feldtruby 0.3.18 → 0.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/Rakefile +11 -1
- data/lib/feldtruby/array/basic_stats.rb +5 -0
- data/lib/feldtruby/logger.rb +22 -10
- data/lib/feldtruby/optimize/differential_evolution.rb +8 -8
- data/lib/feldtruby/optimize/objective.rb +361 -334
- data/lib/feldtruby/optimize/optimizer.rb +7 -8
- data/lib/feldtruby/version.rb +1 -1
- data/spikes/comparing_samplers_on_classic_optimization_functions/compare_samplers.rb +0 -76
- data/test/helper.rb +7 -2
- data/test/long_running/multi_objective_problems.rb +58 -0
- data/test/long_running/single_objective_problems.rb +163 -0
- data/test/long_running/test_single_objective_optimization.rb +112 -0
- data/test/test_array_basic_stats.rb +20 -12
- data/test/test_logger.rb +4 -4
- data/test/test_optimize_objective.rb +175 -119
- metadata +8 -2
@@ -23,7 +23,7 @@ class Optimizer
|
|
23
23
|
|
24
24
|
# Must setup logger before setting options since verbosity of logger is
|
25
25
|
# an option!
|
26
|
-
setup_logger_and_distribute_to_instance_variables()
|
26
|
+
setup_logger_and_distribute_to_instance_variables(options)
|
27
27
|
|
28
28
|
initialize_options(@options)
|
29
29
|
end
|
@@ -35,11 +35,11 @@ class Optimizer
|
|
35
35
|
|
36
36
|
# Optimize the objective in the given search space.
|
37
37
|
def optimize()
|
38
|
+
logger.log "Optimization with optimizer #{self.class.inspect} started"
|
38
39
|
@num_optimization_steps = 0
|
39
40
|
# Set up a random best since other methods require it
|
40
41
|
update_best([search_space.gen_candidate()])
|
41
42
|
begin
|
42
|
-
logger.log "Optimization with optimizer #{self.class.inspect} started"
|
43
43
|
while !termination_criterion.terminate?(self)
|
44
44
|
new_candidates = optimization_step()
|
45
45
|
@num_optimization_steps += 1
|
@@ -83,11 +83,10 @@ class Optimizer
|
|
83
83
|
if @best.nil? || @objective.is_better_than?(best_new, @best)
|
84
84
|
qb = @best.nil? ? nil : @objective.quality_of(@best)
|
85
85
|
logger.log_data :new_best, {
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
}, "New best candidate found"
|
86
|
+
"New best" => best_new,
|
87
|
+
"New quality" => @objective.quality_of(best_new),
|
88
|
+
"Old best" => @best,
|
89
|
+
"Old quality" => qb}, "Optimizer (step #{@num_optimization_steps}): New best solution found", true
|
91
90
|
@best = best_new
|
92
91
|
true
|
93
92
|
else
|
@@ -212,7 +211,7 @@ DefaultOptimizationOptions = {
|
|
212
211
|
:verbose => true,
|
213
212
|
:populationSize => 200,
|
214
213
|
:samplerClass => FeldtRuby::Optimize::RadiusLimitedPopulationSampler,
|
215
|
-
:samplerRadius =>
|
214
|
+
:samplerRadius => 8 # Max distance between individuals selected in same tournament.
