flt 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +41 -0
- data/License.txt +20 -0
- data/Manifest.txt +42 -0
- data/README.txt +557 -0
- data/Rakefile +34 -0
- data/lib/flt.rb +9 -0
- data/lib/flt/b.rb +6 -0
- data/lib/flt/bigdecimal.rb +151 -0
- data/lib/flt/bin_num.rb +250 -0
- data/lib/flt/d.rb +6 -0
- data/lib/flt/dec_num.rb +1239 -0
- data/lib/flt/float.rb +458 -0
- data/lib/flt/math.rb +66 -0
- data/lib/flt/num.rb +4211 -0
- data/lib/flt/sugar.rb +102 -0
- data/lib/flt/support.rb +1335 -0
- data/lib/flt/tolerance.rb +561 -0
- data/lib/flt/tolerance/sugar.rb +77 -0
- data/lib/flt/version.rb +9 -0
- data/setup.rb +1585 -0
- data/tasks/ann.rake +80 -0
- data/tasks/bones.rake +20 -0
- data/tasks/gem.rake +192 -0
- data/tasks/git.rake +40 -0
- data/tasks/manifest.rake +48 -0
- data/tasks/notes.rake +27 -0
- data/tasks/post_load.rake +39 -0
- data/tasks/rdoc.rake +50 -0
- data/tasks/rubyforge.rake +55 -0
- data/tasks/setup.rb +279 -0
- data/tasks/spec.rake +54 -0
- data/tasks/svn.rake +47 -0
- data/tasks/test.rake +40 -0
- data/test/all_tests.rb +23 -0
- data/test/helper.rb +101 -0
- data/test/reader.rb +68 -0
- data/test/test_basic.rb +396 -0
- data/test/test_bin.rb +245 -0
- data/test/test_bin_arithmetic.rb +94 -0
- data/test/test_binfloat_conversion.rb +24 -0
- data/test/test_coercion.rb +22 -0
- data/test/test_comparisons.rb +53 -0
- data/test/test_dectest.rb +216 -0
- data/test/test_define_conversions.rb +144 -0
- data/test/test_epsilon.rb +55 -0
- data/test/test_exact.rb +147 -0
- data/test/test_flags.rb +34 -0
- data/test/test_multithreading.rb +32 -0
- data/test/test_num_constructor.rb +133 -0
- data/test/test_odd_even.rb +78 -0
- data/test/test_round.rb +104 -0
- data/test/test_to_int.rb +104 -0
- data/test/test_to_rf.rb +36 -0
- data/test/test_tol.rb +102 -0
- data/test/test_ulp.rb +127 -0
- metadata +147 -0
data/lib/flt/d.rb
ADDED
data/lib/flt/dec_num.rb
ADDED
@@ -0,0 +1,1239 @@
|
|
1
|
+
require 'flt/num'
|
2
|
+
|
3
|
+
module Flt
|
4
|
+
|
5
|
+
# DecNum arbitrary precision floating point number.
|
6
|
+
# This implementation of DecNum is based on the Decimal module of Python,
|
7
|
+
# written by Eric Price, Facundo Batista, Raymond Hettinger, Aahz and Tim Peters.
|
8
|
+
class DecNum < Num
|
9
|
+
|
10
|
+
class << self
|
11
|
+
# Numerical base of DecNum.
|
12
|
+
def radix
|
13
|
+
10
|
14
|
+
end
|
15
|
+
|
16
|
+
# Integral power of the base: radix**n for integer n; returns an integer.
|
17
|
+
def int_radix_power(n)
|
18
|
+
10**n
|
19
|
+
end
|
20
|
+
|
21
|
+
# Multiply by an integral power of the base: x*(radix**n) for x,n integer;
|
22
|
+
# returns an integer.
|
23
|
+
def int_mult_radix_power(x,n)
|
24
|
+
x * (10**n)
|
25
|
+
end
|
26
|
+
|
27
|
+
# Divide by an integral power of the base: x/(radix**n) for x,n integer;
|
28
|
+
# returns an integer.
|
29
|
+
def int_div_radix_power(x,n)
|
30
|
+
x / (10**n)
|
31
|
+
end
|
32
|
+
end
|
33
|
+
|
34
|
+
# This is the Context class for Flt::DecNum.
|
35
|
+
#
|
36
|
+
# The context defines the arithmetic context: rounding mode, precision,...
|
37
|
+
#
|
38
|
+
# DecNum.context is the current (thread-local) context for DecNum numbers.
|
39
|
+
class Context < Num::ContextBase
|
40
|
+
# See Flt::Num::ContextBase#new() for the valid options
|
41
|
+
#
|
42
|
+
# See also the context constructor method Flt::Num.Context().
|
43
|
+
def initialize(*options)
|
44
|
+
super(DecNum, *options)
|
45
|
+
end
|
46
|
+
|
47
|
+
# Power. See DecNum#power()
|
48
|
+
def power(x,y,modulo=nil)
|
49
|
+
_convert(x).power(y,modulo,self)
|
50
|
+
end
|
51
|
+
|
52
|
+
# Returns the base 10 logarithm
|
53
|
+
def log10(x)
|
54
|
+
_convert(x).log10(self)
|
55
|
+
end
|
56
|
+
|
57
|
+
# Exponential function: e**x
|
58
|
+
def exp(x)
|
59
|
+
_convert(x).exp(self)
|
60
|
+
end
|
61
|
+
|
62
|
+
# Returns the natural (base e) logarithm
|
63
|
+
def ln(x)
|
64
|
+
_convert(x).ln(self)
|
65
|
+
end
|
66
|
+
|
67
|
+
end
|
68
|
+
|
69
|
+
# the DefaultContext is the base for new contexts; it can be changed.
|
70
|
+
DefaultContext = DecNum::Context.new(
|
71
|
+
:exact=>false, :precision=>28, :rounding=>:half_even,
|
72
|
+
:emin=> -999999999, :emax=>+999999999,
|
73
|
+
:flags=>[],
|
74
|
+
:traps=>[DivisionByZero, Overflow, InvalidOperation],
|
75
|
+
:ignored_flags=>[],
|
76
|
+
:capitals=>true,
|
77
|
+
:clamp=>true)
|
78
|
+
|
79
|
+
BasicContext = DecNum::Context.new(DefaultContext,
|
80
|
+
:precision=>9, :rounding=>:half_up,
|
81
|
+
:traps=>[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
|
82
|
+
:flags=>[])
|
83
|
+
|
84
|
+
ExtendedContext = DecNum::Context.new(DefaultContext,
|
85
|
+
:precision=>9, :rounding=>:half_even,
|
86
|
+
:traps=>[], :flags=>[], :clamp=>false)
