google-cloud-automl 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.yardopts +11 -0
- data/AUTHENTICATION.md +199 -0
- data/LICENSE +201 -0
- data/README.md +69 -0
- data/lib/google/cloud/automl/v1beta1/annotation_payload_pb.rb +34 -0
- data/lib/google/cloud/automl/v1beta1/annotation_spec_pb.rb +18 -0
- data/lib/google/cloud/automl/v1beta1/automl_client.rb +1914 -0
- data/lib/google/cloud/automl/v1beta1/automl_client_config.json +146 -0
- data/lib/google/cloud/automl/v1beta1/classification_pb.rb +65 -0
- data/lib/google/cloud/automl/v1beta1/column_spec_pb.rb +28 -0
- data/lib/google/cloud/automl/v1beta1/credentials.rb +41 -0
- data/lib/google/cloud/automl/v1beta1/data_items_pb.rb +48 -0
- data/lib/google/cloud/automl/v1beta1/data_stats_pb.rb +77 -0
- data/lib/google/cloud/automl/v1beta1/data_types_pb.rb +36 -0
- data/lib/google/cloud/automl/v1beta1/dataset_pb.rb +38 -0
- data/lib/google/cloud/automl/v1beta1/detection_pb.rb +52 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/annotation_payload.rb +63 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/annotation_spec.rb +41 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/classification.rb +203 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/column_spec.rb +72 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/data_items.rb +94 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/data_stats.rb +160 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/data_types.rb +107 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/dataset.rb +77 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/detection.rb +134 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/geometry.rb +43 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/image.rb +141 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/io.rb +975 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/model.rb +92 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/model_evaluation.rb +100 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/prediction_service.rb +136 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/ranges.rb +31 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/regression.rb +41 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/service.rb +368 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/table_spec.rb +64 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/tables.rb +261 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/temporal.rb +33 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/text.rb +53 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/text_extraction.rb +60 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/text_segment.rb +37 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/text_sentiment.rb +76 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/translation.rb +63 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/cloud/automl/v1beta1/video.rb +35 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/longrunning/operations.rb +51 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/protobuf/any.rb +131 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/protobuf/duration.rb +91 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/protobuf/field_mask.rb +222 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/protobuf/struct.rb +74 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/protobuf/timestamp.rb +111 -0
- data/lib/google/cloud/automl/v1beta1/doc/google/rpc/status.rb +87 -0
- data/lib/google/cloud/automl/v1beta1/geometry_pb.rb +21 -0
- data/lib/google/cloud/automl/v1beta1/image_pb.rb +43 -0
- data/lib/google/cloud/automl/v1beta1/io_pb.rb +80 -0
- data/lib/google/cloud/automl/v1beta1/model_evaluation_pb.rb +37 -0
- data/lib/google/cloud/automl/v1beta1/model_pb.rb +44 -0
- data/lib/google/cloud/automl/v1beta1/operations_pb.rb +90 -0
- data/lib/google/cloud/automl/v1beta1/prediction_service_client.rb +442 -0
- data/lib/google/cloud/automl/v1beta1/prediction_service_client_config.json +36 -0
- data/lib/google/cloud/automl/v1beta1/prediction_service_pb.rb +39 -0
- data/lib/google/cloud/automl/v1beta1/prediction_service_services_pb.rb +72 -0
- data/lib/google/cloud/automl/v1beta1/ranges_pb.rb +17 -0
- data/lib/google/cloud/automl/v1beta1/regression_pb.rb +20 -0
- data/lib/google/cloud/automl/v1beta1/service_pb.rb +177 -0
- data/lib/google/cloud/automl/v1beta1/service_services_pb.rb +159 -0
- data/lib/google/cloud/automl/v1beta1/table_spec_pb.rb +22 -0
- data/lib/google/cloud/automl/v1beta1/tables_pb.rb +56 -0
- data/lib/google/cloud/automl/v1beta1/temporal_pb.rb +18 -0
- data/lib/google/cloud/automl/v1beta1/text_extraction_pb.rb +32 -0
- data/lib/google/cloud/automl/v1beta1/text_pb.rb +33 -0
- data/lib/google/cloud/automl/v1beta1/text_segment_pb.rb +18 -0
- data/lib/google/cloud/automl/v1beta1/text_sentiment_pb.rb +29 -0
- data/lib/google/cloud/automl/v1beta1/translation_pb.rb +33 -0
- data/lib/google/cloud/automl/v1beta1/video_pb.rb +25 -0
- data/lib/google/cloud/automl/v1beta1.rb +231 -0
- data/lib/google/cloud/automl/version.rb +22 -0
- data/lib/google/cloud/automl.rb +219 -0
- data/lib/google-cloud-automl.rb +15 -0
- metadata +203 -0
@@ -0,0 +1,77 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# A workspace for solving a single, particular machine learning (ML) problem.
