flt 1.0.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (56) hide show
  1. data/History.txt +41 -0
  2. data/License.txt +20 -0
  3. data/Manifest.txt +42 -0
  4. data/README.txt +557 -0
  5. data/Rakefile +34 -0
  6. data/lib/flt.rb +9 -0
  7. data/lib/flt/b.rb +6 -0
  8. data/lib/flt/bigdecimal.rb +151 -0
  9. data/lib/flt/bin_num.rb +250 -0
  10. data/lib/flt/d.rb +6 -0
  11. data/lib/flt/dec_num.rb +1239 -0
  12. data/lib/flt/float.rb +458 -0
  13. data/lib/flt/math.rb +66 -0
  14. data/lib/flt/num.rb +4211 -0
  15. data/lib/flt/sugar.rb +102 -0
  16. data/lib/flt/support.rb +1335 -0
  17. data/lib/flt/tolerance.rb +561 -0
  18. data/lib/flt/tolerance/sugar.rb +77 -0
  19. data/lib/flt/version.rb +9 -0
  20. data/setup.rb +1585 -0
  21. data/tasks/ann.rake +80 -0
  22. data/tasks/bones.rake +20 -0
  23. data/tasks/gem.rake +192 -0
  24. data/tasks/git.rake +40 -0
  25. data/tasks/manifest.rake +48 -0
  26. data/tasks/notes.rake +27 -0
  27. data/tasks/post_load.rake +39 -0
  28. data/tasks/rdoc.rake +50 -0
  29. data/tasks/rubyforge.rake +55 -0
  30. data/tasks/setup.rb +279 -0
  31. data/tasks/spec.rake +54 -0
  32. data/tasks/svn.rake +47 -0
  33. data/tasks/test.rake +40 -0
  34. data/test/all_tests.rb +23 -0
  35. data/test/helper.rb +101 -0
  36. data/test/reader.rb +68 -0
  37. data/test/test_basic.rb +396 -0
  38. data/test/test_bin.rb +245 -0
  39. data/test/test_bin_arithmetic.rb +94 -0
  40. data/test/test_binfloat_conversion.rb +24 -0
  41. data/test/test_coercion.rb +22 -0
  42. data/test/test_comparisons.rb +53 -0
  43. data/test/test_dectest.rb +216 -0
  44. data/test/test_define_conversions.rb +144 -0
  45. data/test/test_epsilon.rb +55 -0
  46. data/test/test_exact.rb +147 -0
  47. data/test/test_flags.rb +34 -0
  48. data/test/test_multithreading.rb +32 -0
  49. data/test/test_num_constructor.rb +133 -0
  50. data/test/test_odd_even.rb +78 -0
  51. data/test/test_round.rb +104 -0
  52. data/test/test_to_int.rb +104 -0
  53. data/test/test_to_rf.rb +36 -0
  54. data/test/test_tol.rb +102 -0
  55. data/test/test_ulp.rb +127 -0
  56. metadata +147 -0
data/lib/flt/d.rb ADDED
@@ -0,0 +1,6 @@
1
+ require 'flt/dec_num'
2
+
3
+ D = Flt::DecNum
4
+ def D(*args)
5
+ Flt.DecNum(*args)
6
+ end
@@ -0,0 +1,1239 @@
1
+ require 'flt/num'
2
+
3
+ module Flt
4
+
5
+ # DecNum arbitrary precision floating point number.
6
+ # This implementation of DecNum is based on the Decimal module of Python,
7
+ # written by Eric Price, Facundo Batista, Raymond Hettinger, Aahz and Tim Peters.
8
+ class DecNum < Num
9
+
10
+ class << self
11
+ # Numerical base of DecNum.
12
+ def radix
13
+ 10
14
+ end
15
+
16
+ # Integral power of the base: radix**n for integer n; returns an integer.
17
+ def int_radix_power(n)
18
+ 10**n
19
+ end
20
+
21
+ # Multiply by an integral power of the base: x*(radix**n) for x,n integer;
22
+ # returns an integer.
23
+ def int_mult_radix_power(x,n)
24
+ x * (10**n)
25
+ end
26
+
27
+ # Divide by an integral power of the base: x/(radix**n) for x,n integer;
28
+ # returns an integer.
29
+ def int_div_radix_power(x,n)
30
+ x / (10**n)
31
+ end
32
+ end
33
+
34
+ # This is the Context class for Flt::DecNum.
35
+ #
36
+ # The context defines the arithmetic context: rounding mode, precision,...
37
+ #
38
+ # DecNum.context is the current (thread-local) context for DecNum numbers.
39
+ class Context < Num::ContextBase
40
+ # See Flt::Num::ContextBase#new() for the valid options
41
+ #
42
+ # See also the context constructor method Flt::Num.Context().
43
+ def initialize(*options)
44
+ super(DecNum, *options)
45
+ end
46
+
47
+ # Power. See DecNum#power()
48
+ def power(x,y,modulo=nil)
49
+ _convert(x).power(y,modulo,self)
50
+ end
51
+
52
+ # Returns the base 10 logarithm
53
+ def log10(x)
54
+ _convert(x).log10(self)
55
+ end
56
+
57
+ # Exponential function: e**x
58
+ def exp(x)
59
+ _convert(x).exp(self)
60
+ end
61
+
62
+ # Returns the natural (base e) logarithm
63
+ def ln(x)
64
+ _convert(x).ln(self)
65
+ end
66
+
67
+ end
68
+
69
+ # the DefaultContext is the base for new contexts; it can be changed.
70
+ DefaultContext = DecNum::Context.new(
71
+ :exact=>false, :precision=>28, :rounding=>:half_even,
72
+ :emin=> -999999999, :emax=>+999999999,
73
+ :flags=>[],
74
+ :traps=>[DivisionByZero, Overflow, InvalidOperation],
75
+ :ignored_flags=>[],
76
+ :capitals=>true,
77
+ :clamp=>true)
78
+
79
+ BasicContext = DecNum::Context.new(DefaultContext,
80
+ :precision=>9, :rounding=>:half_up,
81
+ :traps=>[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
82
+ :flags=>[])
83
+
84
+ ExtendedContext = DecNum::Context.new(DefaultContext,
85
+ :precision=>9, :rounding=>:half_even,
86
+ :traps=>[], :flags=>[], :clamp=>false)
87
+
88
+ # A DecNum value can be defined by:
89
+ # * A String containing a text representation of the number
90
+ # * An Integer
91
+ # * A Rational
92
+ # * A Value of a type for which conversion is defined in the context.
93
+ # * Another DecNum.
94
+ # * A sign, coefficient and exponent (either as separate arguments, as an array or as a Hash with symbolic keys),
95
+ # or a signed coefficient and an exponent.
96
+ # This is the internal representation of Num, as returned by Num#split.