|
87
|
+
|
88
|
+
# A DecNum value can be defined by:
|
89
|
+
# * A String containing a text representation of the number
|
90
|
+
# * An Integer
|
91
|
+
# * A Rational
|
92
|
+
# * A Value of a type for which conversion is defined in the context.
|
93
|
+
# * Another DecNum.
|
94
|
+
# * A sign, coefficient and exponent (either as separate arguments, as an array or as a Hash with symbolic keys),
|
95
|
+
# or a signed coefficient and an exponent.
|
96
|
+
# This is the internal representation of Num, as returned by Num#split.
|
97
|
+
# The sign is +1 for plus and -1 for minus; the coefficient and exponent are
|
98
|
+
# integers, except for special values which are defined by :inf, :nan or :snan for the exponent.
|
99
|
+
#
|
100
|
+
# An optional Context can be passed after the value-definint argument to override the current context
|
101
|
+
# and options can be passed in a last hash argument; alternatively context options can be overriden
|
102
|
+
# by options of the hash argument.
|
103
|
+
#
|
104
|
+
# When the number is defined by a numeric literal (a String), it can be followed by a symbol that specifies
|
105
|
+
# the mode used to convert the literal to a floating-point value:
|
106
|
+
# * :free is currently the default for all cases. The precision of the input literal (including trailing zeros)
|
107
|
+
# is preserved and the precision of the context is ignored.
|
108
|
+
# When the literal is in base 10, (which is the case by default), the literal is preserved exactly.
|
109
|
+
# Otherwise, all significative digits that can be derived from the literal are generanted, significative
|
110
|
+
# meaning here that if the digit is changed and the value converted back to a literal of the same base and
|
111
|
+
# precision, the original literal will not be obtained.
|
112
|
+
# * :short is a variation of :free in which only the minimun number of digits that are necessary to
|
113
|
+
# produce the original literal when the value is converted back with the same original precision.
|
114
|
+
# * :fixed will round and normalize the value to the precision specified by the context (normalize meaning
|
115
|
+
# that exaclty the number of digits specified by the precision will be generated, even if the original
|
116
|
+
# literal has fewer digits.) This may fail returning NaN (and raising Inexact) if the context precision is
|
117
|
+
# :exact, but not if the floating-point radix is a multiple of the input base.
|
118
|
+
#
|
119
|
+
# Options that can be passed for construction from literal:
|
120
|
+
# * :base is the numeric base of the input, 10 by default.
|
121
|
+
#
|
122
|
+
# The Flt.DecNum() constructor admits the same parameters and can be used as a shortcut for DecNum creation.
|
123
|
+
# Examples:
|
124
|
+
# DecNum('0.1000') # -> 0.1000
|
125
|
+
# DecNum('0.12345') # -> 0.12345
|
126
|
+
# DecNum('1.2345E-1') # -> 0.12345
|
127
|
+
# DecNum('0.1000', :short) # -> 0.1000
|
128
|
+
# DecNum('0.1000',:fixed, :precision=>20) # -> 0.10000000000000000000
|
129
|
+
# DecNum('0.12345',:fixed, :precision=>20) # -> 0.12345000000000000000
|
130
|
+
# DecNum('0.100110E3', :base=>2) # -> 4.8
|
131
|
+
# DecNum('0.1E-5', :free, :base=>2) # -> 0.016
|
132
|
+
# DecNum('0.1E-5', :short, :base=>2) # -> 0.02
|
133
|
+
# DecNum('0.1E-5', :fixed, :base=>2, :exact=>true) # -> 0.015625
|
134
|
+
# DecNum('0.1E-5', :fixed, :base=>2) # -> 0.01562500000000000000000000000
|
135
|
+
def initialize(*args)
|
136
|
+
super(*args)
|
137
|
+
end
|
138
|
+
|
139
|
+
def number_of_digits
|
140
|
+
@coeff.is_a?(Integer) ? _number_of_digits(@coeff) : 0
|
141
|
+
end
|
142
|
+
|
143
|
+
# Raises to the power of x, to modulo if given.
|
144
|
+
#
|
145
|
+
# With two arguments, compute self**other. If self is negative then other
|
146
|
+
# must be integral. The result will be inexact unless other is
|
147
|
+
# integral and the result is finite and can be expressed exactly
|
148
|
+
# in 'precision' digits.
|
149
|
+
#
|
150
|
+
# With three arguments, compute (self**other) % modulo. For the
|
151
|
+
# three argument form, the following restrictions on the
|
152
|
+
# arguments hold:
|
153
|
+
#
|
154
|
+
# - all three arguments must be integral
|
155
|
+
# - other must be nonnegative
|
156
|
+
# - at least one of self or other must be nonzero
|
157
|
+
# - modulo must be nonzero and have at most 'precision' digits
|
158
|
+
#
|
159
|
+
# The result of a.power(b, modulo) is identical to the result
|
160
|
+
# that would be obtained by computing (a**b) % modulo with
|
161
|
+
# unbounded precision, but is computed more efficiently. It is
|
162
|
+
# always exact.
|
163
|
+
def power(other, modulo=nil, context=nil)
|
164
|
+
|
165
|
+
if context.nil? && (modulo.is_a?(Context) || modulo.is_a?(Hash))
|
166
|
+
context = modulo
|
167
|
+
modulo = nil
|
168
|
+
end
|
169
|
+
|
170
|
+
return self.power_modulo(other, modulo, context) if modulo
|
171
|
+
|
172
|
+
context = DecNum.define_context(context)
|
173
|
+
other = _convert(other)
|
174
|
+
|
175
|
+
ans = _check_nans(context, other)
|
176
|
+
return ans if ans
|
177
|
+
|
178
|
+
# 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
|
179
|
+
if other.zero?
|
180
|
+
if self.zero?
|
181
|
+
return context.exception(InvalidOperation, '0 ** 0')
|
182
|
+
else
|
183
|
+
return Num(1)
|
184
|
+
end
|
185
|
+
end
|
186
|
+
|
187
|
+
# result has sign -1 iff self.sign is -1 and other is an odd integer
|
188
|
+
result_sign = +1
|
189
|
+
_self = self
|
190
|
+
if _self.sign == -1
|
191
|
+
if other.integral?
|
192
|
+
result_sign = -1 if !other.even?
|
193
|
+
else
|
194
|
+
# -ve**noninteger = NaN
|
195
|
+
# (-0)**noninteger = 0**noninteger
|
196
|
+
unless self.zero?
|
197
|
+
return context.exception(InvalidOperation, 'x ** y with x negative and y not an integer')
|
198
|
+
end
|
199
|
+
end
|
200
|
+
# negate self, without doing any unwanted rounding
|
201
|
+
_self = self.copy_negate
|
202
|
+
end
|
203
|
+
|
204
|
+
# 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
|
205
|
+
if _self.zero?
|
206
|
+
return (other.sign == +1) ? Num(result_sign, 0, 0) : num_class.infinity(result_sign)
|
207
|
+
end
|
208
|
+
|
209
|
+
# Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
|
210
|
+
if _self.infinite?
|
211
|
+
return (other.sign == +1) ? num_class.infinity(result_sign) : Num(result_sign, 0, 0)
|
212
|
+
end
|
213
|
+
|
214
|
+
# 1**other = 1, but the choice of exponent and the flags
|
215
|
+
# depend on the exponent of self, and on whether other is a
|
216
|
+
# positive integer, a negative integer, or neither
|
217
|
+
if _self == Num(1)
|
218
|
+
return _self if context.exact?
|
219
|
+
if other.integral?
|
220
|
+
# exp = max(self._exp*max(int(other), 0),
|
221
|
+
# 1-context.prec) but evaluating int(other) directly
|
222
|
+
# is dangerous until we know other is small (other
|
223
|
+
# could be 1e999999999)
|
224
|
+
if other.sign == -1
|
225
|
+
multiplier = 0
|
226
|
+
elsif other > context.precision
|
227
|
+
multiplier = context.precision
|
228
|
+
else
|
229
|
+
multiplier = other.to_i
|
230
|
+
end
|
231
|
+
|
232
|
+
exp = _self.exponent * multiplier
|
233
|
+
if exp < 1-context.precision
|
234
|
+
exp = 1-context.precision
|
235
|
+
context.exception Rounded
|
236
|
+
end
|
237
|
+
else
|
238
|
+
context.exception Rounded
|
239
|
+
context.exception Inexact
|
240
|
+
exp = 1-context.precision
|
241
|
+
end
|
242
|
+
|
243
|
+
return Num(result_sign, DecNum.int_radix_power(-exp), exp)
|
244
|
+
end
|
245
|
+
|
246
|
+
# compute adjusted exponent of self
|
247
|
+
self_adj = _self.adjusted_exponent
|
248
|
+
|
249
|
+
# self ** infinity is infinity if self > 1, 0 if self < 1
|
250
|
+
# self ** -infinity is infinity if self < 1, 0 if self > 1
|
251
|
+
if other.infinite?
|
252
|
+
if (other.sign == +1) == (self_adj < 0)
|
253
|
+
return Num(result_sign, 0, 0)
|
254
|
+
else
|
255
|
+
return DecNum.infinity(result_sign)
|
256
|
+
end
|
257
|
+
end
|
258
|
+
|
259
|
+
# from here on, the result always goes through the call
|
260
|
+
# to _fix at the end of this function.
|
261
|
+
ans = nil
|
262
|
+
|
263
|
+
# crude test to catch cases of extreme overflow/underflow. If
|
264
|
+
# log10(self)*other >= 10**bound and bound >= len(str(Emax))
|
265
|
+
# then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
|
266
|
+
# self**other >= 10**(Emax+1), so overflow occurs. The test
|
267
|
+
# for underflow is similar.
|
268
|
+
bound = _self._log10_exp_bound + other.adjusted_exponent
|
269
|
+
if (self_adj >= 0) == (other.sign == +1)
|
270
|
+
# self > 1 and other +ve, or self < 1 and other -ve
|
271
|
+
# possibility of overflow
|
272
|
+
if bound >= _number_of_digits(context.emax)
|
273
|
+
ans = Num(result_sign, 1, context.emax+1)
|
274
|
+
end
|
275
|
+
else
|
276
|
+
# self > 1 and other -ve, or self < 1 and other +ve
|
277
|
+
# possibility of underflow to 0
|
278
|
+
etiny = context.etiny
|
279
|
+
if bound >= _number_of_digits(-etiny)
|
280
|
+
ans = Num(result_sign, 1, etiny-1)
|
281
|
+
end
|
282
|
+
end
|
283
|
+
|
284
|
+
# try for an exact result with precision +1
|
285
|
+
if ans.nil?
