feldtruby 0.3.18 → 0.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/Rakefile +11 -1
- data/lib/feldtruby/array/basic_stats.rb +5 -0
- data/lib/feldtruby/logger.rb +22 -10
- data/lib/feldtruby/optimize/differential_evolution.rb +8 -8
- data/lib/feldtruby/optimize/objective.rb +361 -334
- data/lib/feldtruby/optimize/optimizer.rb +7 -8
- data/lib/feldtruby/version.rb +1 -1
- data/spikes/comparing_samplers_on_classic_optimization_functions/compare_samplers.rb +0 -76
- data/test/helper.rb +7 -2
- data/test/long_running/multi_objective_problems.rb +58 -0
- data/test/long_running/single_objective_problems.rb +163 -0
- data/test/long_running/test_single_objective_optimization.rb +112 -0
- data/test/test_array_basic_stats.rb +20 -12
- data/test/test_logger.rb +4 -4
- data/test/test_optimize_objective.rb +175 -119
- metadata +8 -2
@@ -8,7 +8,7 @@ require 'feldtruby/annotations'
|
|
8
8
|
# Make all Ruby objects Annotateable so we can attach information to the
|
9
9
|
# individuals being optimized.
|
10
10
|
class Object
|
11
|
-
|
11
|
+
include FeldtRuby::Annotateable
|
12
12
|
end
|
13
13
|
|
14
14
|
module FeldtRuby::Optimize
|
@@ -32,370 +32,393 @@ module FeldtRuby::Optimize
|
|
32
32
|
# as the comparator. But the mapper and comparator to be used can, of course,
|
33
33
|
# be changed.
|
34
34
|
class Objective
|
35
|
-
|
35
|
+
include FeldtRuby::Logging
|
36
36
|
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
37
|
+
# Current version of this objective. Is updated when the min or max values
|
38
|
+
# for a sub-objective has been updated or when the weights are changed.
|
39
|
+
# Candidates are always compared based on the latest version of an objective.
|
40
|
+
attr_accessor :current_version
|
41
41
|
|
42
|
-
|
43
|
-
attr_accessor :quality_mapper
|
42
|
+
attr_reader :global_min_values_per_aspect, :global_max_values_per_aspect
|
44
43
|
|
45
|
-
|
46
|
-
|
47
|
-
|
44
|
+
def initialize(qualityAggregator = WeightedSumAggregator.new,
|
45
|
+
comparator = LowerAggregateQualityIsBetterComparator.new)
|
46
|
+
|
47
|
+
# A quality aggregator maps the goal values of a candidate to a single number.
|
48
|
+
@aggregator = qualityAggregator
|
49
|
+
@aggregator.objective = self
|
50
|
+
|
51
|
+
# A comparator compares two or more candidates and ranks them based on their
|
52
|
+
# qualities.
|
53
|
+
@comparator = comparator
|
54
|
+
@comparator.objective = self
|
48
55
|
|
49
|
-
|
56
|
+
self.current_version = 0
|
50
57
|
|
51
|
-
|
58
|
+
# We set all mins to INFINITY. This ensures that the first value seen will
|
59
|
+
# be smaller, and thus set as the new min.
|
60
|
+
@global_min_values_per_aspect = [Float::INFINITY] * num_goals
|
52
61
|
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
@comparator.objective = self
|
62
|
+
# We set all maxs to -INFINITY. This ensures that the first value seen will
|
63
|
+
# be larger, and thus set as the new max.
|
64
|
+
@global_max_values_per_aspect = [-Float::INFINITY] * num_goals
|
57
65
|
|
58
|
-
|
66
|
+
setup_logger_and_distribute_to_instance_variables()