97
+ # The sign is +1 for plus and -1 for minus; the coefficient and exponent are
98
+ # integers, except for special values which are defined by :inf, :nan or :snan for the exponent.
99
+ #
100
+ # An optional Context can be passed after the value-definint argument to override the current context
101
+ # and options can be passed in a last hash argument; alternatively context options can be overriden
102
+ # by options of the hash argument.
103
+ #
104
+ # When the number is defined by a numeric literal (a String), it can be followed by a symbol that specifies
105
+ # the mode used to convert the literal to a floating-point value:
106
+ # * :free is currently the default for all cases. The precision of the input literal (including trailing zeros)
107
+ # is preserved and the precision of the context is ignored.
108
+ # When the literal is in base 10, (which is the case by default), the literal is preserved exactly.
109
+ # Otherwise, all significative digits that can be derived from the literal are generanted, significative
110
+ # meaning here that if the digit is changed and the value converted back to a literal of the same base and
111
+ # precision, the original literal will not be obtained.
112
+ # * :short is a variation of :free in which only the minimun number of digits that are necessary to
113
+ # produce the original literal when the value is converted back with the same original precision.
114
+ # * :fixed will round and normalize the value to the precision specified by the context (normalize meaning
115
+ # that exaclty the number of digits specified by the precision will be generated, even if the original
116
+ # literal has fewer digits.) This may fail returning NaN (and raising Inexact) if the context precision is
117
+ # :exact, but not if the floating-point radix is a multiple of the input base.
118
+ #
119
+ # Options that can be passed for construction from literal:
120
+ # * :base is the numeric base of the input, 10 by default.
121
+ #
122
+ # The Flt.DecNum() constructor admits the same parameters and can be used as a shortcut for DecNum creation.
123
+ # Examples:
124
+ # DecNum('0.1000') # -> 0.1000
125
+ # DecNum('0.12345') # -> 0.12345
126
+ # DecNum('1.2345E-1') # -> 0.12345
127
+ # DecNum('0.1000', :short) # -> 0.1000
128
+ # DecNum('0.1000',:fixed, :precision=>20) # -> 0.10000000000000000000
129
+ # DecNum('0.12345',:fixed, :precision=>20) # -> 0.12345000000000000000
130
+ # DecNum('0.100110E3', :base=>2) # -> 4.8
131
+ # DecNum('0.1E-5', :free, :base=>2) # -> 0.016
132
+ # DecNum('0.1E-5', :short, :base=>2) # -> 0.02
133
+ # DecNum('0.1E-5', :fixed, :base=>2, :exact=>true) # -> 0.015625
134
+ # DecNum('0.1E-5', :fixed, :base=>2) # -> 0.01562500000000000000000000000
135
+ def initialize(*args)
136
+ super(*args)
137
+ end
138
+
139
+ def number_of_digits
140
+ @coeff.is_a?(Integer) ? _number_of_digits(@coeff) : 0
141
+ end
142
+
143
+ # Raises to the power of x, to modulo if given.
144
+ #
145
+ # With two arguments, compute self**other. If self is negative then other
146
+ # must be integral. The result will be inexact unless other is
147
+ # integral and the result is finite and can be expressed exactly
148
+ # in 'precision' digits.
149
+ #
150
+ # With three arguments, compute (self**other) % modulo. For the
151
+ # three argument form, the following restrictions on the
152
+ # arguments hold:
153
+ #
154
+ # - all three arguments must be integral
155
+ # - other must be nonnegative
156
+ # - at least one of self or other must be nonzero
157
+ # - modulo must be nonzero and have at most 'precision' digits
158
+ #
159
+ # The result of a.power(b, modulo) is identical to the result
160
+ # that would be obtained by computing (a**b) % modulo with
161
+ # unbounded precision, but is computed more efficiently. It is
162
+ # always exact.
163
+ def power(other, modulo=nil, context=nil)
164
+
165
+ if context.nil? && (modulo.is_a?(Context) || modulo.is_a?(Hash))
166
+ context = modulo
167
+ modulo = nil
168
+ end
169
+
170
+ return self.power_modulo(other, modulo, context) if modulo
171
+
172
+ context = DecNum.define_context(context)
173
+ other = _convert(other)
174
+
175
+ ans = _check_nans(context, other)
176
+ return ans if ans
177
+
178
+ # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
179
+ if other.zero?
180
+ if self.zero?
181
+ return context.exception(InvalidOperation, '0 ** 0')
182
+ else
183
+ return Num(1)
184
+ end
185
+ end
186
+
187
+ # result has sign -1 iff self.sign is -1 and other is an odd integer
188
+ result_sign = +1
189
+ _self = self
190
+ if _self.sign == -1
191
+ if other.integral?
192
+ result_sign = -1 if !other.even?
193
+ else
194
+ # -ve**noninteger = NaN
195
+ # (-0)**noninteger = 0**noninteger
196
+ unless self.zero?
197
+ return context.exception(InvalidOperation, 'x ** y with x negative and y not an integer')
198
+ end
199
+ end
200
+ # negate self, without doing any unwanted rounding
201
+ _self = self.copy_negate
202
+ end
203
+
204
+ # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
205
+ if _self.zero?
206
+ return (other.sign == +1) ? Num(result_sign, 0, 0) : num_class.infinity(result_sign)
207
+ end
208
+
209
+ # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
210
+ if _self.infinite?
211
+ return (other.sign == +1) ? num_class.infinity(result_sign) : Num(result_sign, 0, 0)
212
+ end
213
+
214
+ # 1**other = 1, but the choice of exponent and the flags
215
+ # depend on the exponent of self, and on whether other is a
216
+ # positive integer, a negative integer, or neither
217
+ if _self == Num(1)
218
+ return _self if context.exact?
219
+ if other.integral?
220
+ # exp = max(self._exp*max(int(other), 0),
221
+ # 1-context.prec) but evaluating int(other) directly
222
+ # is dangerous until we know other is small (other
223
+ # could be 1e999999999)
224
+ if other.sign == -1
225
+ multiplier = 0
226
+ elsif other > context.precision
227
+ multiplier = context.precision
228
+ else
229
+ multiplier = other.to_i
230
+ end
231
+
232
+ exp = _self.exponent * multiplier
233
+ if exp < 1-context.precision
234
+ exp = 1-context.precision
235
+ context.exception Rounded
236
+ end
237
+ else
238
+ context.exception Rounded
239
+ context.exception Inexact
240
+ exp = 1-context.precision
241
+ end
242
+
243
+ return Num(result_sign, DecNum.int_radix_power(-exp), exp)
244
+ end
245
+
246
+ # compute adjusted exponent of self
247
+ self_adj = _self.adjusted_exponent
248
+
249
+ # self ** infinity is infinity if self > 1, 0 if self < 1
250
+ # self ** -infinity is infinity if self < 1, 0 if self > 1
251
+ if other.infinite?
