google-cloud-automl 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.yardopts +11 -0
- data/AUTHENTICATION.md +199 -0
- data/LICENSE +201 -0
- data/README.md +69 -0
- data/lib/google/cloud/automl/v1beta1/annotation_payload_pb.rb +34 -0
- data/lib/google/cloud/automl/v1beta1/annotation_spec_pb.rb +18 -0
- data/lib/google/cloud/automl/v1beta1/automl_client.rb +1914 -0
- data/lib/google/cloud/automl/v1beta1/automl_client_config.json +146 -0
- data/lib/google/cloud/automl/v1beta1/classification_pb.rb +65 -0
- data/lib/google/cloud/automl/v1beta1/column_spec_pb.rb +28 -0
- data/lib/google/cloud/automl/v1beta1/credentials.rb +41 -0
- data/lib/google/cloud/automl/v1beta1/data_items_pb.rb +48 -0
- data/lib/google/cloud/automl/v1beta1/data_stats_pb.rb +77 -0
- data/lib/google/cloud/automl/v1beta1/data_types_pb.rb +36 -0
- data/lib/google/cloud/automl/v1beta1/dataset_pb.rb +38 -0
- data/lib/google/cloud/automl/v1beta1/detection_pb.rb +52 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/annotation_payload.rb +63 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/annotation_spec.rb +41 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/classification.rb +203 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/column_spec.rb +72 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/data_items.rb +94 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/data_stats.rb +160 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/data_types.rb +107 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/dataset.rb +77 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/detection.rb +134 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/geometry.rb +43 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/image.rb +141 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/io.rb +975 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/model.rb +92 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/model_evaluation.rb +100 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/prediction_service.rb +136 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/ranges.rb +31 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/regression.rb +41 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/service.rb +368 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/table_spec.rb +64 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/tables.rb +261 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/temporal.rb +33 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/text.rb +53 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/text_extraction.rb +60 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/text_segment.rb +37 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/text_sentiment.rb +76 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/translation.rb +63 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/video.rb +35 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/longrunning/operations.rb +51 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/protobuf/any.rb +131 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/protobuf/duration.rb +91 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/protobuf/field_mask.rb +222 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/protobuf/struct.rb +74 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/protobuf/timestamp.rb +111 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/rpc/status.rb +87 -0
- data/lib/google/cloud/automl/v1beta1/geometry_pb.rb +21 -0
- data/lib/google/cloud/automl/v1beta1/image_pb.rb +43 -0
- data/lib/google/cloud/automl/v1beta1/io_pb.rb +80 -0
- data/lib/google/cloud/automl/v1beta1/model_evaluation_pb.rb +37 -0
- data/lib/google/cloud/automl/v1beta1/model_pb.rb +44 -0
- data/lib/google/cloud/automl/v1beta1/operations_pb.rb +90 -0
- data/lib/google/cloud/automl/v1beta1/prediction_service_client.rb +442 -0
- data/lib/google/cloud/automl/v1beta1/prediction_service_client_config.json +36 -0
- data/lib/google/cloud/automl/v1beta1/prediction_service_pb.rb +39 -0
- data/lib/google/cloud/automl/v1beta1/prediction_service_services_pb.rb +72 -0
- data/lib/google/cloud/automl/v1beta1/ranges_pb.rb +17 -0
- data/lib/google/cloud/automl/v1beta1/regression_pb.rb +20 -0
- data/lib/google/cloud/automl/v1beta1/service_pb.rb +177 -0
- data/lib/google/cloud/automl/v1beta1/service_services_pb.rb +159 -0
- data/lib/google/cloud/automl/v1beta1/table_spec_pb.rb +22 -0
- data/lib/google/cloud/automl/v1beta1/tables_pb.rb +56 -0
- data/lib/google/cloud/automl/v1beta1/temporal_pb.rb +18 -0
- data/lib/google/cloud/automl/v1beta1/text_extraction_pb.rb +32 -0
- data/lib/google/cloud/automl/v1beta1/text_pb.rb +33 -0
- data/lib/google/cloud/automl/v1beta1/text_segment_pb.rb +18 -0
- data/lib/google/cloud/automl/v1beta1/text_sentiment_pb.rb +29 -0
- data/lib/google/cloud/automl/v1beta1/translation_pb.rb +33 -0
- data/lib/google/cloud/automl/v1beta1/video_pb.rb +25 -0
- data/lib/google/cloud/automl/v1beta1.rb +231 -0
- data/lib/google/cloud/automl/version.rb +22 -0
- data/lib/google/cloud/automl.rb +219 -0
- data/lib/google-cloud-automl.rb +15 -0
- metadata +203 -0
@@ -0,0 +1,261 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# Metadata for a dataset used for AutoML Tables.
