graffiti 2.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,936 @@
1
+ \documentclass[conference,letterpaper]{IEEEtran}
2
+ \usepackage{graphicx}
3
+ %\usepackage{multirow}
4
+ %\usepackage{ragged2e}
5
+ \usepackage{algpseudocode}
6
+ \usepackage[cmex10]{amsmath}
7
+ \usepackage{amsfonts}
8
+ \usepackage{amssymb}
9
+ \usepackage{fancyvrb}
10
+ \usepackage{pstricks,pst-node}
11
+ \usepackage[pdftitle={On-demand RDF to Relational Query Translation in
12
+ Samizdat RDF Store},
13
+ pdfauthor={Dmitry Borodaenko},
14
+ pdfkeywords={Semantic Web, RDF, relational databases, query
15
+ language, Samizdat},
16
+ pdfborder={0 0 0}]{hyperref}
17
+ %\urlstyle{rm}
18
+ \emergencystretch=8pt
19
+ \interdisplaylinepenalty=2500
20
+ %
21
+ \begin{document}
22
+ %
23
+ \title{On-demand RDF to Relational Query Translation in Samizdat RDF
24
+ Store}
25
+ %
26
+ \author{\IEEEauthorblockN{Dmitry Borodaenko}
27
+ \IEEEauthorblockA{Belarusian State University of Informatics and
28
+ Radioelectronics\\
29
+ 6 Brovki st., Minsk, Belarus\\
30
+ Email: angdraug@debian.org}}
31
+
32
+ \maketitle % typeset the title of the contribution
33
+
34
+ \begin{abstract}
35
+
36
+ This paper presents an algorithm for on-demand translation of RDF
37
+ queries that allows to map any relational data structure to RDF model,
38
+ and to perform queries over a combination of mapped relational data and
39
+ arbitrary RDF triples with a performance comparable to that of
40
+ relational systems. Query capabilities implemented by the algorithm
41
+ include optional and negative graph patterns, nested sub-patterns, and
42
+ limited RDFS and OWL inference backed by database triggers.
43
+
44
+ \end{abstract}
45
+
46
+
47
+ \section{Introduction}
48
+ \label{introduction}
49
+
50
+ % motivation for the proposed solution
51
+
52
+ A wide range of solutions that map relational data to RDF data model has
53
+ accumulated to date~\cite{triplify}. There are several factors that make
54
+ integration of RDF and relational data important for the adoption of the
55
+ Semantic Web. One reason, shared with RDF stores based on a triples
56
+ table, is the wide availability of mature relational database
57
+ implementations which had seen decades of improvements in reliability,
58
+ scalability, and performance. Second is the fact that most of structured
59
+ data available online is backed by relational databases. This data is
60
+ not likely to be replaced by pure RDF stores in the near future, so it
61
+ has to be mapped in one way or another to become available to RDF
62
+ agents. Finally, properly normalized and indexed application-specific
63
+ relational database schema allows a DBMS to optimize complex queries in
64
+ ways that are not possible for a tree of joins over a single triples
65
+ table~\cite{sp2b}.
66
+
67
+ % what is unique about the proposed solution
68
+
69
+ In the Samizdat open publishing engine, most of the data fits into the
70
+ relational model, with the exception of reified RDF statements which are
71
+ used in collaborative decision making process~\cite{samizdat-collreif}
72
+ and require a more generic triple store. The need for a generic RDF
73
+ store with performance on par with a relational database is the primary
74
+ motivation behind the design of Samizdat RDF storage module, which is
75
+ different from both triples table based RDF stores and relational to RDF
76
+ mapping systems. Unlike the former, Samizdat can run optimized SQL
77
+ queries over application-specific tables, but unlike the latter, it is
78
+ not limited by the relational database schema and can fall back, within
79
+ the same query, to a triples table for RDF predicates that are not
80
+ mapped to the relational model.
81
+
82
+ % structure of the paper
83
+
84
+ The following sections of this paper describe: targeted relational data,
85
+ database triggers required for RDFS and OWL inference, query translation
86
+ algorithm, update request execution algorithm, details of algorithm
87
+ implementation in Samizdat, analysis of its performance, comparison with
88
+ related work, and outline for future work.
89
+
90
+
91
+ \section{Relational Data}
92
+ \label{relational-data}
93
+
94
+ % formal definition of data targeted for storage
95
+
96
+ Samizdat RDF storage module does not impose additional restrictions on
97
+ the underlying relational database schema beyond the requirements of the
98
+ SQL standard. Any legacy database may be adapted for RDF access while
99
+ retaining backwards compatibility with existing SQL queries.
100
+
101
+ The adaptation process involves adding attributes, foreign keys, tables,
102
+ and triggers to the database to enable RDF query translation and support
103
+ optional features of Samizdat RDF store, such as statement reification
104
+ and inference for {\em rdfs:sub\-Class\-Of}, {\em
105
+ rdfs:sub\-Property\-Of}, and {\em owl:Transitive\-Property\/} rules.
106
+
107
+ Following database schema changes are required for all cases:
108
+
109
+ \begin{itemize}
110
+
111
+ \item create {\em rdfs:Resource\/} superclass table with autogenerated
112
+ primary key;
113
+
114
+ \item replace primary keys of mapped subclass tables with foreign keys
115
+ referencing the {\em rdfs:Resource\/} table (existing foreign keys may
116
+ need to be updated to reflect this change);
117
+
118
+ \item register {\em rdfs:subClassOf\/} inference database triggers to
119
+ update the Resource table and maintain foreign keys integrity on all
120
+ changes in mapped subclass tables.
121
+
122
+ \end{itemize}
123
+
124
+ Following changes may be necessary to support optional RDF mapping
125
+ features:
126
+
127
+ \begin{itemize}
128
+
129
+ \item register database triggers for other cases of {\em
130
+ rdfs:sub\-Class\-Of\/} entailment;
131
+
132
+ \item create triples table (required to represent non-relational RDF
133
+ data and RDF statement reification);
134
+
135
+ \item add subproperty qualifier attributes referencing property URIref
136
+ entry in the {\em rdfs:Resource\/} table for each attribute mapped to a
137
+ superproperty;
138
+
139
+ \item create transitive closure tables, register {\em
140
+ owl:TransitivePro\-perty\/} inference triggers.
