flt 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +41 -0
- data/License.txt +20 -0
- data/Manifest.txt +42 -0
- data/README.txt +557 -0
- data/Rakefile +34 -0
- data/lib/flt.rb +9 -0
- data/lib/flt/b.rb +6 -0
- data/lib/flt/bigdecimal.rb +151 -0
- data/lib/flt/bin_num.rb +250 -0
- data/lib/flt/d.rb +6 -0
- data/lib/flt/dec_num.rb +1239 -0
- data/lib/flt/float.rb +458 -0
- data/lib/flt/math.rb +66 -0
- data/lib/flt/num.rb +4211 -0
- data/lib/flt/sugar.rb +102 -0
- data/lib/flt/support.rb +1335 -0
- data/lib/flt/tolerance.rb +561 -0
- data/lib/flt/tolerance/sugar.rb +77 -0
- data/lib/flt/version.rb +9 -0
- data/setup.rb +1585 -0
- data/tasks/ann.rake +80 -0
- data/tasks/bones.rake +20 -0
- data/tasks/gem.rake +192 -0
- data/tasks/git.rake +40 -0
- data/tasks/manifest.rake +48 -0
- data/tasks/notes.rake +27 -0
- data/tasks/post_load.rake +39 -0
- data/tasks/rdoc.rake +50 -0
- data/tasks/rubyforge.rake +55 -0
- data/tasks/setup.rb +279 -0
- data/tasks/spec.rake +54 -0
- data/tasks/svn.rake +47 -0
- data/tasks/test.rake +40 -0
- data/test/all_tests.rb +23 -0
- data/test/helper.rb +101 -0
- data/test/reader.rb +68 -0
- data/test/test_basic.rb +396 -0
- data/test/test_bin.rb +245 -0
- data/test/test_bin_arithmetic.rb +94 -0
- data/test/test_binfloat_conversion.rb +24 -0
- data/test/test_coercion.rb +22 -0
- data/test/test_comparisons.rb +53 -0
- data/test/test_dectest.rb +216 -0
- data/test/test_define_conversions.rb +144 -0
- data/test/test_epsilon.rb +55 -0
- data/test/test_exact.rb +147 -0
- data/test/test_flags.rb +34 -0
- data/test/test_multithreading.rb +32 -0
- data/test/test_num_constructor.rb +133 -0
- data/test/test_odd_even.rb +78 -0
- data/test/test_round.rb +104 -0
- data/test/test_to_int.rb +104 -0
- data/test/test_to_rf.rb +36 -0
- data/test/test_tol.rb +102 -0
- data/test/test_ulp.rb +127 -0
- metadata +147 -0
data/lib/flt/sugar.rb
ADDED
@@ -0,0 +1,102 @@
|
|
1
|
+
# Optional (and intrusive) shortcuts for numeric types
|
2
|
+
#
|
3
|
+
# require 'flt/sugar'
|
4
|
+
#
|
5
|
+
# puts 0.1.split.inspect
|
6
|
+
# puts 0.1.sqrt
|
7
|
+
# puts 0.1.next_plus
|
8
|
+
#
|
9
|
+
# puts 11.odd?
|
10
|
+
# puts 11.even?
|
11
|
+
# puts 11.sign
|
12
|
+
# puts 0.sign
|
13
|
+
# puts (-11).sign
|
14
|
+
#
|
15
|
+
# puts 11.0.odd?
|
16
|
+
# puts 11.0.even?
|
17
|
+
# puts 11.0.sign
|
18
|
+
# puts 0.0.sign
|
19
|
+
# puts (-0.0).sign
|
20
|
+
# puts (-11.0).sign
|
21
|
+
#
|
22
|
+
# puts Rational(11,3).split.inspect
|
23
|
+
#
|
24
|
+
# puts BigDecimal::Math.sin(BigDecimal('0.1'), 20)
|
25
|
+
# include BigDecimal::Math
|
26
|
+
# puts sin(BigDecimal('0.1'), 20)
|
27
|
+
#
|
28
|
+
|
29
|
+
require 'flt/float'
|
30
|
+
require 'flt/bigdecimal'
|
31
|
+
require 'flt/d'
|
32
|
+
require 'flt/b'
|
33
|
+
|
34
|
+
class Float
|
35
|
+
|
36
|
+
def self.radix
|
37
|
+
context.radix
|
38
|
+
end
|
39
|
+
|
40
|
+
def self.Num(*args)
|
41
|
+
context.Num(*args)
|
42
|
+
end
|
43
|
+
|
44
|
+
class <<self
|
45
|
+
def _sugar_context_method(*methods) #:nodoc:
|
46
|
+
methods.each do |method|
|
47
|
+
define_method(method) do
|
48
|
+
Float.context.send(method, self)
|
49
|
+
end
|
50
|
+
end
|
51
|
+
end
|
52
|
+
|
53
|
+
def _sugar_math_method(*methods) #:nodoc:
|
54
|
+
methods.each do |method|
|
55
|
+
define_method(method) do
|
56
|
+
Math.send(method, self)
|
57
|
+
end
|
58
|
+
end
|
59
|
+
end
|
60
|
+
end
|
61
|
+
|
62
|
+
_sugar_context_method :split, :to_int_scale, :next_plus, :next_minus, :sign,
|
63
|
+
:special?, :subnormal?, :normal?
|
64
|
+
_sugar_math_method :sqrt, :log, :log10, :exp
|
65
|
+
|
66
|
+
def next_toward(other)
|
67
|
+
Float.context.next_toward(self, other)
|
68
|
+
end
|
69
|
+
|
70
|
+
end
|
71
|
+
|
72
|
+
class Numeric
|
73
|
+
|
74
|
+
def even?
|
75
|
+
self.modulo(2) == 0
|
76
|
+
end
|
77
|
+
|
78
|
+
def odd?
|
79
|
+
self.modulo(2) == 1
|
80
|
+
end
|
81
|
+
|
82
|
+
def sign
|
83
|
+
self < 0 ? -1 : +1
|
84
|
+
end
|
85
|
+
|
86
|
+
end
|
87
|
+
|
88
|
+
class Rational
|
89
|
+
|
90
|
+
def split
|
91
|
+
[numerator, denominator]
|
92
|
+
end
|
93
|
+
|
94
|
+
end
|
95
|
+
|
96
|
+
module BigDecimal::Math
|
97
|
+
include BigMath
|
98
|
+
instance_methods.each do |method|
|
99
|
+
module_function method
|
100
|
+
end
|
101
|
+
end
|
102
|
+
|
data/lib/flt/support.rb
ADDED
@@ -0,0 +1,1335 @@
|
|
1
|
+
module Flt
|
2
|
+
module Support
|
3
|
+
# This class assigns bit-values to a set of symbols
|
4
|
+
# so they can be used as flags and stored as an integer.
|
5
|
+
# fv = FlagValues.new(:flag1, :flag2, :flag3)
|
6
|
+
# puts fv[:flag3]
|
7
|
+
# fv.each{|f,v| puts "#{f} -> #{v}"}
|
8
|
+
class FlagValues
|
9
|
+
|
10
|
+
#include Enumerator
|
11
|
+
|
12
|
+
class InvalidFlagError < StandardError
|
13
|
+
end
|
14
|
+
class InvalidFlagTypeError < StandardError
|
15
|
+
end
|
16
|
+
|
17
|
+
|
18
|
+
# The flag symbols must be passed; values are assign in increasing order.
|
19
|
+
# fv = FlagValues.new(:flag1, :flag2, :flag3)
|
20
|
+
# puts fv[:flag3]
|
21
|
+
def initialize(*flags)
|
22
|
+
@flags = {}
|
23
|
+
value = 1
|
24
|
+
flags.each do |flag|
|
25
|
+
raise InvalidFlagType,"Flags must be defined as symbols or classes; invalid flag: #{flag.inspect}" unless flag.kind_of?(Symbol) || flag.instance_of?(Class)
|
26
|
+
@flags[flag] = value
|
27
|
+
value <<= 1
|
28
|
+
end
|
29
|
+
end
|
30
|
+
|
31
|
+
# Get the bit-value of a flag
|
32
|
+
def [](flag)
|
33
|
+
v = @flags[flag]
|
34
|
+
raise InvalidFlagError, "Invalid flag: #{flag}" unless v
|
35
|
+
v
|
36
|
+
end
|
37
|
+
|
38
|
+
# Return each flag and its bit-value
|
39
|
+
def each(&blk)
|
40
|
+
if blk.arity==2
|
41
|
+
@flags.to_a.sort_by{|f,v|v}.each(&blk)
|
42
|
+
else
|
43
|
+
@flags.to_a.sort_by{|f,v|v}.map{|f,v|f}.each(&blk)
|
44
|
+
end
|
45
|
+
end
|
46
|
+
|
47
|
+
def size
|
48
|
+
@flags.size
|
49
|
+
end
|
50
|
+
|
51
|
+
def all_flags_value
|
52
|
+
(1 << size) - 1
|
53
|
+
end
|
54
|
+
|
55
|
+
end
|
56
|
+
|
57
|
+
# This class stores a set of flags. It can be assign a FlagValues
|
58
|
+
# object (using values= or passing to the constructor) so that
|
59
|
+
# the flags can be store in an integer (bits).
|
60
|
+
class Flags
|
61
|
+
|
62
|
+
class Error < StandardError
|
63
|
+
end
|
64
|
+
class InvalidFlagError < Error
|
65
|
+
end
|
66
|
+
class InvalidFlagValueError < Error
|
67
|
+
end
|
68
|
+
class InvalidFlagTypeError < Error
|
69
|
+
end
|
70
|
+
|
71
|
+
# When a Flag object is created, the initial flags to be set can be passed,
|
72
|
+
# and also a FlagValues. If a FlagValues is passed an integer can be used
|
73
|
+
# to define the flags.
|
74
|
+
# Flags.new(:flag1, :flag3, FlagValues.new(:flag1,:flag2,:flag3))
|
75
|
+
# Flags.new(5, FlagValues.new(:flag1,:flag2,:flag3))
|
76
|
+
def initialize(*flags)
|
77
|
+
@values = nil
|
78
|
+
@flags = {}
|
79
|
+
|
80
|
+
v = 0
|
81
|
+
|
82
|
+
flags.flatten!