|
59
67
|
|
60
|
-
|
61
|
-
|
62
|
-
@global_min_values_per_aspect = [Float::INFINITY] * num_goals
|
68
|
+
# An array to keep the best object per goal.
|
69
|
+
@best_objects = Array.new
|
63
70
|
|
64
|
-
|
65
|
-
# be larger, and thus set as the new max.
|
66
|
-
@global_max_values_per_aspect = [-Float::INFINITY] * num_goals
|
71
|
+
end
|
67
72
|
|
68
|
-
|
73
|
+
# Return the number of goals of this objective.
|
74
|
+
def num_goals
|
75
|
+
@num_goals ||= goal_methods.length
|
76
|
+
end
|
69
77
|
|
70
|
-
|
71
|
-
|
78
|
+
# Return the names of the goal methods.
|
79
|
+
def goal_methods
|
80
|
+
@goal_methods ||= self.methods.select {|m| is_goal_method?(m)}
|
81
|
+
end
|
72
82
|
|
73
|
-
|
83
|
+
# Return true iff the goal method with the given index is a minimizing goal.
|
84
|
+
def is_min_goal?(index)
|
85
|
+
(@is_min_goal ||= (goal_methods.map {|m| is_min_goal_method?(m)}))[index]
|
86
|
+
end
|
74
87
|
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
88
|
+
# Return true iff the method with the given name is a goal method.
|
89
|
+
def is_goal_method?(methodNameAsSymbolOrString)
|
90
|
+
(methodNameAsSymbolOrString.to_s =~ /^(goal|objective)_(min|max)_([\w_]+)$/) != nil
|
91
|
+
end
|
79
92
|
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
93
|
+
# Return true iff the method with the given name is a goal method.
|
94
|
+
def is_min_goal_method?(methodNameAsSymbolOrString)
|
95
|
+
(methodNameAsSymbolOrString.to_s =~ /^(goal|objective)_min_([\w_]+)$/) != nil
|
96
|
+
end
|
84
97
|
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
98
|
+
# The candidate objects can be mapped to another object before we call the goal
|
99
|
+
# methods to calc the quality values. Default is no mapping but subclasses
|
100
|
+
# can override this for more complex evaluation schemes.
|
101
|
+
def map_candidate_to_object_to_be_evaluated(candidate)
|
102
|
+
candidate
|
103
|
+
end
|
104
|
+
|
105
|
+
# Weights is a map from goal method names to a number that represents the
|
106
|
+
# weight for that goal. Default is to set all weights to 1.
|
107
|
+
def weights
|
108
|
+
@weights ||= ([1] * num_goals)
|
109
|
+
end
|
110
|
+
|
111
|
+
# Set the weights given a hash mapping each goal method name to a number.
|
112
|
+
# The mapper and/or comparator can use the weights in their calculations.
|
113
|
+
def weights=(goalNameToNumberHash)
|
114
|
+
|
115
|
+
raise "Must be same number of weights as there are goals (#{num_aspects}), but is #{weights.length}" unless weights.length == num_goals
|
116
|
+
|
117
|
+
weights = goal_methods.map {|gm| goalNameToNumberHash[gm]}
|
118
|
+
|
119
|
+
logger.log_value :objective_weights_changed,
|
120
|
+
{"New weights" => goalNameToNumberHash},
|
121
|
+
"Weights updated from #{@weights} to #{weights}"
|
122
|
+
|
123
|
+
inc_version_number
|
124
|
+
|
125
|
+
@weights = weights
|
126
|
+
|
127
|
+
end
|
128
|
+
|
129
|
+
# Return a vector of the "raw" quality values, i.e. the fitness value for each
|
130
|
+
# goal. If we have already calculated the sub-qualities we just return them.
|
131
|
+
# If not we calculate them.
|
132
|
+
def sub_qualities_of(candidate, updateGlobals = true)
|
133
|
+
# Return the sub_qualities if we already have calculated them.
|
134
|
+
sqs = sub_qualities_if_already_calculated?(candidate)