252
+ if (other.sign == +1) == (self_adj < 0)
253
+ return Num(result_sign, 0, 0)
254
+ else
255
+ return DecNum.infinity(result_sign)
256
+ end
257
+ end
258
+
259
+ # from here on, the result always goes through the call
260
+ # to _fix at the end of this function.
261
+ ans = nil
262
+
263
+ # crude test to catch cases of extreme overflow/underflow. If
264
+ # log10(self)*other >= 10**bound and bound >= len(str(Emax))
265
+ # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
266
+ # self**other >= 10**(Emax+1), so overflow occurs. The test
267
+ # for underflow is similar.
268
+ bound = _self._log10_exp_bound + other.adjusted_exponent
269
+ if (self_adj >= 0) == (other.sign == +1)
270
+ # self > 1 and other +ve, or self < 1 and other -ve
271
+ # possibility of overflow
272
+ if bound >= _number_of_digits(context.emax)
273
+ ans = Num(result_sign, 1, context.emax+1)
274
+ end
275
+ else
276
+ # self > 1 and other -ve, or self < 1 and other +ve
277
+ # possibility of underflow to 0
278
+ etiny = context.etiny
279
+ if bound >= _number_of_digits(-etiny)
280
+ ans = Num(result_sign, 1, etiny-1)
281
+ end
282
+ end
283
+
284
+ # try for an exact result with precision +1
285
+ if ans.nil?
286
+ if context.exact?
287
+ if other.adjusted_exponent < 100
288
+ test_precision = _self.number_of_digits*other.to_i+1
289
+ else
290
+ test_precision = _self.number_of_digits+1
291
+ end
292
+ else
293
+ test_precision = context.precision + 1
294
+ end
295
+ ans = _self._power_exact(other, test_precision)
296
+ if !ans.nil? && (result_sign == -1)
297
+ ans = Num(-1, ans.coefficient, ans.exponent)
298
+ end
299
+ end
300
+
301
+ # usual case: inexact result, x**y computed directly as exp(y*log(x))
302
+ if !ans.nil?
303
+ return ans if context.exact?
304
+ else
305
+ return context.exception(Inexact, "Inexact power") if context.exact?
306
+
307
+ p = context.precision
308
+ xc = _self.coefficient
309
+ xe = _self.exponent
310
+ yc = other.coefficient
311
+ ye = other.exponent
312
+ yc = -yc if other.sign == -1
313
+
314
+ # compute correctly rounded result: start with precision +3,
315
+ # then increase precision until result is unambiguously roundable
316
+ extra = 3
317
+ coeff, exp = nil, nil
318
+ loop do
319
+ coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
320
+ #break if (coeff % DecNum.int_mult_radix_power(5,coeff.to_s.length-p-1)) != 0
321
+ break if (coeff % (5*10**(_number_of_digits(coeff)-p-1))) != 0
322
+ extra += 3
323
+ end
324
+ ans = Num(result_sign, coeff, exp)
325
+ end
326
+
327
+ # the specification says that for non-integer other we need to
328
+ # raise Inexact, even when the result is actually exact. In
329
+ # the same way, we need to raise Underflow here if the result
330
+ # is subnormal. (The call to _fix will take care of raising
331
+ # Rounded and Subnormal, as usual.)
332
+ if !other.integral?
333
+ context.exception Inexact
334
+ # pad with zeros up to length context.precision+1 if necessary
335
+ if ans.number_of_digits <= context.precision
336
+ expdiff = context.precision+1 - ans.number_of_digits
337
+ ans = Num(ans.sign, DecNum.int_mult_radix_power(ans.coefficient, expdiff), ans.exponent-expdiff)
338
+ end
339
+ context.exception Underflow if ans.adjusted_exponent < context.emin
340
+ end
341
+ # unlike exp, ln and log10, the power function respects the
342
+ # rounding mode; no need to use ROUND_HALF_EVEN here
343
+ ans._fix(context)
344
+ end
345
+
346
+ # Returns the base 10 logarithm
347
+ def log10(context=nil)
348
+ context = DecNum.define_context(context)
349
+
350
+ # log10(NaN) = NaN
351
+ ans = _check_nans(context)
352
+ return ans if ans
353
+
354
+ # log10(0.0) == -Infinity
355
+ return DecNum.infinity(-1) if self.zero?
356
+
357
+ # log10(Infinity) = Infinity
358
+ return DecNum.infinity if self.infinite? && self.sign == +1
359
+
360
+ # log10(negative or -Infinity) raises InvalidOperation
361
+ return context.exception(InvalidOperation, 'log10 of a negative value') if self.sign == -1
362
+
363
+ digits = self.digits
364
+ # log10(10**n) = n
365
+ if digits.first == 1 && digits[1..-1].all?{|d| d==0}
366
+ # answer may need rounding
367
+ ans = Num(self.exponent + digits.size - 1)
368
+ return ans if context.exact?
369
+ else
370
+ # result is irrational, so necessarily inexact
371
+ return context.exception(Inexact, "Inexact power") if context.exact?
372
+ c = self.coefficient
373
+ e = self.exponent
374
+ p = context.precision
375
+
376
+ # correctly rounded result: repeatedly increase precision
377
+ # until result is unambiguously roundable
378
+ places = p-self._log10_exp_bound+2
379
+ coeff = nil
380
+ loop do
381
+ coeff = _dlog10(c, e, places)
382
+ # assert coeff.abs.to_s.length-p >= 1
383
+ break if (coeff % (5*10**(_number_of_digits(coeff.abs)-p-1)))!=0
384
+ places += 3
385
+ end
386
+ ans = Num(coeff<0 ? -1 : +1, coeff.abs, -places)
387
+ end
388
+
389
+ DecNum.context(context, :rounding=>:half_even) do |local_context|
390
+ ans = ans._fix(local_context)
391
+ context.flags = local_context.flags
392
+ end
393
+ return ans
394
+ end
395
+
396
+ # Exponential function
397
+ def exp(context=nil)
398
+ context = DecNum.define_context(context)
399
+
400
+ # exp(NaN) = NaN
401
+ ans = _check_nans(context)
402
+ return ans if ans
403
+
404
+ # exp(-Infinity) = 0
405
+ return DecNum.zero if self.infinite? && (self.sign == -1)
406
+
407
+ # exp(0) = 1
408
+ return Num(1) if self.zero?
409
+
410
+ # exp(Infinity) = Infinity
411
+ return Num(self) if self.infinite?
412
+
413
+ # the result is now guaranteed to be inexact (the true
414
+ # mathematical result is transcendental). There's no need to
415
+ # raise Rounded and Inexact here---they'll always be raised as
416
+ # a result of the call to _fix.
417
+ return context.exception(Inexact, 'Inexact exp') if context.exact?