141
+
142
+ \end{itemize}
143
+
144
+
145
+ \section{Inference and Database Triggers}
146
+ \label{inference-triggers}
147
+
148
+ Samizdat RDF storage module implements entailment rules for following
149
+ RDFS predicates and OWL classes: {\em rdfs:sub\-Class\-Of}, {\em
150
+ rdfs:sub\-Property\-Of}, {\em owl:Transitive\-Property}. Database
151
+ triggers are used to minimize impact of RDFS and OWL inference on query
152
+ performance:
153
+
154
+ {\em rdfs:subClassOf\/} inference triggers are invoked on every insert
155
+ into and delete from a subclass table. When a tuple without a primary
156
+ key is inserted,\footnote{Insertion into subclass table with explicit
157
+ primary key is used in two-step resource insertion during execution of
158
+ RDF update command (described in section~\ref{update-execution}).} a
159
+ template tuple is inserted into superclass table and the produced
160
+ primary key is added to the new subclass tuple. Delete operation is
161
+ cascaded to all subclass and superclass tables.
162
+
163
+ {\em rdfs:subPropertyOf\/} inference is performed during query
164
+ translation, with help of a stored procedure that returns the attribute
165
+ value when subproperty qualifier attribute is set, and NULL otherwise.
166
+
167
+ {\em owl:TransitiveProperty\/} inference uses a separate transitive
168
+ closure table for each relational attribute mapped to a transitive
169
+ property. Transitive closure tables are maintained by triggers invoked
170
+ on each insert, update, and delete operation involving such an
171
+ attribute.
172
+
173
+ The transitive closure update algorithm is presented in
174
+ \figurename~\ref{transitive-closure}. The input to the algorithm is:
175
+
176
+ \begin{itemize}
177
+
178
+ \item directed labeled graph $G = \langle N, A \rangle$ where $N$ is a
179
+ set of nodes representing RDF resources and $A$ is a set of arcs $a =
180
+ \langle s, p, o \rangle$ representing RDF triples;
181
+
182
+ \item transitive property $\tau$;
183
+
184
+ \item subgraph $G_\tau \subseteq G$ such that:
185
+
186
+ \begin{equation}
187
+ a_\tau = \langle s, p, o \rangle \in G_\tau \iff
188
+ a_\tau \in G \, \wedge \, p = \tau \, ;
189
+ \end{equation}
190
+
191
+ \item graph $G_\tau^+$ containing transitive closure of $G_\tau$;
192
+
193
+ \item update operation $\omega \in \{insert, update, delete\}$ and its
194
+ parameters $a_{old} = \langle s_\omega, \tau, o_{old} \rangle$, $a_{new}
195
+ = \langle s_\omega, \tau, o_{new} \rangle$ such that:
196
+
197
+ \begin{equation}
198
+ G_\tau' = (G_\tau \setminus \{ a_{old} \}) \cup \{ a_{new} \} \, .
199
+ \end{equation}
200
+
201
+ \end{itemize}
202
+
203
+ The algorithm transforms $G_\tau^+$ into a transitive closure of
204
+ $G_\tau'$. The algorithm assumes that $G_\tau$ is and should remain
205
+ acyclic.
206
+
207
+ \begin{figure}
208
+ \begin{algorithmic}[1]
209
+
210
+ \If {$o_{new} = s_\omega$ or $\langle o_{new}, \tau, s_\omega \rangle \in G_\tau^+$}
211
+ \State stop
212
+ \Comment refuse to create a cycle in $G_\tau$
213
+ \EndIf
214
+
215
+ \State $G_\tau \gets G_\tau'$
216
+ \Comment apply $\omega$
217
+
218
+ \If {$\omega \in \{update, delete\}$}
219
+ \State $G_\tau^+ \gets G_\tau^+ \setminus
220
+ \{ \langle s, \tau, o \rangle \mid
221
+ (s = s_\omega \, \vee \,
222
+ \langle s, \tau, s_\omega \rangle \in G_\tau^+) \, \wedge \,
223
+ \langle s_\omega, \tau, o \rangle \in G_\tau^+ \}$
224
+ \Comment remove obsolete arcs from $G_\tau^+$
225
+ \EndIf
226
+
227
+ \If {$\omega \in \{insert, update\}$}
228
+ \Comment add new arcs to $G_\tau^+$
229
+
230
+ \State $G_\tau^+ \gets G_\tau^+ \cup
231
+ \{ \langle s_\omega, \tau, o \rangle \mid
232
+ o = o_{new} \, \vee \,
233
+ \langle o_{new}, \tau, o \rangle \in G_\tau^+ \}$
234
+
235
+ \State $G_\tau^+ \gets G_\tau^+ \cup
236
+ \{ \langle s, \tau, o \rangle \mid
237
+ \langle s, \tau, s_\omega \rangle \in G_\tau^+ \, \wedge \,
238
+ \langle s_\omega, \tau, o \rangle \in G_\tau^+ \}$
239
+ \EndIf
240
+
241
+ \end{algorithmic}
242
+ \caption{Update transitive closure}
243
+ \label{transitive-closure}
244
+ \end{figure}
245
+
246
+
247
+ \section{Query Pattern Translation}
248
+ \label{query-translation}
249
+
250
+ Class structure of the Samizdat RDF storage module is as follows.
251
+ External API is provided by the {\tt RDF} class. RDF storage
252
+ configuration as described in section~\ref{relational-data} is
253
+ encapsulated in {\tt RDFConfig} class. The concrete syntax of
254
+ Squish~\cite{samizdat-rel-rdf,squish} and SQL is abstracted into {\tt
255
+ SquishQuery} and its subclasses. The query pattern translation algorithm
256
+ is implemented by the {\tt SqlMapper} class.
257
+
258
+ % prerequisites
259
+
260
+ The input to the algorithm is as follows:
261
+
262
+ \begin{itemize}
263
+
264
+ \item mappings $M = \langle M_{rel}, M_{attr}, M_{sub}, M_{trans}
265
+ \rangle$ where $M_{rel}: P \to R$, $M_{attr}: P \to \Phi$, $M_{sub}: P
266
+ \to S$, $M_{trans} \to T$; $P$ is a set of mapped RDF properties, $R$ is
267
+ a set of relations, $\Phi$ is a set of relation attributes, $S \subset
268
+ P$ is a subset of RDF properties that have configured subproperties, $T
269
+ \subset R$ is a set of transitive closures (as described in
270
+ sections~\ref{relational-data} and \ref{inference-triggers});
271
+
272
+ \item graph pattern $\Psi = \langle \Psi_{nodes}, \Psi_{arcs} \rangle =
273
+ \Pi \cup N \cup \Omega$, where $\Pi$, $N$, and $\Omega$ are main ("must
274
+ bind"), negative ("must not bind"), and optional ("may bind") graph
275
+ patterns respectively, such that $\Pi$, $N$, and $\Omega$ share no arcs,
276
+ and $\Pi$, $\Pi \cup N$ and $\Pi \cup \Omega$ are joint
277
+ graphs.\footnote{Arcs with the same subject, object, and predicate but
278
+ different bind mode are treated as distinct.}
279
+
280
+ \item global filter condition $F_g \in F$ and local filter conditions
281
+ $F_c: \Psi_{arcs} \to F$ where $F$ is a set of all literal conditions
282
+ expressible in the query language syntax.
