are some smartest men I know
609
+ I've seen a lot of programs, but ours is the fastest
610
+ Ours is the fastest of the programs we have seen
611
+ I've seen a lot of programs, but ours runs the most quickly
612
+ *This is our the fastest program
613
+ Voters angry about the economy will probably vote for Clinton
614
+ *Voters angry will probably vote for Clinton
615
+ Many Democrats unhappy about the economy but doubtful that Clinton can be elected probably won't vote at all
616
+ *Many Democrats unhappy but doubtful probably won't vote at all
617
+ *Many Democrats likely that Bush will be reelected probably won't vote
618
+ Hundreds of young men, furious about the verdict in the Rodney King case, looted stores in Los Angeles today
619
+ *Hundreds of young men, furious, looted stores in Los Angeles today
620
+ We need a programmer knowledgeable about Lisp
621
+ *We need a programmer knowledgeable
622
+ Any program as good as ours should be useful
623
+ *Any program good should be useful
624
+ Let us know if you have a program capable of parsing this sentence
625
+ *Let us know if you have a program capable
626
+ It is believed that even the troops loyal to Hussein will soon be forced to surrender
627
+ *It is believed that even the troops loyal will soon be forced to surrender
628
+ Republican policies only benefit the rich and powerful
629
+ Republican policies only benefit the rich and the powerful
630
+ *Republican policies only benefit a rich and a powerful
631
+ *Republican policies only benefit some rich and some powerful
632
+ The meek will inherit the earth, and the best is the enemy of the good
633
+ They're building a skyscraper over 1000 feet tall
634
+ *They're building a skyscraper tall
635
+ The river is half a mile wide here and 300 feet deep
636
+ *The river is half a mile beautiful and 300 feet dangerous
637
+ Mr. John Smith, 66 years old, will succeed him as president
638
+ *Mr. John Smith, old, will succeed him as president
639
+ A big black ugly dog chased me
640
+ A big, black, ugly dog chased me
641
+ The former astronaut was alone and afraid
642
+ *The alone astronaut was former
643
+
644
+ %ADVERBS
645
+
646
+ He is apparently an expert on dogs
647
+ *He knows apparently an expert on dogs
648
+ Mary quickly walked out of the room
649
+ Mary just walked out of the room
650
+ Quickly, Mary walked out of the room
651
+ Mary walked out of the room quickly
652
+ *Mary walked out of the room just
653
+ He told them about the accident immediately
654
+ *He told them about the accident presumably
655
+ He told them about the accident, presumably
656
+ She is very careful about her work
657
+ She works very carefully
658
+ *She very works carefully
659
+ Is the piece easy enough for you
660
+ Is the piece too easy for you
661
+ *Is the piece enough easy for you
662
+ She is apparently an excellent pianist
663
+ *She married apparently an excellent pianist
664
+ Only after the movie did he realize his mistake
665
+ *After the movie did he realize his mistake
666
+ I may have taken cocaine a few times, but at no time did I inhale
667
+ *A few times may I have taken cocaine, but I inhaled at no time
668
+ Never have I seen such a grotesque display of incompetence
669
+ *Often have I seen such a grotesque display of incompetence
670
+ We like to eat at restaurants, particularly on weekends
671
+ We like to eat at restaurants, usually on weekends
672
+ *We like to eat at restaurants, fortunately on weekends
673
+ Such flowers are found mainly in Europe
674
+ *Such flowers are found apparently in Europe
675
+ *Such flowers are found mainly particularly in Europe
676
+ *Such flowers are found mainly
677
+ Many people, particularly doctors, believe there is no health care crisis
678
+ *Many people, strongly doctors, believe there is no health care crisis
679
+ I found a house that even John thinks we should buy
680
+ He told me that even his mother likes me
681
+ *He told me that even, his mother likes me
682
+ We put the pie straight in the oven
683
+ *We put the pie quickly in the oven
684
+ We put the pie straight in
685
+ *We put the pie straight
686
+ He lives high in the mountains
687
+ He lives over by the lake
688
+ *He lives over by
689
+ The apparently angry man walked out of the room
690
+ The often underpaid administrators resent the invariably rude students and the understandably impatient professors
691
+ The delicately lyrical tone of the cello contrasted with the fiercely percussive piano chords
692
+ The always delicately lyrical tone was really beautiful
693
+ *The delicately always lyrical tone was really beautiful
694
+ *The delicately very lyrical tone was really beautiful
695
+ Biochemically, I think the experiment has a lot of problems
696
+ I think the experiment has a lot of problems biochemically
697
+ It is biochemically an interesting experiment
698
+ I'm not sure the results are biochemically valid
699
+
700
+ %IT-THERE-THIS
701
+
702
+ There is a dog in the park
703
+ *There is chasing dogs
704
+ *There are a dog in the park
705
+ Does there seem to be a dog in the park?