418
+ p = context.precision
419
+ adj = self.adjusted_exponent
420
+
421
+ # we only need to do any computation for quite a small range
422
+ # of adjusted exponents---for example, -29 <= adj <= 10 for
423
+ # the default context. For smaller exponent the result is
424
+ # indistinguishable from 1 at the given precision, while for
425
+ # larger exponent the result either overflows or underflows.
426
+ if self.sign == +1 and adj > _number_of_digits((context.emax+1)*3)
427
+ # overflow
428
+ ans = Num(+1, 1, context.emax+1)
429
+ elsif self.sign == -1 and adj > _number_of_digits((-context.etiny+1)*3)
430
+ # underflow to 0
431
+ ans = Num(+1, 1, context.etiny-1)
432
+ elsif self.sign == +1 and adj < -p
433
+ # p+1 digits; final round will raise correct flags
434
+ ans = Num(+1, DecNum.int_radix_power(p)+1, -p)
435
+ elsif self.sign == -1 and adj < -p-1
436
+ # p+1 digits; final round will raise correct flags
437
+ ans = Num(+1, DecNum.int_radix_power(p+1)-1, -p-1)
438
+ else
439
+ # general case
440
+ c = self.coefficient
441
+ e = self.exponent
442
+ c = -c if self.sign == -1
443
+
444
+ # compute correctly rounded result: increase precision by
445
+ # 3 digits at a time until we get an unambiguously
446
+ # roundable result
447
+ extra = 3
448
+ coeff = exp = nil
449
+ loop do
450
+ coeff, exp = _dexp(c, e, p+extra)
451
+ break if (coeff % (5*10**(_number_of_digits(coeff)-p-1)))!=0
452
+ extra += 3
453
+ end
454
+ ans = Num(+1, coeff, exp)
455
+ end
456
+
457
+ # at this stage, ans should round correctly with *any*
458
+ # rounding mode, not just with ROUND_HALF_EVEN
459
+ DecNum.context(context, :rounding=>:half_even) do |local_context|
460
+ ans = ans._fix(local_context)
461
+ context.flags = local_context.flags
462
+ end
463
+
464
+ return ans
465
+ end
466
+
467
+ # Returns the natural (base e) logarithm
468
+ def ln(context=nil)
469
+ context = DecNum.define_context(context)
470
+
471
+ # ln(NaN) = NaN
472
+ ans = _check_nans(context)
473
+ return ans if ans
474
+
475
+ # ln(0.0) == -Infinity
476
+ return DecNum.infinity(-1) if self.zero?
477
+
478
+ # ln(Infinity) = Infinity
479
+ return DecNum.infinity if self.infinite? && self.sign == +1
480
+
481
+ # ln(1.0) == 0.0
482
+ return DecNum.zero if self == Num(1)
483
+
484
+ # ln(negative) raises InvalidOperation
485
+ return context.exception(InvalidOperation, 'ln of a negative value') if self.sign==-1
486
+
487
+ # result is irrational, so necessarily inexact
488
+ return context.exception(Inexact, 'Inexact exp') if context.exact?
489
+
490
+ c = self.coefficient
491
+ e = self.exponent
492
+ p = context.precision
493
+
494
+ # correctly rounded result: repeatedly increase precision by 3
495
+ # until we get an unambiguously roundable result
496
+ places = p - self._ln_exp_bound + 2 # at least p+3 places
497
+ coeff = nil
498
+ loop do
499
+ coeff = _dlog(c, e, places)
500
+ # assert coeff.to_s.length-p >= 1
501
+ break if (coeff % (5*10**(_number_of_digits(coeff.abs)-p-1))) != 0
502
+ places += 3
503
+ end
504
+ ans = Num((coeff<0) ? -1 : +1, coeff.abs, -places)
505
+
506
+ DecNum.context(context, :rounding=>:half_even) do |local_context|
507
+ ans = ans._fix(local_context)
508
+ context.flags = local_context.flags
509
+ end
510
+ return ans
511
+ end
512
+
513
+ # Auxiliar Methods
514
+
515
+
516
+
517
+ # Power-modulo: self._power_modulo(other, modulo) == (self**other) % modulo
518
+ # This is equivalent to Python's 3-argument version of pow()
519
+ def _power_modulo(other, modulo, context=nil)
520
+
521
+ context = DecNum.define_context(context)
522
+ other = _convert(other)
523
+ modulo = _convert(third)
524
+
525
+ if self.nan? || other.nan? || modulo.nan?
526
+ return context.exception(InvalidOperation, 'sNaN', self) if self.snan?
527
+ return context.exception(InvalidOperation, 'sNaN', other) if other.snan?
528
+ return context.exception(InvalidOperation, 'sNaN', modulo) if other.modulo?
529
+ return self._fix_nan(context) if self.nan?
530
+ return other._fix_nan(context) if other.nan?
531
+ return modulo._fix_nan(context) # if modulo.nan?
532
+ end
533
+
534
+ if !(self.integral? && other.integral? && modulo.integral?)
535
+ return context.exception(InvalidOperation, '3-argument power not allowed unless all arguments are integers.')
536
+ end
537
+
538
+ if other < 0
539
+ return context.exception(InvalidOperation, '3-argument power cannot have a negative 2nd argument.')
540
+ end
541
+
542
+ if modulo.zero?
543
+ return context.exception(InvalidOperation, '3-argument power cannot have a 0 3rd argument.')
544
+ end
545
+
546
+ if modulo.adjusted_exponent >= context.precision
547
+ return context.exception(InvalidOperation, 'insufficient precision: power 3rd argument must not have more than precision digits')
548
+ end
549
+
550
+ if other.zero? && self.zero?
551
+ return context.exception(InvalidOperation, "0**0 not defined")
552
+ end
553
+
554
+ sign = other.even? ? +1 : -1
555
+ modulo = modulo.to_i.abs
556
+
557
+ base = (self.coefficient % modulo * (DecNum.int_radix_power(self.exponent) % modulo)) % modulo
558
+
559
+ other.exponent.times do
560
+ base = (base**DecNum.radix) % modulo
561
+ end
562
+ base = (base**other.coefficient) % modulo
563
+
564
+ Num(sign, base, 0)
565
+ end
566
+
567
+ # Attempt to compute self**other exactly
568
+ # Given Decimals self and other and an integer p, attempt to
569
+ # compute an exact result for the power self**other, with p
570
+ # digits of precision. Return nil if self**other is not
571
+ # exactly representable in p digits.
572
+ #
573
+ # Assumes that elimination of special cases has already been
574
+ # performed: self and other must both be nonspecial; self must
575
+ # be positive and not numerically equal to 1; other must be
576
+ # nonzero. For efficiency, other.exponent should not be too large,
577
+ # so that 10**other.exponent.abs is a feasible calculation.
578
+ def _power_exact(other, p)
579
+
580
+ # In the comments below, we write x for the value of self and
581
+ # y for the value of other. Write x = xc*10**xe and y =
582
+ # yc*10**ye.