|
286
|
+
if context.exact?
|
287
|
+
if other.adjusted_exponent < 100
|
288
|
+
test_precision = _self.number_of_digits*other.to_i+1
|
289
|
+
else
|
290
|
+
test_precision = _self.number_of_digits+1
|
291
|
+
end
|
292
|
+
else
|
293
|
+
test_precision = context.precision + 1
|
294
|
+
end
|
295
|
+
ans = _self._power_exact(other, test_precision)
|
296
|
+
if !ans.nil? && (result_sign == -1)
|
297
|
+
ans = Num(-1, ans.coefficient, ans.exponent)
|
298
|
+
end
|
299
|
+
end
|
300
|
+
|
301
|
+
# usual case: inexact result, x**y computed directly as exp(y*log(x))
|
302
|
+
if !ans.nil?
|
303
|
+
return ans if context.exact?
|
304
|
+
else
|
305
|
+
return context.exception(Inexact, "Inexact power") if context.exact?
|
306
|
+
|
307
|
+
p = context.precision
|
308
|
+
xc = _self.coefficient
|
309
|
+
xe = _self.exponent
|
310
|
+
yc = other.coefficient
|
311
|
+
ye = other.exponent
|
312
|
+
yc = -yc if other.sign == -1
|
313
|
+
|
314
|
+
# compute correctly rounded result: start with precision +3,
|
315
|
+
# then increase precision until result is unambiguously roundable
|
316
|
+
extra = 3
|
317
|
+
coeff, exp = nil, nil
|
318
|
+
loop do
|
319
|
+
coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
|
320
|
+
#break if (coeff % DecNum.int_mult_radix_power(5,coeff.to_s.length-p-1)) != 0
|
321
|
+
break if (coeff % (5*10**(_number_of_digits(coeff)-p-1))) != 0
|
322
|
+
extra += 3
|
323
|
+
end
|
324
|
+
ans = Num(result_sign, coeff, exp)
|
325
|
+
end
|
326
|
+
|
327
|
+
# the specification says that for non-integer other we need to
|
328
|
+
# raise Inexact, even when the result is actually exact. In
|
329
|
+
# the same way, we need to raise Underflow here if the result
|
330
|
+
# is subnormal. (The call to _fix will take care of raising
|
331
|
+
# Rounded and Subnormal, as usual.)
|
332
|
+
if !other.integral?
|
333
|
+
context.exception Inexact
|
334
|
+
# pad with zeros up to length context.precision+1 if necessary
|
335
|
+
if ans.number_of_digits <= context.precision
|
336
|
+
expdiff = context.precision+1 - ans.number_of_digits
|
337
|
+
ans = Num(ans.sign, DecNum.int_mult_radix_power(ans.coefficient, expdiff), ans.exponent-expdiff)
|
338
|
+
end
|
339
|
+
context.exception Underflow if ans.adjusted_exponent < context.emin
|
340
|
+
end
|
341
|
+
# unlike exp, ln and log10, the power function respects the
|
342
|
+
# rounding mode; no need to use ROUND_HALF_EVEN here
|
343
|
+
ans._fix(context)
|
344
|
+
end
|
345
|
+
|
346
|
+
# Returns the base 10 logarithm
|
347
|
+
def log10(context=nil)
|
348
|
+
context = DecNum.define_context(context)
|
349
|
+
|
350
|
+
# log10(NaN) = NaN
|
351
|
+
ans = _check_nans(context)
|
352
|
+
return ans if ans
|
353
|
+
|
354
|
+
# log10(0.0) == -Infinity
|
355
|
+
return DecNum.infinity(-1) if self.zero?
|
356
|
+
|
357
|
+
# log10(Infinity) = Infinity
|
358
|
+
return DecNum.infinity if self.infinite? && self.sign == +1
|
359
|
+
|
360
|
+
# log10(negative or -Infinity) raises InvalidOperation
|
361
|
+
return context.exception(InvalidOperation, 'log10 of a negative value') if self.sign == -1
|
362
|
+
|
363
|
+
digits = self.digits
|
364
|
+
# log10(10**n) = n
|
365
|
+
if digits.first == 1 && digits[1..-1].all?{|d| d==0}
|
366
|
+
# answer may need rounding
|
367
|
+
ans = Num(self.exponent + digits.size - 1)
|
368
|
+
return ans if context.exact?
|
369
|
+
else
|
370
|
+
# result is irrational, so necessarily inexact
|
371
|
+
return context.exception(Inexact, "Inexact power") if context.exact?
|
372
|
+
c = self.coefficient
|
373
|
+
e = self.exponent
|
374
|
+
p = context.precision
|
375
|
+
|
376
|
+
# correctly rounded result: repeatedly increase precision
|
377
|
+
# until result is unambiguously roundable
|
378
|
+
places = p-self._log10_exp_bound+2
|
379
|
+
coeff = nil
|
380
|
+
loop do
|
381
|
+
coeff = _dlog10(c, e, places)
|
382
|
+
# assert coeff.abs.to_s.length-p >= 1
|
383
|
+
break if (coeff % (5*10**(_number_of_digits(coeff.abs)-p-1)))!=0
|
384
|
+
places += 3
|
385
|
+
end
|
386
|
+
ans = Num(coeff<0 ? -1 : +1, coeff.abs, -places)
|
387
|
+
end
|
388
|
+
|
389
|
+
DecNum.context(context, :rounding=>:half_even) do |local_context|
|
390
|
+
ans = ans._fix(local_context)
|
391
|
+
context.flags = local_context.flags
|
392
|
+
end
|
393
|
+
return ans
|
394
|
+
end
|
395
|
+
|
396
|
+
# Exponential function
|
397
|
+
def exp(context=nil)
|
398
|
+
context = DecNum.define_context(context)
|
399
|
+
|
400
|
+
# exp(NaN) = NaN
|
401
|
+
ans = _check_nans(context)
|
402
|
+
return ans if ans
|
403
|
+
|
404
|
+
# exp(-Infinity) = 0
|
405
|
+
return DecNum.zero if self.infinite? && (self.sign == -1)
|
406
|
+
|
407
|
+
# exp(0) = 1
|
408
|
+
return Num(1) if self.zero?
|
409
|
+
|
410
|
+
# exp(Infinity) = Infinity
|
411
|
+
return Num(self) if self.infinite?
|
412
|
+
|
413
|
+
# the result is now guaranteed to be inexact (the true
|
414
|
+
# mathematical result is transcendental). There's no need to
|
415
|
+
# raise Rounded and Inexact here---they'll always be raised as
|
416
|
+
# a result of the call to _fix.
|
417
|
+
return context.exception(Inexact, 'Inexact exp') if context.exact?