706
+ *Does there want to be a dog in the park?
707
+ There seems to appear to have been likely to be a problem
708
+ *There seems to appear to have been likely to be problems
709
+ *There seems to appear to have been likely to be stupid
710
+ There was an attempt to kill Rod
711
+ The man there was an attempt to kill died
712
+ There was a problem, but we solved it
713
+ It is likely that Rod died
714
+ *Joe is likely that Rod died
715
+ It is clear who killed Rod
716
+ *Joe is clear who killed Rod
717
+ It may not be possible to fix the problem
718
+ Grace may not be possible to fix the problem
719
+ It is important that women be ready when they make these choices
720
+ *It is clear that women be ready when they make these choices
721
+ *Joe is important that women be ready when they make these choices
722
+ flowers are red to attract bees
723
+ I made it clear that I was angry
724
+ *I made Anne clear that I was angry
725
+ Dick is easy to hit
726
+ *Dick is big to hit
727
+ It is important to fix the problem
728
+ Dick is important to fix the problem
729
+ The man it is likely that John hit died
730
+ *The man Joe is likely that Dick hit died
731
+ Does it seem likely that Ann will come
732
+ Does Ann act glad that Joe came
733
+ *Does it act likely that Joe came
734
+ It doesn't matter what Ted does
735
+ *Joe doesn't matter what Ted does
736
+ I want it to be possible to use the program
737
+ I want Joe to be possible to use the program
738
+ I want it to be clear that it was my idea
739
+ *I asked it to be clear that it was my idea
740
+ I want it to be obvious how to use the program
741
+ *I want Emily to be obvious how to use the program
742
+ I want Joe to be easy to hit
743
+ It is likely they will come
744
+ *Joe is likely they will come
745
+ This is because he is extremely famous
746
+ The trial is because he is extremely famous
747
+ The excitement over the trial is because he is extremely famous
748
+ This seems to have been because he is extremely famous
749
+
750
+ %COMPARATIVES
751
+
752
+ Our program works more elegantly than yours
753
+ Ours works more elegantly than yours does
754
+ Ours works more elegantly than yours works
755
+ *Ours works more elegant than yours
756
+ *Ours is more elegant than yours works
757
+ Our program works more elegantly than efficiently
758
+ Our program is more elegant than efficient
759
+ Our program works better than yours
760
+ We do this more for pleasure than for money
761
+ He is more likely to go than to stay
762
+ *He is more likely than to stay
763
+ *He is more black to go than to stay
764
+ He is more likely to go than he is to stay
765
+ He is more likely to go than John is
766
+ It is more likely that Joe died than that Fred died
767
+ It is more likely that Joe died than it is that Fred died
768
+ *John is more likely that Joe died than it is that Fred died
769
+ *It is more likely that Joe died than John is that Fred died
770
+ It is easier to ignore the problem than to solve it
771
+ It is easier to ignore the problem than it is to solve it
772
+ *Greg is easier to ignore the problem than to solve it
773
+ Our program is easier to use than to understand
774
+ *Our program is easier to use it than to understand
775
+ I am more happy now than I was in college
776
+ *I am more happy now than I earned in college
777
+ He is more a teacher than a scholar
778
+ I make more money in a month than John makes in a year
779
+ I make more money in a month than John dies in a year
780
+ I hit more the dog than the cat
781
+ I have more money than John has time
782
+ I have more dogs than John has five cats
783
+ I have more money than John has a dog
784
+ She interviewed more programmers than were hired
785
+ *She interviewed more programmers than was hired
786
+ I am as intelligent as John
787
+ I earn as much money as John does
788
+ I am as intelligent as John does
789
+ I earn as much money in a month as John earns in a year
790
+ *I earn as much money in a month than John earns in a year
791
+ Our program was better than had been expected
792
+ *Our program was better than had been argued
793
+ *Our program was better than had been responded
794
+ Our program was better than was expected
795
+ *Our program was better than were expected
796
+ More people came to the party than were expected
797
+ More people came to the party than was expected
798
+ Our program did not run as quickly as expected
799
+ *Our program did not run as quickly as said
800
+ How much faster is our program than theirs
801
+ *How much faster our program is than theirs
802
+ The more quickly we write the program, the more money we will earn
803
+ *The more people like the program
804
+ *The people like the program, the more money we will earn
805
+ The better the program is, the more people will like it
806
+ The better the program, the more people will like it
807
+ *The better a program, the more people will like it
808
+ The less likely it is that we can parse this, the easier it is to understand
809
+
810
+ % "SO THAT", "SUCH...THAT"
811
+
812
+ The shuttle is so big that it has to be carried on the back of a jet
813
+ *The shuttle is big that it has to be carried on the back of a jet
814
+ So many people attended that they spilled over into several neighboring fields
815
+ *Many people attended that they spilled over into several neighboring fields
816
+ The program has so many problems that you should probably just rewrite it
817
+ *The program has many problems that you should probably just rewrite it
818
+ I love her so much that I can't let her go
819
+ *I love her very much that I can't let her go
820
+ He ran home so quickly that his mother could hardly believe he had called from school
821
+ *He ran home quickly that his mother could hardly believe he had called from school
822
+ She presented her case with such eloquence that we could only admire her
823
+ *She presented her case with eloquence that we could only admire her
824
+
825
+ %"AND", ETC.