|
21
|
+
# A workspace contains examples that may be annotated.
|
22
|
+
# @!attribute [rw] translation_dataset_metadata
|
23
|
+
# @return [Google::Cloud::AutoML::V1beta1::TranslationDatasetMetadata]
|
24
|
+
# Metadata for a dataset used for translation.
|
25
|
+
# @!attribute [rw] image_classification_dataset_metadata
|
26
|
+
# @return [Google::Cloud::AutoML::V1beta1::ImageClassificationDatasetMetadata]
|
27
|
+
# Metadata for a dataset used for image classification.
|
28
|
+
# @!attribute [rw] text_classification_dataset_metadata
|
29
|
+
# @return [Google::Cloud::AutoML::V1beta1::TextClassificationDatasetMetadata]
|
30
|
+
# Metadata for a dataset used for text classification.
|
31
|
+
# @!attribute [rw] image_object_detection_dataset_metadata
|
32
|
+
# @return [Google::Cloud::AutoML::V1beta1::ImageObjectDetectionDatasetMetadata]
|
33
|
+
# Metadata for a dataset used for image object detection.
|
34
|
+
# @!attribute [rw] video_classification_dataset_metadata
|
35
|
+
# @return [Google::Cloud::AutoML::V1beta1::VideoClassificationDatasetMetadata]
|
36
|
+
# Metadata for a dataset used for video classification.
|
37
|
+
# @!attribute [rw] video_object_tracking_dataset_metadata
|
38
|
+
# @return [Google::Cloud::AutoML::V1beta1::VideoObjectTrackingDatasetMetadata]
|
39
|
+
# Metadata for a dataset used for video object tracking.
|
40
|
+
# @!attribute [rw] text_extraction_dataset_metadata
|
41
|
+
# @return [Google::Cloud::AutoML::V1beta1::TextExtractionDatasetMetadata]
|
42
|
+
# Metadata for a dataset used for text extraction.
|
43
|
+
# @!attribute [rw] text_sentiment_dataset_metadata
|
44
|
+
# @return [Google::Cloud::AutoML::V1beta1::TextSentimentDatasetMetadata]
|
45
|
+
# Metadata for a dataset used for text sentiment.
|
46
|
+
# @!attribute [rw] tables_dataset_metadata
|
47
|
+
# @return [Google::Cloud::AutoML::V1beta1::TablesDatasetMetadata]
|
48
|
+
# Metadata for a dataset used for Tables.
|
49
|
+
# @!attribute [rw] name
|
50
|
+
# @return [String]
|
51
|
+
# Output only. The resource name of the dataset.
|
52
|
+
# Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
|
53
|
+
# @!attribute [rw] display_name
|
54
|
+
# @return [String]
|
55
|
+
# Required. The name of the dataset to show in the interface. The name can be
|
56
|
+
# up to 32 characters long and can consist only of ASCII Latin letters A-Z
|
57
|
+
# and a-z, underscores
|
58
|
+
# (_), and ASCII digits 0-9.
|
59
|
+
# @!attribute [rw] description
|
60
|
+
# @return [String]
|
61
|
+
# User-provided description of the dataset. The description can be up to
|
62
|
+
# 25000 characters long.
|
63
|
+
# @!attribute [rw] example_count
|
64
|
+
# @return [Integer]
|
65
|
+
# Output only. The number of examples in the dataset.
|
66
|
+
# @!attribute [rw] create_time
|
67
|
+
# @return [Google::Protobuf::Timestamp]
|
68
|
+
# Output only. Timestamp when this dataset was created.
|
69
|
+
# @!attribute [rw] etag
|
70
|
+
# @return [String]
|
71
|
+
# Used to perform consistent read-modify-write updates. If not set, a blind
|
72
|
+
# "overwrite" update happens.
|
73
|
+
class Dataset; end
|
74
|
+
end
|
75
|
+
end
|
76
|
+
end
|
77
|
+
end
|
@@ -0,0 +1,134 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# Annotation details for image object detection.