|
21
|
+
# @!attribute [rw] primary_table_spec_id
|
22
|
+
# @return [String]
|
23
|
+
# Output only. The table_spec_id of the primary table of this dataset.
|
24
|
+
# @!attribute [rw] target_column_spec_id
|
25
|
+
# @return [String]
|
26
|
+
# column_spec_id of the primary table's column that should be used as the
|
27
|
+
# training & prediction target.
|
28
|
+
# This column must be non-nullable and have one of following data types
|
29
|
+
# (otherwise model creation will error):
|
30
|
+
# * CATEGORY
|
31
|
+
# * FLOAT64
|
32
|
+
# Furthermore, if the type is CATEGORY , then only up to
|
33
|
+
# 100 unique values may exist in that column across all rows.
|
34
|
+
#
|
35
|
+
# NOTE: Updates of this field will instantly affect any other users
|
36
|
+
# concurrently working with the dataset.
|
37
|
+
# @!attribute [rw] weight_column_spec_id
|
38
|
+
# @return [String]
|
39
|
+
# column_spec_id of the primary table's column that should be used as the
|
40
|
+
# weight column, i.e. the higher the value the more important the row will be
|
41
|
+
# during model training.
|
42
|
+
# Required type: FLOAT64.
|
43
|
+
# Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
|
44
|
+
# ignored for training.
|
45
|
+
# If not set all rows are assumed to have equal weight of 1.
|
46
|
+
# NOTE: Updates of this field will instantly affect any other users
|
47
|
+
# concurrently working with the dataset.
|
48
|
+
# @!attribute [rw] ml_use_column_spec_id
|
49
|
+
# @return [String]
|
50
|
+
# column_spec_id of the primary table column which specifies a possible ML
|
51
|
+
# use of the row, i.e. the column will be used to split the rows into TRAIN,
|
52
|
+
# VALIDATE and TEST sets.
|
53
|
+
# Required type: STRING.
|
54
|
+
# This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
|
55
|
+
# among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
|
56
|
+
# case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
|
57
|
+
# that if a given ml use distribution makes it impossible to create a "good"
|
58
|
+
# model, that call will error describing the issue.
|
59
|
+
# If both this column_spec_id and primary table's time_column_spec_id are not
|
60
|
+
# set, then all rows are treated as `UNASSIGNED`.
|
61
|
+
# NOTE: Updates of this field will instantly affect any other users
|
62
|
+
# concurrently working with the dataset.
|
63
|
+
# @!attribute [rw] target_column_correlations
|
64
|
+
# @return [Hash{String => Google::Cloud::AutoML::V1beta1::CorrelationStats}]
|
65
|
+
# Output only. Correlations between
|
66
|
+
#
|
67
|
+
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#target_column_spec_id TablesDatasetMetadata#target_column_spec_id},
|
68
|
+
# and other columns of the
|
69
|
+
#
|
70
|
+
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#primary_table_spec_id TablesDatasetMetadataprimary_table}.