826
+
827
+ I went to the store and got a gallon of milk
828
+ *I got and went a gallon of milk
829
+ I got a gallon of milk and some eggs
830
+ I went to the store, got a gallon of milk, and returned the eggs
831
+
832
+ % Sentence belwo was marked bad, but this seems arguable to me .. !?
833
+ % *I went to the store, got a gallon of milk, and some eggs
834
+ Mary, Joe and Louise are coming to the party
835
+ Neither Mary nor Louise are coming to the party
836
+ I am ready and eager to go to the party
837
+ She handled it skillfully and with compassion
838
+ I told him that I hated him and that I never wanted to see him again
839
+ He told me why he was here and what he was doing
840
+ *He told me why he was here and that he hated me
841
+ Although he likes me and he respects me, he says he needs some privacy
842
+ Your house and garden are very attractive
843
+ I am in New York and I would like to see you
844
+ This is not the man we know and love
845
+ *This is not the man we know and love him
846
+ The coverage on TV and on the radio has been terrible
847
+ *The coverage on TV and I have seen has been terrible
848
+ The sky is blue, so it is likely that Joe will come
849
+ *It is blue and likely that Joe will come
850
+ That is the man for whom and with whom Joe works
851
+ *That is the man for whom and with Janet Joe works
852
+ *When did Joe and John did leave the party
853
+
854
+ % Huh ??? what's the correct parse/meaning of this sentence?
855
+ % "my dog's freind came" is one of the parses !!?? wtf ..
856
+ % My dog, cat, and cousin's friend came
857
+ *My dog, cat, horse, mouse, and his cow left
858
+ My dog, cat, horse, and mouse, and his cow left
859
+ you should not only ask for your money back, but demand it
860
+ I was both angry and sad at the same time
861
+
862
+ %PLURALIZATION IN CONJUNCTIONS
863
+
864
+ There is neither a dog nor a cat here
865
+ *There are neither a dog nor a cat here
866
+ There is a dog or a cat here
867
+ *There are a dog or a cat here
868
+ *There are a dog and a cat here
869
+ There is a dog and a cat here
870
+ He and I are friends
871
+ neither I nor my friend knows what happened
872
+ neither I nor my friend know what happened
873
+ Either I or my friend knows what happened
874
+ Either I or my friend know what happened
875
+ The dog and cats know what happened
876
+ *The dog and cats knows what happened
877
+ Are a dog and a cat here
878
+ *Is a dog and a cat here
879
+ *Is John and I invited
880
+ Are John and I invited
881
+ Is John or I invited
882
+ Are John or I invited
883
+ Is neither John nor I invited
884
+ Are neither John nor I invited
885
+
886
+ %GERUNDS
887
+
888
+ Playing the piano bothers John
889
+ Releasing the program at this point would annoy our competitors
890
+ The playing of the piano really bothers John
891
+ *The playing the piano really bothers John
892
+ Telling Joe about the party would create a real problem
893
+ *The telling Joe about the party could create a real problem
894
+ Your telling Joe about the party could create a real problem
895
+ Telling Joe that Sue was coming to the party would create a real problem
896
+ Telling would create a real problem
897
+ I want her to know about it, but the telling won't be easy
898
+ *The telling her won't be easy
899
+ *Some children like to tease
900
+ Teasing can be very cruel
901
+ Your telling John to leave may have destroyed your relationship
902
+ The graduating of Fred changes the situation
903
+ The sleeping of students is becoming a big problem
904
+ The sleeping of students can ruin a lecture
905
+ Buying of shares was brisk on Wall Street today
906
+ The sleeping in class is becoming a big problem
907
+ *The telling John to leave was stupid
908
+ *The inviting your mother was stupid
909
+ *The showing how to use the program seemed to interest people
910
+ *The attempting to go to the party angered Joe
911
+ The showing of the program seemed to impress people
912
+ The sleeping of students described by Fred is a big problem
913
+ The sleeping of students I told you about is a big problem
914
+ The frequent sleeping of students is a big problem
915
+ His hitting of the dog didn't help matters
916
+ Some hitting of dogs will solve the problem
917
+ the drug running here has become a massive problem
918
+ He made a mistake in inviting John
919
+ He made a mistake in the inviting of John
920
+ I should have talked to you before inviting John
921
+ I should have talked to you before the inviting of John
922
+
923
+ %SPECIAL SUBJECTS: INFINITIVES, CLAUSES, AND INDIRECT QUESTIONS
924
+
925
+ To pretend that our program is usable in its current form would be silly
926