283
+
284
+ \end{itemize}
285
+
286
+ For example, consider the following Squish query and its graph pattern
287
+ $\Psi$ presented in \figurename~\ref{graph-pattern}.
288
+
289
+ \begin{Verbatim}[fontsize=\scriptsize]
290
+ SELECT ?msg
291
+ WHERE (rdf::predicate ?stmt dc::relation)
292
+ (rdf::subject ?stmt ?msg)
293
+ (rdf::object ?stmt ?tag)
294
+ (dc::date ?stmt ?date)
295
+ (s::rating ?stmt ?rating
296
+ FILTER ?rating >= :threshold)
297
+ EXCEPT (dct::isPartOf ?msg ?parent)
298
+ OPTIONAL (dc::language ?msg ?original_lang)
299
+ (s::isTranslationOf ?msg ?translation)
300
+ (dc::language ?translation ?translation_lang)
301
+ LITERAL ?original_lang = :lang
302
+ OR ?translation_lang = :lang
303
+ GROUP BY ?msg
304
+ ORDER BY max(?date) DESC
305
+ \end{Verbatim}
306
+
307
+ \begin{figure}
308
+
309
+ \centering
310
+ \psset{unit=3.8mm,labelsep=0.2pt}
311
+ \begin{pspicture}[showgrid=false](0,0)(23,12)
312
+ \footnotesize
313
+
314
+ \rput(2.5,5.5){\ovalnode{msg}{\sl ?msg}}
315
+ \rput(10,8){\ovalnode{stmt}{\sl ?stmt}}
316
+ \rput(2.5,8){\ovalnode{rel}{\it dc:relation}}
317
+ \rput(5,10.5){\ovalnode{tag}{\sl ?tag}}
318
+ \rput(14,10.5){\ovalnode{date}{\sl ?date}}
319
+ \rput(17,8){\ovalnode{rating}{\sl ?rating}}
320
+ \rput(14,5.5){\ovalnode{parent}{\sl ?parent}}
321
+ \rput(8,1){\ovalnode{origlang}{\sl ?original\_lang}}
322
+ \rput(11.2,3.3){\ovalnode{trans}{\sl ?translation}}
323
+ \rput(19.2,1){\ovalnode{translang}{\sl ?translation\_lang}}
324
+
325
+ \ncline{<-}{msg}{stmt} \aput{:U}(0.4){\it rdf:subject}
326
+ \ncline{<-}{rel}{stmt} \aput{:U}{\it rdf:predicate}
327
+ \ncline{<-}{tag}{stmt} \aput{:U}{\it rdf:object}
328
+ \ncline{->}{stmt}{date} \aput{:U}{\it dc:date}
329
+ \ncline{->}{stmt}{rating} \aput{:U}{\it s:rating}
330
+ \ncline{->}{msg}{parent} \aput{:U}(0.6){\it dct:isPartOf}
331
+ \ncline{->}{msg}{origlang} \aput{:U}(0.6){\it dc:language}
332
+ \ncline{<-}{msg}{trans} \aput{:U}(0.65){\it s:isTranslationOf}
333
+ \ncline{->}{trans}{translang} \aput{:U}(0.6){\it dc:language}
334
+
335
+ \psccurve[curvature=0.75 0.1 0,linestyle=dashed,showpoints=false]%
336
+ (0.3,5)(0.3,10)(3,11.3)(20,9.5)(20,7)(8.5,7)(2.5,4.5)
337
+ \rput(18.8,10){$\Pi$}
338
+ \rput(16.5,5.5){$N$}
339
+ \rput(12.5,1.5){$\Omega$}
340
+
341
+ \end{pspicture}
342
+
343
+ \caption{Graph pattern $\Psi$ for the example query}
344
+ \label{graph-pattern}
345
+ \end{figure}
346
+
347
+ The output of the algorithm is a join expression $F$ and condition $W$
348
+ ready for composition into {\tt FROM} and {\tt WHERE} clauses of an SQL
349
+ {\tt SELECT} statement.
350
+
351
+ In the algorithm description below, $\mathrm{id}(r)$ is used to denote
352
+ primary key of relation $r \in R$, and $\rho(n)$ is used to denote value
353
+ of $\mathrm{id}(Resource)$ for non-variable node $n \in \Psi_{nodes}$
354
+ where such value is known during query translation.\footnote{E.g.
355
+ Samizdat uses {\em site-ns/resource-id} notation for internal resource
356
+ URIrefs.}
357
+
358
+ % the algorithm
359
+
360
+ Key steps of the query pattern translation algorithm correspond to the
361
+ following private methods of {\tt SqlMapper}:
362
+
363
+ {\tt label\_pattern\_components}: Label every connected component of
364
+ $\Pi$, $N$, and $\Omega$ with different colors $K$ such that $K_\Pi:
365
+ \Pi_{nodes} \to \mathbb{K}, K_N: N_{nodes} \to \mathbb{K}, K_\Omega:
366
+ \Omega_{nodes} \to \mathbb{K}, K(n) = K_\Pi(n) \cup K_N(n) \cup
367
+ K_\Omega(n)$. The Two-pass Connected Component Labeling
368
+ algorithm~\cite{shapiro} is used with a special case to exclude nodes
369
+ present in $\Pi$ from neighbour lists while labeling $N$ and $\Omega$.
370
+ The special case ensures that parts of $N$ and $\Omega$ which are only
371
+ connected through a node in $\Pi$ are labeled with different colors.