|
71
|
+
# Only set if the target column is set. Mapping from other column spec id to
|
72
|
+
# its CorrelationStats with the target column.
|
73
|
+
# This field may be stale, see the stats_update_time field for
|
74
|
+
# for the timestamp at which these stats were last updated.
|
75
|
+
# @!attribute [rw] stats_update_time
|
76
|
+
# @return [Google::Protobuf::Timestamp]
|
77
|
+
# The most recent timestamp when target_column_correlations field and all
|
78
|
+
# descendant ColumnSpec.data_stats and ColumnSpec.top_correlated_columns
|
79
|
+
# fields were last (re-)generated. Any changes that happened to the dataset
|
80
|
+
# afterwards are not reflected in these fields values. The regeneration
|
81
|
+
# happens in the background on a best effort basis.
|
82
|
+
class TablesDatasetMetadata; end
|
83
|
+
|
84
|
+
# Model metadata specific to AutoML Tables.
|
85
|
+
# @!attribute [rw] target_column_spec
|
86
|
+
# @return [Google::Cloud::AutoML::V1beta1::ColumnSpec]
|
87
|
+
# Column spec of the dataset's primary table's column the model is
|
88
|
+
# predicting. Snapshotted when model creation started.
|
89
|
+
# Only 3 fields are used:
|
90
|
+
# name - May be set on CreateModel, if it's not then the ColumnSpec
|
91
|
+
# corresponding to the current target_column_spec_id of the dataset
|
92
|
+
# the model is trained from is used.
|
93
|
+
# If neither is set, CreateModel will error.
|
94
|
+
# display_name - Output only.
|
95
|
+
# data_type - Output only.
|
96
|
+
# @!attribute [rw] input_feature_column_specs
|
97
|
+
# @return [Array<Google::Cloud::AutoML::V1beta1::ColumnSpec>]
|
98
|
+
# Column specs of the dataset's primary table's columns, on which
|
99
|
+
# the model is trained and which are used as the input for predictions.
|
100
|
+
# The
|
101
|
+
#
|
102
|
+
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}
|
103
|
+
# as well as, according to dataset's state upon model creation,
|
104
|
+
#
|
105
|
+
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#weight_column_spec_id weight_column},