|
83
|
+
|
84
|
+
flags.each do |flag|
|
85
|
+
case flag
|
86
|
+
when FlagValues
|
87
|
+
@values = flag
|
88
|
+
when Symbol, Class
|
89
|
+
@flags[flag] = true
|
90
|
+
when Integer
|
91
|
+
v |= flag
|
92
|
+
when Flags
|
93
|
+
@values = flag.values
|
94
|
+
@flags = flag.to_h.dup
|
95
|
+
else
|
96
|
+
raise InvalidFlagTypeError, "Invalid flag type for: #{flag.inspect}"
|
97
|
+
end
|
98
|
+
end
|
99
|
+
|
100
|
+
if v!=0
|
101
|
+
raise InvalidFlagTypeError, "Integer flag values need flag bit values to be defined" if @values.nil?
|
102
|
+
self.bits = v
|
103
|
+
end
|
104
|
+
|
105
|
+
if @values
|
106
|
+
# check flags
|
107
|
+
@flags.each_key{|flag| check flag}
|
108
|
+
end
|
109
|
+
|
110
|
+
end
|
111
|
+
|
112
|
+
def dup
|
113
|
+
Flags.new(self)
|
114
|
+
end
|
115
|
+
|
116
|
+
# Clears all flags
|
117
|
+
def clear!
|
118
|
+
@flags = {}
|
119
|
+
end
|
120
|
+
|
121
|
+
# Sets all flags
|
122
|
+
def set!
|
123
|
+
if @values
|
124
|
+
self.bits = @values.all_flags_value
|
125
|
+
else
|
126
|
+
raise Error,"No flag values defined"
|
127
|
+
end
|
128
|
+
end
|
129
|
+
|
130
|
+
# Assign the flag bit values
|
131
|
+
def values=(fv)
|
132
|
+
@values = fv
|
133
|
+
end
|
134
|
+
|
135
|
+
# Retrieves the flag bit values
|
136
|
+
def values
|
137
|
+
@values
|
138
|
+
end
|
139
|
+
|
140
|
+
# Retrieves the flags as a bit-vector integer. Values must have been assigned.
|
141
|
+
def bits
|
142
|
+
if @values
|
143
|
+
i = 0
|
144
|
+
@flags.each do |f,v|
|
145
|
+
bit_val = @values[f]
|
146
|
+
i |= bit_val if v && bit_val
|
147
|
+
end
|
148
|
+
i
|
149
|
+
else
|
150
|
+
raise Error,"No flag values defined"
|
151
|
+
end
|
152
|
+
end
|
153
|
+
|
154
|
+
# Sets the flags as a bit-vector integer. Values must have been assigned.
|
155
|
+
def bits=(i)
|
156
|
+
if @values
|
157
|
+
raise Error, "Invalid bits value #{i}" if i<0 || i>@values.all_flags_value
|
158
|
+
clear!
|
159
|
+
@values.each do |f,v|
|
160
|
+
@flags[f]=true if (i & v)!=0
|
161
|
+
end
|
162
|
+
else
|
163
|
+
raise Error,"No flag values defined"
|
164
|
+
end
|
165
|
+
end
|
166
|
+
|
167
|
+
# Retrieves the flags as a hash.
|
168
|
+
def to_h
|
169
|
+
@flags
|
170
|
+
end
|
171
|
+
|
172
|
+
# Same as bits
|
173
|
+
def to_i
|
174
|
+
bits
|
175
|
+
end
|
176
|
+
|
177
|
+
# Retrieve the setting (true/false) of a flag
|
178
|
+
def [](flag)
|
179
|
+
check flag
|
180
|
+
@flags[flag]
|
181
|
+
end
|
182
|
+
|
183
|
+
# Modifies the setting (true/false) of a flag.
|
184
|
+
def []=(flag,value)
|
185
|
+
check flag
|
186
|
+
case value
|
187
|
+
when true,1
|
188
|
+
value = true
|
189
|
+
when false,0,nil
|
190
|
+
value = false
|
191
|
+
else
|
192
|
+
raise InvalidFlagValueError, "Invalid value: #{value.inspect}"
|
193
|
+
end
|
194
|
+
@flags[flag] = value
|
195
|
+
value
|
196
|
+
end
|
197
|
+
|
198
|
+
# Sets (makes true) one or more flags
|
199
|
+
def set(*flags)
|
200
|
+
flags = flags.first if flags.size==1 && flags.first.instance_of?(Array)
|
201
|
+
flags.each do |flag|
|
202
|
+
if flag.kind_of?(Flags)
|
203
|
+
#if @values && other.values && compatible_values(other_values)
|
204
|
+
# self.bits |= other.bits
|
205
|
+
#else
|
206
|
+
flags.concat other.to_a
|
207
|
+
#end
|
208
|
+
else
|
209
|
+
check flag
|
210
|
+
@flags[flag] = true
|
211
|
+
end
|
212
|
+
end
|
213
|
+
end
|
214
|
+
|
215
|
+
# Clears (makes false) one or more flags
|
216
|
+
def clear(*flags)
|
217
|
+
flags = flags.first if flags.size==1 && flags.first.instance_of?(Array)
|
218
|
+
flags.each do |flag|
|
219
|
+
if flag.kind_of?(Flags)
|
220
|
+
#if @values && other.values && compatible_values(other_values)
|
221
|
+
# self.bits &= ~other.bits
|
222
|
+
#else
|
223
|
+
flags.concat other.to_a
|
224
|
+
#end
|
225
|
+
else
|
226
|
+
check flag
|
227
|
+
@flags[flag] = false
|
228
|
+
end
|
229
|
+
end
|
230
|
+
end
|
231
|
+
|
232
|
+
# Sets (makes true) one or more flags (passes as an array)
|
233
|
+
def << (flags)
|
234
|
+
if flags.kind_of?(Array)
|
235
|
+
set(*flags)
|
236
|
+
else
|
237
|
+
set(flags)
|
238
|
+
end
|
239
|
+
end
|
240
|
+
|
241
|
+
# Iterate on each flag/setting pair.
|
242
|
+
def each(&blk)
|
243
|
+
if @values
|
244
|
+
@values.each do |f,v|
|
245
|
+
blk.call(f,@flags[f])
|
246
|
+
end
|
247
|
+
else
|
248
|
+
@flags.each(&blk)
|
249
|
+
end
|
250
|
+
end
|
251
|
+
|
252
|
+
# Iterate on each set flag
|
253
|
+
def each_set
|
254
|
+
each do |f,v|
|
255
|
+
yield f if v
|
256
|
+
end
|
257
|
+
end
|
258
|
+
|
259
|
+
# Iterate on each cleared flag
|
260
|
+
def each_clear
|
261
|
+
each do |f,v|
|
262
|
+
yield f if !v
|
263
|
+
end
|
264
|
+
end
|
265
|
+
|
266
|
+
# returns true if any flag is set
|
267
|
+
def any?