372
+
373
+ {\tt map\_predicates}: Map each arc $c = \langle s, p, o \rangle \in
374
+ \Psi_{arcs}$ to the relational data model according to $M$: define
375
+ mapping $M_{attr}^{pos}: \Psi_{arcs} \times \Psi_{nodes} \to \Phi$ such
376
+ that $M_{attr}^{pos}(c, s) = \mathrm{id}( M_{rel}(p) ),
377
+ M_{attr}^{pos}(c, o) = M_{attr}(p)$; replace each unmapped arc with its
378
+ reification and map the resulting arcs in the same manner;\footnote{$M$
379
+ is expected to map reification properties to the triples table.} for
380
+ each arc labeled with a subproperty predicate, add an arc mapped to the
381
+ subproperty qualifier attribute. For each node $n \in \Psi_{nodes}$,
382
+ find adjacent arcs $\Psi_{nodes}^n = \{\langle s, p, o \rangle \mid n
383
+ \in \{s, o\}\}$ and determine its binding mode $\beta_{node}:
384
+ \Psi_{nodes} \to \{ \Pi, N, \Omega \}$ such that $\beta_{node}(n) =
385
+ max(\beta_{arc}(c) \, \forall c \in \Psi_{nodes}^n)$ where
386
+ $\beta_{arc}(c)$ reflects which of the graph patterns $\{ \Pi, N, \Omega
387
+ \}$ contains arc $c$, and the order of precedence used by $max$ is $\Pi
388
+ > N > \Omega$.
389
+
390
+ {\tt define\_relation\_aliases}: Map each node in $\Psi$ to one or more
391
+ relation aliases $a \in \mathbb{A}$ according to the algorithm described
392
+ in \figurename~\ref{define-relation-aliases}. The algorithm produces
393
+ mapping $C_a: \Psi_{arcs} \to \mathbb{A}$ which links every arc in
394
+ $\Psi$ to an alias, and mappings $A = \langle A_{rel}, A_{node},
395
+ A_\beta, A_{filter} \rangle$ where $A_{rel}: \mathbb{A} \to R$,
396
+ $A_{node}: \mathbb{A} \to \Psi_{nodes}$, $A_\beta: \mathbb{A} \to \{
397
+ \Pi, N, \Omega \}$, $A_{filter}: \mathbb{A} \to F)$ which record
398
+ relation, node, bind mode, and a filter condition for each alias.
399
+
400
+ \begin{figure}
401
+ \begin{algorithmic}[1]
402
+
403
+ \ForAll {$n \in \Psi_{nodes}$}
404
+ \ForAll {$c = \langle s, p, o \rangle \in \Psi_{arcs} \mid s = n \, \wedge \, C_a(c) = \emptyset$}
405
+ \If {$\exists c' = \langle s', p', o' \rangle \mid
406
+ n \in \{s', o'\} \, \wedge \,
407
+ C_a(c') \not= \emptyset \, \wedge \,
408
+ M_{rel}(p') = M_{rel}(p)$}
409
+
410
+ \State $C_a(c) \gets C_a(c')$
411
+ \Comment Reuse the alias assigned to an arc adjacent to $n$ and
412
+ mapped to the same relation
413
+
414
+ \Else
415
+ \Comment Create new alias
416
+ \State $a = max(\mathbb{A}) + 1$;
417
+ $\mathbb{A} \gets \mathbb{A} \cup \{ a\}$;
418
+ $C_a(c) \gets a$
419
+ \State $A_{node}(a) \gets n$, $A_{filter}(a) \gets \emptyset$
420
+
421
+ \If {$M_{trans}(p) = \emptyset$}
422
+ \Comment Use base relation
423
+ \State $A_{rel}(a) \gets M_{rel}(p)$
424
+ \State $A_\beta(a) \gets \beta_{node}(n)$
425
+
426
+ \Else
427
+ \Comment Use transitive closure
428
+ \State $A_{rel}(a) \gets M_{trans}(p)$
429
+ \State $A_\beta(a) \gets \beta_{arc}(c)$
430
+ \State \Comment Use arc's bind mode instead of node's
431
+ \EndIf
432
+ \EndIf
433
+ \EndFor
434
+ \EndFor
435
+
436
+ \ForAll {$c \in \Psi_{arcs}$}
437
+ \State $A_{filter}( C_a(c) ) \gets A_{filter}( C_a(c) ) \cup F_c(c)$
438
+ \State \Comment Add arc filter to the linked alias filters
439
+ \EndFor
440
+
441
+ \end{algorithmic}
442
+ \caption{Define relation aliases}
443
+ \label{define-relation-aliases}
444
+ \end{figure}
445
+
446
+ {\tt transform}: Define bindings $B: \Psi_{nodes} \to \mathbb{B}$ where
447
+ $\mathbb{B} = \{\{ \langle a, f \rangle \mid a \in \mathbb{A}, f \in
448
+ \Phi \}\}$ of graph pattern nodes to sets of pairs of relation aliases
449
+ and attributes, such that
450
+
451
+ \begin{equation}
452
+ \begin{split}
453
+ \langle a, f \rangle \in B(n) \iff
454
+ &\exists c \in \Psi_{arcs}^n \\
455
+ &C_a(c) = a, M_{attr}^{pos}(c, n) = f \, .
456
+ \end{split}
457
+ \end{equation}
458
+
459
+ Transform graph pattern $\Psi$ into relational query graph $Q = \langle
460
+ \mathbb{A}, J \rangle$ where nodes $\mathbb{A}$ are relation aliases
461
+ defined earlier and edges $J = \{ \langle b_1, b_2, n \rangle \mid b_1 =
462
+ \langle a_1, f_1 \rangle \in B(n), b_2 = \langle a_2, f_2 \rangle \in
463
+ B(n), a_1 \not= a_2 \}$ are join conditions. Ground non-variable nodes
464
+ according to the algorithm defined in
465
+ \figurename~\ref{ground-non-variable-nodes}. Record list of grounded nodes $G
466
+ \subseteq \Psi_{nodes}$ such that
467
+
468
+ \begin{equation}
469
+ \begin{split}
470
+ n \in G \iff &n \in F_g
471
+ \,\vee\, \exists \langle b_1, b_2, n \rangle \in J \\
472
+ &\vee\, \exists b \in B(n) \, \exists a \in \mathbb{A} \:
473
+ b \in A_{filter}(a) \, .
