gps_pvt 0.5.1 → 0.6.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,121 @@
1
+ /*
2
+ * Copyright (c) 2022, M.Naruoka (fenrir)
3
+ * All rights reserved.
4
+ *
5
+ * Redistribution and use in source and binary forms, with or without modification,
6
+ * are permitted provided that the following conditions are met:
7
+ *
8
+ * - Redistributions of source code must retain the above copyright notice,
9
+ * this list of conditions and the following disclaimer.
10
+ * - Redistributions in binary form must reproduce the above copyright notice,
11
+ * this list of conditions and the following disclaimer in the documentation
12
+ * and/or other materials provided with the distribution.
13
+ * - Neither the name of the naruoka.org nor the names of its contributors
14
+ * may be used to endorse or promote products derived from this software
15
+ * without specific prior written permission.
16
+ *
17
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19
+ * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
21
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
22
+ * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
28
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
+ *
30
+ */
31
+
32
+ #ifndef __INTERPOLATE_H__
33
+ #define __INTERPOLATE_H__
34
+
35
+ #include <cstddef>
36
+ #include <vector>
37
+
38
+ /*
39
+ * perform Neville's interpolation (with derivative)
40
+ *
41
+ * @param x_given list of x assumed to be accessible with [0..n], order is non-sensitive
42
+ * @param y_given list of y assumed to be accessible with [0..n], order is non-sensitive
43
+ * @param x desired x
44
+ * @param y y[0] is output, and y[1..n-1] are used as buffer to store temporary results
45
+ * @param n order
46
+ * @param dy dy[i][0] is (i+1)th derivative outputs like y[0];
47
+ * dy[0..nd][0..n-1] should be accessible
48
+ * @param nd maximum order of required derivative
49
+ * @return (Ty &) [0] = interpolated result
50
+ */
51
+ template <class Tx_Array, class Ty_Array, class Tx, class Ty>
52
+ Ty &interpolate_Neville(
53
+ const Tx_Array &x_given, const Ty_Array &y_given,
54
+ const Tx &x, Ty &y, const std::size_t &n,
55
+ Ty *dy = NULL, const std::size_t &nd = 0) {
56
+ if(n == 0){
57
+ y[0] = y_given[0];
58
+ // for(std::size_t d(nd); d >= 0; --d){dy[d][0] = 0;}
59
+ return y;
60
+ }
61
+ { // first step
62
+ if(nd > 0){ // for 1st order derivative
63
+ for(std::size_t i(0); i < n; ++i){
64
+ dy[0][i] = (y_given[i+1] - y_given[i]);
65
+ dy[0][i] /= (x_given[i+1] - x_given[i]);
66
+ }
67
+ }
68
+ for(std::size_t i(0); i < n; ++i){ // linear interpolation
69
+ Tx a(x_given[i+1] - x), b(x - x_given[i]);
70
+ y[i] = (y_given[i] * a + y_given[i+1] * b);
71
+ y[i] /= (x_given[i+1] - x_given[i]);
72
+ }
73
+ }
74
+ for(std::size_t j(2); j <= n; ++j){
75
+ int d((nd >= j) ? j : nd);
76
+ // d = 1, 2, ... are 1st, 2nd, ... order derivative
77
+ // In order to avoid overwriting of temporary calculation,
78
+ // higher derivative calculation is performed earlier.
79
+ // dy[d(>=j+1)] is skipped because of 0
80
+ if(d >= (int)j){ // for derivative, just use lower level
81
+ Ty &dy0(dy[d-1]), &dy1(d > 1 ? (Ty &)dy[d-2] : (Ty &)y); // cast required for MSVC
82
+ for(std::size_t i(0); i <= (n - j); ++i){
83
+ dy0[i] = (dy1[i+1] - dy1[i]) * d;
84
+ dy0[i] /= (x_given[i + j] - x_given[i]);
85
+ }
86
+ --d;
87
+ }
88
+ for(; d > 0; --d){ // for derivative, use same and lower level
89
+ Ty &dy0(dy[d-1]), &dy1(d > 1 ? (Ty &)dy[d-2] : (Ty &)y); // cast required for MSVC
90
+ for(std::size_t i(0); i <= (n - j); ++i){
91
+ Tx a(x_given[i + j] - x), b(x - x_given[i]);
92
+ dy0[i] = dy0[i] * a + dy0[i+1] * b;
93
+ dy0[i] += (dy1[i+1] - dy1[i]) * d;
94
+ dy0[i] /= (x_given[i + j] - x_given[i]);
95
+ }
96
+ }
97
+ for(std::size_t i(0); i <= (n - j); ++i){ // d == 0 (interpolation), just use same level
98
+ Tx a(x_given[i + j] - x), b(x - x_given[i]);
99
+ y[i] = (y[i] * a + y[i+1] * b);
100
+ y[i] /= (x_given[i + j] - x_given[i]);
101
+ }
102
+ }
103
+ return y;
104
+ }
105
+
106
+ template <class Tx_Array, class Ty_Array, class Tx, class Ty, std::size_t N>
107
+ Ty interpolate_Neville(
108
+ const Tx_Array &x_given, const Ty_Array &y_given,
109
+ const Tx &x, Ty (&y_buf)[N]) {
110
+ return interpolate_Neville(x_given, y_given, x, y_buf, N)[0];
111
+ }
112
+
113
+ template <class Ty, class Tx_Array, class Ty_Array, class Tx>
114
+ Ty interpolate_Neville(
115
+ const Tx_Array &x_given, const Ty_Array &y_given, const Tx &x, const std::size_t &n) {
116
+ if(n == 0){return y_given[0];}
117
+ std::vector<Ty> y_buf(n);
118
+ return interpolate_Neville(x_given, y_given, x, y_buf, n)[0];
119
+ }
120
+
121
+ #endif /* __INTERPOLATE_H__ */