|
268
|
+
if @values
|
269
|
+
bits != 0
|
270
|
+
else
|
271
|
+
to_a.size>0
|
272
|
+
end
|
273
|
+
end
|
274
|
+
|
275
|
+
# Returns the true flags as an array
|
276
|
+
def to_a
|
277
|
+
a = []
|
278
|
+
each_set{|f| a << f}
|
279
|
+
a
|
280
|
+
end
|
281
|
+
|
282
|
+
def to_s
|
283
|
+
"[#{to_a.map{|f| f.to_s.split('::').last}.join(', ')}]"
|
284
|
+
end
|
285
|
+
|
286
|
+
def inspect
|
287
|
+
txt = "#{self.class.to_s}#{to_s}"
|
288
|
+
txt << " (0x#{bits.to_s(16)})" if @values
|
289
|
+
txt
|
290
|
+
end
|
291
|
+
|
292
|
+
|
293
|
+
def ==(other)
|
294
|
+
if @values && other.values && compatible_values?(other.values)
|
295
|
+
bits == other.bits
|
296
|
+
else
|
297
|
+
to_a.map{|s| s.to_s}.sort == other.to_a.map{|s| s.to_s}.sort
|
298
|
+
end
|
299
|
+
end
|
300
|
+
|
301
|
+
|
302
|
+
|
303
|
+
private
|
304
|
+
def check(flag)
|
305
|
+
raise InvalidFlagType,"Flags must be defined as symbols or classes; invalid flag: #{flag.inspect}" unless flag.kind_of?(Symbol) || flag.instance_of?(Class)
|
306
|
+
|
307
|
+
@values[flag] if @values # raises an invalid flag error if flag is invalid
|
308
|
+
true
|
309
|
+
end
|
310
|
+
|
311
|
+
def compatible_values?(v)
|
312
|
+
#@values.object_id==v.object_id
|
313
|
+
@values == v
|
314
|
+
end
|
315
|
+
|
316
|
+
end
|
317
|
+
|
318
|
+
module_function
|
319
|
+
|
320
|
+
# Constructor for FlagValues
|
321
|
+
def FlagValues(*params)
|
322
|
+
if params.size==1 && params.first.kind_of?(FlagValues)
|
323
|
+
params.first
|
324
|
+
else
|
325
|
+
FlagValues.new(*params)
|
326
|
+
end
|
327
|
+
end
|
328
|
+
|
329
|
+
# Constructor for Flags
|
330
|
+
def Flags(*params)
|
331
|
+
if params.size==1 && params.first.kind_of?(Flags)
|
332
|
+
params.first
|
333
|
+
else
|
334
|
+
Flags.new(*params)
|
335
|
+
end
|
336
|
+
end
|
337
|
+
|
338
|
+
module_function
|
339
|
+
# replace :ceiling and :floor rounding modes by :up/:down (depending on sign of the number to be rounded)
|
340
|
+
def simplified_round_mode(round_mode, negative)
|
341
|
+
if negative
|
342
|
+
if round_mode == :ceiling
|
343
|
+
round_mode = :floor
|
344
|
+
elsif round_mode == :floor
|
345
|
+
round_mode = :ceiling
|
346
|
+
end
|
347
|
+
end
|
348
|
+
if round_mode == :ceiling
|
349
|
+
round_mode = :up
|
350
|
+
elsif round_mode == :floor
|
351
|
+
round_mode = :down
|
352
|
+
end
|
353
|
+
round_mode
|
354
|
+
end
|
355
|
+
|
356
|
+
|
357
|
+
# Floating-point reading and printing (from/to text literals).
|
358
|
+
#
|
359
|
+
# Here are methods for floating-point reading using algorithms by William D. Clinger and
|
360
|
+
# printing using algorithms by Robert G. Burger and R. Kent Dybvig.
|
361
|
+
#
|
362
|
+
# Reading and printing can also viewed as floating-point conversion betwen a fixed-precision
|
363
|
+
# floating-point format (the floating-point numbers) and and a free floating-point format (text) which
|
364
|
+
# may use different numerical bases.
|
365
|
+
#
|
366
|
+
# The Reader class implements, in the default :free mode, converts a free-form numeric value
|
367
|
+
# (as a text literal, i.e. a free floating-point format, usually in base 10) which is taken
|
368
|
+
# as an exact value, to a correctly-rounded floating-point of specified precision and with a
|
369
|
+
# specified rounding mode. It also has a :fixed mode that uses the Formatter class indirectly.
|
370
|
+
#
|
371
|
+
# The Formatter class implements the Burger-Dybvig printing algorithm which converts a
|
372
|
+
# fixed-precision floating point value and produces a text literal in same base, usually 10,
|
373
|
+
# (equivalently, it produces a floating-point free-format value) so that it rounds back to
|
374
|
+
# the original value (with some specified rounding-mode or any round-to-nearest mode) and with
|
375
|
+
# the same original precision (e.g. using the Clinger algorithm)
|
376
|
+
|
377
|
+
# Clinger algorithms to read floating point numbers from text literals with correct rounding.
|
378
|
+
# from his paper: "How to Read Floating Point Numbers Accurately"
|
379
|
+
# (William D. Clinger)
|
380
|
+
class Reader
|
381
|
+
|
382
|
+
# There are two different reading approaches, selected by the :mode parameter:
|
383
|
+
# * :fixed (the destination context defines the resulting precision) input is rounded as specified
|
384
|
+
# by the context; if the context precision is 'exact', the exact input value will be represented
|
385
|
+
# in the destination base, which can lead to a Inexact exception (or a NaN result and an Inexact flag)
|
386
|
+
# * :free The input precision is preserved, and the destination context precision is ignored;
|
387
|
+
# in this case the result can be converted back to the original number (with the same precision)
|
388
|
+
# a rounding mode for the back conversion may be passed; otherwise any round-to-nearest is assumed.
|
389
|
+
# (to increase the precision of the result the input precision must be increased --adding trailing zeros)
|
390
|
+
# * :short is like :free, but the minumum number of digits that preserve the original value
|
391
|
+
# are generated (with :free, all significant digits are generated)
|
392
|
+
#
|
393
|
+
# For the fixed mode there are three conversion algorithms available that can be selected with the
|
394
|
+
# :algorithm parameter:
|
395
|
+
# * :A Arithmetic algorithm, using correctly rounded Flt::Num arithmetic.
|
396
|
+
# * :M The Clinger Algorithm M is the slowest method, but it was the first implemented and testes and
|
397
|
+
# is kept as a reference for testing.
|
398
|
+
# * :R The Clinger Algorithm R, which requires an initial approximation is currently only implemented
|
399
|
+
# for Float and is the fastest by far.
|
400
|
+
def initialize(options={})
|
401
|
+
@exact = nil
|
402
|
+
@algorithm = options[:algorithm]
|
403
|
+
@mode = options[:mode] || :fixed
|
404
|
+
end
|
405
|
+
|
406
|
+
def exact?
|
407
|
+
@exact
|
408
|
+
end
|
409
|
+
|
410
|
+
# Given exact integers f and e, with f nonnegative, returns the floating-point number
|
411
|
+
# closest to f * eb**e
|
412
|
+
# (eb is the input radix)
|
413
|
+
#
|
414
|
+
# If the context precision is exact an Inexact exception may occur (an NaN be returned)
|
415
|
+
# if an exact conversion is not possible.
|
416
|
+
#
|
417
|
+
# round_mode: in :fixed mode it specifies how to round the result (to the context precision); it
|
418
|
+
# is passed separate from context for flexibility.
|
419
|
+
# in :free mode it specifies what rounding would be used to convert back the output to the
|
420
|
+
# input base eb (using the same precision that f has).
|
421
|
+
def read(context, round_mode, sign, f, e, eb=10)
|
422
|
+
@exact = true
|
423
|
+
|
424
|
+
case @mode
|
425
|
+
when :free, :short
|
426
|
+
all_digits = (@mode == :free)
|
427
|
+
# for free mode, (any) :nearest rounding is used by default
|
428
|
+
Num.convert(Num[eb].Num(sign, f, e), context.num_class, :rounding=>round_mode||:nearest, :all_digits=>all_digits)
|
429
|
+
when :fixed
|
430
|
+
if exact_mode = context.exact?
|
431
|
+
a,b = [eb, context.radix].sort
|
432
|
+
m = (Math.log(b)/Math.log(a)).round
|
433
|
+
if b == a**m
|
434
|
+
# conmensurable bases
|
435
|
+
if eb > context.radix
|
436
|
+
n = AuxiliarFunctions._ndigits(f, eb)*m
|
437
|
+
else
|
438
|
+
n = (AuxiliarFunctions._ndigits(f, eb)+m-1)/m
|
439
|
+
end
|
440
|
+
else
|
441
|
+
# inconmesurable bases; exact result may not be possible
|
442
|
+
x = Num[eb].Num(sign, f, e)
|
443
|
+
x = Num.convert_exact(x, context.num_class, context)
|
444
|
+
@exact = !x.nan?
|
445
|
+
return x
|
446
|
+
end
|
447
|
+
else
|
448
|
+
n = context.precision
|
449
|
+
end
|
450
|
+
if round_mode == :nearest
|
451
|
+
# :nearest is not meaningful here in :fixed mode; replace it
|
452
|
+
if [:half_even, :half_up, :half_down].include?(context.rounding)
|
453
|
+
round_mode = context.rounding
|
454
|
+
else
|
455
|
+
round_mode = :half_even
|
456
|
+
end
|
457
|
+
end
|
458
|
+
# for fixed mode, use the context rounding by default
|
459
|
+
round_mode ||= context.rounding
|
460
|
+
alg = @algorithm
|
461
|
+
if (context.radix == 2 && alg.nil?) || alg==:R
|
462
|
+
z0 = _alg_r_approx(context, round_mode, sign, f, e, eb, n)
|
463
|
+
alg = z0 && :R
|
464
|
+
end
|
465
|
+
alg ||= :A
|
466
|
+
case alg
|
467
|
+
when :M, :R
|
468
|
+
round_mode = Support.simplified_round_mode(round_mode, sign == -1)
|
469
|
+
case alg
|
470
|
+
when :M
|
471
|
+
_alg_m(context, round_mode, sign, f, e, eb, n)
|
472
|
+
when :R
|
473
|
+
_alg_r(z0, context, round_mode, sign, f, e, eb, n)
|
474
|
+
end
|
475
|
+
else # :A
|
476
|
+
# direct arithmetic conversion
|
477
|
+
if round_mode == context.rounding
|
478
|
+
x = Num.convert_exact(Num[eb].Num(sign, f, e), context.num_class, context)
|
479
|
+
x = context.normalize(x) unless !context.respond_to?(:normalize) || context.exact?