|
418
|
+
p = context.precision
|
419
|
+
adj = self.adjusted_exponent
|
420
|
+
|
421
|
+
# we only need to do any computation for quite a small range
|
422
|
+
# of adjusted exponents---for example, -29 <= adj <= 10 for
|
423
|
+
# the default context. For smaller exponent the result is
|
424
|
+
# indistinguishable from 1 at the given precision, while for
|
425
|
+
# larger exponent the result either overflows or underflows.
|
426
|
+
if self.sign == +1 and adj > _number_of_digits((context.emax+1)*3)
|
427
|
+
# overflow
|
428
|
+
ans = Num(+1, 1, context.emax+1)
|
429
|
+
elsif self.sign == -1 and adj > _number_of_digits((-context.etiny+1)*3)
|
430
|
+
# underflow to 0
|
431
|
+
ans = Num(+1, 1, context.etiny-1)
|
432
|
+
elsif self.sign == +1 and adj < -p
|
433
|
+
# p+1 digits; final round will raise correct flags
|
434
|
+
ans = Num(+1, DecNum.int_radix_power(p)+1, -p)
|
435
|
+
elsif self.sign == -1 and adj < -p-1
|
436
|
+
# p+1 digits; final round will raise correct flags
|
437
|
+
ans = Num(+1, DecNum.int_radix_power(p+1)-1, -p-1)
|
438
|
+
else
|
439
|
+
# general case
|
440
|
+
c = self.coefficient
|
441
|
+
e = self.exponent
|
442
|
+
c = -c if self.sign == -1
|
443
|
+
|
444
|
+
# compute correctly rounded result: increase precision by
|
445
|
+
# 3 digits at a time until we get an unambiguously
|
446
|
+
# roundable result
|
447
|
+
extra = 3
|
448
|
+
coeff = exp = nil
|
449
|
+
loop do
|
450
|
+
coeff, exp = _dexp(c, e, p+extra)
|
451
|
+
break if (coeff % (5*10**(_number_of_digits(coeff)-p-1)))!=0
|
452
|
+
extra += 3
|
453
|
+
end
|
454
|
+
ans = Num(+1, coeff, exp)
|
455
|
+
end
|
456
|
+
|
457
|
+
# at this stage, ans should round correctly with *any*
|
458
|
+
# rounding mode, not just with ROUND_HALF_EVEN
|
459
|
+
DecNum.context(context, :rounding=>:half_even) do |local_context|
|
460
|
+
ans = ans._fix(local_context)
|
461
|
+
context.flags = local_context.flags
|
462
|
+
end
|
463
|
+
|
464
|
+
return ans
|
465
|
+
end
|
466
|
+
|
467
|
+
# Returns the natural (base e) logarithm
|
468
|
+
def ln(context=nil)
|
469
|
+
context = DecNum.define_context(context)
|
470
|
+
|
471
|
+
# ln(NaN) = NaN
|
472
|
+
ans = _check_nans(context)
|
473
|
+
return ans if ans
|
474
|
+
|
475
|
+
# ln(0.0) == -Infinity
|
476
|
+
return DecNum.infinity(-1) if self.zero?
|
477
|
+
|
478
|
+
# ln(Infinity) = Infinity
|
479
|
+
return DecNum.infinity if self.infinite? && self.sign == +1
|
480
|
+
|
481
|
+
# ln(1.0) == 0.0
|
482
|
+
return DecNum.zero if self == Num(1)
|
483
|
+
|
484
|
+
# ln(negative) raises InvalidOperation
|
485
|
+
return context.exception(InvalidOperation, 'ln of a negative value') if self.sign==-1
|
486
|
+
|
487
|
+
# result is irrational, so necessarily inexact
|
488
|
+
return context.exception(Inexact, 'Inexact exp') if context.exact?
|
489
|
+
|
490
|
+
c = self.coefficient
|
491
|
+
e = self.exponent
|
492
|
+
p = context.precision
|
493
|
+
|
494
|
+
# correctly rounded result: repeatedly increase precision by 3
|
495
|
+
# until we get an unambiguously roundable result
|
496
|
+
places = p - self._ln_exp_bound + 2 # at least p+3 places
|
497
|
+
coeff = nil
|
498
|
+
loop do
|
499
|
+
coeff = _dlog(c, e, places)
|
500
|
+
# assert coeff.to_s.length-p >= 1
|
501
|
+
break if (coeff % (5*10**(_number_of_digits(coeff.abs)-p-1))) != 0
|
502
|
+
places += 3
|
503
|
+
end
|
504
|
+
ans = Num((coeff<0) ? -1 : +1, coeff.abs, -places)
|
505
|
+
|
506
|
+
DecNum.context(context, :rounding=>:half_even) do |local_context|
|
507
|
+
ans = ans._fix(local_context)
|
508
|
+
context.flags = local_context.flags
|
509
|
+
end
|
510
|
+
return ans
|
511
|
+
end
|
512
|
+
|
513
|
+
# Auxiliar Methods
|
514
|
+
|
515
|
+
|
516
|
+
|
517
|
+
# Power-modulo: self._power_modulo(other, modulo) == (self**other) % modulo
|
518
|
+
# This is equivalent to Python's 3-argument version of pow()
|
519
|
+
def _power_modulo(other, modulo, context=nil)
|
520
|
+
|
521
|
+
context = DecNum.define_context(context)
|
522
|
+
other = _convert(other)
|
523
|
+
modulo = _convert(third)
|
524
|
+
|
525
|
+
if self.nan? || other.nan? || modulo.nan?
|
526
|
+
return context.exception(InvalidOperation, 'sNaN', self) if self.snan?
|
527
|
+
return context.exception(InvalidOperation, 'sNaN', other) if other.snan?
|
528
|
+
return context.exception(InvalidOperation, 'sNaN', modulo) if other.modulo?
|
529
|
+
return self._fix_nan(context) if self.nan?
|
530
|
+
return other._fix_nan(context) if other.nan?
|
531
|
+
return modulo._fix_nan(context) # if modulo.nan?
|
532
|
+
end
|
533
|
+
|
534
|
+
if !(self.integral? && other.integral? && modulo.integral?)
|
535
|
+
return context.exception(InvalidOperation, '3-argument power not allowed unless all arguments are integers.')
|
536
|
+
end
|
537
|
+
|
538
|
+
if other < 0
|
539
|
+
return context.exception(InvalidOperation, '3-argument power cannot have a negative 2nd argument.')
|
540
|
+
end
|
541
|
+
|
542
|
+
if modulo.zero?
|
543
|
+
return context.exception(InvalidOperation, '3-argument power cannot have a 0 3rd argument.')
|
544
|
+
end
|
545
|
+
|
546
|
+
if modulo.adjusted_exponent >= context.precision
|
547
|
+
return context.exception(InvalidOperation, 'insufficient precision: power 3rd argument must not have more than precision digits')
|
548
|
+
end
|
549
|
+
|
550
|
+
if other.zero? && self.zero?
|
551
|
+
return context.exception(InvalidOperation, "0**0 not defined")
|
552
|
+
end
|
553
|
+
|
554
|
+
sign = other.even? ? +1 : -1
|
555
|
+
modulo = modulo.to_i.abs
|
556
|
+
|
557
|
+
base = (self.coefficient % modulo * (DecNum.int_radix_power(self.exponent) % modulo)) % modulo
|
558
|
+
|
559
|
+
other.exponent.times do
|
560
|
+
base = (base**DecNum.radix) % modulo
|
561
|
+
end
|
562
|
+
base = (base**other.coefficient) % modulo
|
563
|
+
|
564
|
+
Num(sign, base, 0)
|
565
|
+
end
|
566
|
+
|
567
|
+
# Attempt to compute self**other exactly
|
568
|
+
# Given Decimals self and other and an integer p, attempt to
|
569
|
+
# compute an exact result for the power self**other, with p
|
570
|
+
# digits of precision. Return nil if self**other is not
|
571
|
+
# exactly representable in p digits.
|
572
|
+
#
|
573
|
+
# Assumes that elimination of special cases has already been
|
574
|
+
# performed: self and other must both be nonspecial; self must
|
575
|
+
# be positive and not numerically equal to 1; other must be
|
576
|
+
# nonzero. For efficiency, other.exponent should not be too large,
|
577
|
+
# so that 10**other.exponent.abs is a feasible calculation.
|
578
|
+
def _power_exact(other, p)
