feldtruby 0.3.18 → 0.4.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -8,7 +8,7 @@ require 'feldtruby/annotations'
8
8
  # Make all Ruby objects Annotateable so we can attach information to the
9
9
  # individuals being optimized.
10
10
  class Object
11
- include FeldtRuby::Annotateable
11
+ include FeldtRuby::Annotateable
12
12
  end
13
13
 
14
14
  module FeldtRuby::Optimize
@@ -32,370 +32,393 @@ module FeldtRuby::Optimize
32
32
  # as the comparator. But the mapper and comparator to be used can, of course,
33
33
  # be changed.
34
34
  class Objective
35
- include FeldtRuby::Logging
35
+ include FeldtRuby::Logging
36
36
 
37
- # Current version of this objective. Is updated when the min or max values
38
- # for a sub-objective has been updated or when the weights are changed.
39
- # Candidates are always compared based on the latest version of an objective.
40
- attr_accessor :current_version
37
+ # Current version of this objective. Is updated when the min or max values
38
+ # for a sub-objective has been updated or when the weights are changed.
39
+ # Candidates are always compared based on the latest version of an objective.
40
+ attr_accessor :current_version
41
41
 
42
- # A quality mapper maps the goal values of a candidate to a single number.
43
- attr_accessor :quality_mapper
42
+ attr_reader :global_min_values_per_aspect, :global_max_values_per_aspect
44
43
 
45
- # A comparator compares two or more candidates and ranks them based on their
46
- # qualities.
47
- attr_accessor :comparator
44
+ def initialize(qualityAggregator = WeightedSumAggregator.new,
45
+ comparator = LowerAggregateQualityIsBetterComparator.new)
46
+
47
+ # A quality aggregator maps the goal values of a candidate to a single number.
48
+ @aggregator = qualityAggregator
49
+ @aggregator.objective = self
50
+
51
+ # A comparator compares two or more candidates and ranks them based on their
52
+ # qualities.
53
+ @comparator = comparator
54
+ @comparator.objective = self
48
55
 
49
- attr_reader :global_min_values_per_aspect, :global_max_values_per_aspect
56
+ self.current_version = 0
50
57
 
51
- def initialize(qualityMapper = nil, comparator = nil)
58
+ # We set all mins to INFINITY. This ensures that the first value seen will
59
+ # be smaller, and thus set as the new min.
60
+ @global_min_values_per_aspect = [Float::INFINITY] * num_goals
52
61
 
53
- @quality_mapper = qualityMapper || WeightedSumQualityMapper.new
54
- @comparator = comparator || Comparator.new
55
- @quality_mapper.objective = self
56
- @comparator.objective = self
62
+ # We set all maxs to -INFINITY. This ensures that the first value seen will
63
+ # be larger, and thus set as the new max.
64
+ @global_max_values_per_aspect = [-Float::INFINITY] * num_goals
57
65
 
58
- self.current_version = 0
66
+ setup_logger_and_distribute_to_instance_variables()
59
67
 
60
- # We set all mins to INFINITY. This ensures that the first value seen will
61
- # be smaller, and thus set as the new min.
62
- @global_min_values_per_aspect = [Float::INFINITY] * num_goals
68
+ # An array to keep the best object per goal.
69
+ @best_objects = Array.new
63
70
 
64
- # We set all maxs to -INFINITY. This ensures that the first value seen will
65
- # be larger, and thus set as the new max.
66
- @global_max_values_per_aspect = [-Float::INFINITY] * num_goals
71
+ end
67
72
 
68
- setup_logger_and_distribute_to_instance_variables()
73
+ # Return the number of goals of this objective.
74
+ def num_goals
75
+ @num_goals ||= goal_methods.length
76
+ end
69
77
 
70
- # An array to keep the best object per goal.
71
- @best_objects = Array.new
78
+ # Return the names of the goal methods.
79
+ def goal_methods
80
+ @goal_methods ||= self.methods.select {|m| is_goal_method?(m)}
81
+ end
72
82
 
73
- end
83
+ # Return true iff the goal method with the given index is a minimizing goal.
84
+ def is_min_goal?(index)
85
+ (@is_min_goal ||= (goal_methods.map {|m| is_min_goal_method?(m)}))[index]
86
+ end
74
87
 