|
480
|
+
x
|
481
|
+
else
|
482
|
+
if context.num_class == Float
|
483
|
+
float = true
|
484
|
+
context = BinNum::FloatContext
|
485
|
+
end
|
486
|
+
x = context.num_class.context(context) do |context|
|
487
|
+
context.rounding = round_mode
|
488
|
+
Num.convert_exact(Num[eb].Num(sign, f, e), context.num_class, context)
|
489
|
+
end
|
490
|
+
if float
|
491
|
+
x = x.to_f
|
492
|
+
else
|
493
|
+
x = context.normalize(x) unless context.exact?
|
494
|
+
end
|
495
|
+
x
|
496
|
+
end
|
497
|
+
end
|
498
|
+
end
|
499
|
+
end
|
500
|
+
|
501
|
+
def _alg_r_approx(context, round_mode, sign, f, e, eb, n)
|
502
|
+
|
503
|
+
return nil if context.radix != Float::RADIX || context.exact? || context.precision > Float::MANT_DIG
|
504
|
+
|
505
|
+
# Compute initial approximation; if Float uses IEEE-754 binary arithmetic, the approximation
|
506
|
+
# is good enough to be adjusted in just one step.
|
507
|
+
@good_approx = true
|
508
|
+
|
509
|
+
ndigits = Support::AuxiliarFunctions._ndigits(f, eb)
|
510
|
+
adj_exp = e + ndigits - 1
|
511
|
+
min_exp, max_exp = Reader.float_min_max_adj_exp(eb)
|
512
|
+
|
513
|
+
if adj_exp >= min_exp && adj_exp <= max_exp
|
514
|
+
if eb==2
|
515
|
+
z0 = Math.ldexp(f,e)
|
516
|
+
elsif eb==10
|
517
|
+
unless Flt.float_correctly_rounded?
|
518
|
+
min_exp_norm, max_exp_norm = Reader.float_min_max_adj_exp(eb, true)
|
519
|
+
@good_approx = false
|
520
|
+
return nil if e <= min_exp_norm
|
521
|
+
end
|
522
|
+
z0 = Float("#{f}E#{e}")
|
523
|
+
else
|
524
|
+
ff = f
|
525
|
+
ee = e
|
526
|
+
min_exp_norm, max_exp_norm = Reader.float_min_max_adj_exp(eb, true)
|
527
|
+
if e <= min_exp_norm
|
528
|
+
# avoid loss of precision due to gradual underflow
|
529
|
+
return nil if e <= min_exp
|
530
|
+
@good_approx = false
|
531
|
+
ff = Float(f)*Float(eb)**(e-min_exp_norm-1)
|
532
|
+
ee = min_exp_norm + 1
|
533
|
+
end
|
534
|
+
# if ee < 0
|
535
|
+
# z0 = Float(ff)/Float(eb**(-ee))
|
536
|
+
# else
|
537
|
+
# z0 = Float(ff)*Float(eb**ee)
|
538
|
+
# end
|
539
|
+
z0 = Float(ff)*Float(eb)**ee
|
540
|
+
end
|
541
|
+
|
542
|
+
if z0 && context.num_class != Float
|
543
|
+
@good_approx = false
|
544
|
+
z0 = context.Num(z0).plus(context) # context.plus(z0) ?
|
545
|
+
else
|
546
|
+
z0 = context.Num(z0)
|
547
|
+
end
|
548
|
+
end
|
549
|
+
|
550
|
+
end
|
551
|
+
|
552
|
+
def _alg_r(z0, context, round_mode, sign, f, e, eb, n) # Fast for Float
|
553
|
+
#raise InvalidArgument, "Reader Algorithm R only supports base 2" if context.radix != 2
|
554
|
+
|
555
|
+
@z = z0
|
556
|
+
@r = context.radix
|
557
|
+
@rp_n_1 = context.int_radix_power(n-1)
|
558
|
+
@round_mode = round_mode
|
559
|
+
|
560
|
+
ret = nil
|
561
|
+
loop do
|
562
|
+
m, k = context.to_int_scale(@z)
|
563
|
+
# TODO: replace call to compare by setting the parameters in local variables,
|
564
|
+
# then insert the body of compare here;
|
565
|
+
# then eliminate innecesary instance variables
|
566
|
+
if e >= 0 && k >= 0
|
567
|
+
ret = compare m, f*eb**e, m*@r**k, context
|
568
|
+
elsif e >= 0 && k < 0
|
569
|
+
ret = compare m, f*eb**e*@r**(-k), m, context
|
570
|
+
elsif e < 0 && k >= 0
|
571
|
+
ret = compare m, f, m*@r**k*eb**(-e), context
|
572
|
+
else # e < 0 && k < 0
|
573
|
+
ret = compare m, f*@r**(-k), m*eb**(-e), context
|
574
|
+
end
|
575
|
+
break if ret
|
576
|
+
end
|
577
|
+
ret && context.copy_sign(ret, sign) # TODO: normalize?
|
578
|
+
end
|
579
|
+
|
580
|
+
@float_min_max_exp_values = {
|
581
|
+
10 => [Float::MIN_10_EXP, Float::MAX_10_EXP],
|
582
|
+
Float::RADIX => [Float::MIN_EXP, Float::MAX_EXP],
|
583
|
+
-Float::RADIX => [Float::MIN_EXP-Float::MANT_DIG, Float::MAX_EXP-Float::MANT_DIG]
|
584
|
+
}
|
585
|
+
class <<self
|
586
|
+
# Minimum & maximum adjusted exponent for numbers in base to be in the range of Floats
|
587
|
+
def float_min_max_adj_exp(base, normalized=false)
|
588
|
+
k = normalized ? base : -base
|
589
|
+
unless min_max = @float_min_max_exp_values[k]
|
590
|
+
max_exp = (Math.log(Float::MAX)/Math.log(base)).floor
|
591
|
+
e = Float::MIN_EXP
|
592
|
+
e -= Float::MANT_DIG unless normalized
|
593
|
+
min_exp = (e*Math.log(Float::RADIX)/Math.log(base)).ceil
|
594
|
+
@float_min_max_exp_values[k] = min_max = [min_exp, max_exp]
|
595
|
+
end
|
596
|
+
min_max.map{|e| e - 1} # adjust
|
597
|
+
end
|
598
|
+
end
|
599
|
+
|
600
|
+
def compare(m, x, y, context)
|
601
|
+
ret = nil
|
602
|
+
d = x-y
|
603
|
+
d2 = 2*m*d.abs
|
604
|
+
|
605
|
+
# v = f*eb**e is the number to be approximated
|
606
|
+
# z = m*@r**k is the current aproximation
|
607
|
+
# the error of @z is eps = abs(v-z) = 1/2 * d2 / y
|
608
|
+
# we have x, y integers such that x/y = v/z
|
609
|
+
# so eps < 1/2 <=> d2 < y
|
610
|
+
# d < 0 <=> x < y <=> v < z
|
611
|
+
|
612
|
+
directed_rounding = [:up, :down].include?(@round_mode)
|
613
|
+
|
614
|
+
if directed_rounding
|
615
|
+
if @round_mode==:up ? (d <= 0) : (d < 0)
|
616
|
+
# v <(=) z
|
617
|
+
chk = (m == @rp_n_1) ? d2*@r : d2
|
618
|
+
if (@round_mode == :up) && (chk < 2*y)
|
619
|
+
# eps < 1
|
620
|
+
ret = @z
|
621
|
+
else
|
622
|
+
@z = context.next_minus(@z)
|
623
|
+
end
|
624
|
+
else # @round_mode==:up ? (d > 0) : (d >= 0)
|
625
|
+
# v >(=) z
|
626
|
+
if (@round_mode == :down) && (d2 < 2*y)
|
627
|
+
# eps < 1
|
628
|
+
ret = @z
|
629
|
+
else
|
630
|
+
@z = context.next_plus(@z)
|
631
|
+
end
|
632
|
+
end
|
633
|
+
else
|
634
|
+
if d2 < y # eps < 1/2
|
635
|
+
if (m == @rp_n_1) && (d < 0) && (y < @r*d2)