|
579
|
+
|
580
|
+
# In the comments below, we write x for the value of self and
|
581
|
+
# y for the value of other. Write x = xc*10**xe and y =
|
582
|
+
# yc*10**ye.
|
583
|
+
|
584
|
+
# The main purpose of this method is to identify the *failure*
|
585
|
+
# of x**y to be exactly representable with as little effort as
|
586
|
+
# possible. So we look for cheap and easy tests that
|
587
|
+
# eliminate the possibility of x**y being exact. Only if all
|
588
|
+
# these tests are passed do we go on to actually compute x**y.
|
589
|
+
|
590
|
+
# Here's the main idea. First normalize both x and y. We
|
591
|
+
# express y as a rational m/n, with m and n relatively prime
|
592
|
+
# and n>0. Then for x**y to be exactly representable (at
|
593
|
+
# *any* precision), xc must be the nth power of a positive
|
594
|
+
# integer and xe must be divisible by n. If m is negative
|
595
|
+
# then additionally xc must be a power of either 2 or 5, hence
|
596
|
+
# a power of 2**n or 5**n.
|
597
|
+
#
|
598
|
+
# There's a limit to how small |y| can be: if y=m/n as above
|
599
|
+
# then:
|
600
|
+
#
|
601
|
+
# (1) if xc != 1 then for the result to be representable we
|
602
|
+
# need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
|
603
|
+
# if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
|
604
|
+
# 2**(1/|y|), hence xc**|y| < 2 and the result is not
|
605
|
+
# representable.
|
606
|
+
#
|
607
|
+
# (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
|
608
|
+
# |y| < 1/|xe| then the result is not representable.
|
609
|
+
#
|
610
|
+
# Note that since x is not equal to 1, at least one of (1) and
|
611
|
+
# (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
|
612
|
+
# 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
|
613
|
+
#
|
614
|
+
# There's also a limit to how large y can be, at least if it's
|
615
|
+
# positive: the normalized result will have coefficient xc**y,
|
616
|
+
# so if it's representable then xc**y < 10**p, and y <
|
617
|
+
# p/log10(xc). Hence if y*log10(xc) >= p then the result is
|
618
|
+
# not exactly representable.
|
619
|
+
|
620
|
+
# if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
|
621
|
+
# so |y| < 1/xe and the result is not representable.
|
622
|
+
# Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
|
623
|
+
# < 1/nbits(xc).
|
624
|
+
|
625
|
+
xc = self.coefficient
|
626
|
+
xe = self.exponent
|
627
|
+
while (xc % DecNum.radix) == 0
|
628
|
+
xc /= DecNum.radix
|
629
|
+
xe += 1
|
630
|
+
end
|
631
|
+
|
632
|
+
yc = other.coefficient
|
633
|
+
ye = other.exponent
|
634
|
+
while (yc % DecNum.radix) == 0
|
635
|
+
yc /= DecNum.radix
|
636
|
+
ye += 1
|
637
|
+
end
|
638
|
+
|
639
|
+
# case where xc == 1: result is 10**(xe*y), with xe*y
|
640
|
+
# required to be an integer
|
641
|
+
if xc == 1
|
642
|
+
if ye >= 0
|
643
|
+
exponent = xe*yc*DecNum.int_radix_power(ye)
|
644
|
+
else
|
645
|
+
exponent, remainder = (xe*yc).divmod(DecNum.int_radix_power(-ye))
|
646
|
+
return nil if remainder!=0
|
647
|
+
end
|
648
|
+
exponent = -exponent if other.sign == -1
|
649
|
+
# if other is a nonnegative integer, use ideal exponent
|
650
|
+
if other.integral? and (other.sign == +1)
|
651
|
+
ideal_exponent = self.exponent*other.to_i
|
652
|
+
zeros = [exponent-ideal_exponent, p-1].min
|
653
|
+
else
|
654
|
+
zeros = 0
|
655
|
+
end
|
656
|
+
return Num(+1, DecNum.int_radix_power(zeros), exponent-zeros)
|
657
|
+
end
|
658
|
+
|
659
|
+
# case where y is negative: xc must be either a power
|
660
|
+
# of 2 or a power of 5.
|
661
|
+
if other.sign == -1
|
662
|
+
last_digit = (xc % 10)
|
663
|
+
if [2,4,6,8].include?(last_digit)
|
664
|
+
# quick test for power of 2
|
665
|
+
return nil if xc & -xc != xc
|
666
|
+
# now xc is a power of 2; e is its exponent
|
667
|
+
e = _nbits(xc)-1
|
668
|
+
# find e*y and xe*y; both must be integers
|
669
|
+
if ye >= 0
|
670
|
+
y_as_int = yc*DecNum.int_radix_power(ye)
|
671
|
+
e = e*y_as_int
|
672
|
+
xe = xe*y_as_int
|
673
|
+
else
|
674
|
+
ten_pow = DecNum.int_radix_power(-ye)
|
675
|
+
e, remainder = (e*yc).divmod(ten_pow)
|
676
|
+
return nil if remainder!=0
|
677
|
+
xe, remainder = (xe*yc).divmod(ten_pow)
|
678
|
+
return nil if remainder!=0
|
679
|
+
end
|
680
|
+
|
681
|
+
return nil if e*65 >= p*93 # 93/65 > log(10)/log(5)
|
682
|
+
xc = 5**e
|
683
|
+
elsif last_digit == 5
|
684
|
+
# e >= log_5(xc) if xc is a power of 5; we have
|
685
|
+
# equality all the way up to xc=5**2658
|
686
|
+
e = _nbits(xc)*28/65
|
687
|
+
xc, remainder = (5**e).divmod(xc)
|
688
|
+
return nil if remainder!=0
|
689
|
+
while (xc % 5) == 0
|
690
|
+
xc /= 5
|
691
|
+
e -= 1
|
692
|
+
end
|
693
|
+
if ye >= 0
|
694
|
+
y_as_integer = DecNum.int_mult_radix_power(yc,ye)
|
695
|
+
e = e*y_as_integer
|
696
|
+
xe = xe*y_as_integer
|
697
|
+
else
|
698
|
+
ten_pow = DecNum.int_radix_power(-ye)
|
699
|
+
e, remainder = (e*yc).divmod(ten_pow)
|
700
|
+
return nil if remainder
|
701
|
+
xe, remainder = (xe*yc).divmod(ten_pow)
|
702
|
+
return nil if remainder
|
703
|
+
end
|
704
|
+
return nil if e*3 >= p*10 # 10/3 > log(10)/log(2)
|
705
|
+
xc = 2**e
|
706
|
+
else
|
707
|
+
return nil
|
708
|
+
end
|
709
|
+
|
710
|
+
return nil if xc >= DecNum.int_radix_power(p)
|
711
|
+
xe = -e-xe
|
712
|
+
return Num(+1, xc, xe)
|
713
|
+
|
714
|
+
end
|
715
|
+
|
716
|
+
# now y is positive; find m and n such that y = m/n
|
717
|
+
if ye >= 0
|
718
|
+
m, n = yc*10**ye, 1
|
719
|
+
else
|
720
|
+
return nil if (xe != 0) and (_number_of_digits((yc*xe).abs) <= -ye)
|
721
|
+
xc_bits = _nbits(xc)
|
722
|
+
return nil if (xc != 1) and (_number_of_digits(yc.abs*xc_bits) <= -ye)
|
723
|
+
m, n = yc, DecNum.int_radix_power(-ye)
|
724
|
+
while ((m % 2) == 0) && ((n % 2) == 0)
|
725
|
+
m /= 2
|
726
|
+
n /= 2
|
727
|
+
end
|
728
|
+
while ((m % 5) == 0) && ((n % 5) == 0)
|
729
|
+
m /= 5
|
730
|
+
n /= 5
|
731
|
+
end
|
732
|
+
end
|
733
|
+
|
734
|
+
# compute nth root of xc*10**xe
|
735
|
+
if n > 1
|
736
|
+
# if 1 < xc < 2**n then xc isn't an nth power
|
737
|
+
return nil if xc != 1 and xc_bits <= n
|
738
|
+
|
739
|
+
xe, rem = xe.divmod(n)
|
740
|
+
return nil if rem != 0
|
741
|
+
|
742
|
+
# compute nth root of xc using Newton's method
|
743
|
+
a = 1 << -(-_nbits(xc)/n) # initial estimate
|
744
|
+
q = r = nil
|
745
|
+
loop do
|
746
|
+
q, r = xc.divmod(a**(n-1))
|
747
|
+
break if a <= q
|
748
|
+
a = (a*(n-1) + q)/n
|
749
|
+
end
|
750
|
+
return nil if !((a == q) and (r == 0))