474
+ \end{split}
475
+ \end{equation}
476
+
477
+ \begin{figure}
478
+ \begin{algorithmic}[1]
479
+
480
+ \State $\exists b = \langle a, f \rangle \in B(n)$
481
+ \Comment Take any binding of $n$
482
+ \If {$n$ is an internal resource and $\rho(n) = i$}
483
+ \State $A_{filter}(a) \gets A_{filter}(a) \cup (b = i)$
484
+ \ElsIf {$n$ is a query parameter or a literal}
485
+ \State $A_{filter}(a) \gets A_{filter}(a) \cup (b = n)$
486
+ \ElsIf {$n$ is a URIref}
487
+ \Comment Add a join to a URIref tuple in Resource relation
488
+ \State $\mathbb{A} \gets \mathbb{A} \cup \{ a_r \}$;
489
+ $A_{node}(a_r) = n$;
490
+ $A_{rel}(a_r) = Resource$;
491
+ $A_\beta(a_r) = \beta_{node}(n)$
492
+ \State $B(n) \gets B(n) \cup \langle a_r, \mathrm{id}(Resource) \rangle;
493
+ J \gets J \cup
494
+ \{ \langle b, \langle a_r, \mathrm{id}(Resource) \rangle, n \rangle \}$
495
+ \State $A_{filter}(a_r) = A_{filter}(a_r) \cup (
496
+ \langle a_r, literal \rangle = f \wedge
497
+ \langle a_r, uriref \rangle = t \wedge
498
+ \langle a_r, label \rangle = n )$
499
+ \EndIf
500
+
501
+ \end{algorithmic}
502
+ \caption{Ground non-variable nodes}
503
+ \label{ground-non-variable-nodes}
504
+ \end{figure}
505
+
506
+ Transformation of the example query presented above will result in a
507
+ relational query graph in \figurename~\ref{join-graph}.
508
+
509
+ \begin{figure}
510
+
511
+ \centering
512
+ \psset{unit=3.8mm,labelsep=0.2pt}
513
+ \begin{pspicture}[showgrid=false](0,0)(23,13)
514
+ \footnotesize
515
+
516
+ \rput(1,6){\circlenode{b}{\vphantom{Ij}b}}
517
+ \rput(6.7,6){\circlenode{a}{\vphantom{Ij}a}}
518
+ \rput(12.8,6){\circlenode{c}{\vphantom{Ij}c}}
519
+ \rput(2,11){\circlenode{d}{\vphantom{Ij}d}}
520
+ \rput(1,1){\circlenode{g}{\vphantom{Ij}g}}
521
+ \rput(22,11){\circlenode{f}{\vphantom{Ij}f}}
522
+ \rput(20,1){\circlenode{e}{\vphantom{Ij}e}}
523
+
524
+ \ncline{-}{b}{a} \aput{:U}(0.4){a.id = b.id} \bput{:U}(0.35){?stmt}
525
+ \ncline{-}{a}{c} \aput{:U}{a.subject = c.id} \bput{:U}{?msg}
526
+ \ncline{-}{d}{a} \aput{:U}{a.subject = d.id} \bput{:U}(0.4){?msg}
527
+ \ncline{-}{g}{a} \aput{:U}(0.43){a.predicate = g.id} \bput{:U}{\it dc:relation}
528
+ \ncline{-}{c}{f} \aput{:U}{c.part\_of\_subproperty = f.id} \bput{:U}{\it s:isTranslationOf}
529
+ \ncline{-}{c}{e} \aput{:U}{c.part\_of = e.id} \bput{:U}{?translation}
530
+
531
+ \pspolygon[linestyle=dashed,linearc=0.8](0.1,0.1)(0.1,11.9)(14.5,11.9)(14.5,0.1)
532
+ \rput(13.8,1){$P_1$}
533
+
534
+ \end{pspicture}
535
+
536
+ \caption{Relational query graph $Q$ for the example query}
537
+ \label{join-graph}
538
+ \end{figure}
539
+
540
+ {\tt generate\_tables\_and\_conditions}: Produce ordered connected
541
+ minimum edge-disjoint tree cover $P$ for relational query graph $Q$ such
542
+ that $\forall P_i \in P$ \, $\forall j = \langle b_{j1}, b_{j2}, n_j
543
+ \rangle \in P_i$ \, $\forall k = \langle b_{k1}, b_{k2}, n_k \rangle \in
544
+ P_i$:
545
+
546
+ \begin{gather}
547
+ K(n_j) \cap K(n_k) \not= \emptyset \, , \\
548
+ \beta_{node}(n_j) = \beta_{node}(n_k) = \beta_{tree}(P_i) \, ,
549
+ \end{gather}
550
+
551
+ starting with $P_1$ such that $\beta_{tree}(P_1) = \Pi$ (it follows from
552
+ definitions of $\Psi$ and {\tt transform} that $P_1$ is the only such
553
+ tree and covers all join conditions $\langle b_1, b_2, n \rangle \in J$
554
+ such that $\beta_{node}(n) = \Pi$). Encode $P_1$ as the root inner join.
555
+ Encode other trees with at least one edge as subqueries. Left join
556
+ subqueries and aliases representing roots of zero-length trees into join
557
+ expression $F$. For each $P_i$ such that $\beta_{tree}(P_i) = N$, find a
558
+ binding $b = \langle a, f \rangle \in P_i$ such that $a \in P_1 \cap
559
+ P_i$ and add ($b$ {\tt IS NULL}) condition to $W$. For each non-grounded
560
+ node $n \not\in G$ such that $\langle a, f \rangle \in B(n) \, \wedge \,
561
+ a \in P_1$, add ($b$ {\tt IS NOT NULL}) condition to $W$ if
562
+ $\beta_{node}(n) = \Pi$, or ($b$ {\tt IS NULL}) condition if
563
+ $\beta_{node}(n) = N$. Add $F_g$ to $W$.
564
+
565
+ Translation of the example query presented earlier will result in the
566
+ following SQL:
567
+
568
+ \begin{Verbatim}[fontsize=\scriptsize]
569
+ SELECT DISTINCT a.subject, max(b.published_date)
570
+ FROM Statement AS a
571
+ INNER JOIN Resource AS b ON (a.id = b.id)
572
+ INNER JOIN Resource AS c ON (a.subject = c.id)
573
+ INNER JOIN Message AS d ON (a.subject = d.id)
574
+ INNER JOIN Resource AS g ON (a.predicate = g.id)
575
+ AND (g.literal = 'false' AND g.uriref = 'true'
576
+ AND g.label = 'http://purl.org/dc/elements/1.1/relation')
577
+ LEFT JOIN (
578
+ SELECT e.language AS _field_b, c.id AS _field_a
579
+ FROM Message AS e
580
+ INNER JOIN Resource AS f ON (f.literal = 'false'
581
+ AND f.uriref = 'true' AND f.label =
582
+ 'http://www.nongnu.org/samizdat/rdf/schema#isTranslationOf')
583
+ INNER JOIN Resource AS c ON (c.part_of_subproperty = f.id)
584
+ AND (c.part_of = e.id)
585
+ ) AS _subquery_a ON (c.id = _subquery_a._field_a)
586
+ WHERE (b.published_date IS NOT NULL)
587
+ AND (a.object IS NOT NULL) AND (a.rating IS NOT NULL)
588
+ AND (c.part_of IS NULL) AND (a.rating >= ?)