|
636
|
+
# z has the minimum normalized significand, i.e. is a power of @r
|
637
|
+
# and v < z
|
638
|
+
# and @r*eps > 1/2
|
639
|
+
# On the left of z the ulp is 1/@r than the ulp on the right; if v < z we
|
640
|
+
# must require an error @r times smaller.
|
641
|
+
@z = context.next_minus(@z)
|
642
|
+
else
|
643
|
+
# unambiguous nearest
|
644
|
+
ret = @z
|
645
|
+
end
|
646
|
+
elsif d2 == y # eps == 1/2
|
647
|
+
# round-to-nearest tie
|
648
|
+
if @round_mode == :half_even
|
649
|
+
if (m%2) == 0
|
650
|
+
# m is even
|
651
|
+
if (m == @rp_n_1) && (d < 0)
|
652
|
+
# z is power of @r and v < z; this wasn't really a tie because
|
653
|
+
# there are closer values on the left
|
654
|
+
@z = context.next_minus(@z)
|
655
|
+
else
|
656
|
+
# m is even => round tie to z
|
657
|
+
ret = @z
|
658
|
+
end
|
659
|
+
elsif d < 0
|
660
|
+
# m is odd, v < z => round tie to prev
|
661
|
+
ret = context.next_minus(@z)
|
662
|
+
elsif d > 0
|
663
|
+
# m is odd, v > z => round tie to next
|
664
|
+
ret = context.next_plus(@z)
|
665
|
+
end
|
666
|
+
elsif @round_mode == :half_up
|
667
|
+
if d < 0
|
668
|
+
# v < z
|
669
|
+
if (m == @rp_n_1)
|
670
|
+
# this was not really a tie
|
671
|
+
@z = context.next_minus(@z)
|
672
|
+
else
|
673
|
+
ret = @z
|
674
|
+
end
|
675
|
+
else # d > 0
|
676
|
+
# v >= z
|
677
|
+
ret = context.next_plus(@z)
|
678
|
+
end
|
679
|
+
else # @round_mode == :half_down
|
680
|
+
if d < 0
|
681
|
+
# v < z
|
682
|
+
if (m == @rp_n_1)
|
683
|
+
# this was not really a tie
|
684
|
+
@z = context.next_minus(@z)
|
685
|
+
else
|
686
|
+
ret = context.next_minus(@z)
|
687
|
+
end
|
688
|
+
else # d < 0
|
689
|
+
# v > z
|
690
|
+
ret = @z
|
691
|
+
end
|
692
|
+
end
|
693
|
+
elsif d < 0 # eps > 1/2 and v < z
|
694
|
+
@z = context.next_minus(@z)
|
695
|
+
elsif d > 0 # eps > 1/2 and v > z
|
696
|
+
@z = context.next_plus(@z)
|
697
|
+
end
|
698
|
+
end
|
699
|
+
|
700
|
+
# Assume the initial approx is good enough (uses IEEE-754 arithmetic with round-to-nearest),
|
701
|
+
# so we can avoid further iteration, except for directed rounding
|
702
|
+
ret ||= @z unless directed_rounding || !@good_approx
|
703
|
+
|
704
|
+
return ret
|
705
|
+
end
|
706
|
+
|
707
|
+
# Algorithm M to read floating point numbers from text literals with correct rounding
|
708
|
+
# from his paper: "How to Read Floating Point Numbers Accurately" (William D. Clinger)
|
709
|
+
def _alg_m(context, round_mode, sign, f, e, eb, n)
|
710
|
+
if e<0
|
711
|
+
u,v,k = f,eb**(-e),0
|
712
|
+
else
|
713
|
+
u,v,k = f*(eb**e),1,0
|
714
|
+
end
|
715
|
+
min_e = context.etiny
|
716
|
+
max_e = context.etop
|
717
|
+
rp_n = context.int_radix_power(n)
|
718
|
+
rp_n_1 = context.int_radix_power(n-1)
|
719
|
+
r = context.radix
|
720
|
+
loop do
|
721
|
+
x = u.div(v) # bottleneck
|
722
|
+
if (x>=rp_n_1 && x<rp_n) || k==min_e || k==max_e
|
723
|
+
z, exact = Reader.ratio_float(context,u,v,k,round_mode)
|
724
|
+
@exact = exact
|
725
|
+
if context.respond_to?(:exception)
|
726
|
+
if k==min_e
|
727
|
+
context.exception(Num::Subnormal) if z.subnormal?
|
728
|
+
context.exception(Num::Underflow,"Input literal out of range") if z.zero? && f!=0
|
729
|
+
elsif k==max_e
|
730
|
+
if !context.exact? && z.coefficient > context.maximum_coefficient
|
731
|
+
context.exception(Num::Overflow,"Input literal out of range")
|
732
|
+
end
|
733
|
+
end
|
734
|
+
context.exception Num::Inexact if !exact
|
735
|
+
end
|
736
|
+
return z.copy_sign(sign)
|
737
|
+
elsif x<rp_n_1
|
738
|
+
u *= r
|
739
|
+
k -= 1
|
740
|
+
elsif x>=rp_n
|
741
|
+
v *= r
|
742
|
+
k += 1
|
743
|
+
end
|
744
|
+
end
|
745
|
+
end
|
746
|
+
|
747
|
+
# Given exact positive integers u and v with beta**(n-1) <= u/v < beta**n
|
748
|
+
# and exact integer k, returns the floating point number closest to u/v * beta**n
|
749
|
+
# (beta is the floating-point radix)
|
750
|
+
def self.ratio_float(context, u, v, k, round_mode)
|
751
|
+
# since this handles only positive numbers and ceiling and floor
|
752
|
+
# are not symmetrical, they should have been swapped before calling this.
|
753
|
+
q = u.div v
|
754
|
+
r = u-q*v
|
755
|
+
v_r = v-r
|
756
|
+
z = context.Num(+1,q,k)
|
757
|
+
exact = (r==0)
|
758
|
+
if round_mode == :down
|
759
|
+
# z = z
|
760
|
+
elsif (round_mode == :up) && r>0
|
761
|
+
z = context.next_plus(z)
|
762
|
+
elsif r<v_r
|
763
|
+
# z = z
|
764
|
+
elsif r>v_r
|
765
|
+
z = context.next_plus(z)
|
766
|
+
else
|
767
|
+
# tie
|
768
|
+
if (round_mode == :half_down) || (round_mode == :half_even && ((q%2)==0)) || (round_mode == :down)
|
769
|
+
# z = z
|
770
|
+
else
|
771
|
+
z = context.next_plus(z)