|
751
|
+
xc = a
|
752
|
+
end
|
753
|
+
|
754
|
+
# now xc*10**xe is the nth root of the original xc*10**xe
|
755
|
+
# compute mth power of xc*10**xe
|
756
|
+
|
757
|
+
# if m > p*100/_log10_lb(xc) then m > p/log10(xc), hence xc**m >
|
758
|
+
# 10**p and the result is not representable.
|
759
|
+
return nil if (xc > 1) and (m > p*100/_log10_lb(xc))
|
760
|
+
xc = xc**m
|
761
|
+
xe *= m
|
762
|
+
return nil if xc > 10**p
|
763
|
+
|
764
|
+
# by this point the result *is* exactly representable
|
765
|
+
# adjust the exponent to get as close as possible to the ideal
|
766
|
+
# exponent, if necessary
|
767
|
+
if other.integral? && other.sign == +1
|
768
|
+
ideal_exponent = self.exponent*other.to_i
|
769
|
+
zeros = [xe-ideal_exponent, p-_number_of_digits(xc)].min
|
770
|
+
else
|
771
|
+
zeros = 0
|
772
|
+
end
|
773
|
+
return Num(+1, DecNum.int_mult_radix_power(xc, zeros), xe-zeros)
|
774
|
+
end
|
775
|
+
|
776
|
+
# Compute a lower bound for the adjusted exponent of self.log10()
|
777
|
+
# In other words, find r such that self.log10() >= 10**r.
|
778
|
+
# Assumes that self is finite and positive and that self != 1.
|
779
|
+
def _log10_exp_bound
|
780
|
+
# For x >= 10 or x < 0.1 we only need a bound on the integer
|
781
|
+
# part of log10(self), and this comes directly from the
|
782
|
+
# exponent of x. For 0.1 <= x <= 10 we use the inequalities
|
783
|
+
# 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
|
784
|
+
# (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
|
785
|
+
#
|
786
|
+
# The original Python cod used lexical order (having converted to strings) for (num < den) and (num < 231)
|
787
|
+
# so the results would be different e.g. for num = 9; Can this happen? What is the correct way?
|
788
|
+
|
789
|
+
adj = self.exponent + number_of_digits - 1
|
790
|
+
return _number_of_digits(adj) - 1 if adj >= 1 # self >= 10
|
791
|
+
return _number_of_digits(-1-adj)-1 if adj <= -2 # self < 0.1
|
792
|
+
|
793
|
+
c = self.coefficient
|
794
|
+
e = self.exponent
|
795
|
+
if adj == 0
|
796
|
+
# 1 < self < 10
|
797
|
+
num = (c - DecNum.int_radix_power(-e))
|
798
|
+
den = (231*c)
|
799
|
+
return _number_of_digits(num) - _number_of_digits(den) - ((num < den) ? 1 : 0) + 2
|
800
|
+
end
|
801
|
+
# adj == -1, 0.1 <= self < 1
|
802
|
+
num = (DecNum.int_radix_power(-e)-c)
|
803
|
+
return _number_of_digits(num.to_i) + e - ((num < 231) ? 1 : 0) - 1
|
804
|
+
end
|
805
|
+
|
806
|
+
# Compute a lower bound for the adjusted exponent of self.ln().
|
807
|
+
# In other words, compute r such that self.ln() >= 10**r. Assumes
|
808
|
+
# that self is finite and positive and that self != 1.
|
809
|
+
def _ln_exp_bound
|
810
|
+
# for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
|
811
|
+
#
|
812
|
+
# The original Python cod used lexical order (having converted to strings) for (num < den))
|
813
|
+
# so the results would be different e.g. for num = 9m den=200; Can this happen? What is the correct way?
|
814
|
+
|
815
|
+
adj = self.exponent + number_of_digits - 1
|
816
|
+
if adj >= 1
|
817
|
+
# argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
|
818
|
+
return _number_of_digits(adj*23/10) - 1
|
819
|
+
end
|
820
|
+
if adj <= -2
|
821
|
+
# argument <= 0.1
|
822
|
+
return _number_of_digits((-1-adj)*23/10) - 1
|
823
|
+
end
|
824
|
+
c = self.coefficient
|
825
|
+
e = self.exponent
|
826
|
+
if adj == 0
|
827
|
+
# 1 < self < 10
|
828
|
+
num = c-(10**-e)
|
829
|
+
den = c
|
830
|
+
return _number_of_digits(num) - _number_of_digits(den) - ((num < den) ? 1 : 0)
|
831
|
+
end
|
832
|
+
# adj == -1, 0.1 <= self < 1
|
833
|
+
return e + _number_of_digits(10**-e - c) - 1
|
834
|
+
end
|
835
|
+
|
836
|
+
module AuxiliarFunctions #:nodoc:
|
837
|
+
|
838
|
+
module_function
|
839
|
+
|
840
|
+
# Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
|
841
|
+
# y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
|
842
|
+
#
|
843
|
+
# 10**(p-1) <= c <= 10**p, and
|
844
|
+
# (c-1)*10**e < x**y < (c+1)*10**e
|
845
|
+
#
|
846
|
+
# in other words, c*10**e is an approximation to x**y with p digits
|
847
|
+
# of precision, and with an error in c of at most 1. (This is
|
848
|
+
# almost, but not quite, the same as the error being < 1ulp: when c
|
849
|
+
# == 10**(p-1) we can only guarantee error < 10ulp.)
|
850
|
+
#
|
851
|
+
# We assume that: x is positive and not equal to 1, and y is nonzero.
|
852
|
+
def _dpower(xc, xe, yc, ye, p)
|
853
|
+
# Find b such that 10**(b-1) <= |y| <= 10**b
|
854
|
+
b = _number_of_digits(yc.abs) + ye
|
855
|
+
|
856
|
+
# log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
|
857
|
+
lxc = _dlog(xc, xe, p+b+1)
|
858
|
+
|
859
|
+
# compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
|
860
|
+
shift = ye-b
|
861
|
+
if shift >= 0
|
862
|
+
pc = lxc*yc*10**shift
|
863
|
+
else
|
864
|
+
pc = _div_nearest(lxc*yc, 10**-shift)
|
865
|
+
end
|
866
|
+
|
867
|
+
if pc == 0
|
868
|
+
# we prefer a result that isn't exactly 1; this makes it
|
869
|
+
# easier to compute a correctly rounded result in __pow__
|
870
|
+
if (_number_of_digits(xc) + xe >= 1) == (yc > 0) # if x**y > 1:
|
871
|
+
coeff, exp = 10**(p-1)+1, 1-p
|
872
|
+
else
|
873
|
+
coeff, exp = 10**p-1, -p
|
874
|
+
end
|
875
|
+
else
|
876
|
+
coeff, exp = _dexp(pc, -(p+1), p+1)
|
877
|
+
coeff = _div_nearest(coeff, 10)
|
878
|
+
exp += 1
|
879
|
+
end
|
880
|
+
|
881
|
+
return coeff, exp
|
882
|
+
end
|
883
|
+
|
884
|
+
# Compute an approximation to exp(c*10**e), with p decimal places of precision.
|
885
|
+
# Returns integers d, f such that:
|
886
|
+
#
|
887
|
+
# 10**(p-1) <= d <= 10**p, and
|
888
|
+
# (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
|
889
|
+
#
|
890
|
+
# In other words, d*10**f is an approximation to exp(c*10**e) with p
|
891
|
+
# digits of precision, and with an error in d of at most 1. This is
|
892
|
+
# almost, but not quite, the same as the error being < 1ulp: when d
|
893
|
+
# = 10**(p-1) the error could be up to 10 ulp.
|
894
|
+
def _dexp(c, e, p)
|
895
|
+
# we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
|
896
|
+
p += 2
|
897
|
+
|
898
|
+
# compute log(10) with extra precision = adjusted exponent of c*10**e
|
899
|
+
# TODO: without the .abs tests fail because c is negative: c should not be negative!!
|
900
|
+
extra = [0, e + _number_of_digits(c.abs) - 1].max
|
901
|
+
q = p + extra
|
902
|
+
|
903
|
+
# compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
|
904
|
+
# rounding down
|
905
|
+
shift = e+q
|
906
|
+
if shift >= 0
|
907
|
+
cshift = c*10**shift
|
908
|
+
else
|
909
|
+
cshift = c/10**-shift
|
910
|
+
end
|
911
|
+
quot, rem = cshift.divmod(_log10_digits(q))
|
912
|
+
|
913
|
+
# reduce remainder back to original precision
|
914
|
+
rem = _div_nearest(rem, 10**extra)
|
915
|
+
|
916
|
+
# error in result of _iexp < 120; error after division < 0.62
|
917
|
+
return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
|
918
|
+
end
|
919
|
+
|
920
|
+
# Closest integer to a/b, a and b positive integers; rounds to even
|
921
|
+
# in the case of a tie.
|
922
|
+
def _div_nearest(a, b)
|
923
|
+
q, r = a.divmod(b)
|
924
|
+
q + (((2*r + (q&1)) > b) ? 1 : 0)
|
925
|
+
end
|
926
|
+
|
927
|
+
# Closest integer to the square root of the positive integer n. a is
|
928
|
+
# an initial approximation to the square root. Any positive integer
|
929
|
+
# will do for a, but the closer a is to the square root of n the
|
930
|
+
# faster convergence will be.
|
931
|
+
def _sqrt_nearest(n, a)
|
932
|
+
|
933
|
+
if n <= 0 or a <= 0
|
934
|
+
raise ArgumentError, "Both arguments to _sqrt_nearest should be positive."