75
- # Return the number of goals of this objective.
76
- def num_goals
77
- @num_goals ||= goal_methods.length
78
- end
88
+ # Return true iff the method with the given name is a goal method.
89
+ def is_goal_method?(methodNameAsSymbolOrString)
90
+ (methodNameAsSymbolOrString.to_s =~ /^(goal|objective)_(min|max)_([\w_]+)$/) != nil
91
+ end
79
92
 
80
- # Return the names of the goal methods.
81
- def goal_methods
82
- @goal_methods ||= self.methods.select {|m| is_goal_method?(m)}
83
- end
93
+ # Return true iff the method with the given name is a goal method.
94
+ def is_min_goal_method?(methodNameAsSymbolOrString)
95
+ (methodNameAsSymbolOrString.to_s =~ /^(goal|objective)_min_([\w_]+)$/) != nil
96
+ end
84
97
 
85
- # Return true iff the goal method with the given index is a minimizing goal.
86
- def is_min_goal?(index)
87
- (@is_min_goal ||= (goal_methods.map {|m| is_min_goal_method?(m)}))[index]
88
- end
98
+ # The candidate objects can be mapped to another object before we call the goal
99
+ # methods to calc the quality values. Default is no mapping but subclasses
100
+ # can override this for more complex evaluation schemes.
101
+ def map_candidate_to_object_to_be_evaluated(candidate)
102
+ candidate
103
+ end
104
+
105
+ # Weights is a map from goal method names to a number that represents the
106
+ # weight for that goal. Default is to set all weights to 1.
107
+ def weights
108
+ @weights ||= ([1] * num_goals)
109
+ end
110
+
111
+ # Set the weights given a hash mapping each goal method name to a number.
112
+ # The mapper and/or comparator can use the weights in their calculations.
113
+ def weights=(goalNameToNumberHash)
114
+
115
+ raise "Must be same number of weights as there are goals (#{num_aspects}), but is #{weights.length}" unless weights.length == num_goals
116
+
117
+ weights = goal_methods.map {|gm| goalNameToNumberHash[gm]}
118
+
119
+ logger.log_value :objective_weights_changed,
120
+ {"New weights" => goalNameToNumberHash},
121
+ "Weights updated from #{@weights} to #{weights}"
122
+
123
+ inc_version_number
124
+
125
+ @weights = weights
126
+
127
+ end
128
+
129
+ # Return a vector of the "raw" quality values, i.e. the fitness value for each
130
+ # goal. If we have already calculated the sub-qualities we just return them.
131
+ # If not we calculate them.
132
+ def sub_qualities_of(candidate, updateGlobals = true)
133
+ # Return the sub_qualities if we already have calculated them.
134
+ sqs = sub_qualities_if_already_calculated?(candidate)
135
+ return sqs if sqs
136
+ calculate_sub_qualities_of candidate, updateGlobals
137
+ end
138
+
139
+ # Calculate the sub-qualities from scratch, i.e. by mapping the candidate
140
+ # to an object to be evaluated and then calculate the value of each goal.
141
+ def calculate_sub_qualities_of(candidate, updateGlobals = true)
142
+ obj = map_candidate_to_object_to_be_evaluated(candidate)
143
+ sub_qualitites = goal_methods.map {|gmethod| self.send(gmethod, obj)}
144
+ update_global_mins_and_maxs(sub_qualitites, candidate) if updateGlobals
145
+ sub_qualitites
146
+ end
89
147
 
90
- # Return true iff the method with the given name is a goal method.
91
- def is_goal_method?(methodNameAsSymbolOrString)
92
- (methodNameAsSymbolOrString.to_s =~ /^(goal|objective)_(min|max)_([\w_]+)$/) != nil
93
- end
148
+ # Return a quality value for a given candidate and weights for the whole
149
+ # objective for a given candidate. Updates the best candidate if this
150
+ # is the best seen so far.
151
+ def quality_of(candidate, weights = self.weights)
94
152
 
95
- # Return true iff the method with the given name is a goal method.
96
- def is_min_goal_method?(methodNameAsSymbolOrString)
97
- (methodNameAsSymbolOrString.to_s =~ /^(goal|objective)_min_([\w_]+)$/) != nil
98
- end
153
+ q = quality_in_object(candidate)
154
+ return q if q
99
155
 