|
135
|
+
return sqs if sqs
|
136
|
+
calculate_sub_qualities_of candidate, updateGlobals
|
137
|
+
end
|
138
|
+
|
139
|
+
# Calculate the sub-qualities from scratch, i.e. by mapping the candidate
|
140
|
+
# to an object to be evaluated and then calculate the value of each goal.
|
141
|
+
def calculate_sub_qualities_of(candidate, updateGlobals = true)
|
142
|
+
obj = map_candidate_to_object_to_be_evaluated(candidate)
|
143
|
+
sub_qualitites = goal_methods.map {|gmethod| self.send(gmethod, obj)}
|
144
|
+
update_global_mins_and_maxs(sub_qualitites, candidate) if updateGlobals
|
145
|
+
sub_qualitites
|
146
|
+
end
|
89
147
|
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
148
|
+
# Return a quality value for a given candidate and weights for the whole
|
149
|
+
# objective for a given candidate. Updates the best candidate if this
|
150
|
+
# is the best seen so far.
|
151
|
+
def quality_of(candidate, weights = self.weights)
|
94
152
|
|
95
|
-
|
96
|
-
|
97
|
-
(methodNameAsSymbolOrString.to_s =~ /^(goal|objective)_min_([\w_]+)$/) != nil
|
98
|
-
end
|
153
|
+
q = quality_in_object(candidate)
|
154
|
+
return q if q
|
99
155
|
|
100
|
-
|
101
|
-
# methods to calc the quality values. Default is no mapping but subclasses
|
102
|
-
# can override this for more complex evaluation schemes.
|
103
|
-
def map_candidate_to_object_to_be_evaluated(candidate)
|
104
|
-
candidate
|
105
|
-
end
|
156
|
+
sub_qualities = sub_qualities_of(candidate)
|
106
157
|
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
158
|
+
qv = update_quality_value_of candidate, sub_qualities, weights
|
159
|
+
|
160
|
+
update_best_candidate candidate, qv
|
161
|
+
|
162
|
+
qv
|
163
|
+
|
164
|
+
end
|
112
165
|
|
113
|
-
|
114
|
-
|
115
|
-
|
166
|
+
# Rank candidates from best to worst. Candidates that have the same quality
|
167
|
+
# are randomly ordered.
|
168
|
+
def rank_candidates(candidates, weights = self.weights)
|
169
|
+
# We first ensure all candidates have calculated sub-qualities, then we
|
170
|
+
# call the comparator. This ensures that the gobals are already correctly
|
171
|
+
# updated on each quality value.
|
172
|
+
candidates.map {|c| sub_qualities_of(c, true)}
|
173
|
+
|
174
|
+
# Now just let the comparator rank the candidates
|
175
|
+
@comparator.rank_candidates candidates, weights
|
176
|
+
end
|
116
177
|
|
117
|
-
|
178
|
+
# Return true iff candidate1 is better than candidate2. Will update their
|
179
|
+
# quality values if they are out of date.
|
180
|
+
def is_better_than?(candidate1, candidate2)
|
181
|
+
@comparator.is_better_than?(candidate1, candidate2)
|
182
|
+
end
|
118
183
|
|
119
|
-
|
184
|
+
# Return true iff candidate1 is better than candidate2. Will update their
|
185
|
+
# quality values if they are out of date.
|
186
|
+
def hat_compare(candidate1, candidate2)
|
187
|
+
@comparator.hat_compare(candidate1, candidate2)
|
188
|
+
end
|
120
189
|
|
121
|
-
|
122
|
-
|
190
|
+
# Return true iff candidate1 is better than candidate2 for goal _index_.
|
191
|
+
# Will update their quality values if they are out of date.
|
192
|
+
def is_better_than_for_goal?(index, candidate1, candidate2)
|
193
|
+
@comparator.is_better_than_for_goal?(index, candidate1, candidate2)
|
194
|
+
end
|
123
195
|
|
124
|
-
|
196
|
+
# Return the aggregated quality value given sub qualities.
|
197
|
+
def aggregated_quality(subQualities)
|
198
|
+
@aggregator.aggregate_from_sub_qualities(subQualities, weights)
|
199
|
+
end
|
125
200
|
|
126
|
-
|
201
|
+
def note_end_of_optimization(optimizer)