589
+ AND (d.language = ? OR _subquery_a._field_b = ?)
590
+ GROUP BY a.subject ORDER BY max(b.published_date) DESC
591
+ \end{Verbatim}
592
+
593
+
594
+ \section{Update Command Execution}
595
+ \label{update-execution}
596
+
597
+ Update command uses the same graph pattern structure as a query, and
598
+ additionally defines a set $\Delta \subset \Psi_{nodes}$ of variables
599
+ representing new RDF resources and a mapping $U: \Psi_{nodes} \to
600
+ \mathbb{L}$ of variables to literal values. Execution of an update
601
+ command starts with query pattern translation using the algorithm
602
+ described in section~\ref{query-translation}. The variables $\Psi$, $A$,
603
+ $Q$, etc. produced by pattern translation are used in the subsequent
604
+ stages as described below:
605
+
606
+ \begin{enumerate}
607
+
608
+ % node values
609
+
610
+ \item Construct node values mapping $V: \Psi_{nodes} \to \mathbb{L}$
611
+ using the algorithm defined in \figurename~\ref{node-values}. Record
612
+ resources inserted into the database during this stage in $\Delta_{new}
613
+ \subset \Psi_{nodes}$ (it follows from the algorithm definition that
614
+ $\Delta \subseteq \Delta_{new}$).
615
+
616
+ \begin{figure}
617
+ \begin{algorithmic}[1]
618
+
619
+ \ForAll {$n \in \Psi_{nodes}$}
620
+ \If {$n$ is an internal resource and $\rho(n) = i$}
621
+ \State $V(n) \gets i$
622
+ \ElsIf {$n$ is a query parameter or a literal}
623
+ \State $V(n) \gets n$
624
+ \ElsIf {$n$ is a variable}
625
+ \If {$\nexists c = \langle n, p, o \rangle \in \Psi_{arcs}$}
626
+ \State \Comment If found only in object position
627
+ \State $V(n) \gets U(n)$
628
+ \Else
629
+ \If {$n \not\in \Delta$}
630
+ \State $V(n) \gets \mathrm{SquishSelect}(n, \Psi^{n*})$
631
+ \EndIf
632
+ \If {$V(n) = \emptyset$}
633
+ \State Insert $n$ into $Resource$ relation
634
+ \State $V(n) \gets \rho(n)$
635
+ \State $\Delta_{new} \gets \Delta_{new} \cup n$
636
+ \EndIf
637
+ \EndIf
638
+ \ElsIf {$n$ is a URIref}
639
+ \State Select $n$ from $Resource$ relation, insert if missing
640
+ \State $V(n) \gets \rho(n)$
641
+ \EndIf
642
+ \EndFor
643
+
644
+ \end{algorithmic}
645
+ \caption{Determine node values. $\Psi^{n*}$ is a subgraph of $\Psi$
646
+ reachable from $n$. $\mathrm{SquishSelect}(n, \Psi)$ finds a mapping of
647
+ variable $n$ that satisfies pattern $\Psi$.}
648
+ \label{node-values}
649
+ \end{figure}
650
+
651
+ % data assignment
652
+
653
+ \item For each alias $a \in \mathbb{A}$, find a subset of graph pattern
654
+ $\Psi_{arcs}^a \subseteq \Psi_{arcs}$ such that $c \in \Psi_{arcs}^a
655
+ \iff C_a(c) = a$, select a key node $k$ such that $\exists c = \langle
656
+ k, p, o \rangle \in \Psi_{arcs}^a$, and collect a map $D_a: \Phi \to
657
+ \mathbb{L}$ of fields to values such that $\forall c = \langle s, p, o
658
+ \rangle \in \Psi_{arcs}^a \; \exists D_a(o) = V(o)$. If $k \in
659
+ \Delta_{new}$ and $A_{rel}(a) \not= Resource$, transform $D_a$ into an
660
+ SQL {\tt INSERT} into $A_{rel}(a)$ with explicit primary key assignment
661
+ $\mathrm{id}_k(A_{rel}(a)) \gets V(k)$. Otherwise, transform $D_a$
662
+ into an {\tt UPDATE} statement on the tuple in $A_{rel}(a)$ for which
663
+ $\mathrm{id}_k(A_{rel}(a)) = V(k)$.
664
+
665
+ % iterative assertions
666
+
667
+ \item Execute the SQL statements produced in the previous stage inside
668
+ the same transaction in the order that resolves their mutual references.
669
+
670
+ \end{enumerate}
671
+
672
+
673
+ \section{Implementation}
674
+
675
+ The algorithms described in previous sections are implemented by the
676
+ Samizdat RDF storage module, which is used as the primary means of data
677
+ access in the Samizdat open publishing system. The module is written in
678
+ Ruby programming language, supported by several triggers written in
679
+ procedural SQL. The module and the whole Samizdat engine are available
680
+ under GNU General Public License.
681
+
682
+ Samizdat exposes all RDF resources underpinning the structure and
683
+ content of the site. HTTP request with a URL of any internal resource
684
+ yields a page with detailed information about the resource and its
685
+ relation with other resources. Furthermore, Samizdat provides a
686
+ graphical interface that allows to compose arbitrary Squish
687
+ queries.\footnote{Complexity of user queries is limited to a
688
+ configurable maximum number of triples in the graph pattern to prevent
689
+ abuse.} Queries may be published so that other users may modify and
690
+ reuse them, results of a query may be accessed either as plain HTML or
691
+ as an RSS feed.
692
+
693
+
694
+ \section{Evaluation of Results}
695
+ \label{evaluation}
696
+
697
+ %\enlargethispage{-1ex}
698
+
699
+ Samizdat performance was measured using Berlin SPARQL Benchmark
700
+ (BSBM)~\cite{bsbm}, with following variations: a functional equivalent
701
+ of BSBM test driver was implemented in Ruby and Squish (instead of Java
702
+ and SPARQL); the test platform included Intel Core 2 Duo (instead of
703
+ Quad) clocked at the same frequency, and 2GB of memory (instead of 8GB).