100
- # The candidate objects can be mapped to another object before we call the goal
101
- # methods to calc the quality values. Default is no mapping but subclasses
102
- # can override this for more complex evaluation schemes.
103
- def map_candidate_to_object_to_be_evaluated(candidate)
104
- candidate
105
- end
156
+ sub_qualities = sub_qualities_of(candidate)
106
157
 
107
- # Weights is a map from goal method names to a number that represents the
108
- # weight for that goal. Default is to set all weights to 1.
109
- def weights
110
- @weights ||= ([1] * num_goals)
111
- end
158
+ qv = update_quality_value_of candidate, sub_qualities, weights
159
+
160
+ update_best_candidate candidate, qv
161
+
162
+ qv
163
+
164
+ end
112
165
 
113
- # Set the weights given a hash mapping each goal method name to a number.
114
- # The mapper and/or comparator can use the weights in their calculations.
115
- def weights=(goalNameToNumberHash)
166
+ # Rank candidates from best to worst. Candidates that have the same quality
167
+ # are randomly ordered.
168
+ def rank_candidates(candidates, weights = self.weights)
169
+ # We first ensure all candidates have calculated sub-qualities, then we
170
+ # call the comparator. This ensures that the gobals are already correctly
171
+ # updated on each quality value.
172
+ candidates.map {|c| sub_qualities_of(c, true)}
173
+
174
+ # Now just let the comparator rank the candidates
175
+ @comparator.rank_candidates candidates, weights
176
+ end
116
177
 
117
- raise "Must be same number of weights as there are goals (#{num_aspects}), but is #{weights.length}" unless weights.length == num_goals
178
+ # Return true iff candidate1 is better than candidate2. Will update their
179
+ # quality values if they are out of date.
180
+ def is_better_than?(candidate1, candidate2)
181
+ @comparator.is_better_than?(candidate1, candidate2)
182
+ end
118
183
 
119
- weights = goal_methods.map {|gm| goalNameToNumberHash[gm]}
184
+ # Return true iff candidate1 is better than candidate2. Will update their
185
+ # quality values if they are out of date.
186
+ def hat_compare(candidate1, candidate2)
187
+ @comparator.hat_compare(candidate1, candidate2)
188
+ end
120
189
 
121
- #log_value( :objective_weights_changed, goalNameToNumberHash,
122
- # "Weights updated from #{@weights} to #{weights}" )
190
+ # Return true iff candidate1 is better than candidate2 for goal _index_.
191
+ # Will update their quality values if they are out of date.
192
+ def is_better_than_for_goal?(index, candidate1, candidate2)
193
+ @comparator.is_better_than_for_goal?(index, candidate1, candidate2)
194
+ end
123
195
 
124
- inc_version_number
196
+ # Return the aggregated quality value given sub qualities.
197
+ def aggregated_quality(subQualities)
198
+ @aggregator.aggregate_from_sub_qualities(subQualities, weights)
199
+ end
125
200
 
126
- @weights = weights
201
+ def note_end_of_optimization(optimizer)
202
+ logger.log_data :objective_optimization_ends, {
203
+ "Best object, aggregated" => @best_candidate,
204
+ "Quality of best object" => @best_quality_value,
205
+ "Version" => current_version,
206
+ "Comparator" => @comparator,
207
+ "Aggregator" => @aggregator,
208
+ "Best objects per goal" => @best_objects
209
+ }, "Objective: Report at end of optimization", true
210
+ end
127
211
 
128
- end
212
+ attr_reader :best_candidate
129
213
 
130
- # Return a vector of the "raw" quality values, i.e. the fitness value for each
131
- # goal.
132
- def sub_qualities_of(candidate, updateGlobals = true)
133
- obj = map_candidate_to_object_to_be_evaluated(candidate)
134
- sub_qualitites = goal_methods.map {|gmethod| self.send(gmethod, obj)}
135
- update_global_mins_and_maxs(sub_qualitites, candidate) if updateGlobals
136
- sub_qualitites
137
- end
214
+ private
138
215
 