|
216
215
|
}
|
217
216
|
|
218
217
|
def self.override_default_options_with(options)
|
data/lib/feldtruby/version.rb
CHANGED
@@ -32,62 +32,6 @@ SamplerRadiuses = SamplerRadiuses1
|
|
32
32
|
|
33
33
|
NumRepetitionsPerSampler = 5
|
34
34
|
|
35
|
-
# This is Lévi function number 13 as stated on the page:
|
36
|
-
# http://en.wikipedia.org/wiki/Test_functions_for_optimization
|
37
|
-
# It has a global minima at f(1,1) = 0. -10 <= x,y <= 10
|
38
|
-
class MinLeviFunctionNum13 < FeldtRuby::Optimize::Objective
|
39
|
-
TwoPi = 2*Math::PI
|
40
|
-
ThreePi = 3*Math::PI
|
41
|
-
|
42
|
-
def objective_min_levi13(candidate)
|
43
|
-
x, y = candidate[0], candidate[1]
|
44
|
-
sin_3pi_x = Math.sin(ThreePi * x)
|
45
|
-
sin_3pi_y = Math.sin(ThreePi * y)
|
46
|
-
sin_2pi_y = Math.sin(TwoPi * y)
|
47
|
-
x_min1 = x - 1.0
|
48
|
-
y_min1 = y - 1.0
|
49
|
-
|
50
|
-
(sin_3pi_x * sin_3pi_x) +
|
51
|
-
(x_min1 * x_min1) * (1 + (sin_3pi_y * sin_3pi_y)) +
|
52
|
-
(y_min1 * y_min1) * (1 + (sin_3pi_y * sin_2pi_y))
|
53
|
-
end
|
54
|
-
end
|
55
|
-
|
56
|
-
# This is Beale's function as stated on the page:
|
57
|
-
# http://en.wikipedia.org/wiki/Test_functions_for_optimization
|
58
|
-
# It has a global minima at f(3,0.5) = 0. -4.5 <= x,y <= 4.5
|
59
|
-
class MinBealeFunction < FeldtRuby::Optimize::Objective
|
60
|
-
def objective_min_beales_func(candidate)
|
61
|
-
x, y = candidate[0], candidate[1]
|
62
|
-
|
63
|
-
t1 = 1.5 - x + (x*y)
|
64
|
-
t2 = 2.25 - x + (x*y*y)
|
65
|
-
t3 = 2.625 - x + (x*y*y*y)
|
66
|
-
|
67
|
-
(t1*t1) + (t2*t2) + (t3*t3)
|
68
|
-
end
|
69
|
-
end
|
70
|
-
|
71
|
-
# This is Easom's function as stated on the page:
|
72
|
-
# http://en.wikipedia.org/wiki/Test_functions_for_optimization
|
73
|
-
# It has a global minima at f(3,0.5) = 0. -4.5 <= x,y <= 4.5
|
74
|
-
class MinEasomFunction < FeldtRuby::Optimize::Objective
|
75
|
-
def objective_min_easom_func(candidate)
|
76
|
-
x, y = candidate[0], candidate[1]
|
77
|
-
|
78
|
-
f1 = Math.cos(x)
|
79
|
-
|
80
|
-
f2 = Math.cos(y)
|
81
|
-
|
82
|
-
x_min_pi = x - Math::PI
|
83
|
-
y_min_pi = y - Math::PI
|
84
|
-
|
85
|
-
f3 = Math.exp(-(x_min_pi*x_min_pi + y_min_pi*y_min_pi))
|
86
|
-
|
87
|
-
(-f1) * f2 * f3
|
88
|
-
end
|
89
|
-
end
|
90
|
-
|
91
35
|
# EggHolder function as stated on the page:
|
92
36
|
# http://en.wikipedia.org/wiki/Test_functions_for_optimization
|
93
37
|
class MinEggHolderFunction < FeldtRuby::Optimize::Objective
|
@@ -105,26 +49,6 @@ class MinEggHolderFunction < FeldtRuby::Optimize::Objective
|
|
105
49
|
end
|
106
50
|
end
|
107
51
|
|
108
|
-
class MinFunctionOfDimension < FeldtRuby::Optimize::Objective
|
109
|
-
attr_accessor :dimension
|
110
|
-
def minimum
|
111
|
-
0.0
|
112
|
-
end
|
113
|
-
def min_solutions
|
114