|
106
|
+
# and
|
107
|
+
#
|
108
|
+
# {Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata#ml_use_column_spec_id ml_use_column}
|
109
|
+
# must never be included here.
|
110
|
+
# Only 3 fields are used:
|
111
|
+
# name - May be set on CreateModel, if set only the columns specified are
|
112
|
+
# used, otherwise all primary table's columns (except the ones listed
|
113
|
+
# above) are used for the training and prediction input.
|
114
|
+
# display_name - Output only.
|
115
|
+
# data_type - Output only.
|
116
|
+
# @!attribute [rw] optimization_objective
|
117
|
+
# @return [String]
|
118
|
+
# Objective function the model is optimizing towards. The training process
|
119
|
+
# creates a model that maximizes/minimizes the value of the objective
|
120
|
+
# function over the validation set.
|
121
|
+
#
|
122
|
+
# The supported optimization objectives depend on the prediction type.
|
123
|
+
# If the field is not set, a default objective function is used.
|
124
|
+
#
|
125
|
+
# CLASSIFICATION_BINARY:
|
126
|
+
# "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
|
127
|
+
# operating characteristic (ROC) curve.
|
128
|
+
# "MINIMIZE_LOG_LOSS" - Minimize log loss.
|
129
|
+
# "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
|
130
|
+
# "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
|
131
|
+
# recall value.
|
132
|
+
# "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
|
133
|
+
# precision value.
|
134
|
+
#
|
135
|
+
# CLASSIFICATION_MULTI_CLASS :
|
136
|
+
# "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
|
137
|
+
#
|
138
|
+
#
|
139
|
+
# REGRESSION:
|
140
|
+
# "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
|
141
|
+
# "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
|
142
|
+
# "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
|
143
|
+
#
|
144
|
+
# FORECASTING:
|
145
|
+
# "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
|
146
|
+
# "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
|
147
|
+
# @!attribute [rw] optimization_objective_recall_value
|
148
|
+
# @return [Float]
|
149
|
+
# Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
|
150
|
+
# Must be between 0 and 1, inclusive.
|
151
|
+
# @!attribute [rw] optimization_objective_precision_value
|
152
|
+
# @return [Float]
|
153
|
+
# Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
|
154
|
+
# Must be between 0 and 1, inclusive.
|
155
|
+
# @!attribute [rw] tables_model_column_info
|
156
|
+
# @return [Array<Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
|
157
|
+
# Output only. Auxiliary information for each of the
|
158
|
+
# input_feature_column_specs with respect to this particular model.
|
159
|
+
# @!attribute [rw] train_budget_milli_node_hours
|
160
|
+
# @return [Integer]
|
161
|
+
# Required. The train budget of creating this model, expressed in milli node
|
162
|
+
# hours i.e. 1,000 value in this field means 1 node hour.
|
163
|
+
#
|
164
|
+
# The training cost of the model will not exceed this budget. The final cost
|
165
|
+
# will be attempted to be close to the budget, though may end up being (even)
|
166
|
+
# noticeably smaller - at the backend's discretion. This especially may
|
167
|
+
# happen when further model training ceases to provide any improvements.
|
168
|
+
#
|
169
|
+
# If the budget is set to a value known to be insufficient to train a
|
170
|
+
# model for the given dataset, the training won't be attempted and
|
171
|
+
# will error.
|
172
|
+
#
|
173
|
+
# The train budget must be between 1,000 and 72,000 milli node hours,
|
174
|
+
# inclusive.
|
175
|
+
# @!attribute [rw] train_cost_milli_node_hours
|
176
|
+
# @return [Integer]
|
177
|
+
# Output only. The actual training cost of the model, expressed in milli
|
178
|
+
# node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
|
179
|
+
# to not exceed the train budget.
|
180
|
+
# @!attribute [rw] disable_early_stopping
|
181
|
+
# @return [true, false]
|
182
|
+
# Use the entire training budget. This disables the early stopping feature.
|
183
|
+
# By default, the early stopping feature is enabled, which means that AutoML
|
184
|
+
# Tables might stop training before the entire training budget has been used.
|
185
|
+
class TablesModelMetadata; end
|
186
|
+
|
187
|
+
# Contains annotation details specific to Tables.
|
188
|
+
# @!attribute [rw] score
|
189
|
+
# @return [Float]
|
190
|
+
# Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher
|
191
|
+
# value means greater confidence in the returned value.
|
192
|
+
# For
|
193
|
+
#
|
194
|
+
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
|
195
|
+
# of FLOAT64 data type the score is not populated.
|
196
|
+
# @!attribute [rw] prediction_interval
|
197
|
+
# @return [Google::Cloud::AutoML::V1beta1::DoubleRange]
|
198
|
+
# Output only. Only populated when
|
199
|
+
#
|
200
|
+
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column_spec}
|
201
|
+
# has FLOAT64 data type. An interval in which the exactly correct target
|
202
|
+
# value has 95% chance to be in.
|
203
|
+
# @!attribute [rw] value
|
204
|
+
# @return [Google::Protobuf::Value]
|
205
|
+
# The predicted value of the row's
|
206
|
+
#
|
207
|
+
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#target_column_spec target_column}.