139
- # Return a quality value for a given candidate and weights for the whole
140
- # objective for a given candidate. Updates the best candidate if this
141
- # is the best seen so far.
142
- def quality_of(candidate, weights = self.weights)
216
+ def update_quality_value_of(candidate, subQualities, weights)
217
+ qv = QualityValue.new subQualities, candidate, self
218
+ update_quality_value_in_object candidate, qv
219
+ end
143
220
 
144
- q = quality_if_up_to_date?(candidate)
145
- return q if q
221
+ def update_best_candidate candidate, qv
222
+ if @best_candidate == nil || (qv.value < @best_quality_value.value)
223
+ set_new_best_candidate candidate, qv
224
+ end
225
+ end
146
226
 
147
- sub_qualities = sub_qualities_of(candidate)
227
+ def set_new_best_candidate candidate, qualityValue
148
228
 
149
- qv = update_quality_value_of candidate, sub_qualities, weights
229
+ @best_candidate = candidate
230
+ @best_quality_value = qualityValue
150
231
 
151
- update_best_candidate candidate, qv
232
+ logger.log_data :objective_new_best_candidate, {
233
+ :candidate => candidate,
234
+ :quality_value => qualityValue
235
+ }, "Objective: New best ever found", true
152
236
 
153
- qv
237
+ end
154
238
 
155
- end
239
+ def inc_version_number
156
240
 
157
- # Rank candidates from best to worst. Updates the quality value of each
158
- # candidate.
159
- def rank_candidates(candidates, weights = self.weights)
241
+ new_version = self.current_version + 1
160
242
 
161
- # Map each candidate to its sub-qualities without updating the globals.
162
- # We will update once for the whole set below.
163
- sqvss = candidates.map {|c| sub_qualities_of(c, false)}
243
+ logger.log_value :objective_version_number, new_version,
244
+ "New version of objective: version = #{new_version}"
164
245
 
165
- # Update the global mins and maxs based on the set of sub-qualities.
166
- # Note! This must be done once for the whole set otherwise when we later
167
- # compare the cnadidates based on their quality values they
168
- # might be for different versions of the objective.
169
- sqvss.each_with_index do |sqvs, i|
170
- update_global_mins_and_maxs sqvs, candidates[i]
171
- end
246
+ self.current_version = new_version
172
247
 
173
- # Update the quality value of each candidate.
174
- sqvss.each_with_index do |sqvs, i|
175
- update_quality_value_of candidates[i], sqvs, weights
176
- end
248
+ end
177
249
 
178
- # Now use the comparator to rank the candidates.
179
- comparator.rank_candidates candidates, weights
250
+ # Update the min and max values for each goal in case the values in the
251
+ # supplied array are outside the previously seen min and max.
252
+ def update_global_mins_and_maxs subQualityValues, candidate
253
+ subQualityValues.each_with_index do |sqv,i|
254
+ update_global_min_and_max(i, sqv, candidate)
255
+ end
256
+ end
180
257
 
181
- end
258
+ # Update the global min and max for the goal method with _index_ if
259
+ # the _qValue_ is less than or
260
+ def update_global_min_and_max(index, qValue, candidate)
261
+ min = @global_min_values_per_aspect[index]
262
+ max = @global_max_values_per_aspect[index]
182
263
 
183
- # Return true iff candidate1 is better than candidate2. Will update their
184
- # quality values if they are out of date.
185
- def is_better_than?(candidate1, candidate2)
186
- quality_of(candidate1) < quality_of(candidate2)
187
- end
264
+ if qValue < min
188
265
 
189
- # Return true iff candidate1 is better than candidate2 for goal _index_.
190
- # Will update their quality values if they are out of date.
191
- def is_better_than_for_goal?(index, candidate1, candidate2)
192
- qv1 = quality_of(candidate1)
193
- qv2 = quality_of(candidate2)
194
- qv1.sub_quality(index, true) <= qv2.sub_quality(index, true)
195
- end
266
+ @global_min_values_per_aspect[index] = qValue
196
267
 
197
- def note_end_of_optimization(optimizer)
198
- nil
199
- end
268
+ reset_quality_scale candidate, index, :min
200
269
 
201
- attr_reader :best_candidate
270
+ end
271
+ if qValue > max
202
272
 
203
- private
273
+ @global_max_values_per_aspect[index] = qValue
204
274
 
205
- def update_quality_value_of(candidate, subQualities, weights)
275
+ reset_quality_scale candidate, index, :max
206
276
 