|
935
|
+
end
|
936
|
+
|
937
|
+
b=0
|
938
|
+
while a != b
|
939
|
+
b, a = a, a--n/a>>1 # ??
|
940
|
+
end
|
941
|
+
return a
|
942
|
+
end
|
943
|
+
|
944
|
+
# Given an integer x and a nonnegative integer shift, return closest
|
945
|
+
# integer to x / 2**shift; use round-to-even in case of a tie.
|
946
|
+
def _rshift_nearest(x, shift)
|
947
|
+
b, q = (1 << shift), (x >> shift)
|
948
|
+
return q + (((2*(x & (b-1)) + (q&1)) > b) ? 1 : 0)
|
949
|
+
#return q + (2*(x & (b-1)) + (((q&1) > b) ? 1 : 0))
|
950
|
+
end
|
951
|
+
|
952
|
+
# Integer approximation to M*log(x/M), with absolute error boundable
|
953
|
+
# in terms only of x/M.
|
954
|
+
#
|
955
|
+
# Given positive integers x and M, return an integer approximation to
|
956
|
+
# M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
|
957
|
+
# between the approximation and the exact result is at most 22. For
|
958
|
+
# L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
|
959
|
+
# both cases these are upper bounds on the error; it will usually be
|
960
|
+
# much smaller.
|
961
|
+
def _ilog(x, m, l = 8)
|
962
|
+
# The basic algorithm is the following: let log1p be the function
|
963
|
+
# log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
|
964
|
+
# the reduction
|
965
|
+
#
|
966
|
+
# log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
|
967
|
+
#
|
968
|
+
# repeatedly until the argument to log1p is small (< 2**-L in
|
969
|
+
# absolute value). For small y we can use the Taylor series
|
970
|
+
# expansion
|
971
|
+
#
|
972
|
+
# log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
|
973
|
+
#
|
974
|
+
# truncating at T such that y**T is small enough. The whole
|
975
|
+
# computation is carried out in a form of fixed-point arithmetic,
|
976
|
+
# with a real number z being represented by an integer
|
977
|
+
# approximation to z*M. To avoid loss of precision, the y below
|
978
|
+
# is actually an integer approximation to 2**R*y*M, where R is the
|
979
|
+
# number of reductions performed so far.
|
980
|
+
|
981
|
+
y = x-m
|
982
|
+
# argument reduction; R = number of reductions performed
|
983
|
+
r = 0
|
984
|
+
# while (r <= l && y.abs << l-r >= m ||
|
985
|
+
# r > l and y.abs>> r-l >= m)
|
986
|
+
while (((r <= l) && ((y.abs << (l-r)) >= m)) ||
|
987
|
+
((r > l) && ((y.abs>>(r-l)) >= m)))
|
988
|
+
y = _div_nearest((m*y) << 1,
|
989
|
+
m + _sqrt_nearest(m*(m+_rshift_nearest(y, r)), m))
|
990
|
+
r += 1
|
991
|
+
end
|
992
|
+
|
993
|
+
# Taylor series with T terms
|
994
|
+
t = -(-10*_number_of_digits(m)/(3*l)).to_i
|
995
|
+
yshift = _rshift_nearest(y, r)
|
996
|
+
w = _div_nearest(m, t)
|
997
|
+
# (1...t).reverse_each do |k| # Ruby 1.9
|
998
|
+
(1...t).to_a.reverse.each do |k|
|
999
|
+
w = _div_nearest(m, k) - _div_nearest(yshift*w, m)
|
1000
|
+
end
|
1001
|
+
|
1002
|
+
return _div_nearest(w*y, m)
|
1003
|
+
end
|
1004
|
+
|
1005
|
+
# Given integers c, e and p with c > 0, p >= 0, compute an integer
|
1006
|
+
# approximation to 10**p * log10(c*10**e), with an absolute error of
|
1007
|
+
# at most 1. Assumes that c*10**e is not exactly 1.
|
1008
|
+
def _dlog10(c, e, p)
|
1009
|
+
# increase precision by 2; compensate for this by dividing
|
1010
|
+
# final result by 100
|
1011
|
+
p += 2
|
1012
|
+
|
1013
|
+
# write c*10**e as d*10**f with either:
|
1014
|
+
# f >= 0 and 1 <= d <= 10, or
|
1015
|
+
# f <= 0 and 0.1 <= d <= 1.
|
1016
|
+
# Thus for c*10**e close to 1, f = 0
|
1017
|
+
l = _number_of_digits(c)
|
1018
|
+
f = e+l - ((e+l >= 1) ? 1 : 0)
|
1019
|
+
|
1020
|
+
if p > 0
|
1021
|
+
m = 10**p
|
1022
|
+
k = e+p-f
|
1023
|
+
if k >= 0
|
1024
|
+
c *= 10**k
|
1025
|
+
else
|
1026
|
+
c = _div_nearest(c, 10**-k)
|
1027
|
+
end
|
1028
|
+
log_d = _ilog(c, m) # error < 5 + 22 = 27
|
1029
|
+
log_10 = _log10_digits(p) # error < 1
|
1030
|
+
log_d = _div_nearest(log_d*m, log_10)
|
1031
|
+
log_tenpower = f*m # exact
|
1032
|
+
else
|
1033
|
+
log_d = 0 # error < 2.31
|
1034
|
+
log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
|
1035
|
+
end
|
1036
|
+
|
1037
|
+
return _div_nearest(log_tenpower+log_d, 100)
|
1038
|
+
end
|
1039
|
+
|
1040
|
+
# Compute a lower bound for 100*log10(c) for a positive integer c.
|
1041
|
+
def _log10_lb(c)
|
1042
|
+
raise ArgumentError, "The argument to _log10_lb should be nonnegative." if c <= 0
|
1043
|
+
str_c = c.to_s
|
1044
|
+
return 100*str_c.length - LOG10_LB_CORRECTION[str_c[0,1]]
|
1045
|
+
end
|
1046
|
+
LOG10_LB_CORRECTION = { # (1..9).map_hash{|i| 100 - (100*Math.log10(i)).floor}
|
1047
|
+
'1'=> 100, '2'=> 70, '3'=> 53, '4'=> 40, '5'=> 31,
|
1048
|
+
'6'=> 23, '7'=> 16, '8'=> 10, '9'=> 5}
|
1049
|
+
|
1050
|
+
# Given integers c, e and p with c > 0, compute an integer
|
1051
|
+
# approximation to 10**p * log(c*10**e), with an absolute error of
|
1052
|
+
# at most 1. Assumes that c*10**e is not exactly 1.
|
1053
|
+
def _dlog(c, e, p)
|
1054
|
+
|
1055
|
+
# Increase precision by 2. The precision increase is compensated
|
1056
|
+
# for at the end with a division by 100.
|
1057
|
+
p += 2
|
1058
|
+
|
1059
|
+
# rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
|
1060
|
+
# or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
|
1061
|
+
# as 10**p * log(d) + 10**p*f * log(10).
|
1062
|
+
l = _number_of_digits(c)
|
1063
|
+
f = e+l - ((e+l >= 1) ? 1 : 0)