|
202
|
+
logger.log_data :objective_optimization_ends, {
|
203
|
+
"Best object, aggregated" => @best_candidate,
|
204
|
+
"Quality of best object" => @best_quality_value,
|
205
|
+
"Version" => current_version,
|
206
|
+
"Comparator" => @comparator,
|
207
|
+
"Aggregator" => @aggregator,
|
208
|
+
"Best objects per goal" => @best_objects
|
209
|
+
}, "Objective: Report at end of optimization", true
|
210
|
+
end
|
127
211
|
|
128
|
-
|
212
|
+
attr_reader :best_candidate
|
129
213
|
|
130
|
-
|
131
|
-
# goal.
|
132
|
-
def sub_qualities_of(candidate, updateGlobals = true)
|
133
|
-
obj = map_candidate_to_object_to_be_evaluated(candidate)
|
134
|
-
sub_qualitites = goal_methods.map {|gmethod| self.send(gmethod, obj)}
|
135
|
-
update_global_mins_and_maxs(sub_qualitites, candidate) if updateGlobals
|
136
|
-
sub_qualitites
|
137
|
-
end
|
214
|
+
private
|
138
215
|
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
216
|
+
def update_quality_value_of(candidate, subQualities, weights)
|
217
|
+
qv = QualityValue.new subQualities, candidate, self
|
218
|
+
update_quality_value_in_object candidate, qv
|
219
|
+
end
|
143
220
|
|
144
|
-
|
145
|
-
|
221
|
+
def update_best_candidate candidate, qv
|
222
|
+
if @best_candidate == nil || (qv.value < @best_quality_value.value)
|
223
|
+
set_new_best_candidate candidate, qv
|
224
|
+
end
|
225
|
+
end
|
146
226
|
|
147
|
-
|
227
|
+
def set_new_best_candidate candidate, qualityValue
|
148
228
|
|
149
|
-
|
229
|
+
@best_candidate = candidate
|
230
|
+
@best_quality_value = qualityValue
|
150
231
|
|
151
|
-
|
232
|
+
logger.log_data :objective_new_best_candidate, {
|
233
|
+
:candidate => candidate,
|
234
|
+
:quality_value => qualityValue
|
235
|
+
}, "Objective: New best ever found", true
|
152
236
|
|
153
|
-
|
237
|
+
end
|
154
238
|
|
155
|
-
|
239
|
+
def inc_version_number
|
156
240
|
|
157
|
-
|
158
|
-
# candidate.
|
159
|
-
def rank_candidates(candidates, weights = self.weights)
|
241
|
+
new_version = self.current_version + 1
|
160
242
|
|
161
|
-
|
162
|
-
|
163
|
-
sqvss = candidates.map {|c| sub_qualities_of(c, false)}
|
243
|
+
logger.log_value :objective_version_number, new_version,
|
244
|
+
"New version of objective: version = #{new_version}"
|
164
245
|
|
165
|
-
|
166
|
-
# Note! This must be done once for the whole set otherwise when we later
|
167
|
-
# compare the cnadidates based on their quality values they
|
168
|
-
# might be for different versions of the objective.
|
169
|
-
sqvss.each_with_index do |sqvs, i|
|
170
|
-
update_global_mins_and_maxs sqvs, candidates[i]
|
171
|
-
end
|
246
|
+
self.current_version = new_version
|
172
247
|
|
173
|
-
|
174
|
-
sqvss.each_with_index do |sqvs, i|
|
175
|
-
update_quality_value_of candidates[i], sqvs, weights
|
176
|
-
end
|
248
|
+
end
|
177
249
|
|
178
|
-
|
179
|
-
|
250
|
+
# Update the min and max values for each goal in case the values in the
|
251
|
+
# supplied array are outside the previously seen min and max.
|
252
|
+
def update_global_mins_and_maxs subQualityValues, candidate
|
253
|
+
subQualityValues.each_with_index do |sqv,i|
|
254
|
+
update_global_min_and_max(i, sqv, candidate)
|
255
|
+
end
|
256
|
+
end
|
180
257
|
|
181
|
-
|
258
|
+
# Update the global min and max for the goal method with _index_ if
|
259
|
+
# the _qValue_ is less than or
|
260
|
+
def update_global_min_and_max(index, qValue, candidate)
|
261
|
+
min = @global_min_values_per_aspect[index]
|
262
|
+
max = @global_max_values_per_aspect[index]