|
21
|
+
# @!attribute [rw] bounding_box
|
22
|
+
# @return [Google::Cloud::AutoML::V1beta1::BoundingPoly]
|
23
|
+
# Output only.
|
24
|
+
# The rectangle representing the object location.
|
25
|
+
# @!attribute [rw] score
|
26
|
+
# @return [Float]
|
27
|
+
# Output only.
|
28
|
+
# The confidence that this annotation is positive for the parent example,
|
29
|
+
# value in [0, 1], higher means higher positivity confidence.
|
30
|
+
class ImageObjectDetectionAnnotation; end
|
31
|
+
|
32
|
+
# Annotation details for video object tracking.
|
33
|
+
# @!attribute [rw] instance_id
|
34
|
+
# @return [String]
|
35
|
+
# Optional.
|
36
|
+
# The instance of the object, expressed as a positive integer. Used to tell
|
37
|
+
# apart objects of the same type (i.e. AnnotationSpec) when multiple are
|
38
|
+
# present on a single example.
|
39
|
+
# NOTE: Instance ID prediction quality is not a part of model evaluation and
|
40
|
+
# is done as best effort. Especially in cases when an entity goes
|
41
|
+
# off-screen for a longer time (minutes), when it comes back it may be given
|
42
|
+
# a new instance ID.
|
43
|
+
# @!attribute [rw] time_offset
|
44
|
+
# @return [Google::Protobuf::Duration]
|
45
|
+
# Required. A time (frame) of a video to which this annotation pertains.
|
46
|
+
# Represented as the duration since the video's start.
|
47
|
+
# @!attribute [rw] bounding_box
|
48
|
+
# @return [Google::Cloud::AutoML::V1beta1::BoundingPoly]
|
49
|
+
# Required. The rectangle representing the object location on the frame (i.e.
|
50
|
+
# at the time_offset of the video).
|
51
|
+
# @!attribute [rw] score
|
52
|
+
# @return [Float]
|
53
|
+
# Output only.
|
54
|
+
# The confidence that this annotation is positive for the video at
|
55
|
+
# the time_offset, value in [0, 1], higher means higher positivity
|
56
|
+
# confidence. For annotations created by the user the score is 1. When
|
57
|
+
# user approves an annotation, the original float score is kept (and not
|
58
|
+
# changed to 1).
|
59
|
+
class VideoObjectTrackingAnnotation; end
|
60
|
+
|
61
|
+
# Bounding box matching model metrics for a single intersection-over-union
|
62
|
+
# threshold and multiple label match confidence thresholds.
|
63
|
+
# @!attribute [rw] iou_threshold
|
64
|
+
# @return [Float]
|
65
|
+
# Output only. The intersection-over-union threshold value used to compute
|
66
|
+
# this metrics entry.
|
67
|
+
# @!attribute [rw] mean_average_precision
|
68
|
+
# @return [Float]
|
69
|
+
# Output only. The mean average precision, most often close to au_prc.
|
70
|
+
# @!attribute [rw] confidence_metrics_entries
|
71
|
+
# @return [Array<Google::Cloud::AutoML::V1beta1::BoundingBoxMetricsEntry::ConfidenceMetricsEntry>]
|
72
|
+
# Output only. Metrics for each label-match confidence_threshold from
|
73
|
+
# 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99. Precision-recall curve is
|
74
|
+
# derived from them.
|
75
|
+
class BoundingBoxMetricsEntry
|
76
|
+
# Metrics for a single confidence threshold.
|
77
|
+
# @!attribute [rw] confidence_threshold
|
78
|
+
# @return [Float]
|
79
|
+