704
+ In this environment, Samizdat was able to process 25287 complete query
705
+ mixes per second (QMpH) on a dataset with 1M triples, and achieved 18735
706
+ QMpH with 25M triples, in both cases exceeding figures for all RDF
707
+ stores reported in~\cite{bsbm}.
708
+
709
+ In production, Samizdat was able to serve without congestion peak loads
710
+ of up to 5K hits per hour for a site with a dataset sized at 100K
711
+ triples in a shared VPS environment. Regeneration of the site frontpage
712
+ on the same dataset executes 997 Squish queries and completes in 7.7s,
713
+ which is comparable to RDBMS-backed content management systems.
714
+
715
+
716
+ \section{Comparison with Related Work}
717
+ \label{related-work}
718
+
719
+ As mentioned in section~\ref{introduction}, there exists a wide range of
720
+ solutions for relational to RDF mapping. Besides Samizdat, the approach
721
+ based on automatic on-demand translation of RDF queries into SQL is also
722
+ implemented by Federate~\cite{federate}, D2RQ~\cite{d2rq}, and
723
+ Virtuoso~\cite{virtuoso}.
724
+
725
+ While being one of the first solutions to provide on-demand relational
726
+ to RDF mapping, Samizdat remains one of the most advanced in terms of
727
+ query capabilities. Its single largest drawback is lack of compatibility
728
+ with SPARQL; in the same time, in some regards it exceeds capabilities
729
+ of other solutions.
730
+
731
+ The alternative that is closest to Samizdat in terms of query
732
+ capabilities is Virtuoso RDF Views: it is the only other
733
+ relational-to-RDF mapping solution that provides partial RDFS and OWL
734
+ inference, aggregation, and an update language. Still, there are
735
+ substantial differences between these two projects. First of all,
736
+ Samizdat RDF store is a small module (1000 lines of Ruby and 200 lines
737
+ of SQL) that can be used with a variety of RDBMSes, while Virtuoso RDF
738
+ Views is tied to its own RDBMS. Virtuoso doesn't support implicit
739
+ statement reification, although its design is compatible with this
740
+ feature. Finally, Virtuso relies on SQL unions for queries with
741
+ unspecified predicates and RDFS and OWL inference. While allowing for
742
+ greater flexibility than the database triggers described in
743
+ section~\ref{inference-triggers}, iterative union operation has a
744
+ considerable impact on query performance.
745
+
746
+
747
+ \section{Future Work}
748
+ \label{future-work}
749
+
750
+ Since the SPARQL Recommendation has been published by W3C~\cite{sparql},
751
+ SPARQL support has been at the top of the Samizdat RDF store to-do list.
752
+ SPARQL syntax is considerably more expressive than Squish and will
753
+ require some effort to implement in Samizdat, but, since design of the
754
+ implementation separates syntactic layer from the query translation
755
+ logic, the same algorithms as described in this paper can be used to
756
+ translate SPARQL patterns to SQL with minimal changes. Most substantial
757
+ changes are expected to be required for the explicit grouping of
758
+ optional graph patterns and the associated filter scope
759
+ issues~\cite{cyganiak}.
760
+
761
+ Samizdat RDF store should be made more adaptable to a wider variety of
762
+ problem domains. Query translation algorithm should be augmented to
763
+ translate an ambiguously mapped query (including queries with
764
+ unspecified predicates) to a union of alternative interpretations.
765
+ Mapping of relational schema should be generalized, including support
766
+ for multi-part keys and more generic stored procedures for reification
767
+ and inference. Standard RDB2RDF mapping should be implemented when W3C
768
+ publishes a specification to that end.
769
+
770
+
771
+ \section{Conclusions}
772
+
773
+ The on-demand RDF to relational query translation algorithm described
774
+ in this paper utilizes existing relational databases to their full
775
+ potential, including indexing, transactions, and procedural SQL, to
776
+ provide efficient access to RDF data. Implementation of this algorithm
777
+ in Samizdat RDF storage module has been tried in production environment
778
+ and demonstrated how Semantic Web technologies can be introduced into an
779
+ application serving thousands of users without imposing additional
780
+ requirements on hardware resources.
781
+
782
+ \vspace{1ex}
783
+
784
+
785
+ % ---- Bibliography ----
786
+ %
787
+ \begin{thebibliography}{19}
788
+
789
+ %\bibitem {expressive-power-of-sparql}
790
+ %Anglez, R., Gutierrez, C.:
791
+ %The Expressive Power of SPARQL. In: A. Sheth et al. (Eds.) ISWC 2008.
792
+ %LNCS, vol. 5318, pp. 82-97. Springer, Heidelberg (2008)\\
793
+ %\url{http://www.dcc.uchile.cl/~cgutierr/papers/expPowSPARQL.pdf}
794
+
795
+ \bibitem {triplify}
796
+ Auer, S., Dietzold, S. Lehman, J., Hellmann, S., Aumueller, D.:
797
+ Triplify -- Light-Weight Linked Data Publication from Relational
798
+ Databases. WWW 2009, Madrid, Spain (2009)\\
799
+ \url{http://www.informatik.uni-leipzig.de/~auer/publication/triplify.pdf}
800
+
801
+ %\bibitem {swad-storage}
802
+ %Beckett, Dave:
803
+ %Semantic Web Scalability and Storage: Survey of Free Software / Open
804
+ %Source RDF storage systems. SWAD-Europe Deliverable 10.1 (2001)\\
805
+ %\url{http://www.w3.org/2001/sw/Europe/reports/rdf\_scalable\_storage\_report}
806
+
807