|
182
263
|
|
183
|
-
|
184
|
-
# quality values if they are out of date.
|
185
|
-
def is_better_than?(candidate1, candidate2)
|
186
|
-
quality_of(candidate1) < quality_of(candidate2)
|
187
|
-
end
|
264
|
+
if qValue < min
|
188
265
|
|
189
|
-
|
190
|
-
# Will update their quality values if they are out of date.
|
191
|
-
def is_better_than_for_goal?(index, candidate1, candidate2)
|
192
|
-
qv1 = quality_of(candidate1)
|
193
|
-
qv2 = quality_of(candidate2)
|
194
|
-
qv1.sub_quality(index, true) <= qv2.sub_quality(index, true)
|
195
|
-
end
|
266
|
+
@global_min_values_per_aspect[index] = qValue
|
196
267
|
|
197
|
-
|
198
|
-
nil
|
199
|
-
end
|
268
|
+
reset_quality_scale candidate, index, :min
|
200
269
|
|
201
|
-
|
270
|
+
end
|
271
|
+
if qValue > max
|
202
272
|
|
203
|
-
|
273
|
+
@global_max_values_per_aspect[index] = qValue
|
204
274
|
|
205
|
-
|
275
|
+
reset_quality_scale candidate, index, :max
|
206
276
|
|
207
|
-
|
277
|
+
end
|
278
|
+
end
|
208
279
|
|
209
|
-
|
280
|
+
# Reset the quality scale if the updated min or max value
|
281
|
+
# was the best quality value seen for the goal with given _index_.
|
282
|
+
def reset_quality_scale(candidate, index, typeOfReset)
|
210
283
|
|
211
|
-
|
284
|
+
is_min = is_min_goal?(index)
|
212
285
|
|
213
|
-
|
286
|
+
if (typeOfReset == :min && is_min) || (typeOfReset == :max && !is_min)
|
214
287
|
|
215
|
-
|
216
|
-
if @best_candidate == nil || (qv < @best_quality_value)
|
217
|
-
set_new_best_candidate candidate, qv
|
218
|
-
end
|
219
|
-
end
|
288
|
+
@best_objects[index] = candidate
|
220
289
|
|
221
|
-
|
290
|
+
logger.log_data :objective_better_object_for_goal, {
|
291
|
+
:better_candidate => candidate,
|
292
|
+
:type_of_improvement => typeOfReset
|
293
|
+
}, "Better candidate found for goal #{goal_methods[index]}"
|
222
294
|
|
223
|
-
|
224
|
-
|
295
|
+
# Reset the best object since we have a new scale
|
296
|
+
@best_candidate = nil
|
225
297
|
|
226
|
-
|
227
|
-
# :candidate => candidate,
|
228
|
-
# :quality_value => qualityValue
|
229
|
-
#}, "New best candidate found"
|
298
|
+
end
|
230
299
|
|
231
|
-
|
300
|
+
inc_version_number
|
232
301
|
|
233
|
-
|
302
|
+
end
|
234
303
|
|
235
|
-
|
304
|
+
def sub_qualities_if_already_calculated?(candidate)
|
305
|
+
qv = quality_in_object candidate
|
306
|
+
!qv.nil? ? qv.sub_qualities : nil
|
307
|
+
end
|
236
308
|
|
237
|
-
|
238
|
-
|
309
|
+
# Get the hash of annotations that we have done to this object.
|
310
|
+
def my_annotations(object)
|
311
|
+
object._annotations[self] ||= Hash.new
|
312
|
+
end
|
239
313
|
|
240
|
-
|
314
|
+
def quality_in_object(object)
|
315
|
+
my_annotations(object)[:quality]