|
1064
|
+
|
1065
|
+
# compute approximation to 10**p*log(d), with error < 27
|
1066
|
+
if p > 0
|
1067
|
+
k = e+p-f
|
1068
|
+
if k >= 0
|
1069
|
+
c *= 10**k
|
1070
|
+
else
|
1071
|
+
c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
|
1072
|
+
end
|
1073
|
+
|
1074
|
+
# _ilog magnifies existing error in c by a factor of at most 10
|
1075
|
+
log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
|
1076
|
+
else
|
1077
|
+
# p <= 0: just approximate the whole thing by 0; error < 2.31
|
1078
|
+
log_d = 0
|
1079
|
+
end
|
1080
|
+
|
1081
|
+
# compute approximation to f*10**p*log(10), with error < 11.
|
1082
|
+
if f
|
1083
|
+
extra = _number_of_digits(f.abs) - 1
|
1084
|
+
if p + extra >= 0
|
1085
|
+
# error in f * _log10_digits(p+extra) < |f| * 1 = |f|
|
1086
|
+
# after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
|
1087
|
+
f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
|
1088
|
+
else
|
1089
|
+
f_log_ten = 0
|
1090
|
+
end
|
1091
|
+
else
|
1092
|
+
f_log_ten = 0
|
1093
|
+
end
|
1094
|
+
|
1095
|
+
# error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
|
1096
|
+
return _div_nearest(f_log_ten + log_d, 100)
|
1097
|
+
end
|
1098
|
+
|
1099
|
+
# Given integers x and M, M > 0, such that x/M is small in absolute
|
1100
|
+
# value, compute an integer approximation to M*exp(x/M). For 0 <=
|
1101
|
+
# x/M <= 2.4, the absolute error in the result is bounded by 60 (and
|
1102
|
+
# is usually much smaller).
|
1103
|
+
def _iexp(x, m, l=8)
|
1104
|
+
|
1105
|
+
# Algorithm: to compute exp(z) for a real number z, first divide z
|
1106
|
+
# by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
|
1107
|
+
# compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
|
1108
|
+
# series
|
1109
|
+
#
|
1110
|
+
# expm1(x) = x + x**2/2! + x**3/3! + ...
|
1111
|
+
#
|
1112
|
+
# Now use the identity
|
1113
|
+
#
|
1114
|
+
# expm1(2x) = expm1(x)*(expm1(x)+2)
|
1115
|
+
#
|
1116
|
+
# R times to compute the sequence expm1(z/2**R),
|
1117
|
+
# expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
|
1118
|
+
|
1119
|
+
# Find R such that x/2**R/M <= 2**-L
|
1120
|
+
r = _nbits((x<<l)/m)
|
1121
|
+
|
1122
|
+
# Taylor series. (2**L)**T > M
|
1123
|
+
t = -(-10*_number_of_digits(m)/(3*l)).to_i
|
1124
|
+
y = _div_nearest(x, t)
|
1125
|
+
mshift = m<<r
|
1126
|
+
(1...t).to_a.reverse.each do |i|
|
1127
|
+
y = _div_nearest(x*(mshift + y), mshift * i)
|
1128
|
+
end
|
1129
|
+
|
1130
|
+
# Expansion
|
1131
|
+
(0...r).to_a.reverse.each do |k|
|
1132
|
+
mshift = m<<(k+2)
|
1133
|
+
y = _div_nearest(y*(y+mshift), mshift)
|
1134
|
+
end
|
1135
|
+
|
1136
|
+
return m+y
|
1137
|
+
end
|
1138
|
+
|
1139
|
+
# We'll memoize the digits of log(10):
|
1140
|
+
@log10_digits = "23025850929940456840179914546843642076011014886"
|
1141
|
+
class <<self
|
1142
|
+
attr_accessor :log10_digits
|
1143
|
+
end
|
1144
|
+
|
1145
|
+
# Given an integer p >= 0, return floor(10**p)*log(10).
|
1146
|
+
def _log10_digits(p)
|
1147
|
+
# digits are stored as a string, for quick conversion to
|
1148
|
+
# integer in the case that we've already computed enough
|
1149
|
+
# digits; the stored digits should always be correct
|
1150
|
+
# (truncated, not rounded to nearest).
|
1151
|
+
raise ArgumentError, "p should be nonnegative" if p<0
|
1152
|
+
if p >= AuxiliarFunctions.log10_digits.length
|
1153
|
+
digits = nil
|
1154
|
+
# compute p+3, p+6, p+9, ... digits; continue until at
|
1155
|
+
# least one of the extra digits is nonzero
|
1156
|
+
extra = 3
|
1157
|
+
loop do
|
1158
|
+
# compute p+extra digits, correct to within 1ulp
|
1159
|
+
m = 10**(p+extra+2)
|
1160
|
+
digits = _div_nearest(_ilog(10*m, m), 100).to_s
|
1161
|
+
break if digits[-extra..-1] != '0'*extra
|
1162
|
+
extra += 3
|
1163
|
+
end
|
1164
|
+
# keep all reliable digits so far; remove trailing zeros
|
1165
|
+
# and next nonzero digit
|
1166
|
+
AuxiliarFunctions.log10_digits = digits.sub(/0*$/,'')[0...-1]
|
1167
|
+
end
|
1168
|
+
return (AuxiliarFunctions.log10_digits[0...p+1]).to_i
|
1169
|
+
end
|
1170
|
+
|
1171
|
+
# Compute an approximation to exp(c*10**e), with p decimal places of
|
1172
|
+
# precision.
|
1173
|
+
#
|
1174
|
+
# Returns integers d, f such that:
|
1175
|
+
#
|
1176
|
+
# 10**(p-1) <= d <= 10**p, and
|
1177
|
+
# (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
|
1178
|
+
#
|
1179
|
+
# In other words, d*10**f is an approximation to exp(c*10**e) with p
|
1180
|
+
# digits of precision, and with an error in d of at most 1. This is
|
1181
|
+
# almost, but not quite, the same as the error being < 1ulp: when d
|
1182
|
+
# = 10**(p-1) the error could be up to 10 ulp.
|
1183
|
+
def dexp(c, e, p)
|
1184
|
+
# we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
|
1185
|
+
p += 2
|
1186
|
+
|
1187
|
+
# compute log(10) with extra precision = adjusted exponent of c*10**e
|
1188
|
+
extra = [0, e + _number_of_digits(c) - 1].max
|
1189
|
+
q = p + extra
|
1190
|
+
|
1191
|
+
# compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
|
1192
|
+
# rounding down
|
1193
|
+
shift = e+q
|
1194
|
+
if shift >= 0
|
1195
|
+
cshift = c*10**shift
|
1196
|
+
else
|
1197
|
+
cshift = c/10**-shift
|
1198
|
+
end
|
1199
|
+
quot, rem = cshift.divmod(_log10_digits(q))
|
1200
|
+
|
1201
|
+
# reduce remainder back to original precision
|
1202
|
+
rem = _div_nearest(rem, 10**extra)
|
1203
|
+
|
1204
|
+
# error in result of _iexp < 1s20; error after division < 0.62
|
1205
|
+
return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
|
1206
|
+
end
|
1207
|
+
|
1208
|
+
# number of bits in a nonnegative integer
|
1209
|
+
def _number_of_digits(i)
|
1210
|
+
raise TypeError, "The argument to _number_of_digits should be nonnegative." if i < 0
|
1211
|
+
if i.is_a?(Fixnum) || (i > NUMBER_OF_DIGITS_MAX_VALID_LOG)
|
1212
|
+
# for short integers this is faster
|
1213
|
+
# note that here we return 1 for 0
|
1214
|
+
i.to_s.length
|
1215
|
+
else
|
1216
|
+
(::Math.log10(i)+1).floor
|
1217
|
+
end
|
1218
|
+
end
|
1219
|
+
NUMBER_OF_DIGITS_MAX_VALID_LOG = 10**(Float::DIG-1)
|
1220
|
+
|
1221
|
+
end # AuxiliarFunctions
|
1222
|
+
|
1223
|
+
# This is for using auxiliar functions from DecNum instance method
|
1224
|
+
# without the "AuxiliarFunctions." prefix
|
1225
|
+
include AuxiliarFunctions
|
1226
|
+
# If we need to use them from DecNum class methods, we can avoid
|
1227
|
+
# the use of the prefix with:
|
1228
|
+
# extend AuxiliarFunctions
|
1229
|
+
|
1230
|
+
end
|
1231
|
+
|
1232
|
+
module_function
|
1233
|
+
# DecNum constructor. See DecNum#new for the parameters.
|
1234
|
+
# If a DecNum is passed a reference to it is returned (no new object is created).
|
1235
|
+
def DecNum(*args)
|
1236
|
+
DecNum.Num(*args)
|
1237
|
+
end
|
1238
|
+
|
1239
|
+
end # Flt
|