|
-
@min_solutions ||= ([[0.0] * dimension])
|
115
|
-
end
|
116
|
-
end
|
117
|
-
|
118
|
-
# Sphere function as stated in the JADE paper:
|
119
|
-
# http://150.214.190.154/EAMHCO/pdf/JADE.pdf
|
120
|
-
class MinSphere < MinFunctionOfDimension
|
121
|
-
def objective_min_func(x)
|
122
|
-
x.inject(0.0) do |sum, xi|
|
123
|
-
sum + (xi*xi)
|
124
|
-
end
|
125
|
-
end
|
126
|
-
end
|
127
|
-
|
128
52
|
# Schwefel 2.22 function as stated in the JADE paper:
|
129
53
|
# http://150.214.190.154/EAMHCO/pdf/JADE.pdf
|
130
54
|
class MinSchwefel2_22 < MinFunctionOfDimension
|
data/test/helper.rb
CHANGED
@@ -2,8 +2,13 @@ require 'rubygems'
|
|
2
2
|
require 'minitest/autorun'
|
3
3
|
require 'minitest/spec'
|
4
4
|
|
5
|
-
|
6
|
-
|
5
|
+
FeldtRubyTestDir = File.dirname(__FILE__)
|
6
|
+
FeldtRubyLibDir = File.join(FeldtRubyTestDir, '..', 'lib')
|
7
|
+
FeldtRubyLongTestDir = File.join(FeldtRubyTestDir, 'long_running')
|
8
|
+
|
9
|
+
$LOAD_PATH.unshift FeldtRubyLibDir
|
10
|
+
$LOAD_PATH.unshift FeldtRubyTestDir
|
11
|
+
$LOAD_PATH.unshift FeldtRubyLongTestDir
|
7
12
|
|
8
13
|
require 'feldtruby'
|
9
14
|
require 'feldtruby/minitest_extensions'
|
@@ -0,0 +1,58 @@
|
|
1
|
+
require File.join(File.dirname(__FILE__), "single_objective_problems")
|
2
|
+
|
3
|
+
class MinMulti2ObjectiveFuncOfDimensions < MinFuncOfDimensionObj
|
4
|
+
def minimum1
|
5
|
+
0.0
|
6
|
+
end
|
7
|
+
|
8
|
+
def minimum2
|
9
|
+
0.0
|
10
|
+
end
|
11
|
+
|
12
|
+
# Known optima that gives the minimum value.
|
13
|
+
def min_solutions
|
14
|
+
@min_solutions ||= ([[0.0] * dimension])
|
15
|
+
end
|
16
|
+
|
17
|
+
def objective_min_func1(x)
|
18
|
+
calc_func1(x) - minimum1
|
19
|
+
end
|
20
|
+
|
21
|
+
def objective_min_func2(x)
|
22
|
+
calc_func2(x) - minimum2
|
23
|
+
end
|
24
|
+
|
25
|
+
def calc_func1(x)
|
26
|
+
raise NotImplementedError
|
27
|
+
end
|
28
|
+
|
29
|
+
def calc_func2(x)
|
30
|
+
raise NotImplementedError
|
31
|
+
end
|
32
|
+
end
|
33
|
+
|
34
|
+
|
35
|
+
# This is the OmniTest bi-criteria test function as described in the paper:
|
36
|
+
# Shir et al, "Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms", 2009.
|
37
|
+
# They used dimensions == 5.
|
38
|
+
class MinOmniTest < MinFuncOfDimensionObj
|
39
|
+
def domain_per_dimension
|
40
|
+
[0.0, 6.0]
|
41
|
+
end
|
42
|
+
|
43
|
+
def minimum1
|
44
|
+
@minimum1 ||= (-1 * dimensions)
|
45
|
+
end
|
46
|
+
|
47
|
+
def minimum2
|
48
|
+
@minimum2 ||= (-1 * dimensions)
|
49
|
+
end
|
50
|
+
|
51
|
+
def calc_func1(x)
|
52
|
+
x.map {|xi| Math.sin(Math::PI * xi)}.sum
|
53
|
+
end
|
54
|
+
|
55
|
+
def calc_func2(x)
|
56
|
+
x.map {|xi| Math.cos(Math::PI * xi)}.sum
|
57
|
+
end
|
58
|
+
end
|
@@ -0,0 +1,163 @@
|
|
1
|
+
require 'feldtruby/optimize/search_space'