|
316
|
+
end
|
241
317
|
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
# supplied array are outside the previously seen min and max.
|
246
|
-
def update_global_mins_and_maxs subQualityValues, candidate
|
247
|
-
subQualityValues.each_with_index do |sqv,i|
|
248
|
-
update_global_min_and_max(i, sqv, candidate)
|
249
|
-
end
|
250
|
-
end
|
251
|
-
|
252
|
-
# Update the global min and max for the goal method with _index_ if
|
253
|
-
# the _qValue_ is less than or
|
254
|
-
def update_global_min_and_max(index, qValue, candidate)
|
255
|
-
min = @global_min_values_per_aspect[index]
|
256
|
-
max = @global_max_values_per_aspect[index]
|
257
|
-
|
258
|
-
if qValue < min
|
259
|
-
|
260
|
-
@global_min_values_per_aspect[index] = qValue
|
261
|
-
|
262
|
-
reset_quality_scale candidate, index, :min
|
263
|
-
|
264
|
-
end
|
265
|
-
if qValue > max
|
266
|
-
|
267
|
-
@global_max_values_per_aspect[index] = qValue
|
268
|
-
|
269
|
-
reset_quality_scale candidate, index, :max
|
270
|
-
|
271
|
-
end
|
272
|
-
end
|
273
|
-
|
274
|
-
# Reset the quality scale if the updated min or max value
|
275
|
-
# was the best quality value seen for the goal with given _index_.
|
276
|
-
def reset_quality_scale(candidate, index, typeOfReset)
|
277
|
-
|
278
|
-
is_min = is_min_goal?(index)
|
279
|
-
|
280
|
-
if (typeOfReset == :min && is_min) || (typeOfReset == :max && !is_min)
|
281
|
-
|
282
|
-
@best_objects[index] = candidate
|
283
|
-
|
284
|
-
#log_data :objective_better_object_for_goal, {
|
285
|
-
# :better_candidate => candidate,
|
286
|
-
# :type_of_improvement => typeOfReset
|
287
|
-
# }, "Better object found for goal #{goal_methods[i]}"
|
288
|
-
|
289
|
-
# Reset the best object since we have a new scale
|
290
|
-
@best_candidate = nil
|
291
|
-
|
292
|
-
end
|
293
|
-
|
294
|
-
inc_version_number
|
295
|
-
|
296
|
-
end
|
297
|
-
|
298
|
-
# Check if a candidates quality value according to this objective is
|
299
|
-
# up to date with the latest version of the objective.
|
300
|
-
def quality_if_up_to_date?(candidate)
|
301
|
-
qv = quality_in_object candidate
|
302
|
-
(!qv.nil? && qv.version == current_version) ? qv : nil
|
303
|
-
end
|
304
|
-
|
305
|
-
# Get the hash of annotations that we have done to this object.
|
306
|
-
def my_annotations(object)
|
307
|
-
object._annotations[self] ||= Hash.new
|
308
|
-
end
|
309
|
-
|
310
|
-
def quality_in_object(object)
|
311
|
-
my_annotations(object)[:quality]
|
312
|
-
end
|
313
|
-
|
314
|
-
def update_quality_value_in_object(object, qv)
|
315
|
-
my_annotations(object)[:quality] = qv
|
316
|
-
end
|
318
|
+
def update_quality_value_in_object(object, qv)
|
319
|
+
my_annotations(object)[:quality] = qv
|
320
|
+
end
|
317
321
|
end
|
318
322
|
|
319
|
-
# A
|
323
|
+
# A QualityAggregator converts a vector of sub-quality values (for each individual goal of
|
320
324
|
# an objective) into a single number on which the candidates can be compared.
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
325
|
+
# Not every comparator uses the aggregated value to compare candidates though,
|
326
|
+
# but the default one does.
|
327
|
+
# This default aggregator is just a sum of the individual qualities where
|
328
|
+
# max goals are negated.
|
329
|
+
class Objective::QualityAggregator
|
330
|
+
attr_reader :objective
|
331
|
+
|
332
|
+
# Set the objective to use.
|
333
|
+
def objective=(objective)
|
334
|
+
# Calculate the signs to be used in inverting the max methods later.
|
335
|
+
@signs = objective.goal_methods.map {|gm| objective.is_min_goal_method?(gm) ? 1 : -1}
|
336
|
+
@objective = objective
|
337
|
+
end
|
338
|
+
|
339
|
+
# Aggregate an array of _sub_qualities_ into a single number given an array of weights.
|
340
|
+
# This default class just sums the quality values regardless of the weights.
|
341
|
+
def aggregate_from_sub_qualities subQualityValues, weights
|
342
|
+
subQualityValues.weighted_sum(@signs)