|
208
|
+
# The value depends on the column's DataType:
|
209
|
+
# CATEGORY - the predicted (with the above confidence `score`) CATEGORY
|
210
|
+
# value.
|
211
|
+
# FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
|
212
|
+
# @!attribute [rw] tables_model_column_info
|
213
|
+
# @return [Array<Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo>]
|
214
|
+
# Output only. Auxiliary information for each of the model's
|
215
|
+
#
|
216
|
+
# {Google::Cloud::AutoML::V1beta1::TablesModelMetadata#input_feature_column_specs input_feature_column_specs}
|
217
|
+
# with respect to this particular prediction.
|
218
|
+
# If no other fields than
|
219
|
+
#
|
220
|
+
# {Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_spec_name column_spec_name}
|
221
|
+
# and
|
222
|
+
#
|
223
|
+
# {Google::Cloud::AutoML::V1beta1::TablesModelColumnInfo#column_display_name column_display_name}
|
224
|
+
# would be populated, then this whole field is not.
|
225
|
+
class TablesAnnotation; end
|
226
|
+
|
227
|
+
# An information specific to given column and Tables Model, in context
|
228
|
+
# of the Model and the predictions created by it.
|
229
|
+
# @!attribute [rw] column_spec_name
|
230
|
+
# @return [String]
|
231
|
+
# Output only. The name of the ColumnSpec describing the column. Not
|
232
|
+
# populated when this proto is outputted to BigQuery.
|
233
|
+
# @!attribute [rw] column_display_name
|
234
|
+
# @return [String]
|
235
|
+
# Output only. The display name of the column (same as the display_name of
|
236
|
+
# its ColumnSpec).
|
237
|
+
# @!attribute [rw] feature_importance
|
238
|
+
# @return [Float]
|
239
|
+
# Output only.
|
240
|
+
#
|
241
|
+
# When given as part of a Model (always populated):
|
242
|
+
# Measurement of how much model predictions correctness on the TEST data
|
243
|
+
# depend on values in this column. A value between 0 and 1, higher means
|
244
|
+
# higher influence. These values are normalized - for all input feature
|
245
|
+
# columns of a given model they add to 1.
|
246
|
+
#
|
247
|
+
# When given back by Predict (populated iff
|
248
|
+
# [feature_importance
|
249
|
+
# param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
|
250
|
+
# Predict (populated iff
|
251
|
+
# {Google::Cloud::AutoML::V1beta1::PredictRequest#params feature_importance}
|
252
|
+
# param is set):
|
253
|
+
# Measurement of how impactful for the prediction returned for the given row
|
254
|
+
# the value in this column was. A value between 0 and 1, higher means larger
|
255
|
+
# impact. These values are normalized - for all input feature columns of a
|
256
|
+
# single predicted row they add to 1.
|
257
|
+
class TablesModelColumnInfo; end
|
258
|
+
end
|
259
|
+
end
|
260
|
+
end
|
261
|
+
end
|
@@ -0,0 +1,33 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# A time period inside of an example that has a time dimension (e.g. video).
|
21
|
+
# @!attribute [rw] start_time_offset
|
22
|
+
# @return [Google::Protobuf::Duration]
|
23
|
+
# Start of the time segment (inclusive), represented as the duration since
|
24
|
+
# the example start.
|
25
|
+
# @!attribute [rw] end_time_offset
|
26
|
+
# @return [Google::Protobuf::Duration]
|
27
|
+
# End of the time segment (exclusive), represented as the duration since the
|
28
|
+
# example start.
|
29
|
+
class TimeSegment; end
|
30
|
+
end
|
31
|
+
end
|
32
|
+
end
|
33
|
+
end
|
@@ -0,0 +1,53 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# Dataset metadata for classification.
|
21
|
+
# @!attribute [rw] classification_type
|
22
|
+
# @return [Google::Cloud::AutoML::V1beta1::ClassificationType]
|
23
|
+
# Required.
|
24
|
+
# Type of the classification problem.
|
25
|
+
class TextClassificationDatasetMetadata; end
|
26
|
+
|
27
|
+
# Model metadata that is specific to text classification.
|
28
|
+
class TextClassificationModelMetadata; end
|
29
|
+
|
30
|
+
# Dataset metadata that is specific to text extraction
|
31
|
+
class TextExtractionDatasetMetadata; end
|
32
|
+
|
33
|
+
# Model metadata that is specific to text extraction.
|
34
|
+
class TextExtractionModelMetadata; end
|
35
|
+
|
36
|
+
# Dataset metadata for text sentiment.
|
37
|
+
# @!attribute [rw] sentiment_max
|
38
|
+
# @return [Integer]
|
39
|
+
# Required.
|
40
|
+
# A sentiment is expressed as an integer ordinal, where higher value
|
41
|
+
# means a more positive sentiment. The range of sentiments that will be used
|
42
|
+
# is between 0 and sentiment_max (inclusive on both ends), and all the values
|
43
|
+
# in the range must be represented in the dataset before a model can be
|
44
|
+
# created.
|
45
|
+
# sentiment_max value must be between 1 and 10 (inclusive).
|
46
|
+
class TextSentimentDatasetMetadata; end
|
47
|
+
|
48
|
+
# Model metadata that is specific to text sentiment.
|
49
|
+
class TextSentimentModelMetadata; end
|
50
|
+
end
|
51
|
+
end
|
52
|
+
end
|
53
|
+
end
|
@@ -0,0 +1,60 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# Annotation for identifying spans of text.