207
- q = quality_mapper.map_from_sub_qualities(subQualities, weights)
277
+ end
278
+ end
208
279
 
209
- qv = QualityValue.new q, subQualities, candidate, self
280
+ # Reset the quality scale if the updated min or max value
281
+ # was the best quality value seen for the goal with given _index_.
282
+ def reset_quality_scale(candidate, index, typeOfReset)
210
283
 
211
- update_quality_value_in_object candidate, qv
284
+ is_min = is_min_goal?(index)
212
285
 
213
- end
286
+ if (typeOfReset == :min && is_min) || (typeOfReset == :max && !is_min)
214
287
 
215
- def update_best_candidate candidate, qv
216
- if @best_candidate == nil || (qv < @best_quality_value)
217
- set_new_best_candidate candidate, qv
218
- end
219
- end
288
+ @best_objects[index] = candidate
220
289
 
221
- def set_new_best_candidate candidate, qualityValue
290
+ logger.log_data :objective_better_object_for_goal, {
291
+ :better_candidate => candidate,
292
+ :type_of_improvement => typeOfReset
293
+ }, "Better candidate found for goal #{goal_methods[index]}"
222
294
 
223
- @best_candidate = candidate
224
- @best_quality_value = qualityValue
295
+ # Reset the best object since we have a new scale
296
+ @best_candidate = nil
225
297
 
226
- #log_data :objective_new_best_candidate, {
227
- # :candidate => candidate,
228
- # :quality_value => qualityValue
229
- #}, "New best candidate found"
298
+ end
230
299
 
231
- end
300
+ inc_version_number
232
301
 
233
- def inc_version_number
302
+ end
234
303
 
235
- new_version = @current_version + 1
304
+ def sub_qualities_if_already_calculated?(candidate)
305
+ qv = quality_in_object candidate
306
+ !qv.nil? ? qv.sub_qualities : nil
307
+ end
236
308
 
237
- #log_value :objective_version_number, new_version,
238
- # "New version of objective:\n#{self.to_s}"
309
+ # Get the hash of annotations that we have done to this object.
310
+ def my_annotations(object)
311
+ object._annotations[self] ||= Hash.new
312
+ end
239
313
 
240
- @current_version = new_version
314
+ def quality_in_object(object)
315
+ my_annotations(object)[:quality]
316
+ end
241
317
 
242
- end
243
-
244
- # Update the min and max values for each goal in case the values in the
245
- # supplied array are outside the previously seen min and max.
246
- def update_global_mins_and_maxs subQualityValues, candidate
247
- subQualityValues.each_with_index do |sqv,i|
248
- update_global_min_and_max(i, sqv, candidate)
249
- end
250
- end
251
-
252
- # Update the global min and max for the goal method with _index_ if
253
- # the _qValue_ is less than or
254
- def update_global_min_and_max(index, qValue, candidate)
255
- min = @global_min_values_per_aspect[index]
256
- max = @global_max_values_per_aspect[index]
257
-
258
- if qValue < min
259
-
260
- @global_min_values_per_aspect[index] = qValue
261
-
262
- reset_quality_scale candidate, index, :min
263
-
264
- end
265
- if qValue > max
266
-
267
- @global_max_values_per_aspect[index] = qValue
268
-
269
- reset_quality_scale candidate, index, :max
270
-
271
- end
272
- end
273
-
274
- # Reset the quality scale if the updated min or max value
275
- # was the best quality value seen for the goal with given _index_.
276
- def reset_quality_scale(candidate, index, typeOfReset)
277
-
278
- is_min = is_min_goal?(index)
279
-
280
- if (typeOfReset == :min && is_min) || (typeOfReset == :max && !is_min)
281
-
282
- @best_objects[index] = candidate
283
-
284
- #log_data :objective_better_object_for_goal, {
285
- # :better_candidate => candidate,
286
- # :type_of_improvement => typeOfReset
287
- # }, "Better object found for goal #{goal_methods[i]}"
288
-
289
- # Reset the best object since we have a new scale
290
- @best_candidate = nil
291
-
292
- end
293
-
294
- inc_version_number
295
-
296
- end
297
-
298
- # Check if a candidates quality value according to this objective is
299
- # up to date with the latest version of the objective.
300
- def quality_if_up_to_date?(candidate)
301
- qv = quality_in_object candidate
302
- (!qv.nil? && qv.version == current_version) ? qv : nil
303
- end
304
-
305
- # Get the hash of annotations that we have done to this object.
306
- def my_annotations(object)
307
- object._annotations[self] ||= Hash.new
308
- end
309
-
310
- def quality_in_object(object)
311
- my_annotations(object)[:quality]
312
- end
313
-
314
- def update_quality_value_in_object(object, qv)
315
- my_annotations(object)[:quality] = qv
316
- end
318
+ def update_quality_value_in_object(object, qv)
319
+ my_annotations(object)[:quality] = qv
320
+ end
317
321
  end
318
322
 