|
2
|
+
|
3
|
+
class MinContinousFunction < FeldtRuby::Optimize::Objective
|
4
|
+
# Subclasses should fix this value.
|
5
|
+
def dimensions
|
6
|
+
@dimensions
|
7
|
+
end
|
8
|
+
|
9
|
+
# Domain (min, max) per dimension. Override this (or just override
|
10
|
+
# search_space or domain_as_mins_maxs directly) so that a typical/valid
|
11
|
+
# search space can be created.
|
12
|
+
def domain_per_dimension
|
13
|
+
raise NotImplementedError
|
14
|
+
end
|
15
|
+
|
16
|
+
# For more complex domains sub-classes can override this method.
|
17
|
+
def domain_as_mins_maxs
|
18
|
+
[domain_per_dimension] * self.dimensions
|
19
|
+
end
|
20
|
+
|
21
|
+
# Create a valid search space. Default is to use the domain_per_dimension
|
22
|
+
# a dimension number of times.
|
23
|
+
def search_space
|
24
|
+
FeldtRuby::Optimize::SearchSpace.new_from_min_max_per_variable domain_as_mins_maxs
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
class MinSingleObjectiveFunc < MinContinousFunction
|
29
|
+
# Known minimum (or nil if not known). Default is at 0.0.
|
30
|
+
def minimum
|
31
|
+
0.0
|
32
|
+
end
|
33
|
+
|
34
|
+
# Known optima that gives the minimum value. Default is that it is at 0,...,0.
|
35
|
+
def min_solutions
|
36
|
+
@min_solutions ||= ([[0.0] * dimensions])
|
37
|
+
end
|
38
|
+
|
39
|
+
def objective_min_func(x)
|
40
|
+
calc_func(x) - minimum
|
41
|
+
end
|
42
|
+
|
43
|
+
# Subclasses must implement this which is the function to be minimized.
|
44
|
+
def calc_func(x)
|
45
|
+
raise NotImplementedError
|
46
|
+
end
|
47
|
+
end
|
48
|
+
|
49
|
+
# Objectives that minimizes a function which is parameterized on a dimension
|
50
|
+
# parameter should include this module.
|
51
|
+
module MinFuncOfDimensionObj
|
52
|
+
attr_writer :dimensions
|
53
|
+
end
|
54
|
+
|
55
|
+
class MinSingleObjectiveFuncOfDimensions < MinSingleObjectiveFunc
|
56
|
+
include MinFuncOfDimensionObj
|
57
|
+
end
|
58
|
+
|
59
|
+
# Sphere function as stated in the JADE paper:
|
60
|
+
# http://150.214.190.154/EAMHCO/pdf/JADE.pdf
|
61
|
+
class MinSphere < MinSingleObjectiveFuncOfDimensions
|
62
|
+
def calc_func(x)
|
63
|
+
x.inject(0.0) do |sum, xi|
|
64
|
+
sum + (xi*xi)
|
65
|
+
end
|
66
|
+
end
|
67
|
+
|
68
|
+
def domain_per_dimension
|
69
|
+
[-100, 100]
|
70
|
+
end
|
71
|
+
end
|
72
|
+
|
73
|
+
class Min2DSingleObjectiveFunc < MinSingleObjectiveFunc
|
74
|
+
def dimensions
|
75
|
+
2
|
76
|
+
end
|
77
|
+
end
|
78
|
+
|
79
|
+
# This is Lévi function number 13 as stated on the page:
|
80
|
+
# http://en.wikipedia.org/wiki/Test_functions_for_optimization
|
81
|
+
# It has a global minima at f(1,1) = 0. -10 <= x,y <= 10
|
82
|
+
class MinLevi13 < Min2DSingleObjectiveFunc
|
83
|
+
def min_solutions
|
84
|
+
[[1.0, 1.0]]