|
343
|
+
end
|
335
344
|
end
|
336
345
|
|
337
|
-
# A
|
346
|
+
# A WeightedSumAggregator sums individual quality values, each multiplied with a
|
338
347
|
# weight.
|
339
|
-
class Objective::
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
|
348
|
+
class Objective::WeightedSumAggregator < Objective::QualityAggregator
|
349
|
+
def aggregate_from_sub_qualities subQualityValues, weights
|
350
|
+
sum = 0.0
|
351
|
+
subQualityValues.each_with_index do |qv, i|
|
352
|
+
sum += (qv * weights[i] * @signs[i])
|
353
|
+
end
|
354
|
+
sum
|
355
|
+
end
|
347
356
|
end
|
348
357
|
|
349
|
-
# A SumOfWeightedGlobalRatios
|
358
|
+
# A SumOfWeightedGlobalRatios is very similar to Bentley's SWGR multi-objective
|
350
359
|
# fitness mapping scheme as described in the paper:
|
351
360
|
# P. J. Bentley and J. P. Wakefield, "Finding Acceptable Solutions in the
|
352
361
|
# Pareto-Optimal Range using Multiobjective Genetic Algorithms", 1997
|
353
362
|
# http://eprints.hud.ac.uk/4052/1/PB_%26_JPW_1997_Finding_Acceptable_Solutions.htm
|
354
|
-
#
|
363
|
+
# with the difference that that lower values indicate better quality.
|
364
|
+
# It is the weighted sum of the ratios to the best so far for each goal.
|
355
365
|
# One of its benefits is that one need not sort individuals in relation to
|
356
366
|
# their peers; the aggregate fitness value is fully determined by the individual
|
357
367
|
# and the global min and max values for each objective.
|
358
|
-
class Objective::
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
376
|
-
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
368
|
+
class Objective::SumOfWeigthedGlobalRatios < Objective::WeightedSumAggregator
|
369
|
+
def ratio(index, value, min, max)
|
370
|
+
return 1000.0 if value == nil # We heavily penalize if one sub-quality could not be calculated. Max is otherwise 1.0.
|
371
|
+
if objective.is_min_aspect?(index)
|
372
|
+
numerator = value - min
|
373
|
+
else
|
374
|
+
numerator = max - value
|
375
|
+
end
|
376
|
+
numerator.to_f.protected_division_with(max - min)
|
377
|
+
end
|
378
|
+
|
379
|
+
def aggregate_from_sub_qualities subQualityValues, weights
|
380
|
+
goal_mins = objective.global_min_values_per_goal
|
381
|
+
goal_maxs = objective.global_max_values_per_goal
|
382
|
+
|
383
|
+
ratios = subQualityValues.map_with_index do |v, i|
|
384
|
+
ratio i, v, goal_mins[i], goal_maxs[i]
|
385
|
+
end
|
386
|
+
|
387
|
+
# We cannot reuse the superclass in calculating the weighted sum since
|
388
|
+
# we have already taken the signs into account in the ratio method.
|
389
|
+
sum = 0.0
|
390
|
+
ratios.each_with_index do |r, i|
|
391
|
+
sum += (qv * weights[i])
|
392
|
+
end
|
393
|
+
|
394
|
+
sum / weights.sum.to_f
|
395
|
+
end
|
386
396
|
end
|
387
397
|
|
388
398
|
# A Comparator ranks a set of candidates based on their sub-qualities.
|
389
399
|
# This default comparator just uses the quality value to sort the candidates, with
|
390
|
-
# lower values indicating
|
391
|
-
class Objective::