319
- # A QualityMapper maps a vector of sub-quality values (for each individual goal of
323
+ # A QualityAggregator converts a vector of sub-quality values (for each individual goal of
320
324
  # an objective) into a single number on which the candidates can be compared.
321
- class Objective::QualityMapper
322
- attr_reader :objective
323
-
324
- def objective=(objective)
325
- # Calculate the signs to be used in inverting the max methods later.
326
- @signs = objective.goal_methods.map {|gm| objective.is_min_goal_method?(gm) ? 1 : -1}
327
- @objective = objective
328
- end
329
-
330
- # Map an array of _sub_qualities_ to a single number given an array of weights.
331
- # This default class just sums the quality values regardless of the weights.
332
- def map_from_sub_qualities subQualityValues, weights
333
- subQualityValues.weighted_sum(@signs)
334
- end
325
+ # Not every comparator uses the aggregated value to compare candidates though,
326
+ # but the default one does.
327
+ # This default aggregator is just a sum of the individual qualities where
328
+ # max goals are negated.
329
+ class Objective::QualityAggregator
330
+ attr_reader :objective
331
+
332
+ # Set the objective to use.
333
+ def objective=(objective)
334
+ # Calculate the signs to be used in inverting the max methods later.
335
+ @signs = objective.goal_methods.map {|gm| objective.is_min_goal_method?(gm) ? 1 : -1}
336
+ @objective = objective
337
+ end
338
+
339
+ # Aggregate an array of _sub_qualities_ into a single number given an array of weights.
340
+ # This default class just sums the quality values regardless of the weights.
341
+ def aggregate_from_sub_qualities subQualityValues, weights
342
+ subQualityValues.weighted_sum(@signs)
343
+ end
335
344
  end
336
345
 
337
- # A WeightedSumMapper sums individual quality values, each multiplied with a
346
+ # A WeightedSumAggregator sums individual quality values, each multiplied with a
338
347
  # weight.
339
- class Objective::WeightedSumQualityMapper < Objective::QualityMapper
340
- def map_from_sub_qualities subQualityValues, weights
341
- sum = 0.0
342
- subQualityValues.each_with_index do |qv, i|
343
- sum += (qv * weights[i] * @signs[i])
344
- end
345
- sum
346
- end
348
+ class Objective::WeightedSumAggregator < Objective::QualityAggregator
349
+ def aggregate_from_sub_qualities subQualityValues, weights
350
+ sum = 0.0
351
+ subQualityValues.each_with_index do |qv, i|
352
+ sum += (qv * weights[i] * @signs[i])
353
+ end
354
+ sum
355
+ end
347
356
  end
348
357
 