|
85
|
+
end
|
86
|
+
|
87
|
+
def domain_per_dimension
|
88
|
+
[-10.0, 10.0]
|
89
|
+
end
|
90
|
+
|
91
|
+
TwoPi = 2*Math::PI
|
92
|
+
ThreePi = 3*Math::PI
|
93
|
+
|
94
|
+
def calc_func(candidate)
|
95
|
+
x, y = candidate[0], candidate[1]
|
96
|
+
|
97
|
+
sin_3pi_x = Math.sin(ThreePi * x)
|
98
|
+
sin_3pi_y = Math.sin(ThreePi * y)
|
99
|
+
sin_2pi_y = Math.sin(TwoPi * y)
|
100
|
+
x_min1 = x - 1.0
|
101
|
+
y_min1 = y - 1.0
|
102
|
+
|
103
|
+
(sin_3pi_x * sin_3pi_x) +
|
104
|
+
(x_min1 * x_min1) * (1 + (sin_3pi_y * sin_3pi_y)) +
|
105
|
+
(y_min1 * y_min1) * (1 + (sin_3pi_y * sin_2pi_y))
|
106
|
+
end
|
107
|
+
end
|
108
|
+
|
109
|
+
# This is Beale's function as stated on the page:
|
110
|
+
# http://en.wikipedia.org/wiki/Test_functions_for_optimization
|
111
|
+
class MinBeale < Min2DSingleObjectiveFunc
|
112
|
+
def min_solutions
|
113
|
+
[[3.0, 0.5]]
|
114
|
+
end
|
115
|
+
|
116
|
+
def domain_per_dimension
|
117
|
+
[-4.5, 4.5]
|
118
|
+
end
|
119
|
+
|
120
|
+
def calc_func(candidate)
|
121
|
+
x, y = candidate[0], candidate[1]
|
122
|
+
|
123
|
+
t1 = 1.5 - x + (x*y)
|
124
|
+
t2 = 2.25 - x + (x*y*y)
|
125
|
+
t3 = 2.625 - x + (x*y*y*y)
|
126
|
+
|
127
|
+
(t1*t1) + (t2*t2) + (t3*t3)
|
128
|
+
end
|
129
|
+
end
|
130
|
+
|
131
|
+
# This is Easom's function as stated on the page:
|
132
|
+
# http://en.wikipedia.org/wiki/Test_functions_for_optimization
|
133
|
+
class MinEasom < Min2DSingleObjectiveFunc
|
134
|
+
def minimum
|
135
|
+
-1.0
|
136
|
+
end
|
137
|
+
|
138
|
+
PI = Math::PI
|
139
|
+
|
140
|
+
def min_solutions
|
141
|
+
[[PI, PI]]
|
142
|
+
end
|
143
|
+
|
144
|
+
def domain_per_dimension
|
145
|
+
[-100.0, 100.0]
|
146
|
+
end
|
147
|
+
|
148
|
+
def calc_func(candidate)
|
149
|
+
x, y = candidate[0], candidate[1]
|
150
|
+
|
151
|
+
f1 = Math.cos(x)
|
152
|
+
|
153
|
+
f2 = Math.cos(y)
|
154
|
+
|
155
|
+
x_min_pi = x - PI
|
156
|
+
y_min_pi = y - PI
|
157
|
+
|
158
|
+
f3 = Math.exp(-(x_min_pi*x_min_pi + y_min_pi*y_min_pi))
|
159
|
+
|
160
|
+
(-f1) * f2 * f3
|
161
|
+
end
|
162
|
+
end
|
163
|
+
|
@@ -0,0 +1,112 @@
|
|
1
|
+
require File.join(FeldtRubyLongTestDir, "single_objective_problems")
|
2
|
+
require 'feldtruby/optimize/differential_evolution'
|
3
|
+
include FeldtRuby::Optimize
|
4
|
+
|
5
|
+
module MiniTest::Assertions
|
6
|
+
# Assert that _bestSolution_ is close to at least one of the solutions that minimize
|
7
|
+
# the _objective_. We use the minimum RMS distance to the solutions, which should
|
8
|
+
# be close to zero for at least one solution.
|
9
|
+
def assert_close_to_one_solution(objective, bestSolution, precision = 0.01, msg = nil)
|
10
|
+
rmss = objective.min_solutions.map do |min_solution|
|
11
|
+
bestSolution.to_a.rms_from(min_solution)