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
400
|
+
# lower values indicating better quality.
|
401
|
+
class Objective::LowerAggregateQualityIsBetterComparator
|
402
|
+
attr_accessor :objective
|
403
|
+
|
404
|
+
# Return an array with the candidates ranked from best to worst.
|
405
|
+
# Candidates that cannot be distinghuished from each other are randomly ranked.
|
406
|
+
def rank_candidates candidates, weights
|
407
|
+
candidates.sort_by {|c| objective.quality_of(c, weights).value}
|
408
|
+
end
|
409
|
+
|
410
|
+
def is_better_than?(c1, c2)
|
411
|
+
hat_compare(c1, c2) == 1
|
412
|
+
end
|
413
|
+
|
414
|
+
def is_better_than_for_goal?(index, c1, c2)
|
415
|
+
objective.quality_of(c1).sub_quality(index, true) < objective.quality_of(c2).sub_quality(index, true)
|
416
|
+
end
|
417
|
+
|
418
|
+
def hat_compare(c1, c2)
|
419
|
+
# We change the order since smaller values indicates higher quality
|
420
|
+
objective.quality_of(c2).value <=> objective.quality_of(c1).value
|
421
|
+
end
|
399
422
|
end
|
400
423
|
|
401
424
|
# Class for representing multi-objective _sub_qualitites_ and their summary
|
@@ -405,62 +428,66 @@ end
|
|
405
428
|
# they reflect the quality of the candidate for the current version of
|
406
429
|
# the objective.
|
407
430
|
class QualityValue
|
408
|
-
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
|
431
|
-
|
432
|
-
|
433
|
-
|
434
|
-
|
435
|
-
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
|
431
|
+
include Comparable
|
432
|
+
|
433
|
+
attr_reader :sub_qualities, :objective, :candidate
|
434
|
+
|
435
|
+
def initialize(subQvs, candidate, objective)
|
436
|
+
@sub_qualities, @objective = subQvs, objective
|
437
|
+
@candidate = candidate
|
438
|
+
end
|
439
|
+
|
440
|
+
# Return the aggregated quality value. Will always return an updated value
|
441
|
+
# since it will be recalculated if we have the wrong version.
|
442
|
+
def value
|
443
|
+
return @value if @version && @version == @objective.current_version
|
444
|
+
@version = @objective.current_version
|
445
|
+
@value = @objective.aggregated_quality(@sub_qualities)
|
446
|
+
end
|
447
|
+
|
448
|
+
def <=>(other)
|
449
|
+
return nil unless @objective == other.objective
|
450
|
+
@objective.hat_compare(@candidate, other.candidate)
|
451
|
+
end
|
452
|
+
|
453
|
+
# Return the sub quality value with a given index. Can make sure maximization
|
454
|
+
# goals are mapped as minimization goals if ensureMinimization is true.
|
455
|
+
def sub_quality(index, ensureMinimization = false)
|
456
|
+
return @sub_qualities[index] if !ensureMinimization || @objective.is_min_goal?(index)
|
457
|
+
# Now we now this is a max goal that should be returned as a min goal => invert it.
|
458
|
+
-(@sub_qualities[index])
|
459
|
+
end
|
460
|
+
|
461
|
+
def to_s
|
462
|
+
subqs = sub_qualities.map {|f| f.to_significant_digits(3)}
|
463
|
+
# Note! We ask for the value first which guarantees that we then have a version number.
|
464
|
+
qstr = "#{value.to_significant_digits(4)}"
|
465
|
+
"#{qstr} (SubQs = #{subqs.inspect}, ver. #{@version})"
|
466
|
+
end
|
440
467
|
end
|
441
468
|
|
442
469
|
# Short hand for when the objective function is given as a block that should be minimized.
|
443
470
|
class ObjectiveMinimizeBlock < Objective
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
471
|
+
def initialize(&objFunc)
|
472
|
+
super()
|
473
|
+
@objective_function = objFunc
|
474
|
+
end
|
475
|
+
|
476
|
+
def objective_min_cost_function(candidate)
|
477
|
+
@objective_function.call(*candidate.to_a)
|
478
|
+
end
|
452
479
|
end
|
453
480
|
|
454
481
|
# Short hand for when the objective function is given as a block that should be minimized.
|
455
482
|
class ObjectiveMaximizeBlock < Objective
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
462
|
-
|
463
|
-
|
483
|
+
def initialize(&objFunc)
|
484
|
+
super()
|
485
|
+
@objective_function = objFunc
|
486
|
+
end
|
487
|
+
|
488
|
+
def objective_max_cost_function(candidate)
|
489
|
+
@objective_function.call(*candidate.to_a)
|
490
|
+
end
|
464
491
|
end
|
465
492
|
|
466
493
|
end
|