583
+
584
+ # The main purpose of this method is to identify the *failure*
585
+ # of x**y to be exactly representable with as little effort as
586
+ # possible. So we look for cheap and easy tests that
587
+ # eliminate the possibility of x**y being exact. Only if all
588
+ # these tests are passed do we go on to actually compute x**y.
589
+
590
+ # Here's the main idea. First normalize both x and y. We
591
+ # express y as a rational m/n, with m and n relatively prime
592
+ # and n>0. Then for x**y to be exactly representable (at
593
+ # *any* precision), xc must be the nth power of a positive
594
+ # integer and xe must be divisible by n. If m is negative
595
+ # then additionally xc must be a power of either 2 or 5, hence
596
+ # a power of 2**n or 5**n.
597
+ #
598
+ # There's a limit to how small |y| can be: if y=m/n as above
599
+ # then:
600
+ #
601
+ # (1) if xc != 1 then for the result to be representable we
602
+ # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
603
+ # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
604
+ # 2**(1/|y|), hence xc**|y| < 2 and the result is not
605
+ # representable.
606
+ #
607
+ # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
608
+ # |y| < 1/|xe| then the result is not representable.
609
+ #
610
+ # Note that since x is not equal to 1, at least one of (1) and
611
+ # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
612
+ # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
613
+ #
614
+ # There's also a limit to how large y can be, at least if it's
615
+ # positive: the normalized result will have coefficient xc**y,
616
+ # so if it's representable then xc**y < 10**p, and y <
617
+ # p/log10(xc). Hence if y*log10(xc) >= p then the result is
618
+ # not exactly representable.
619
+
620
+ # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
621
+ # so |y| < 1/xe and the result is not representable.
622
+ # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
623
+ # < 1/nbits(xc).
624
+
625
+ xc = self.coefficient
626
+ xe = self.exponent
627
+ while (xc % DecNum.radix) == 0
628
+ xc /= DecNum.radix
629
+ xe += 1
630
+ end
631
+
632
+ yc = other.coefficient
633
+ ye = other.exponent
634
+ while (yc % DecNum.radix) == 0
635
+ yc /= DecNum.radix
636
+ ye += 1
637
+ end
638
+
639
+ # case where xc == 1: result is 10**(xe*y), with xe*y
640
+ # required to be an integer
641
+ if xc == 1
642
+ if ye >= 0
643
+ exponent = xe*yc*DecNum.int_radix_power(ye)
644
+ else
645
+ exponent, remainder = (xe*yc).divmod(DecNum.int_radix_power(-ye))
646
+ return nil if remainder!=0
647
+ end
648
+ exponent = -exponent if other.sign == -1
649
+ # if other is a nonnegative integer, use ideal exponent
650
+ if other.integral? and (other.sign == +1)
651
+ ideal_exponent = self.exponent*other.to_i
652
+ zeros = [exponent-ideal_exponent, p-1].min
653
+ else
654
+ zeros = 0
655
+ end
656
+ return Num(+1, DecNum.int_radix_power(zeros), exponent-zeros)
657
+ end
658
+
659
+ # case where y is negative: xc must be either a power
660
+ # of 2 or a power of 5.
661
+ if other.sign == -1
662
+ last_digit = (xc % 10)
663
+ if [2,4,6,8].include?(last_digit)
664
+ # quick test for power of 2
665
+ return nil if xc & -xc != xc
666
+ # now xc is a power of 2; e is its exponent
667
+ e = _nbits(xc)-1
668
+ # find e*y and xe*y; both must be integers
669
+ if ye >= 0
670
+ y_as_int = yc*DecNum.int_radix_power(ye)
671
+ e = e*y_as_int
672
+ xe = xe*y_as_int
673
+ else
674
+ ten_pow = DecNum.int_radix_power(-ye)
675
+ e, remainder = (e*yc).divmod(ten_pow)
676
+ return nil if remainder!=0
677
+ xe, remainder = (xe*yc).divmod(ten_pow)
678
+ return nil if remainder!=0
679
+ end
680
+
681
+ return nil if e*65 >= p*93 # 93/65 > log(10)/log(5)
682
+ xc = 5**e
683
+ elsif last_digit == 5
684
+ # e >= log_5(xc) if xc is a power of 5; we have
685
+ # equality all the way up to xc=5**2658
686
+ e = _nbits(xc)*28/65
687
+ xc, remainder = (5**e).divmod(xc)
688
+ return nil if remainder!=0
689
+ while (xc % 5) == 0
690
+ xc /= 5
691
+ e -= 1
692
+ end
693
+ if ye >= 0
694
+ y_as_integer = DecNum.int_mult_radix_power(yc,ye)
695
+ e = e*y_as_integer
696
+ xe = xe*y_as_integer
697
+ else
698
+ ten_pow = DecNum.int_radix_power(-ye)
699
+ e, remainder = (e*yc).divmod(ten_pow)
700
+ return nil if remainder
701
+ xe, remainder = (xe*yc).divmod(ten_pow)
702
+ return nil if remainder
703
+ end
704
+ return nil if e*3 >= p*10 # 10/3 > log(10)/log(2)
705
+ xc = 2**e
706
+ else
707
+ return nil
708
+ end
709
+
710
+ return nil if xc >= DecNum.int_radix_power(p)
711
+ xe = -e-xe
712
+ return Num(+1, xc, xe)
713
+
714
+ end
715
+
716
+ # now y is positive; find m and n such that y = m/n
717
+ if ye >= 0
718
+ m, n = yc*10**ye, 1
719
+ else
720
+ return nil if (xe != 0) and (_number_of_digits((yc*xe).abs) <= -ye)
721
+ xc_bits = _nbits(xc)
722
+ return nil if (xc != 1) and (_number_of_digits(yc.abs*xc_bits) <= -ye)
723
+ m, n = yc, DecNum.int_radix_power(-ye)
724
+ while ((m % 2) == 0) && ((n % 2) == 0)
725
+ m /= 2
726
+ n /= 2
727
+ end
728
+ while ((m % 5) == 0) && ((n % 5) == 0)
729
+ m /= 5
730
+ n /= 5
731
+ end
732
+ end
733
+
734
+ # compute nth root of xc*10**xe
735
+ if n > 1
736
+ # if 1 < xc < 2**n then xc isn't an nth power
737
+ return nil if xc != 1 and xc_bits <= n
738
+
739
+ xe, rem = xe.divmod(n)
740
+ return nil if rem != 0
741
+
742
+ # compute nth root of xc using Newton's method
743
+ a = 1 << -(-_nbits(xc)/n) # initial estimate
744
+ q = r = nil
745
+ loop do
746
+ q, r = xc.divmod(a**(n-1))
747
+ break if a <= q
748
+ a = (a*(n-1) + q)/n
749
+ end
750
+ return nil if !((a == q) and (r == 0))
751
+ xc = a
752
+ end
753
+
754
+ # now xc*10**xe is the nth root of the original xc*10**xe
755
+ # compute mth power of xc*10**xe
756
+
757
+ # if m > p*100/_log10_lb(xc) then m > p/log10(xc), hence xc**m >
758
+ # 10**p and the result is not representable.