|
12
|
+
end
|
13
|
+
# The minimum RMS to a solution must be close to zero.
|
14
|
+
rmss.min.must_be_close_to 0.0, precision
|
15
|
+
end
|
16
|
+
end
|
17
|
+
|
18
|
+
module MiniTest::Expectations
|
19
|
+
infect_an_assertion :assert_close_to_one_solution, :must_be_close_to_one_solution_of
|
20
|
+
end
|
21
|
+
|
22
|
+
describe "Sphere function" do
|
23
|
+
def best_from_de_on_sphere(dimensions, numSteps = 25_000, verbose = false)
|
24
|
+
sphere = MinSphere.new
|
25
|
+
sphere.dimensions = dimensions
|
26
|
+
ss = sphere.search_space
|
27
|
+
de = DEOptimizer.new(sphere, ss, {:verbose => verbose,
|
28
|
+
:maxNumSteps => numSteps})
|
29
|
+
best = de.optimize().to_a
|
30
|
+
return best, sphere
|
31
|
+
end
|
32
|
+
|
33
|
+
it 'can optimize the Sphere function in 3 dimensions' do
|
34
|
+
best, sphere3 = best_from_de_on_sphere 3, 15_000
|
35
|
+
|
36
|
+
val = sphere3.calc_func(best)
|
37
|
+
val.must_be_close_to 0.0
|
38
|
+
val.must_be :>, 0.0
|
39
|
+
|
40
|
+
best.must_be_close_to_one_solution_of sphere3
|
41
|
+
end
|
42
|
+
|
43
|
+
it 'can optimize the Sphere function in 10 dimensions' do
|
44
|
+
best, sphere10 = best_from_de_on_sphere 10, 60_000
|
45
|
+
|
46
|
+
val = sphere10.calc_func(best)
|
47
|
+
val.must_be_close_to 0.0
|
48
|
+
val.must_be :>=, 0.0
|
49
|
+
|
50
|
+
best.must_be_close_to_one_solution_of sphere10
|
51
|
+
end
|
52
|
+
|
53
|
+
it 'can optimize the Sphere function in 30 dimensions' do
|
54
|
+
best, obj = best_from_de_on_sphere 30, 210_000
|
55
|
+
|
56
|
+
val = obj.calc_func(best)
|
57
|
+
val.must_be_close_to 0.0
|
58
|
+
val.must_be :>=, 0.0
|
59
|
+
|
60
|
+
# We don't test closeness since it might take very long for 30D to get close on all dimensions.
|
61
|
+
end
|
62
|
+
end
|
63
|
+
|
64
|
+
describe "Levi13 function" do
|
65
|
+
it 'can optimize the Levi13 function' do
|
66
|
+
objective = MinLevi13.new
|
67
|
+
ss = objective.search_space
|
68
|
+
de = DEOptimizer.new(objective, ss, {:verbose => false,
|
69
|
+
:maxNumSteps => 7_500})
|
70
|
+
best = de.optimize().to_a
|
71
|
+
|
72
|
+
val = objective.calc_func(best)
|
73
|
+
val.must_be_close_to objective.minimum
|
74
|
+
val.must_be :>=, objective.minimum
|
75
|
+
|
76
|
+
best.must_be_close_to_one_solution_of objective, 0.01
|
77
|
+
end
|
78
|
+
end
|
79
|
+
|
80
|
+
describe "Beale function" do
|
81
|
+
it 'can optimize the Beale function' do
|
82
|
+
objective = MinBeale.new
|
83
|
+
ss = objective.search_space
|
84
|
+
de = DEOptimizer.new(objective, ss, {:verbose => false,
|
85
|
+
:maxNumSteps => 7_500})
|
86
|
+
best = de.optimize().to_a
|
87
|
+
|
88
|
+
val = objective.calc_func(best)