|
772
|
+
end
|
773
|
+
end
|
774
|
+
return z, exact
|
775
|
+
end
|
776
|
+
|
777
|
+
end # Reader
|
778
|
+
|
779
|
+
# Burger and Dybvig free formatting algorithm,
|
780
|
+
# from their paper: "Printing Floating-Point Numbers Quickly and Accurately"
|
781
|
+
# (Robert G. Burger, R. Kent Dybvig)
|
782
|
+
#
|
783
|
+
# This algorithm formats arbitrary base floating point numbers as decimal
|
784
|
+
# text literals. The floating-point (with fixed precision) is interpreted as an approximated
|
785
|
+
# value, representing any value in its 'rounding-range' (the interval where all values round
|
786
|
+
# to the floating-point value, with the given precision and rounding mode).
|
787
|
+
# An alternative approach which is not taken here would be to represent the exact floating-point
|
788
|
+
# value with some given precision and rounding mode requirements; that can be achieved with
|
789
|
+
# Clinger algorithm (which may fail for exact precision).
|
790
|
+
#
|
791
|
+
# The variables used by the algorithm are stored in instance variables:
|
792
|
+
# @v - The number to be formatted = @f*@b**@e
|
793
|
+
# @b - The numberic base of the input floating-point representation of @v
|
794
|
+
# @f - The significand or characteristic (fraction)
|
795
|
+
# @e - The exponent
|
796
|
+
#
|
797
|
+
# Quotients of integers will be used to hold the magnitudes:
|
798
|
+
# @s is the denominator of all fractions
|
799
|
+
# @r numerator of @v: @v = @r/@s
|
800
|
+
# @m_m numerator of the distance from the rounding-range lower limit, l, to @v: @m_m/@s = (@v - l)
|
801
|
+
# @m_p numerator of the distance from @v to the rounding-range upper limit, u: @m_p/@s = (u - @v)
|
802
|
+
# All numbers in the randound-range are rounded to @v (with the given precision p)
|
803
|
+
# @k scale factor that is applied to the quotients @r/@s, @m_m/@s and @m_p/@s to put the first
|
804
|
+
# significant digit right after the radix point. @b**@k is the first power of @b >= u
|
805
|
+
#
|
806
|
+
# The rounding range of @v is the interval of values that round to @v under the runding-mode.
|
807
|
+
# If the rounding mode is one of the round-to-nearest variants (even, up, down), then
|
808
|
+
# it is ((v+v-)/2 = (@v-@m_m)/@s, (v+v+)/2 = (@v+@m_)/2) whith the boundaries open or closed as explained below.
|
809
|
+
# In this case:
|
810
|
+
# @m_m/@s = (@v - (v + v-)/2) where v- = @v.next_minus is the lower adjacent to v floating point value
|
811
|
+
# @m_p/@s = ((v + v+)/2 - @v) where v+ = @v.next_plus is the upper adjacent to v floating point value
|
812
|
+
# If the rounding is directed, then the rounding interval is either (v-, @v] or [@v, v+]
|
813
|
+
# @roundl is true if the lower limit of the rounding range is closed (i.e., if l rounds to @v)
|
814
|
+
# @roundh is true if the upper limit of the rounding range is closed (i.e., if u rounds to @v)
|
815
|
+
# if @roundh, then @k is the minimum @k with (@r+@m_p)/@s <= @output_b**@k
|
816
|
+
# @k = ceil(logB((@r+@m_p)/2)) with lobB the @output_b base logarithm
|
817
|
+
# if @roundh, then @k is the minimum @k with (@r+@m_p)/@s < @output_b**@k
|
818
|
+
# @k = 1+floor(logB((@r+@m_p)/2))
|
819
|
+
#
|
820
|
+
# @output_b is the output base
|
821
|
+
# @output_min_e is the output minimum exponent
|
822
|
+
# p is the input floating point precision
|
823
|
+
class Formatter
|
824
|
+
|
825
|
+
# This Object-oriented implementation is slower than the functional one for two reasons:
|
826
|
+
# * The overhead of object creation
|
827
|
+
# * The use of instance variables instead of local variables
|
828
|
+
# But if scale is optimized or local variables are used in the inner loops, then this implementation
|
829
|
+
# is on par with the functional one for Float and it is more efficient for Flt types, where the variables
|
830
|
+
# passed as parameters hold larger objects.
|
831
|
+
|
832
|
+
def initialize(input_b, input_min_e, output_b)
|
833
|
+
@b = input_b
|
834
|
+
@min_e = input_min_e
|
835
|
+
@output_b = output_b
|
836
|
+
# result of last operation
|
837
|
+
@adjusted_digits = @digits = nil
|
838
|
+
# for "all-digits" mode results (which are truncated, rather than rounded),
|
839
|
+
# round_up contains information to round the result:
|
840
|
+
# * it is nil if the rest of digits are zero (the result is exact)
|
841
|
+
# * it is :lo if there exist non-zero digits beyond the significant ones (those returned), but
|
842
|
+
# the value is below the tie (the value must be rounded up only for :up rounding mode)
|
843
|
+
# * it is :tie if there exists exactly one nonzero digit after the significant and it is radix/2,
|
844
|
+
# for round-to-nearest it is atie.
|
845
|
+
# * it is :hi otherwise (the value should be rounded-up except for the :down mode)
|
846
|
+
@round_up = nil
|
847
|
+
end
|
848
|
+
|
849
|
+
# This method converts v = f*b**e into a sequence of output_b-base digits,
|
850
|
+
# so that if the digits are converted back to a floating-point value
|
851
|
+
# of precision p (correctly rounded), the result is v.
|
852
|
+
# If round_mode is not nil, just enough digits to produce v using
|
853
|
+
# that rounding is used; otherwise enough digits to produce v with
|
854
|
+
# any rounding are delivered.
|
855
|
+
#
|
856
|
+
# If the +all+ parameter is true, all significant digits are generated without rounding,
|
857
|
+
# i.e. all digits that, if used on input, cannot arbitrarily change
|
858
|
+
# while preserving the parsed value of the floating point number. Since the digits are not rounded
|
859
|
+
# more digits may be needed to assure round-trip value preservation.
|
860
|
+
# This is useful to reflect the precision of the floating point value in the output; in particular
|
861
|
+
# trailing significant zeros are shown. But note that, for directed rounding and base conversion
|
862
|
+
# this may need to produce an infinite number of digits, in which case an exception will be raised.
|
863
|
+
# This is specially frequent for the :up rounding mode, in which any number with a finite number
|
864
|
+
# of nonzero digits equal to or less than the precision will haver and infinite sequence of zero
|
865
|
+
# significant digits.
|
866
|
+
#
|
867
|
+
# With :down rounding (truncation) this could be used to show the exact value of the floating
|
868
|
+
# point but beware: when used with directed rounding, if the value has not an exact representation
|
869
|
+
# in the output base this will lead to an infinite loop.
|
870
|
+
# formatting '0.1' (as a decimal floating-point number) in base 2 with :down rounding
|
871
|
+
#
|
872
|
+
# When the +all+ parameters is used the result is not rounded (is truncated), and the round_up flag
|
873
|
+
# is set to indicate that nonzero digits exists beyond the returned digits; the possible values
|
874
|
+
# of the round_up flag are:
|
875
|
+
# * nil : the rest of digits are zero (the result is exact)
|
876
|
+
# * :lo : there exist non-zero digits beyond the significant ones (those returned), but
|
877
|
+
# the value is below the tie (the value must be rounded up only for :up rounding mode)
|
878
|
+
# * :tie : there exists exactly one nonzero digit after the significant and it is radix/2,
|
879
|
+
# for round-to-nearest it is atie.
|
880
|
+
# * :hi : the value is closer to the rounded-up value (incrementing the last significative digit.)
|
881
|
+
#
|
882
|
+
# Note that the round_mode here is not the rounding mode applied to the output;
|
883
|
+
# it is the rounding mode that applied to *input* preserves the original floating-point
|
884
|
+
# value (with the same precision as input).
|
885
|
+
# should be rounded-up.
|
886
|
+
def format(v, f, e, round_mode, p=nil, all=false)
|
887
|
+
context = v.class.context
|
888
|
+
# TODO: consider removing parameters f,e and using v.split instead
|
889
|
+
@minus = (context.sign(v)==-1)
|
890
|
+
@v = context.copy_sign(v, +1) # don't use context.abs(v) because it rounds (and may overflow also)
|
891
|
+
@f = f.abs
|
892
|
+
@e = e
|
893
|
+
@round_mode = round_mode
|
894
|
+
@all_digits = all
|
895
|
+
p ||= context.precision
|
896
|
+
|
897
|
+
# adjust the rounding mode to work only with positive numbers
|
898
|
+
@round_mode = Support.simplified_round_mode(@round_mode, @minus)
|
899
|
+
|
900
|
+
# determine the high,low inclusion flags of the rounding limits
|
901
|
+
case @round_mode
|
902
|
+
when :half_even
|
903
|
+
# rounding rage is (v-m-,v+m+) if v is odd and [v+m-,v+m+] if even
|
904
|
+
@round_l = @round_h = ((@f%2)==0)
|
905
|
+
when :up
|
906
|
+
# rounding rage is (v-,v]
|
907
|
+
# ceiling is treated here assuming f>0
|
908
|
+
@round_l, @round_h = false, true
|
909
|
+
when :down
|
910
|
+
# rounding rage is [v,v+)
|
911
|
+
# floor is treated here assuming f>0
|
912
|
+
@round_l, @round_h = true, false
|
913
|
+
when :half_up
|
914
|
+
# rounding rage is [v+m-,v+m+)
|
915
|
+
@round_l, @round_h = true, false
|
916
|
+
when :half_down
|
917
|
+
# rounding rage is (v+m-,v+m+]
|
918
|
+
@round_l, @round_h = false, true
|
919
|
+
else # :nearest
|
920
|
+
# Here assume only that round-to-nearest will be used, but not which variant of it
|
921
|
+
# The result is valid for any rounding (to nearest) but may produce more digits
|
922
|
+
# than stricly necessary for specific rounding modes.
|
923
|
+
# That is, enough digits are generated so that when the result is
|
924
|
+
# converted to floating point with the specified precision and
|
925
|
+
# correct rounding (to nearest), the result is the original number.
|
926
|
+
# rounding range is (v+m-,v+m+)
|
927
|
+
@round_l = @round_h = false
|
928
|
+
end
|
929
|
+
|
930
|
+
# TODO: use context.next_minus, next_plus instead of direct computing, don't require min_e & ps
|
931
|
+
# Now compute the working quotients @r/@s, @m_p/@s = (v+ - @v), @m_m/@s = (@v - v-) and scale them.
|
932
|
+
if @e >= 0
|
933
|
+
if @f != b_power(p-1)
|
934
|
+
be = b_power(@e)
|
935
|
+
@r, @s, @m_p, @m_m = @f*be*2, 2, be, be
|
936
|
+
else
|
937
|
+
be = b_power(@e)
|
938
|
+
be1 = be*@b
|
939
|
+
@r, @s, @m_p, @m_m = @f*be1*2, @b*2, be1, be
|
940
|
+
end
|
941
|
+
else
|
942
|
+
if @e==@min_e or @f != b_power(p-1)
|
943
|
+
@r, @s, @m_p, @m_m = @f*2, b_power(-@e)*2, 1, 1
|
944
|
+
else
|
945
|
+
@r, @s, @m_p, @m_m = @f*@b*2, b_power(1-@e)*2, @b, 1
|
946
|
+
end
|
947
|
+
end
|
948
|
+
@k = 0
|
949
|
+
@context = context
|
950
|
+
scale_optimized!