# Output only. The confidence threshold value used to compute the metrics.
|
80
|
+
# @!attribute [rw] recall
|
81
|
+
# @return [Float]
|
82
|
+
# Output only. Recall under the given confidence threshold.
|
83
|
+
# @!attribute [rw] precision
|
84
|
+
# @return [Float]
|
85
|
+
# Output only. Precision under the given confidence threshold.
|
86
|
+
# @!attribute [rw] f1_score
|
87
|
+
# @return [Float]
|
88
|
+
# Output only. The harmonic mean of recall and precision.
|
89
|
+
class ConfidenceMetricsEntry; end
|
90
|
+
end
|
91
|
+
|
92
|
+
# Model evaluation metrics for image object detection problems.
|
93
|
+
# Evaluates prediction quality of labeled bounding boxes.
|
94
|
+
# @!attribute [rw] evaluated_bounding_box_count
|
95
|
+
# @return [Integer]
|
96
|
+
# Output only. The total number of bounding boxes (i.e. summed over all
|
97
|
+
# images) the ground truth used to create this evaluation had.
|
98
|
+
# @!attribute [rw] bounding_box_metrics_entries
|
99
|
+
# @return [Array<Google::Cloud::AutoML::V1beta1::BoundingBoxMetricsEntry>]
|
100
|
+
# Output only. The bounding boxes match metrics for each
|
101
|
+
# Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
|
102
|
+
# and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
|
103
|
+
# pair.
|
104
|
+
# @!attribute [rw] bounding_box_mean_average_precision
|
105
|
+
# @return [Float]
|
106
|
+
# Output only. The single metric for bounding boxes evaluation:
|
107
|
+
# the mean_average_precision averaged over all bounding_box_metrics_entries.
|
108
|
+
class ImageObjectDetectionEvaluationMetrics; end
|
109
|
+
|
110
|
+
# Model evaluation metrics for video object tracking problems.
|
111
|
+
# Evaluates prediction quality of both labeled bounding boxes and labeled
|
112
|
+
# tracks (i.e. series of bounding boxes sharing same label and instance ID).
|
113
|
+
# @!attribute [rw] evaluated_frame_count
|
114
|
+
# @return [Integer]
|
115
|
+
# Output only. The number of video frames used to create this evaluation.
|
116
|
+
# @!attribute [rw] evaluated_bounding_box_count
|
117
|
+
# @return [Integer]
|
118
|
+
# Output only. The total number of bounding boxes (i.e. summed over all
|
119
|
+
# frames) the ground truth used to create this evaluation had.
|
120
|
+
# @!attribute [rw] bounding_box_metrics_entries
|
121
|
+
# @return [Array<Google::Cloud::AutoML::V1beta1::BoundingBoxMetricsEntry>]
|
122
|
+
# Output only. The bounding boxes match metrics for each
|
123
|
+
# Intersection-over-union threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
|
124
|
+
# and each label confidence threshold 0.05,0.10,...,0.95,0.96,0.97,0.98,0.99
|
125
|
+
# pair.
|
126
|
+
# @!attribute [rw] bounding_box_mean_average_precision
|
127
|
+
# @return [Float]
|
128
|
+
# Output only. The single metric for bounding boxes evaluation:
|
129
|
+
# the mean_average_precision averaged over all bounding_box_metrics_entries.
|
130
|
+
class VideoObjectTrackingEvaluationMetrics; end
|
131
|
+
end
|
132
|
+
end
|
133
|
+
end
|
134
|
+
end
|
@@ -0,0 +1,43 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# A vertex represents a 2D point in the image.