|
21
|
+
# @!attribute [rw] text_segment
|
22
|
+
# @return [Google::Cloud::AutoML::V1beta1::TextSegment]
|
23
|
+
# An entity annotation will set this, which is the part of the original
|
24
|
+
# text to which the annotation pertains.
|
25
|
+
# @!attribute [rw] score
|
26
|
+
# @return [Float]
|
27
|
+
# Output only. A confidence estimate between 0.0 and 1.0. A higher value
|
28
|
+
# means greater confidence in correctness of the annotation.
|
29
|
+
class TextExtractionAnnotation; end
|
30
|
+
|
31
|
+
# Model evaluation metrics for text extraction problems.
|
32
|
+
# @!attribute [rw] au_prc
|
33
|
+
# @return [Float]
|
34
|
+
# Output only. The Area under precision recall curve metric.
|
35
|
+
# @!attribute [rw] confidence_metrics_entries
|
36
|
+
# @return [Array<Google::Cloud::AutoML::V1beta1::TextExtractionEvaluationMetrics::ConfidenceMetricsEntry>]
|
37
|
+
# Output only. Metrics that have confidence thresholds.
|
38
|
+
# Precision-recall curve can be derived from it.
|
39
|
+
class TextExtractionEvaluationMetrics
|
40
|
+
# Metrics for a single confidence threshold.
|
41
|
+
# @!attribute [rw] confidence_threshold
|
42
|
+
# @return [Float]
|
43
|
+
# Output only. The confidence threshold value used to compute the metrics.
|
44
|
+
# Only annotations with score of at least this threshold are considered to
|
45
|
+
# be ones the model would return.
|
46
|
+
# @!attribute [rw] recall
|
47
|
+
# @return [Float]
|
48
|
+
# Output only. Recall under the given confidence threshold.
|
49
|
+
# @!attribute [rw] precision
|
50
|
+
# @return [Float]
|
51
|
+
# Output only. Precision under the given confidence threshold.
|
52
|
+
# @!attribute [rw] f1_score
|
53
|
+
# @return [Float]
|
54
|
+
# Output only. The harmonic mean of recall and precision.
|
55
|
+
class ConfidenceMetricsEntry; end
|
56
|
+
end
|
57
|
+
end
|
58
|
+
end
|
59
|
+
end
|
60
|
+
end
|
@@ -0,0 +1,37 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.
|
21
|
+
# @!attribute [rw] content
|
22
|
+
# @return [String]
|
23
|
+
# Output only. The content of the TextSegment.
|
24
|
+
# @!attribute [rw] start_offset
|
25
|
+
# @return [Integer]
|
26
|
+
# Required. Zero-based character index of the first character of the text
|
27
|
+
# segment (counting characters from the beginning of the text).
|
28
|
+
# @!attribute [rw] end_offset
|
29
|
+
# @return [Integer]
|
30
|
+
# Required. Zero-based character index of the first character past the end of
|
31
|
+
# the text segment (counting character from the beginning of the text).
|
32
|
+
# The character at the end_offset is NOT included in the text segment.
|
33
|
+
class TextSegment; end
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
37
|
+
end
|
@@ -0,0 +1,76 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# Contains annotation details specific to text sentiment.