|
951
|
+
|
952
|
+
|
953
|
+
# The value to be formatted is @v=@r/@s; m- = @m_m/@s = (@v - v-)/@s; m+ = @m_p/@s = (v+ - @v)/@s
|
954
|
+
# Now adjust @m_m, @m_p so that they define the rounding range
|
955
|
+
case @round_mode
|
956
|
+
when :up
|
957
|
+
# ceiling is treated here assuming @f>0
|
958
|
+
# rounding range is -v,@v
|
959
|
+
@m_m, @m_p = @m_m*2, 0
|
960
|
+
when :down
|
961
|
+
# floor is treated here assuming #f>0
|
962
|
+
# rounding range is @v,v+
|
963
|
+
@m_m, @m_p = 0, @m_p*2
|
964
|
+
else
|
965
|
+
# rounding range is v-,v+
|
966
|
+
# @m_m, @m_p = @m_m, @m_p
|
967
|
+
end
|
968
|
+
|
969
|
+
# Now m_m, m_p define the rounding range
|
970
|
+
all ? generate_max : generate
|
971
|
+
|
972
|
+
end
|
973
|
+
|
974
|
+
# Access result of format operation: scaling (position of radix point) and digits
|
975
|
+
def digits
|
976
|
+
return @k, @digits
|
977
|
+
end
|
978
|
+
|
979
|
+
attr_reader :round_up
|
980
|
+
|
981
|
+
|
982
|
+
# Access rounded result of format operation: scaling (position of radix point) and digits
|
983
|
+
def adjusted_digits(round_mode)
|
984
|
+
round_mode = Support.simplified_round_mode(round_mode, @minus)
|
985
|
+
if @adjusted_digits.nil? && !@digits.nil?
|
986
|
+
increment = (@round_up && (round_mode != :down)) &&
|
987
|
+
((round_mode == :up) ||
|
988
|
+
(@round_up == :hi) ||
|
989
|
+
((@round_up == :tie) &&
|
990
|
+
((round_mode==:half_up) || ((round_mode==:half_even) && ((@digits.last % 2)==1)))))
|
991
|
+
# increment = (@round_up == :tie) || (@round_up == :hi) # old behaviour (:half_up)
|
992
|
+
if increment
|
993
|
+
base = @output_b
|
994
|
+
dec_pos = @k
|
995
|
+
digits = @digits.dup
|
996
|
+
# carry = increment ? 1 : 0
|
997
|
+
# digits = digits.reverse.map{|d| d += carry; d>=base ? 0 : (carry=0;d)}.reverse
|
998
|
+
# if carry != 0
|
999
|
+
# digits.unshift carry
|
1000
|
+
# dec_pos += 1
|
1001
|
+
# end
|
1002
|
+
i = digits.size - 1
|
1003
|
+
while i>=0
|
1004
|
+
digits[i] += 1
|
1005
|
+
if digits[i] == base
|
1006
|
+
digits[i] = 0
|
1007
|
+
else
|
1008
|
+
break
|
1009
|
+
end
|
1010
|
+
i -= 1
|
1011
|
+
end
|
1012
|
+
if i<0
|
1013
|
+
dec_pos += 1
|
1014
|
+
digits.unshift 1
|
1015
|
+
end
|
1016
|
+
@adjusted_k = dec_pos
|
1017
|
+
@adjusted_digits = digits
|
1018
|
+
else
|
1019
|
+
@adjusted_k = @k
|
1020
|
+
@adjusted_digits = @digits
|
1021
|
+
end
|
1022
|
+
end
|
1023
|
+
return @adjusted_k, @adjusted_digits
|
1024
|
+
end
|
1025
|
+
|
1026
|
+
# Given r/s = v (number to convert to text), m_m/s = (v - v-)/s, m_p/s = (v+ - v)/s
|
1027
|
+
# Scale the fractions so that the first significant digit is right after the radix point, i.e.
|
1028
|
+
# find k = ceil(logB((r+m_p)/s)), the smallest integer such that (r+m_p)/s <= B^k
|
1029
|
+
# if k>=0 return:
|
1030
|
+
# r=r, s=s*B^k, m_p=m_p, m_m=m_m
|
1031
|
+
# if k<0 return:
|
1032
|
+
# r=r*B^k, s=s, m_p=m_p*B^k, m_m=m_m*B^k
|
1033
|
+
#
|
1034
|
+
# scale! is a general iterative method using only (multiprecision) integer arithmetic.
|
1035
|
+
def scale_original!(really=false)
|
1036
|
+
loop do
|
1037
|
+
if (@round_h ? (@r+@m_p >= @s) : (@r+@m_p > @s)) # k is too low
|
1038
|
+
@s *= @output_b
|
1039
|
+
@k += 1
|
1040
|
+
elsif (@round_h ? ((@r+@m_p)*@output_b<@s) : ((@r+@m_p)*@output_b<=@s)) # k is too high
|
1041
|
+
@r *= @output_b
|
1042
|
+
@m_p *= @output_b
|
1043
|
+
@m_m *= @output_b
|
1044
|
+
@k -= 1
|
1045
|
+
else
|
1046
|
+
break
|
1047
|
+
end
|
1048
|
+
end
|
1049
|
+
end
|
1050
|
+
# using local vars instead of instance vars: it makes a difference in performance
|
1051
|
+
def scale!
|
1052
|
+
r, s, m_p, m_m, k,output_b = @r, @s, @m_p, @m_m, @k,@output_b
|
1053
|
+
loop do
|
1054
|
+
if (@round_h ? (r+m_p >= s) : (r+m_p > s)) # k is too low
|
1055
|
+
s *= output_b
|
1056
|
+
k += 1
|
1057
|
+
elsif (@round_h ? ((r+m_p)*output_b<s) : ((r+m_p)*output_b<=s)) # k is too high
|
1058
|
+
r *= output_b
|
1059
|
+
m_p *= output_b
|
1060
|
+
m_m *= output_b
|
1061
|
+
k -= 1
|
1062
|
+
else
|
1063
|
+
@s = s
|
1064
|
+
@r = r
|
1065
|
+
@m_p = m_p
|
1066
|
+
@m_m = m_m
|
1067
|
+
@k = k
|
1068
|
+
break
|
1069
|
+
end
|
1070
|
+
end
|
1071
|
+
end
|
1072
|
+
|
1073
|
+
def b_power(n)
|
1074
|
+
@b**n
|
1075
|
+
end
|
1076
|
+
|
1077
|
+
def output_b_power(n)
|
1078
|
+
@output_b**n
|
1079
|
+
end
|
1080
|
+
|
1081
|
+
def generate_max
|
1082
|
+
@round_up = false
|
1083
|
+
list = []
|
1084
|
+
r, s, m_p, m_m, = @r, @s, @m_p, @m_m
|
1085
|
+
n_iters, rs = 0, []
|
1086
|
+
loop do
|
1087
|
+
if (n_iters > 10000)
|
1088
|
+
raise "Infinite digit sequence." if rs.include?(r)
|
1089
|
+
rs << r
|
1090
|
+
else
|
1091
|
+
n_iters += 1
|
1092
|
+
end
|
1093
|
+
|
1094
|
+
d,r = (r*@output_b).divmod(s)
|
1095
|
+
|
1096
|
+
m_p *= @output_b
|
1097
|
+
m_m *= @output_b
|
1098
|
+
|
1099
|
+
list << d
|
1100
|
+
|
1101
|
+
tc1 = @round_l ? (r<=m_m) : (r<m_m)
|
1102
|
+
tc2 = @round_h ? (r+m_p >= s) : (r+m_p > s)
|
1103
|
+
|
1104
|
+
if tc1 && tc2
|
1105
|
+
if r != 0
|
1106
|
+
r *= 2
|
1107
|
+
if r > s
|
1108
|
+
@round_up = :hi
|
1109
|
+
elsif r == s
|
1110
|
+
@round_up = :tie
|
1111
|
+
else
|
1112
|
+
@rund_up = :lo
|
1113
|
+
end
|
1114
|
+
end
|
1115
|
+
break
|
1116
|
+
end
|
1117
|
+
end
|
1118
|
+
@digits = list
|
1119
|
+
end
|
1120
|
+
|
1121
|
+
def generate
|
1122
|
+
list = []
|
1123
|
+
r, s, m_p, m_m, = @r, @s, @m_p, @m_m
|
1124
|
+
loop do
|
1125
|
+
d,r = (r*@output_b).divmod(s)
|
1126
|
+
m_p *= @output_b
|
1127
|
+
m_m *= @output_b
|
1128
|
+
tc1 = @round_l ? (r<=m_m) : (r<m_m)
|
1129
|
+
tc2 = @round_h ? (r+m_p >= s) : (r+m_p > s)
|
1130
|
+
|
1131
|
+
if not tc1
|
1132
|
+
if not tc2
|
1133
|
+
list << d
|
1134
|
+
else
|
1135
|
+
list << d+1
|
1136
|
+
break
|
1137
|
+
end
|
1138
|
+
else
|
1139
|
+
if not tc2
|
1140
|
+
list << d
|
1141
|
+
break
|
1142
|
+
else
|
1143
|
+
if r*2 < s
|
1144
|
+
list << d
|
1145
|
+
break
|
1146
|
+
else
|
1147
|
+
list << d+1
|
1148
|
+
break
|
1149
|
+
end
|
1150
|
+
end
|
1151
|
+
end
|
1152
|
+
|
1153
|
+
end
|
1154
|
+
@digits = list
|
1155
|
+
end
|
1156
|
+
|
1157
|
+
ESTIMATE_FLOAT_LOG_B = {2=>1/Math.log(2), 10=>1/Math.log(10), 16=>1/Math.log(16)}
|
1158
|
+
# scale_o1! is an optimized version of scale!; it requires an additional parameters with the
|
1159
|
+
# floating-point number v=r/s
|
1160
|
+
#
|
1161
|
+
# It uses a Float estimate of ceil(logB(v)) that may need to adjusted one unit up
|
1162
|
+
# TODO: find easy to use estimate; determine max distance to correct value and use it for fixing,
|
1163
|
+
# or use the general scale! for fixing (but remembar to multiply by exptt(...))
|
1164
|
+
# (determine when Math.log is aplicable, etc.)
|
1165
|
+
def scale_optimized!