|
21
|
+
# The normalized vertex coordinates are between 0 to 1 fractions relative to
|
22
|
+
# the original plane (image, video). E.g. if the plane (e.g. whole image) would
|
23
|
+
# have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would
|
24
|
+
# be at the position (1, 6) on that plane.
|
25
|
+
# @!attribute [rw] x
|
26
|
+
# @return [Float]
|
27
|
+
# Required. Horizontal coordinate.
|
28
|
+
# @!attribute [rw] y
|
29
|
+
# @return [Float]
|
30
|
+
# Required. Vertical coordinate.
|
31
|
+
class NormalizedVertex; end
|
32
|
+
|
33
|
+
# A bounding polygon of a detected object on a plane.
|
34
|
+
# On output both vertices and normalized_vertices are provided.
|
35
|
+
# The polygon is formed by connecting vertices in the order they are listed.
|
36
|
+
# @!attribute [rw] normalized_vertices
|
37
|
+
# @return [Array<Google::Cloud::AutoML::V1beta1::NormalizedVertex>]
|
38
|
+
# Output only . The bounding polygon normalized vertices.
|
39
|
+
class BoundingPoly; end
|
40
|
+
end
|
41
|
+
end
|
42
|
+
end
|
43
|
+
end
|
@@ -0,0 +1,141 @@
|
|
1
|
+
# Copyright 2019 Google LLC
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
module Google
|
17
|
+
module Cloud
|
18
|
+
module AutoML
|
19
|
+
module V1beta1
|
20
|
+
# Dataset metadata that is specific to image classification.
|
21
|
+
# @!attribute [rw] classification_type
|
22
|
+
# @return [Google::Cloud::AutoML::V1beta1::ClassificationType]
|
23
|
+
# Required. Type of the classification problem.
|
24
|
+
class ImageClassificationDatasetMetadata; end
|
25
|
+
|
26
|
+
# Dataset metadata specific to image object detection.
|
27
|
+
class ImageObjectDetectionDatasetMetadata; end
|
28
|
+
|
29
|
+
# Model metadata for image classification.
|
30
|
+
# @!attribute [rw] base_model_id
|
31
|
+
# @return [String]
|
32
|
+
# Optional. The ID of the `base` model. If it is specified, the new model
|
33
|
+
# will be created based on the `base` model. Otherwise, the new model will be
|
34
|
+
# created from scratch. The `base` model must be in the same
|
35
|
+
# `project` and `location` as the new model to create, and have the same
|
36
|
+
# `model_type`.
|
37
|
+
# @!attribute [rw] train_budget
|
38
|
+
# @return [Integer]
|
39
|
+
# Required. The train budget of creating this model, expressed in hours. The
|
40
|
+
# actual `train_cost` will be equal or less than this value.
|
41
|
+
# @!attribute [rw] train_cost
|
42
|
+
# @return [Integer]
|
43
|
+
# Output only. The actual train cost of creating this model, expressed in
|
44
|
+
# hours. If this model is created from a `base` model, the train cost used
|
45
|
+
# to create the `base` model are not included.
|
46
|
+
# @!attribute [rw] stop_reason
|
47
|
+
# @return [String]
|
48
|
+
# Output only. The reason that this create model operation stopped,
|
49
|
+
# e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
|
50
|
+
# @!attribute [rw] model_type
|
51
|
+
# @return [String]
|
52
|
+
# Optional. Type of the model. The available values are:
|
53
|
+
# * `cloud` - Model to be used via prediction calls to AutoML API.
|
54
|
+
# This is the default value.
|
55
|
+
# * `mobile-low-latency-1` - A model that, in addition to providing
|
56
|
+
# prediction via AutoML API, can also be exported (see
|
57
|
+
# {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile or edge device
|
58
|
+
# with TensorFlow afterwards. Expected to have low latency, but
|
59
|
+
# may have lower prediction quality than other models.
|
60
|
+
# * `mobile-versatile-1` - A model that, in addition to providing
|
61
|
+
# prediction via AutoML API, can also be exported (see
|
62
|
+
# {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile or edge device
|
63
|
+
# with TensorFlow afterwards.
|
64
|
+
# * `mobile-high-accuracy-1` - A model that, in addition to providing
|
65
|
+
# prediction via AutoML API, can also be exported (see
|
66
|
+
# {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile or edge device
|
67
|
+
# with TensorFlow afterwards. Expected to have a higher
|
68
|
+
# latency, but should also have a higher prediction quality
|
69
|
+
# than other models.
|
70
|
+