|
21
|
+
# @!attribute [rw] sentiment
|
22
|
+
# @return [Integer]
|
23
|
+
# Output only. The sentiment with the semantic, as given to the
|
24
|
+
# {Google::Cloud::AutoML::V1beta1::AutoML::ImportData AutoML::ImportData} when populating the dataset from which the model used
|
25
|
+
# for the prediction had been trained.
|
26
|
+
# The sentiment values are between 0 and
|
27
|
+
# Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive),
|
28
|
+
# with higher value meaning more positive sentiment. They are completely
|
29
|
+
# relative, i.e. 0 means least positive sentiment and sentiment_max means
|
30
|
+
# the most positive from the sentiments present in the train data. Therefore
|
31
|
+
# e.g. if train data had only negative sentiment, then sentiment_max, would
|
32
|
+
# be still negative (although least negative).
|
33
|
+
# The sentiment shouldn't be confused with "score" or "magnitude"
|
34
|
+
# from the previous Natural Language Sentiment Analysis API.
|
35
|
+
class TextSentimentAnnotation; end
|
36
|
+
|
37
|
+
# Model evaluation metrics for text sentiment problems.
|
38
|
+
# @!attribute [rw] precision
|
39
|
+
# @return [Float]
|
40
|
+
# Output only. Precision.
|
41
|
+
# @!attribute [rw] recall
|
42
|
+
# @return [Float]
|
43
|
+
# Output only. Recall.
|
44
|
+
# @!attribute [rw] f1_score
|
45
|
+
# @return [Float]
|
46
|
+
# Output only. The harmonic mean of recall and precision.
|
47
|
+
# @!attribute [rw] mean_absolute_error
|
48
|
+
# @return [Float]
|
49
|
+
# Output only. Mean absolute error. Only set for the overall model
|
50
|
+
# evaluation, not for evaluation of a single annotation spec.
|
51
|
+
# @!attribute [rw] mean_squared_error
|
52
|
+
# @return [Float]
|
53
|
+
# Output only. Mean squared error. Only set for the overall model
|
54
|
+
# evaluation, not for evaluation of a single annotation spec.
|
55
|
+
# @!attribute [rw] linear_kappa
|
56
|
+
# @return [Float]
|
57
|
+
# Output only. Linear weighted kappa. Only set for the overall model
|
58
|
+
# evaluation, not for evaluation of a single annotation spec.
|
59
|
+
# @!attribute [rw] quadratic_kappa
|
60
|
+
# @return [Float]
|
61
|
+
# Output only. Quadratic weighted kappa. Only set for the overall model
|
62
|
+
# evaluation, not for evaluation of a single annotation spec.
|
63
|
+
# @!attribute [rw] confusion_matrix
|
64
|
+
# @return [Google::Cloud::AutoML::V1beta1::ClassificationEvaluationMetrics::ConfusionMatrix]
|
65
|
+
# Output only. Confusion matrix of the evaluation.
|
66
|
+
# Only set for the overall model evaluation, not for evaluation of a single
|
67
|
+
# annotation spec.
|
68
|
+
# @!attribute [rw] annotation_spec_id
|
69
|
+
# @return [Array<String>]
|
70
|
+
# Output only. The annotation spec ids used for this evaluation.
|
71
|
+
# Deprecated .
|
72
|
+
class TextSentimentEvaluationMetrics; end
|
73
|
+
end
|
74
|
+
end
|
75
|
+
end
|
76
|
+
end
|
@@ -0,0 +1,63 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# Dataset metadata that is specific to translation.