|
1166
|
+
context = @context # @v.class.context
|
1167
|
+
return scale! if context.zero?(@v)
|
1168
|
+
|
1169
|
+
# 1. compute estimated_scale
|
1170
|
+
|
1171
|
+
# 1.1. try to use Float logarithms (Math.log)
|
1172
|
+
v = @v
|
1173
|
+
v_abs = context.copy_sign(v, +1) # don't use v.abs because it rounds (and may overflow also)
|
1174
|
+
v_flt = v_abs.to_f
|
1175
|
+
b = @output_b
|
1176
|
+
log_b = ESTIMATE_FLOAT_LOG_B[b]
|
1177
|
+
log_b = ESTIMATE_FLOAT_LOG_B[b] = 1.0/Math.log(b) if log_b.nil?
|
1178
|
+
estimated_scale = nil
|
1179
|
+
fixup = false
|
1180
|
+
begin
|
1181
|
+
l = ((b==10) ? Math.log10(v_flt) : Math.log(v_flt)*log_b)
|
1182
|
+
estimated_scale =(l - 1E-10).ceil
|
1183
|
+
fixup = true
|
1184
|
+
rescue
|
1185
|
+
# rescuing errors is more efficient than checking (v_abs < Float::MAX.to_i) && (v_flt > Float::MIN) when v is a Flt
|
1186
|
+
else
|
1187
|
+
# estimated_scale = nil
|
1188
|
+
end
|
1189
|
+
|
1190
|
+
# 1.2. Use Flt::DecNum logarithm
|
1191
|
+
if estimated_scale.nil?
|
1192
|
+
v.to_decimal_exact(:precision=>12) if v.is_a?(BinNum)
|
1193
|
+
if v.is_a?(DecNum)
|
1194
|
+
l = nil
|
1195
|
+
DecNum.context(:precision=>12) do
|
1196
|
+
case b
|
1197
|
+
when 10
|
1198
|
+
l = v_abs.log10
|
1199
|
+
else
|
1200
|
+
l = v_abs.ln/Flt.DecNum(b).ln
|
1201
|
+
end
|
1202
|
+
end
|
1203
|
+
l -= Flt.DecNum(+1,1,-10)
|
1204
|
+
estimated_scale = l.ceil
|
1205
|
+
fixup = true
|
1206
|
+
end
|
1207
|
+
end
|
1208
|
+
|
1209
|
+
# 1.3 more rough Float aproximation
|
1210
|
+
# TODO: optimize denominator, correct numerator for more precision with first digit or part
|
1211
|
+
# of the coefficient (like _log_10_lb)
|
1212
|
+
estimated_scale ||= (v.adjusted_exponent.to_f * Math.log(v.class.context.radix) * log_b).ceil
|
1213
|
+
|
1214
|
+
if estimated_scale >= 0
|
1215
|
+
@k = estimated_scale
|
1216
|
+
@s *= output_b_power(estimated_scale)
|
1217
|
+
else
|
1218
|
+
sc = output_b_power(-estimated_scale)
|
1219
|
+
@k = estimated_scale
|
1220
|
+
@r *= sc
|
1221
|
+
@m_p *= sc
|
1222
|
+
@m_m *= sc
|
1223
|
+
end
|
1224
|
+
fixup ? scale_fixup! : scale!
|
1225
|
+
|
1226
|
+
end
|
1227
|
+
|
1228
|
+
# fix up scaling (final step): specialized version of scale!
|
1229
|
+
# This performs a single up scaling step, i.e. behaves like scale2, but
|
1230
|
+
# the input must be at most one step down from the final result
|
1231
|
+
def scale_fixup!
|
1232
|
+
if (@round_h ? (@r+@m_p >= @s) : (@r+@m_p > @s)) # too low?
|
1233
|
+
@s *= @output_b
|
1234
|
+
@k += 1
|
1235
|
+
end
|
1236
|
+
end
|
1237
|
+
|
1238
|
+
end
|
1239
|
+
|
1240
|
+
module AuxiliarFunctions
|
1241
|
+
|
1242
|
+
module_function
|
1243
|
+
|
1244
|
+
# Number of bits in binary representation of the positive integer n, or 0 if n == 0.
|
1245
|
+
def _nbits(x)
|
1246
|
+
raise TypeError, "The argument to _nbits should be nonnegative." if x < 0
|
1247
|
+
if x.is_a?(Fixnum)
|
1248
|
+
return 0 if x==0
|
1249
|
+
x.to_s(2).length
|
1250
|
+
elsif x <= NBITS_LIMIT
|
1251
|
+
Math.frexp(x).last
|
1252
|
+
else
|
1253
|
+
n = 0
|
1254
|
+
while x!=0
|
1255
|
+
y = x
|
1256
|
+
x >>= NBITS_BLOCK
|
1257
|
+
n += NBITS_BLOCK
|
1258
|
+
end
|
1259
|
+
n += y.to_s(2).length - NBITS_BLOCK if y!=0
|
1260
|
+
n
|
1261
|
+
end
|
1262
|
+
end
|
1263
|
+
NBITS_BLOCK = 32
|
1264
|
+
NBITS_LIMIT = Math.ldexp(1,Float::MANT_DIG).to_i
|
1265
|
+
|
1266
|
+
# Number of base b digits in an integer
|
1267
|
+
def _ndigits(x, b)
|
1268
|
+
raise TypeError, "The argument to _ndigits should be nonnegative." if x < 0
|
1269
|
+
return 0 unless x.is_a?(Integer)
|
1270
|
+
return _nbits(x) if b==2
|
1271
|
+
if x.is_a?(Fixnum)
|
1272
|
+
return 0 if x==0
|
1273
|
+
x.to_s(b).length
|
1274
|
+
elsif x <= NDIGITS_LIMIT
|
1275
|
+
(Math.log(x)/Math.log(b)).floor + 1
|
1276
|
+
else
|
1277
|
+
n = 0
|
1278
|
+
block = b**NDIGITS_BLOCK
|
1279
|
+
while x!=0
|
1280
|
+
y = x
|
1281
|
+
x /= block
|
1282
|
+
n += NDIGITS_BLOCK
|
1283
|
+
end
|
1284
|
+
n += y.to_s(b).length - NDIGITS_BLOCK if y!=0
|
1285
|
+
n
|
1286
|
+
end
|
1287
|
+
end
|
1288
|
+
NDIGITS_BLOCK = 50
|
1289
|
+
NDIGITS_LIMIT = Float::MAX.to_i
|
1290
|
+
|
1291
|
+
def detect_float_rounding
|
1292
|
+
x = x = Math::ldexp(1, Float::MANT_DIG+1) # 10000...00*Float::RADIX**2 == Float::RADIX**(Float::MANT_DIG+1)
|
1293
|
+
y = x + Math::ldexp(1, 2) # 00000...01*Float::RADIX**2 == Float::RADIX**2
|
1294
|
+
h = Float::RADIX/2
|
1295
|
+
b = h*Float::RADIX
|
1296
|
+
z = Float::RADIX**2 - 1
|
1297
|
+
if x + 1 == y
|
1298
|
+
if (y + 1 == y) && Float::RADIX==10
|
1299
|
+
:up05
|
1300
|
+
elsif -x - 1 == -y
|
1301
|
+
:up
|
1302
|
+
else
|
1303
|
+
:ceiling
|
1304
|
+
end
|
1305
|
+
else # x + 1 == x
|
1306
|
+
if x + z == x
|
1307
|
+
if -x - z == -x
|
1308
|
+
:down
|
1309
|
+
else
|
1310
|
+
:floor
|
1311
|
+
end
|
1312
|
+
else # x + z == y
|
1313
|
+
# round to nearest
|
1314
|
+
if x + b == x
|
1315
|
+
if y + b == y
|
1316
|
+
:half_down
|
1317
|
+
else
|
1318
|
+
:half_even
|
1319
|
+
end
|
1320
|
+
else # x + b == y
|
1321
|
+
:half_up
|
1322
|
+
end
|
1323
|
+
end
|
1324
|
+
end
|
1325
|
+
|
1326
|
+
end # Formatter
|
1327
|
+
|
1328
|
+
end # AuxiliarFunctions
|
1329
|
+
|
1330
|
+
end # Support
|
1331
|
+
|
1332
|
+
|
1333
|
+
|
1334
|
+
|
1335
|
+
end # Flt
|