349
- # A SumOfWeightedGlobalRatios implements Bentley's SWGR multi-objective
358
+ # A SumOfWeightedGlobalRatios is very similar to Bentley's SWGR multi-objective
350
359
  # fitness mapping scheme as described in the paper:
351
360
  # P. J. Bentley and J. P. Wakefield, "Finding Acceptable Solutions in the
352
361
  # Pareto-Optimal Range using Multiobjective Genetic Algorithms", 1997
353
362
  # http://eprints.hud.ac.uk/4052/1/PB_%26_JPW_1997_Finding_Acceptable_Solutions.htm
354
- # It is a weighted sum of the ratios to the best so far for each goal.
363
+ # with the difference that that lower values indicate better quality.
364
+ # It is the weighted sum of the ratios to the best so far for each goal.
355
365
  # One of its benefits is that one need not sort individuals in relation to
356
366
  # their peers; the aggregate fitness value is fully determined by the individual
357
367
  # and the global min and max values for each objective.
358
- class Objective::SumOfWeigthedGlobalRatiosMapper < Objective::WeightedSumQualityMapper
359
- def ratio(index, value, min, max)
360
- return 0.0 if value == nil
361
- if objective.is_min_aspect?(index)
362
- numerator = max - value
363
- else
364
- numerator = value - min
365
- end
366
- numerator.to_f.protected_division_with(max - min)
367
- end
368
-
369
- def map_from_sub_qualities subQualityValues, weights
370
- goal_mins = objective.global_min_values_per_goal
371
- goal_maxs = objective.global_max_values_per_goal
372
-
373
- ratios = subQualityValues.map_with_index do |v, i|
374
- ratio i, v, goal_mins[i], goal_maxs[i]
375
- end
376
-
377
- # We cannot reuse the superclass in calculating the weighted sum since
378
- # we have already taken the signs into account in the ratio method.
379
- sum = 0.0
380
- ratios.each_with_index do |r, i|
381
- sum += (qv * weights[i])
382
- end
383
-
384
- sum / weights.sum.to_f
385
- end
368
+ class Objective::SumOfWeigthedGlobalRatios < Objective::WeightedSumAggregator
369
+ def ratio(index, value, min, max)
370
+ return 1000.0 if value == nil # We heavily penalize if one sub-quality could not be calculated. Max is otherwise 1.0.
371
+ if objective.is_min_aspect?(index)
372
+ numerator = value - min
373
+ else
374
+ numerator = max - value
375
+ end
376
+ numerator.to_f.protected_division_with(max - min)
377
+ end
378
+
379
+ def aggregate_from_sub_qualities subQualityValues, weights
380
+ goal_mins = objective.global_min_values_per_goal
381
+ goal_maxs = objective.global_max_values_per_goal
382
+
383
+ ratios = subQualityValues.map_with_index do |v, i|
384
+ ratio i, v, goal_mins[i], goal_maxs[i]
385
+ end
386
+
387
+ # We cannot reuse the superclass in calculating the weighted sum since
388
+ # we have already taken the signs into account in the ratio method.
389
+ sum = 0.0
390
+ ratios.each_with_index do |r, i|
391
+ sum += (qv * weights[i])
392
+ end
393
+
394
+ sum / weights.sum.to_f
395
+ end
386
396
  end
387
397
 
388
398
  # A Comparator ranks a set of candidates based on their sub-qualities.
389
399
  # This default comparator just uses the quality value to sort the candidates, with
390
- # lower values indicating a better quality.
391
- class Objective::Comparator
392
- attr_accessor :objective
393
-
394
- # Return an array with the candidates ranked from best to worst.
395
- # Candidates that cannot be distinghuished from each other are randomly ranked.
396
- def rank_candidates candidates, weights
397
- candidates.sort_by {|c| objective.quality_of(c, weights).value}
398
- end
400
+ # lower values indicating better quality.
401
+ class Objective::LowerAggregateQualityIsBetterComparator
402
+ attr_accessor :objective
403
+
404
+ # Return an array with the candidates ranked from best to worst.
405
+ # Candidates that cannot be distinghuished from each other are randomly ranked.
406
+ def rank_candidates candidates, weights
407
+ candidates.sort_by {|c| objective.quality_of(c, weights).value}
408
+ end
409
+
410
+ def is_better_than?(c1, c2)
411
+ hat_compare(c1, c2) == 1
412
+ end
413
+
414
+ def is_better_than_for_goal?(index, c1, c2)
415
+ objective.quality_of(c1).sub_quality(index, true) < objective.quality_of(c2).sub_quality(index, true)
416
+ end
417
+
418
+ def hat_compare(c1, c2)
419
+ # We change the order since smaller values indicates higher quality
420
+ objective.quality_of(c2).value <=> objective.quality_of(c1).value
421
+ end
399
422
  end
400
423
 