759
+ return nil if (xc > 1) and (m > p*100/_log10_lb(xc))
760
+ xc = xc**m
761
+ xe *= m
762
+ return nil if xc > 10**p
763
+
764
+ # by this point the result *is* exactly representable
765
+ # adjust the exponent to get as close as possible to the ideal
766
+ # exponent, if necessary
767
+ if other.integral? && other.sign == +1
768
+ ideal_exponent = self.exponent*other.to_i
769
+ zeros = [xe-ideal_exponent, p-_number_of_digits(xc)].min
770
+ else
771
+ zeros = 0
772
+ end
773
+ return Num(+1, DecNum.int_mult_radix_power(xc, zeros), xe-zeros)
774
+ end
775
+
776
+ # Compute a lower bound for the adjusted exponent of self.log10()
777
+ # In other words, find r such that self.log10() >= 10**r.
778
+ # Assumes that self is finite and positive and that self != 1.
779
+ def _log10_exp_bound
780
+ # For x >= 10 or x < 0.1 we only need a bound on the integer
781
+ # part of log10(self), and this comes directly from the
782
+ # exponent of x. For 0.1 <= x <= 10 we use the inequalities
783
+ # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
784
+ # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
785
+ #
786
+ # The original Python cod used lexical order (having converted to strings) for (num < den) and (num < 231)
787
+ # so the results would be different e.g. for num = 9; Can this happen? What is the correct way?
788
+
789
+ adj = self.exponent + number_of_digits - 1
790
+ return _number_of_digits(adj) - 1 if adj >= 1 # self >= 10
791
+ return _number_of_digits(-1-adj)-1 if adj <= -2 # self < 0.1
792
+
793
+ c = self.coefficient
794
+ e = self.exponent
795
+ if adj == 0
796
+ # 1 < self < 10
797
+ num = (c - DecNum.int_radix_power(-e))
798
+ den = (231*c)
799
+ return _number_of_digits(num) - _number_of_digits(den) - ((num < den) ? 1 : 0) + 2
800
+ end
801
+ # adj == -1, 0.1 <= self < 1
802
+ num = (DecNum.int_radix_power(-e)-c)
803
+ return _number_of_digits(num.to_i) + e - ((num < 231) ? 1 : 0) - 1
804
+ end
805
+
806
+ # Compute a lower bound for the adjusted exponent of self.ln().
807
+ # In other words, compute r such that self.ln() >= 10**r. Assumes
808
+ # that self is finite and positive and that self != 1.
809
+ def _ln_exp_bound
810
+ # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
811
+ #
812
+ # The original Python cod used lexical order (having converted to strings) for (num < den))
813
+ # so the results would be different e.g. for num = 9m den=200; Can this happen? What is the correct way?
814
+
815
+ adj = self.exponent + number_of_digits - 1
816
+ if adj >= 1
817
+ # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
818
+ return _number_of_digits(adj*23/10) - 1
819
+ end
820
+ if adj <= -2
821
+ # argument <= 0.1
822
+ return _number_of_digits((-1-adj)*23/10) - 1
823
+ end
824
+ c = self.coefficient
825
+ e = self.exponent
826
+ if adj == 0
827
+ # 1 < self < 10
828
+ num = c-(10**-e)
829
+ den = c
830
+ return _number_of_digits(num) - _number_of_digits(den) - ((num < den) ? 1 : 0)
831
+ end
832
+ # adj == -1, 0.1 <= self < 1
833
+ return e + _number_of_digits(10**-e - c) - 1
834
+ end
835
+
836
+ module AuxiliarFunctions #:nodoc:
837
+
838
+ module_function
839
+
840
+ # Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
841
+ # y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
842
+ #
843
+ # 10**(p-1) <= c <= 10**p, and
844
+ # (c-1)*10**e < x**y < (c+1)*10**e
845
+ #
846
+ # in other words, c*10**e is an approximation to x**y with p digits
847
+ # of precision, and with an error in c of at most 1. (This is
848
+ # almost, but not quite, the same as the error being < 1ulp: when c
849
+ # == 10**(p-1) we can only guarantee error < 10ulp.)
850
+ #
851
+ # We assume that: x is positive and not equal to 1, and y is nonzero.
852
+ def _dpower(xc, xe, yc, ye, p)
853
+ # Find b such that 10**(b-1) <= |y| <= 10**b
854
+ b = _number_of_digits(yc.abs) + ye
855
+
856
+ # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
857
+ lxc = _dlog(xc, xe, p+b+1)
858
+
859
+ # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
860
+ shift = ye-b
861
+ if shift >= 0
862
+ pc = lxc*yc*10**shift
863
+ else
864
+ pc = _div_nearest(lxc*yc, 10**-shift)
865
+ end
866
+
867
+ if pc == 0
868
+ # we prefer a result that isn't exactly 1; this makes it
869
+ # easier to compute a correctly rounded result in __pow__
870
+ if (_number_of_digits(xc) + xe >= 1) == (yc > 0) # if x**y > 1:
871
+ coeff, exp = 10**(p-1)+1, 1-p
872
+ else
873
+ coeff, exp = 10**p-1, -p
874
+ end
875
+ else
876
+ coeff, exp = _dexp(pc, -(p+1), p+1)
877
+ coeff = _div_nearest(coeff, 10)
878
+ exp += 1
879
+ end
880
+
881
+ return coeff, exp
882
+ end
883
+
884
+ # Compute an approximation to exp(c*10**e), with p decimal places of precision.
885
+ # Returns integers d, f such that:
886
+ #
887
+ # 10**(p-1) <= d <= 10**p, and
888
+ # (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
889
+ #
890
+ # In other words, d*10**f is an approximation to exp(c*10**e) with p
891
+ # digits of precision, and with an error in d of at most 1. This is
892
+ # almost, but not quite, the same as the error being < 1ulp: when d
893
+ # = 10**(p-1) the error could be up to 10 ulp.
894
+ def _dexp(c, e, p)
895
+ # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
896
+ p += 2
897
+
898
+ # compute log(10) with extra precision = adjusted exponent of c*10**e
899
+ # TODO: without the .abs tests fail because c is negative: c should not be negative!!
900
+ extra = [0, e + _number_of_digits(c.abs) - 1].max
901
+ q = p + extra
902
+
903
+ # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
904
+ # rounding down
905
+ shift = e+q
906
+ if shift >= 0
907
+ cshift = c*10**shift
908
+ else
909
+ cshift = c/10**-shift
910
+ end
911
+ quot, rem = cshift.divmod(_log10_digits(q))
912
+
913
+ # reduce remainder back to original precision
914
+ rem = _div_nearest(rem, 10**extra)
915
+
916
+ # error in result of _iexp < 120; error after division < 0.62
917
+ return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
918
+ end
919
+
920
+ # Closest integer to a/b, a and b positive integers; rounds to even
921
+ # in the case of a tie.