+ %\bibitem {swad-rdbms-mapping}
808
+ %Beckett, D., Grant, J.:
809
+ %Semantic Web Scalability and Storage: Mapping Semantic Web Data with
810
+ %RDBMSes, SWAD-Europe Deliverable 10.2 (2001)\\
811
+ %\url{http://www.w3.org/2001/sw/Europe/reports/scalable\_rdbms\_mapping\_report}
812
+
813
+ %\bibitem {cwm}
814
+ %Berners-Lee, T., Kolovski, V., Connolly, D., Hendler, J. Scharf, Y.:
815
+ %A Reasoner for the Web. Theory and Practice of Logic Programming (TPLP),
816
+ %special issue on Logic Programming and the Web (2000)\\
817
+ %\url{http://www.w3.org/2000/10/swap/doc/paper/}
818
+
819
+ \bibitem {bsbm}
820
+ Bizer, C., Schultz, A.:
821
+ The Berlin SPARQL Benchmark. International Journal On Semantic Web and
822
+ Information Systems (IJSWIS), Volume 5, Issue 2 (2009)\\
823
+ \url{http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/}
824
+
825
+ \bibitem {d2rq}
826
+ Bizer, C., Seaborne, A.:
827
+ D2RQ - Treating non-RDF databases as virtual RDF graphs. In: ISWC 2004
828
+ (posters)\\
829
+ \url{http://www.wiwiss.fu-berlin.de/bizer/D2RQ/spec/}
830
+
831
+ %\bibitem {samizdat-euruko}
832
+ %Borodaenko, Dmitry:
833
+ %RDF storage for Ruby: the case of Samizdat. EuRuKo 2003, Karlsruhe (June
834
+ %2003)\\
835
+ %\url{http://samizdat.nongnu.org/slides/euruko2003\_samizdat.html}
836
+
837
+ %\bibitem {samizdat-impl-report}
838
+ %Borodaenko, Dmitry:
839
+ %Samizdat RDF Implementation Report. RDF Interest ML (September 2003)\\
840
+ %\url{http://lists.w3.org/Archives/Public/www-rdf-interest/2003Sep/0043.html}
841
+
842
+ \bibitem {samizdat-rel-rdf}
843
+ Borodaenko, Dmitry:
844
+ Accessing Relational Data with RDF Queries and Assertions (April 2004)\\
845
+ \url{http://samizdat.nongnu.org/papers/rel-rdf.pdf}
846
+
847
+ \bibitem {samizdat-collreif}
848
+ Borodaenko, Dmitry:
849
+ Model for Collaborative Decision Making Based on RDF Reification (April
850
+ 2004)\\
851
+ \url{http://samizdat.nongnu.org/papers/collreif.pdf}
852
+
853
+ \bibitem {cyganiak}
854
+ Cyganiak, R.:
855
+ A relational algebra for SPARQL. Technical Report HPL-2005-170, HP Labs
856
+ (2005)\\
857
+ \url{http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html}
858
+
859
+ \bibitem {virtuoso}
860
+ Erling, O., Mikhailov I.:
861
+ RDF support in the Virtuoso DBMS. In: Proceedings of the 1st Conference
862
+ on Social Semantic Web, volume P-113 of GI-Edition -- Lecture Notes in
863
+ Informatics (LNI), ISSN 1617-5468. Bonner K\"{o}llen Verlag (2007)\\
864
+ \url{http://virtuoso.openlinksw.com/dav/wiki/Main/VOSArticleRDF}
865
+
866
+ %\bibitem {rdf-mt}
867
+ %Hayes, Patrick:
868
+ %RDF Semantics. W3C Recommendation (February 2004)\\
869
+ %\url{http://www.w3.org/TR/rdf-mt/}
870
+
871
+ %\bibitem {rdf-syntax-1999}
872
+ %Lassila, O., Swick, R.~R.:
873
+ %Resource Description Framework (RDF) Model and Syntax Specification, W3C
874
+ %Recommendation (February 1999)\\
875
+ %\url{http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/}
876
+
877
+ %\bibitem {rdb2rdf-xg-report}
878
+ %Malhotra, Ashok:
879
+ %W3C RDB2RDF Incubator Group Report. W3C Incubator Group Report (January
880
+ %2009)\\
881
+ %\url{http://www.w3.org/2005/Incubator/rdb2rdf/XGR-rdb2rdf/}
882
+
883
+ %\bibitem {melnik}
884
+ %Melnik, S.:
885
+ %Storing RDF in a relational database. Stanford University (2001)\\
886
+ %\url{http://infolab.stanford.edu/~melnik/rdf/db.html}
887
+
888
+ \bibitem {squish}
889
+ Miller, Libby, Seaborne, Andy, Reggiori, Alberto:
890
+ Three Implementations of SquishQL, a Simple RDF Query Language. In:
891
+ Horrocks, I., Hendler, J. (Eds) ISWC 2002. LNCS vol. 2342, pp. 423-435.
892
+ Springer, Heidelberg (2002)\\
893
+ \url{http://ilrt.org/discovery/2001/02/squish/}
894
+
895
+ %\bibitem {nuutila}
896
+ %Nuutila, Esko:
897
+ %Efficient Transitive Closure Computation in Large Digraphs. Acta
898
+ %Polytechnica Scandinavica, Mathematics and Computing in Engineering
899
+ %Series No. 74, Helsinki (1995)\\
900
+ %\url{http://www.cs.hut.fi/~enu/thesis.html}
901
+
902
+ %\bibitem {owl-semantics}
903
+ %Patel-Schneider, Peter F., Hayes, Patrick, Horrocks, Ian:
904
+ %OWL Web Ontology Language Semantics and Abstract Syntax. W3C
905
+ %Recommendation (February 2004)\\
906
+ %\url{http://www.w3.org/TR/owl-semantics/}
907
+
908
+ \bibitem {federate}
909
+ Prud'hommeaux, Eric:
910
+ RDF Access to Relational Databases (2003)\\
911
+ \url{http://www.w3.org/2003/01/21-RDF-RDB-access/}
912
+
913
+ \bibitem {sparql}
914
+ Prud'hommeaux, Eric, Seaborne, Andy:
915
+ SPARQL Query Language for RDF. W3C Recommendation (January 2008)\\
916
+ \url{http://www.w3.org/TR/rdf-sparql-query/}
917
+
918
+ \bibitem {shapiro}
919
+ Shapiro, L., Stockman, G:
920
+ Computer Vision, pp. 69-73. Prentice-Hall (2002)\\
921
+ \url{http://www.cse.msu.edu/~stockman/Book/2002/Chapters/ch3.pdf}
922
+
923
+ \bibitem {sp2b}
924
+ Schmidt, M., Hornung, T., K\"{u}chlin, N., Lausen, G., Pinkel, C.:
925
+ An Experimental Comparison of RDF Data Management Approaches in a SPARQL
926
+ Benchmark Scenario. In: A. Sheth et al. (Eds.) ISWC 2008. LNCS vol.
927
+ 5318, pp. 82-97. Springer, Heidelberg (2008)\\
928
+ \url{http://www.informatik.uni-freiburg.de/~mschmidt/docs/sp2b\_exp.pdf}
929
+
930
+ %\bibitem {treehugger}
931
+ %Steer, D.:
932
+ %TreeHugger -- XSLT for RDF (2003)\\
933
+ %\url{http://rdfweb.org/people/damian/treehugger/}
934
+
935
+ \end{thebibliography}
936
+ \end{document}