+ *To pretend that our program is usable in its current form would be happy
927
+ That our program will be immediately accepted is hardly likely
928
+ *That our program will be immediately accepted wrote the program
929
+ *Is that our program will be accepted likely
930
+ *That our program will be accepted seems likely that our program will be accepted
931
+ Whether we should go to the party is the important question
932
+ *Whether we should go to the party annoys me
933
+
934
+ %LONGER CONSTRUCTIONS, PUNCTUATION, AND CAPITALIZATION
935
+
936
+ Using the conventional Minuet form, Beethoven produced a piece of great originality
937
+ Written in 1820, the symphony shows a new level of maturity for the composer
938
+ Abandoned by his friends, he left Vienna three years later
939
+ In Vienna, Beethoven met someone who would later be greatly influenced by him: Franz Schubert
940
+ *In Vienna, Beethoven met someone who would later be greatly influenced by him; Franz Schubert
941
+ Today I did something very important: I bought a dog
942
+ *The store where I did something very important: I bought a dog was closed today
943
+ It has been said that Schubert ran out of the room when he met Beethoven; but we now know this is untrue
944
+ An important question remains: did Beethoven know about Schubert's music
945
+ She just wanted one thing: to be a professional skater
946
+ She knew one thing: that she would be a professional skater
947
+ I agree that, in some ways, your program is better
948
+ I agree that in some ways, your program is better
949
+ *I agree that, in some ways your program is better
950
+ That is the man who, in Joe's opinion, we should hire
951
+ *That is the man, in Joe's opinion, we should hire
952
+ *That is the man who, in Joe's opinion we should hire
953
+ I know you hate Bill, but why did you send him that nasty note
954
+ *I know you hate Bill, because why did you send him that nasty note
955
+ But why did you send him that nasty note
956
+ If John was with Lisa last night, who went to the movie with Diane
957
+ *Although John was with Lisa last night, who went to the movie with Diane
958
+ We need a President who understands us
959
+ We need a president who understands us
960
+ *We need a Melvin who understand us
961
+ The Zongle of Bongle Dongle resigned today
962
+ % A Zongle with a bad haircut resigned today -- is valid.
963
+ % A Zongle with a Mercedes Benz resigned today -- is valid.
964
+ % *A Zongle with a Bongle Dongle resigned today
965
+ The National Association of Linguists is meeting here
966
+ *An Association that many Linguists belong to is meeting here
967
+ An association that many linguists belong to is meeting here
968
+ If you were a middle-class American without a job, who would you vote for
969
+ Many Croats who had fled their homes are now returning to them
970
+ *Many Croat who had fled their homes are now returning to them
971
+ Chinese is a wonderful language, Chinese food is nice, and the Chinese are nice people
972
+ *Armenian is a wonderful language, Armenian food is great, and the Armenian are nice people
973
+ Armenian is a wonderful language, Armenian food is great, and the Armenians are nice people
974
+ Danish is a wonderful language, Danish food is great, and the Danish are nice people
975
+ The Danes are nice people
976
+ Dr Jane Smith lives on Main St
977
+ Dr. Jane Smith lives on Main St.
978
+ *Dr. Jane. Smith. lives on Main. St.
979
+ Dr. J.G.D. Smith lives on Main St.
980
+ *A Dr. lives on this St
981
+ Mr. Smith (a lawyer for Kodak) refused to comment
982
+ Mr. Smith -- a lawyer for Kodak -- refused to comment
983
+ We left (carrying the dog) and Fred followed
984
+ I have $50, but I want a $50000 car
985
+ 10% of the employees here do 90% of the work
986
+ Zangbert stock fell 30% to $2.50 yesterday, but jumped 10% today in heavy trading
987
+ *Zangbert stock fell %, but jumped to $ today
988
+ With a 5% raise, I can get a $50000 car
989
+ "What are you doing?" she asked.
990
+ "This is what I'm going to do," he replied.
991
+ "This is what I'm going to do!" he replied.
992
+ *"This is what I'm going to do." he replied.
993
+ *"This is what I'm doing to do" he replied.
994
+ "On second thought," he said, "this is what I'm going to do".
995
+ "Quotation marks" are simply "ignored" by our "program"
996
+ Sometimes, people do this: They follow the colon with a capital letter.
997
+ *However, they never do this; They don't follow a semi-colon with a capital letter.
998
+ John said: "This is another use of colons one sometimes sees".
999
+ Formerly, he had worked for Brody, McGill & Demson
1000
+ *He was unhappy & underpaid
1001
+ The rally, at 6:00 last night, was attended by 1.1 million people
1002
+