922
+ def _div_nearest(a, b)
923
+ q, r = a.divmod(b)
924
+ q + (((2*r + (q&1)) > b) ? 1 : 0)
925
+ end
926
+
927
+ # Closest integer to the square root of the positive integer n. a is
928
+ # an initial approximation to the square root. Any positive integer
929
+ # will do for a, but the closer a is to the square root of n the
930
+ # faster convergence will be.
931
+ def _sqrt_nearest(n, a)
932
+
933
+ if n <= 0 or a <= 0
934
+ raise ArgumentError, "Both arguments to _sqrt_nearest should be positive."
935
+ end
936
+
937
+ b=0
938
+ while a != b
939
+ b, a = a, a--n/a>>1 # ??
940
+ end
941
+ return a
942
+ end
943
+
944
+ # Given an integer x and a nonnegative integer shift, return closest
945
+ # integer to x / 2**shift; use round-to-even in case of a tie.
946
+ def _rshift_nearest(x, shift)
947
+ b, q = (1 << shift), (x >> shift)
948
+ return q + (((2*(x & (b-1)) + (q&1)) > b) ? 1 : 0)
949
+ #return q + (2*(x & (b-1)) + (((q&1) > b) ? 1 : 0))
950
+ end
951
+
952
+ # Integer approximation to M*log(x/M), with absolute error boundable
953
+ # in terms only of x/M.
954
+ #
955
+ # Given positive integers x and M, return an integer approximation to
956
+ # M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
957
+ # between the approximation and the exact result is at most 22. For
958
+ # L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
959
+ # both cases these are upper bounds on the error; it will usually be
960
+ # much smaller.
961
+ def _ilog(x, m, l = 8)
962
+ # The basic algorithm is the following: let log1p be the function
963
+ # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
964
+ # the reduction
965
+ #
966
+ # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
967
+ #
968
+ # repeatedly until the argument to log1p is small (< 2**-L in
969
+ # absolute value). For small y we can use the Taylor series
970
+ # expansion
971
+ #
972
+ # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
973
+ #
974
+ # truncating at T such that y**T is small enough. The whole
975
+ # computation is carried out in a form of fixed-point arithmetic,
976
+ # with a real number z being represented by an integer
977
+ # approximation to z*M. To avoid loss of precision, the y below
978
+ # is actually an integer approximation to 2**R*y*M, where R is the
979
+ # number of reductions performed so far.
980
+
981
+ y = x-m
982
+ # argument reduction; R = number of reductions performed
983
+ r = 0
984
+ # while (r <= l && y.abs << l-r >= m ||
985
+ # r > l and y.abs>> r-l >= m)
986
+ while (((r <= l) && ((y.abs << (l-r)) >= m)) ||
987
+ ((r > l) && ((y.abs>>(r-l)) >= m)))
988
+ y = _div_nearest((m*y) << 1,
989
+ m + _sqrt_nearest(m*(m+_rshift_nearest(y, r)), m))
990
+ r += 1
991
+ end
992
+
993
+ # Taylor series with T terms
994
+ t = -(-10*_number_of_digits(m)/(3*l)).to_i
995
+ yshift = _rshift_nearest(y, r)
996
+ w = _div_nearest(m, t)
997
+ # (1...t).reverse_each do |k| # Ruby 1.9
998
+ (1...t).to_a.reverse.each do |k|
999
+ w = _div_nearest(m, k) - _div_nearest(yshift*w, m)
1000
+ end
1001
+
1002
+ return _div_nearest(w*y, m)
1003
+ end
1004
+
1005
+ # Given integers c, e and p with c > 0, p >= 0, compute an integer
1006
+ # approximation to 10**p * log10(c*10**e), with an absolute error of
1007
+ # at most 1. Assumes that c*10**e is not exactly 1.
1008
+ def _dlog10(c, e, p)
1009
+ # increase precision by 2; compensate for this by dividing
1010
+ # final result by 100
1011
+ p += 2
1012
+
1013
+ # write c*10**e as d*10**f with either:
1014
+ # f >= 0 and 1 <= d <= 10, or
1015
+ # f <= 0 and 0.1 <= d <= 1.
1016
+ # Thus for c*10**e close to 1, f = 0
1017
+ l = _number_of_digits(c)
1018
+ f = e+l - ((e+l >= 1) ? 1 : 0)
1019
+
1020
+ if p > 0
1021
+ m = 10**p
1022
+ k = e+p-f
1023
+ if k >= 0
1024
+ c *= 10**k
1025
+ else
1026
+ c = _div_nearest(c, 10**-k)
1027
+ end
1028
+ log_d = _ilog(c, m) # error < 5 + 22 = 27
1029
+ log_10 = _log10_digits(p) # error < 1
1030
+ log_d = _div_nearest(log_d*m, log_10)
1031
+ log_tenpower = f*m # exact
1032
+ else
1033
+ log_d = 0 # error < 2.31
1034
+ log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
1035
+ end
1036
+
1037
+ return _div_nearest(log_tenpower+log_d, 100)
1038
+ end
1039
+
1040
+ # Compute a lower bound for 100*log10(c) for a positive integer c.
1041
+ def _log10_lb(c)
1042
+ raise ArgumentError, "The argument to _log10_lb should be nonnegative." if c <= 0
1043
+ str_c = c.to_s
1044
+ return 100*str_c.length - LOG10_LB_CORRECTION[str_c[0,1]]
1045
+ end
1046
+ LOG10_LB_CORRECTION = { # (1..9).map_hash{|i| 100 - (100*Math.log10(i)).floor}
1047
+ '1'=> 100, '2'=> 70, '3'=> 53, '4'=> 40, '5'=> 31,
1048
+ '6'=> 23, '7'=> 16, '8'=> 10, '9'=> 5}
1049
+
1050
+ # Given integers c, e and p with c > 0, compute an integer
1051
+ # approximation to 10**p * log(c*10**e), with an absolute error of
1052
+ # at most 1. Assumes that c*10**e is not exactly 1.
1053
+ def _dlog(c, e, p)
1054
+
1055
+ # Increase precision by 2. The precision increase is compensated
1056
+ # for at the end with a division by 100.
1057
+ p += 2
1058
+
1059
+ # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
1060
+ # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
1061
+ # as 10**p * log(d) + 10**p*f * log(10).