401
424
  # Class for representing multi-objective _sub_qualitites_ and their summary
@@ -405,62 +428,66 @@ end
405
428
  # they reflect the quality of the candidate for the current version of
406
429
  # the objective.
407
430
  class QualityValue
408
- include Comparable
409
-
410
- attr_reader :value, :sub_qualities, :objective, :version, :candidate
411
-
412
- def initialize(qv, subQvs, candidate, objective)
413
- @value, @sub_qualities, @objective = qv, subQvs, objective
414
- @candidate = candidate
415
- @version = objective.current_version
416
- end
417
-
418
- def <=>(other)
419
- # This ensures they are ranked according to latest version of objective.
420
- ranked = objective.rank_candidates [self.candidate, other.candidate]
421
- if ranked.last == self.candidate
422
- return 1
423
- else
424
- return -1
425
- end
426
- end
427
-
428
- # Return the sub quality value with a given index. Can make sure maximization
429
- # goals are mapped as minimization goals if ensureMinimization is true.
430
- def sub_quality(index, ensureMinimization = false)
431
- return @sub_qualities[index] if !ensureMinimization || @objective.is_min_goal?(index)
432
- # Now we now this is a max goal that should be returned as a min goal => invert it.
433
- -(@sub_qualities[index])
434
- end
435
-
436
- def to_s
437
- subqs = sub_qualities.map {|f| f.to_significant_digits(4)}
438
- "%.3g (SubQs = #{subqs.inspect}, ver. #{version})" % value
439
- end
431
+ include Comparable
432
+
433
+ attr_reader :sub_qualities, :objective, :candidate
434
+
435
+ def initialize(subQvs, candidate, objective)
436
+ @sub_qualities, @objective = subQvs, objective
437
+ @candidate = candidate
438
+ end
439
+
440
+ # Return the aggregated quality value. Will always return an updated value
441
+ # since it will be recalculated if we have the wrong version.
442
+ def value
443
+ return @value if @version && @version == @objective.current_version
444
+ @version = @objective.current_version
445
+ @value = @objective.aggregated_quality(@sub_qualities)
446
+ end
447
+
448
+ def <=>(other)
449
+ return nil unless @objective == other.objective
450
+ @objective.hat_compare(@candidate, other.candidate)
451
+ end
452
+
453
+ # Return the sub quality value with a given index. Can make sure maximization
454
+ # goals are mapped as minimization goals if ensureMinimization is true.
455
+ def sub_quality(index, ensureMinimization = false)
456
+ return @sub_qualities[index] if !ensureMinimization || @objective.is_min_goal?(index)
457
+ # Now we now this is a max goal that should be returned as a min goal => invert it.
458
+ -(@sub_qualities[index])
459
+ end
460
+
461
+ def to_s
462
+ subqs = sub_qualities.map {|f| f.to_significant_digits(3)}
463
+ # Note! We ask for the value first which guarantees that we then have a version number.
464
+ qstr = "#{value.to_significant_digits(4)}"
465
+ "#{qstr} (SubQs = #{subqs.inspect}, ver. #{@version})"
466
+ end
440
467
  end
441
468
 
442
469
  # Short hand for when the objective function is given as a block that should be minimized.
443
470
  class ObjectiveMinimizeBlock < Objective
444
- def initialize(&objFunc)
445
- super()
446
- @objective_function = objFunc
447
- end
448
-
449
- def objective_min_cost_function(candidate)
450
- @objective_function.call(*candidate.to_a)
451
- end
471
+ def initialize(&objFunc)
472
+ super()
473
+ @objective_function = objFunc
474
+ end
475
+
476
+ def objective_min_cost_function(candidate)
477
+ @objective_function.call(*candidate.to_a)
478
+ end
452
479
  end
453
480
 
454
481
  # Short hand for when the objective function is given as a block that should be minimized.
455
482
  class ObjectiveMaximizeBlock < Objective
456
- def initialize(&objFunc)
457
- super()
458
- @objective_function = objFunc
459
- end
460
-
461
- def objective_max_cost_function(candidate)
462
- @objective_function.call(*candidate.to_a)
463
- end
483
+ def initialize(&objFunc)
484
+ super()
485
+ @objective_function = objFunc
486
+ end
487
+
488
+ def objective_max_cost_function(candidate)
489
+ @objective_function.call(*candidate.to_a)
490
+ end
464
491
  end
465
492
 
466
493
  end