# * `mobile-core-ml-low-latency-1` - A model that, in addition to providing
|
71
|
+
# prediction via AutoML API, can also be exported (see
|
72
|
+
# {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile device with Core
|
73
|
+
# ML afterwards. Expected to have low latency, but may have
|
74
|
+
# lower prediction quality than other models.
|
75
|
+
# * `mobile-core-ml-versatile-1` - A model that, in addition to providing
|
76
|
+
# prediction via AutoML API, can also be exported (see
|
77
|
+
# {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile device with Core
|
78
|
+
# ML afterwards.
|
79
|
+
# * `mobile-core-ml-high-accuracy-1` - A model that, in addition to
|
80
|
+
# providing prediction via AutoML API, can also be exported
|
81
|
+
# (see {Google::Cloud::AutoML::V1beta1::AutoML::ExportModel AutoML::ExportModel}) and used on a mobile device with
|
82
|
+
# Core ML afterwards. Expected to have a higher latency, but
|
83
|
+
# should also have a higher prediction quality than other
|
84
|
+
# models.
|
85
|
+
class ImageClassificationModelMetadata; end
|
86
|
+
|
87
|
+
# Model metadata specific to image object detection.
|
88
|
+
# @!attribute [rw] model_type
|
89
|
+
# @return [String]
|
90
|
+
# Optional. Type of the model. The available values are:
|
91
|
+
# * `cloud-high-accuracy-1` - (default) A model to be used via prediction
|
92
|
+
# calls to AutoML API. Expected to have a higher latency, but
|
93
|
+
# should also have a higher prediction quality than other
|
94
|
+
# models.
|
95
|
+
# * `cloud-low-latency-1` - A model to be used via prediction
|
96
|
+
# calls to AutoML API. Expected to have low latency, but may
|
97
|
+
# have lower prediction quality than other models.
|
98
|
+
# @!attribute [rw] node_count
|
99
|
+
# @return [Integer]
|
100
|
+
# Output only. The number of nodes this model is deployed on. A node is an
|
101
|
+
# abstraction of a machine resource, which can handle online prediction QPS
|
102
|
+
# as given in the qps_per_node field.
|
103
|
+
# @!attribute [rw] node_qps
|
104
|
+
# @return [Float]
|
105
|
+
# Output only. An approximate number of online prediction QPS that can
|
106
|
+
# be supported by this model per each node on which it is deployed.
|
107
|
+
# @!attribute [rw] stop_reason
|
108
|
+
# @return [String]
|
109
|
+
# Output only. The reason that this create model operation stopped,
|
110
|
+
# e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
|
111
|
+
# @!attribute [rw] train_budget_milli_node_hours
|
112
|
+
# @return [Integer]
|
113
|
+
# The train budget of creating this model, expressed in milli node
|
114
|
+
# hours i.e. 1,000 value in this field means 1 node hour. The actual
|
115
|
+
# `train_cost` will be equal or less than this value. If further model
|
116
|
+
# training ceases to provide any improvements, it will stop without using
|
117
|
+
# full budget and the stop_reason will be `MODEL_CONVERGED`.
|
118
|
+
# Note, node_hour = actual_hour * number_of_nodes_invovled. The train budget
|
119
|
+
# must be between 20,000 and 2,000,000 milli node hours, inclusive. The
|
120
|
+
# default value is 216, 000 which represents one day in wall time.
|
121
|
+
# @!attribute [rw] train_cost_milli_node_hours
|
122
|
+
# @return [Integer]
|
123
|
+
# Output only. The actual train cost of creating this model, expressed in
|
124
|
+
# milli node hours, i.e. 1,000 value in this field means 1 node hour.
|
125
|
+
# Guaranteed to not exceed the train budget.
|
126
|
+
class ImageObjectDetectionModelMetadata; end
|
127
|
+
|
128
|
+
# Model deployment metadata specific to Image Object Detection.
|
129
|
+
# @!attribute [rw] node_count
|
130
|
+
# @return [Integer]
|
131
|
+
# Input only. The number of nodes to deploy the model on. A node is an
|
132
|
+
# abstraction of a machine resource, which can handle online prediction QPS
|
133
|
+
# as given in the model's
|
134
|
+
#
|
135
|
+
# {Google::Cloud::AutoML::V1beta1::ImageObjectDetectionModelMetadata#qps_per_node qps_per_node}.
|
136
|
+
# Must be between 1 and 100, inclusive on both ends.
|
137
|
+
class ImageObjectDetectionModelDeploymentMetadata; end
|
138
|
+
end
|
139
|
+
end
|
140
|
+
end
|
141
|
+
end
|