|
21
|
+
# @!attribute [rw] source_language_code
|
22
|
+
# @return [String]
|
23
|
+
# Required. The BCP-47 language code of the source language.
|
24
|
+
# @!attribute [rw] target_language_code
|
25
|
+
# @return [String]
|
26
|
+
# Required. The BCP-47 language code of the target language.
|
27
|
+
class TranslationDatasetMetadata; end
|
28
|
+
|
29
|
+
# Evaluation metrics for the dataset.
|
30
|
+
# @!attribute [rw] bleu_score
|
31
|
+
# @return [Float]
|
32
|
+
# Output only. BLEU score.
|
33
|
+
# @!attribute [rw] base_bleu_score
|
34
|
+
# @return [Float]
|
35
|
+
# Output only. BLEU score for base model.
|
36
|
+
class TranslationEvaluationMetrics; end
|
37
|
+
|
38
|
+
# Model metadata that is specific to translation.
|
39
|
+
# @!attribute [rw] base_model
|
40
|
+
# @return [String]
|
41
|
+
# The resource name of the model to use as a baseline to train the custom
|
42
|
+
# model. If unset, we use the default base model provided by Google
|
43
|
+
# Translate. Format:
|
44
|
+
# `projects/{project_id}/locations/{location_id}/models/{model_id}`
|
45
|
+
# @!attribute [rw] source_language_code
|
46
|
+
# @return [String]
|
47
|
+
# Output only. Inferred from the dataset.
|
48
|
+
# The source languge (The BCP-47 language code) that is used for training.
|
49
|
+
# @!attribute [rw] target_language_code
|
50
|
+
# @return [String]
|
51
|
+
# Output only. The target languge (The BCP-47 language code) that is used for
|
52
|
+
# training.
|
53
|
+
class TranslationModelMetadata; end
|
54
|
+
|
55
|
+
# Annotation details specific to translation.
|
56
|
+
# @!attribute [rw] translated_content
|
57
|
+
# @return [Google::Cloud::AutoML::V1beta1::TextSnippet]
|
58
|
+
# Output only . The translated content.
|
59
|
+
class TranslationAnnotation; end
|
60
|
+
end
|
61
|
+
end
|
62
|
+
end
|
63
|
+
end
|
@@ -0,0 +1,35 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# Dataset metadata specific to video classification.
|
21
|
+
# All Video Classification datasets are treated as multi label.
|
22
|
+
class VideoClassificationDatasetMetadata; end
|
23
|
+
|
24
|
+
# Dataset metadata specific to video object tracking.
|
25
|
+
class VideoObjectTrackingDatasetMetadata; end
|
26
|
+
|
27
|
+
# Model metadata specific to video classification.
|
28
|
+
class VideoClassificationModelMetadata; end
|
29
|
+
|
30
|
+
# Model metadata specific to video object tracking.
|
31
|
+
class VideoObjectTrackingModelMetadata; end
|
32
|
+
end
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
@@ -0,0 +1,51 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Longrunning
|
18
|
+
# This resource represents a long-running operation that is the result of a
|
19
|
+
# network API call.
|
20
|
+
# @!attribute [rw] name
|
21
|
+
# @return [String]
|
22
|
+
# The server-assigned name, which is only unique within the same service that
|
23
|
+
# originally returns it. If you use the default HTTP mapping, the
|
24
|
+
# `name` should have the format of `operations/some/unique/name`.
|
25
|
+
# @!attribute [rw] metadata
|
26
|
+
# @return [Google::Protobuf::Any]
|
27
|
+
# Service-specific metadata associated with the operation. It typically
|
28
|
+
# contains progress information and common metadata such as create time.
|
29
|
+
# Some services might not provide such metadata. Any method that returns a
|
30
|
+
# long-running operation should document the metadata type, if any.
|
31
|
+
# @!attribute [rw] done
|
32
|
+
# @return [true, false]
|
33
|
+
# If the value is `false`, it means the operation is still in progress.
|
34
|
+
# If `true`, the operation is completed, and either `error` or `response` is
|
35
|
+
# available.
|
36
|
+
# @!attribute [rw] error
|
37
|
+
# @return [Google::Rpc::Status]
|
38
|
+
# The error result of the operation in case of failure or cancellation.
|
39
|
+
# @!attribute [rw] response
|
40
|
+
# @return [Google::Protobuf::Any]
|
41
|
+
# The normal response of the operation in case of success. If the original
|
42
|
+
# method returns no data on success, such as `Delete`, the response is
|
43
|
+
# `google.protobuf.Empty`. If the original method is standard
|
44
|
+
# `Get`/`Create`/`Update`, the response should be the resource. For other
|
45
|
+
# methods, the response should have the type `XxxResponse`, where `Xxx`
|
46
|
+
# is the original method name. For example, if the original method name
|
47
|
+
# is `TakeSnapshot()`, the inferred response type is
|
48
|
+
# `TakeSnapshotResponse`.
|
49
|
+
class Operation; end
|
50
|
+
end
|
51
|
+
end
|