1062
+ l = _number_of_digits(c)
1063
+ f = e+l - ((e+l >= 1) ? 1 : 0)
1064
+
1065
+ # compute approximation to 10**p*log(d), with error < 27
1066
+ if p > 0
1067
+ k = e+p-f
1068
+ if k >= 0
1069
+ c *= 10**k
1070
+ else
1071
+ c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
1072
+ end
1073
+
1074
+ # _ilog magnifies existing error in c by a factor of at most 10
1075
+ log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
1076
+ else
1077
+ # p <= 0: just approximate the whole thing by 0; error < 2.31
1078
+ log_d = 0
1079
+ end
1080
+
1081
+ # compute approximation to f*10**p*log(10), with error < 11.
1082
+ if f
1083
+ extra = _number_of_digits(f.abs) - 1
1084
+ if p + extra >= 0
1085
+ # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
1086
+ # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
1087
+ f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
1088
+ else
1089
+ f_log_ten = 0
1090
+ end
1091
+ else
1092
+ f_log_ten = 0
1093
+ end
1094
+
1095
+ # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
1096
+ return _div_nearest(f_log_ten + log_d, 100)
1097
+ end
1098
+
1099
+ # Given integers x and M, M > 0, such that x/M is small in absolute
1100
+ # value, compute an integer approximation to M*exp(x/M). For 0 <=
1101
+ # x/M <= 2.4, the absolute error in the result is bounded by 60 (and
1102
+ # is usually much smaller).
1103
+ def _iexp(x, m, l=8)
1104
+
1105
+ # Algorithm: to compute exp(z) for a real number z, first divide z
1106
+ # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
1107
+ # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
1108
+ # series
1109
+ #
1110
+ # expm1(x) = x + x**2/2! + x**3/3! + ...
1111
+ #
1112
+ # Now use the identity
1113
+ #
1114
+ # expm1(2x) = expm1(x)*(expm1(x)+2)
1115
+ #
1116
+ # R times to compute the sequence expm1(z/2**R),
1117
+ # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
1118
+
1119
+ # Find R such that x/2**R/M <= 2**-L
1120
+ r = _nbits((x<<l)/m)
1121
+
1122
+ # Taylor series. (2**L)**T > M
1123
+ t = -(-10*_number_of_digits(m)/(3*l)).to_i
1124
+ y = _div_nearest(x, t)
1125
+ mshift = m<<r
1126
+ (1...t).to_a.reverse.each do |i|
1127
+ y = _div_nearest(x*(mshift + y), mshift * i)
1128
+ end
1129
+
1130
+ # Expansion
1131
+ (0...r).to_a.reverse.each do |k|
1132
+ mshift = m<<(k+2)
1133
+ y = _div_nearest(y*(y+mshift), mshift)
1134
+ end
1135
+
1136
+ return m+y
1137
+ end
1138
+
1139
+ # We'll memoize the digits of log(10):
1140
+ @log10_digits = "23025850929940456840179914546843642076011014886"
1141
+ class <<self
1142
+ attr_accessor :log10_digits
1143
+ end
1144
+
1145
+ # Given an integer p >= 0, return floor(10**p)*log(10).
1146
+ def _log10_digits(p)
1147
+ # digits are stored as a string, for quick conversion to
1148
+ # integer in the case that we've already computed enough
1149
+ # digits; the stored digits should always be correct
1150
+ # (truncated, not rounded to nearest).
1151
+ raise ArgumentError, "p should be nonnegative" if p<0
1152
+ if p >= AuxiliarFunctions.log10_digits.length
1153
+ digits = nil
1154
+ # compute p+3, p+6, p+9, ... digits; continue until at
1155
+ # least one of the extra digits is nonzero
1156
+ extra = 3
1157
+ loop do
1158
+ # compute p+extra digits, correct to within 1ulp
1159
+ m = 10**(p+extra+2)
1160
+ digits = _div_nearest(_ilog(10*m, m), 100).to_s
1161
+ break if digits[-extra..-1] != '0'*extra
1162
+ extra += 3
1163
+ end
1164
+ # keep all reliable digits so far; remove trailing zeros
1165
+ # and next nonzero digit
1166
+ AuxiliarFunctions.log10_digits = digits.sub(/0*$/,'')[0...-1]
1167
+ end
1168
+ return (AuxiliarFunctions.log10_digits[0...p+1]).to_i
1169
+ end
1170
+
1171
+ # Compute an approximation to exp(c*10**e), with p decimal places of
1172
+ # precision.
1173
+ #
1174
+ # Returns integers d, f such that:
1175
+ #
1176
+ # 10**(p-1) <= d <= 10**p, and
1177
+ # (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
1178
+ #
1179
+ # In other words, d*10**f is an approximation to exp(c*10**e) with p
1180
+ # digits of precision, and with an error in d of at most 1. This is
1181
+ # almost, but not quite, the same as the error being < 1ulp: when d
1182
+ # = 10**(p-1) the error could be up to 10 ulp.
1183
+ def dexp(c, e, p)
1184
+ # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
1185
+ p += 2
1186
+
1187
+ # compute log(10) with extra precision = adjusted exponent of c*10**e
1188
+ extra = [0, e + _number_of_digits(c) - 1].max
1189
+ q = p + extra
1190
+
1191
+ # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
1192
+ # rounding down
1193
+ shift = e+q
1194
+ if shift >= 0
1195
+ cshift = c*10**shift
1196
+ else
1197
+ cshift = c/10**-shift
1198
+ end
1199
+ quot, rem = cshift.divmod(_log10_digits(q))
1200
+
1201
+ # reduce remainder back to original precision
1202
+ rem = _div_nearest(rem, 10**extra)
1203
+
1204
+ # error in result of _iexp < 1s20; error after division < 0.62
1205
+ return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
1206
+ end
1207
+
1208
+ # number of bits in a nonnegative integer
1209
+ def _number_of_digits(i)
1210
+ raise TypeError, "The argument to _number_of_digits should be nonnegative." if i < 0
1211
+ if i.is_a?(Fixnum) || (i > NUMBER_OF_DIGITS_MAX_VALID_LOG)
1212
+ # for short integers this is faster
1213
+ # note that here we return 1 for 0
1214
+ i.to_s.length
1215
+ else
1216
+ (::Math.log10(i)+1).floor
1217
+ end
1218
+ end
1219
+ NUMBER_OF_DIGITS_MAX_VALID_LOG = 10**(Float::DIG-1)
1220
+
1221
+ end # AuxiliarFunctions
1222
+
1223
+ # This is for using auxiliar functions from DecNum instance method
1224
+ # without the "AuxiliarFunctions." prefix
1225
+ include AuxiliarFunctions
1226
+ # If we need to use them from DecNum class methods, we can avoid
1227
+ # the use of the prefix with:
1228
+ # extend AuxiliarFunctions
1229
+
1230
+ end
1231
+
1232
+ module_function
1233
+ # DecNum constructor. See DecNum#new for the parameters.
1234
+ # If a DecNum is passed a reference to it is returned (no new object is created).
1235
+ def DecNum(*args)
1236
+ DecNum.Num(*args)
1237
+ end
1238
+
1239
+ end # Flt