|
89
|
+
val.must_be_close_to objective.minimum
|
90
|
+
val.must_be :>=, objective.minimum
|
91
|
+
|
92
|
+
best.must_be_close_to_one_solution_of objective, 0.01
|
93
|
+
end
|
94
|
+
end
|
95
|
+
|
96
|
+
describe "Easom function" do
|
97
|
+
it 'can optimize the Easom function' do
|
98
|
+
objective = MinEasom.new
|
99
|
+
ss = objective.search_space
|
100
|
+
# Why can't we do this in 25_000 evals anymore? We did it before. Repeatedly. Very strange.
|
101
|
+
de = DEOptimizer.new(objective, ss, {:verbose => true,
|
102
|
+
:maxNumSteps => 25_000, :printFrequency => 0.0,
|
103
|
+
:samplerRadius => 5})
|
104
|
+
best = de.optimize().to_a
|
105
|
+
|
106
|
+
val = objective.calc_func(best)
|
107
|
+
val.must_be_close_to objective.minimum
|
108
|
+
val.must_be :>=, objective.minimum
|
109
|
+
|
110
|
+
best.must_be_close_to_one_solution_of objective, 0.01
|
111
|
+
end
|
112
|
+
end
|
@@ -32,11 +32,6 @@ class TestArrayBasicStats < MiniTest::Unit::TestCase
|
|
32
32
|
assert_equal 2.0, [2, 4, 4, 4, 5, 5, 7, 9].stdev
|
33
33
|
end
|
34
34
|
|
35
|
-
def test_root_mean_square
|
36
|
-
assert_equal Math.sqrt((1*1 + 2*2)/2.0), [1, 2].root_mean_square
|
37
|
-
assert_equal Math.sqrt((10*10 + 243*243)/2.0), [10, 243].rms
|
38
|
-
end
|
39
|
-
|
40
35
|
def test_weighted_sum_one_element
|
41
36
|
assert_equal 1, [1].weighted_sum([1])
|
42
37
|
assert_equal 2, [1].weighted_sum([2])
|
@@ -88,15 +83,28 @@ describe "Basic statistics" do
|
|
88
83
|
end
|
89
84
|
end
|
90
85
|
|
91
|
-
describe "
|
92
|
-
it
|
93
|
-
|
94
|
-
|
86
|
+
describe "Root mean square" do
|
87
|
+
it 'can calculate the RMS on an array of numbers' do
|
88
|
+
[1, 2].root_mean_square.must_equal Math.sqrt((1*1 + 2*2)/2.0)
|
89
|
+
[10, 243].rms.must_equal Math.sqrt((10*10 + 243*243)/2.0)
|
90
|
+
end
|
91
|
+
|
92
|
+
describe "rms_from_scalar" do
|
93
|
+
it "is the same as rms if scalar is 0.0" do
|
94
|
+
a = [1,2,3,4,5]
|
95
|
+
a.rms_from_scalar(0.0).must_be_within_delta a.rms
|
96
|
+
end
|
97
|
+
|
98
|
+
it "is correct for concrete example" do
|
99
|
+
a = [1,2]
|
100
|
+
a.rms_from_scalar(1.5).must_equal Math.sqrt( (0.5**2 + 0.5**2)/2 )
|
101
|
+
end
|
95
102
|
end
|
96
103
|
|
97
|
-
it
|
98
|
-
a = [1,2]
|
99
|
-
|
104
|
+
it 'can calculate the rms between two arrays' do
|
105
|
+
a = [1, 2, 3]
|
106
|
+
b = [2, 4, 7]
|
107
|
+
a.rms_from(b).must_equal Math.sqrt((1-2)**2 + (2-4)**2 + (3-7)**2)
|
100
108
|
end
|
101
109
|
end
|
102
110
|
|
data/test/test_logger.rb
CHANGED
@@ -6,7 +6,7 @@ describe 'Logger' do
|
|
6
6
|
before do
|
7
7
|
@sio = StringIO.new
|
8
8
|
@l = FeldtRuby::Logger.new @sio, {:verbose => true,
|
9
|
-
:
|
9
|
+
:printFrequency => 0.0 # So everything is logged
|
10
10
|
}
|
11
11
|
end
|
12
12
|
|
@@ -55,7 +55,7 @@ describe 'Logger with a non-zero print frequency' do
|
|
55
55
|
before do
|
56
56
|
@sio = StringIO.new
|
57
57
|
@l = FeldtRuby::Logger.new @sio, {:verbose => true,
|
58
|
-
:
|
58
|
+
:printFrequency => 0.1
|
59
59
|
}
|
60
60
|
end
|
61
61
|
|
@@ -96,7 +96,7 @@ describe 'Logger with two IO output streams' do
|
|
96
96
|
it 'logs to all streams of more than one' do
|
97
97
|
sio1 = StringIO.new
|
98
98
|
l = FeldtRuby::Logger.new sio1, {:verbose => true,
|
99
|
-
:
|
99
|
+
:printFrequency => 0.0
|
100
100
|
}
|
101
101
|
sio2 = StringIO.new
|
102
102
|
l.add_io sio2
|
@@ -118,7 +118,7 @@ describe 'Logger with two IO output streams' do
|
|
118
118
|
it 'can add filenames to which log output should be written' do
|
119
119
|
sio1 = StringIO.new
|
120
120
|
l = FeldtRuby::Logger.new sio1, {:verbose => true,
|
121
|
-
:
|
121
|
+
:printFrequency => 0.0
|
122
122
|
}
|
123
123
|
|
124
124
|
filename = "temp390580943850834.log"
|