faiss 0.3.0 → 0.3.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (216) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +9 -0
  3. data/LICENSE.txt +1 -1
  4. data/README.md +1 -1
  5. data/ext/faiss/extconf.rb +9 -2
  6. data/ext/faiss/index.cpp +1 -1
  7. data/ext/faiss/index_binary.cpp +2 -2
  8. data/ext/faiss/product_quantizer.cpp +1 -1
  9. data/lib/faiss/version.rb +1 -1
  10. data/vendor/faiss/faiss/AutoTune.cpp +7 -7
  11. data/vendor/faiss/faiss/AutoTune.h +1 -2
  12. data/vendor/faiss/faiss/Clustering.cpp +39 -22
  13. data/vendor/faiss/faiss/Clustering.h +40 -21
  14. data/vendor/faiss/faiss/IVFlib.cpp +26 -12
  15. data/vendor/faiss/faiss/Index.cpp +1 -1
  16. data/vendor/faiss/faiss/Index.h +40 -10
  17. data/vendor/faiss/faiss/Index2Layer.cpp +7 -7
  18. data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +176 -166
  19. data/vendor/faiss/faiss/IndexAdditiveQuantizerFastScan.cpp +15 -15
  20. data/vendor/faiss/faiss/IndexBinary.cpp +9 -4
  21. data/vendor/faiss/faiss/IndexBinary.h +8 -19
  22. data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +2 -1
  23. data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +24 -31
  24. data/vendor/faiss/faiss/IndexBinaryHNSW.h +1 -1
  25. data/vendor/faiss/faiss/IndexBinaryHash.cpp +25 -50
  26. data/vendor/faiss/faiss/IndexBinaryIVF.cpp +107 -188
  27. data/vendor/faiss/faiss/IndexFastScan.cpp +95 -146
  28. data/vendor/faiss/faiss/IndexFastScan.h +9 -8
  29. data/vendor/faiss/faiss/IndexFlat.cpp +206 -10
  30. data/vendor/faiss/faiss/IndexFlat.h +20 -1
  31. data/vendor/faiss/faiss/IndexFlatCodes.cpp +170 -5
  32. data/vendor/faiss/faiss/IndexFlatCodes.h +23 -4
  33. data/vendor/faiss/faiss/IndexHNSW.cpp +231 -382
  34. data/vendor/faiss/faiss/IndexHNSW.h +62 -49
  35. data/vendor/faiss/faiss/IndexIDMap.cpp +69 -28
  36. data/vendor/faiss/faiss/IndexIDMap.h +24 -2
  37. data/vendor/faiss/faiss/IndexIVF.cpp +162 -56
  38. data/vendor/faiss/faiss/IndexIVF.h +46 -6
  39. data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +33 -26
  40. data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +6 -2
  41. data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.cpp +19 -46
  42. data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.h +4 -3
  43. data/vendor/faiss/faiss/IndexIVFFastScan.cpp +502 -401
  44. data/vendor/faiss/faiss/IndexIVFFastScan.h +63 -26
  45. data/vendor/faiss/faiss/IndexIVFFlat.cpp +15 -5
  46. data/vendor/faiss/faiss/IndexIVFFlat.h +3 -2
  47. data/vendor/faiss/faiss/IndexIVFIndependentQuantizer.cpp +172 -0
  48. data/vendor/faiss/faiss/IndexIVFIndependentQuantizer.h +56 -0
  49. data/vendor/faiss/faiss/IndexIVFPQ.cpp +79 -125
  50. data/vendor/faiss/faiss/IndexIVFPQ.h +6 -7
  51. data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +39 -52
  52. data/vendor/faiss/faiss/IndexIVFPQFastScan.h +4 -3
  53. data/vendor/faiss/faiss/IndexIVFPQR.cpp +45 -29
  54. data/vendor/faiss/faiss/IndexIVFPQR.h +5 -2
  55. data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +25 -27
  56. data/vendor/faiss/faiss/IndexIVFSpectralHash.h +6 -6
  57. data/vendor/faiss/faiss/IndexLSH.cpp +14 -16
  58. data/vendor/faiss/faiss/IndexLattice.cpp +1 -19
  59. data/vendor/faiss/faiss/IndexLattice.h +3 -22
  60. data/vendor/faiss/faiss/IndexNNDescent.cpp +3 -33
  61. data/vendor/faiss/faiss/IndexNNDescent.h +1 -1
  62. data/vendor/faiss/faiss/IndexNSG.cpp +11 -27
  63. data/vendor/faiss/faiss/IndexNSG.h +11 -11
  64. data/vendor/faiss/faiss/IndexNeuralNetCodec.cpp +56 -0
  65. data/vendor/faiss/faiss/IndexNeuralNetCodec.h +49 -0
  66. data/vendor/faiss/faiss/IndexPQ.cpp +72 -88
  67. data/vendor/faiss/faiss/IndexPQ.h +1 -4
  68. data/vendor/faiss/faiss/IndexPQFastScan.cpp +1 -1
  69. data/vendor/faiss/faiss/IndexPreTransform.cpp +25 -31
  70. data/vendor/faiss/faiss/IndexPreTransform.h +1 -1
  71. data/vendor/faiss/faiss/IndexRefine.cpp +54 -24
  72. data/vendor/faiss/faiss/IndexRefine.h +7 -0
  73. data/vendor/faiss/faiss/IndexReplicas.cpp +23 -26
  74. data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +25 -17
  75. data/vendor/faiss/faiss/IndexScalarQuantizer.h +6 -4
  76. data/vendor/faiss/faiss/IndexShards.cpp +21 -29
  77. data/vendor/faiss/faiss/IndexShardsIVF.cpp +1 -2
  78. data/vendor/faiss/faiss/MatrixStats.cpp +17 -32
  79. data/vendor/faiss/faiss/MatrixStats.h +21 -9
  80. data/vendor/faiss/faiss/MetaIndexes.cpp +35 -35
  81. data/vendor/faiss/faiss/MetricType.h +7 -2
  82. data/vendor/faiss/faiss/VectorTransform.cpp +13 -26
  83. data/vendor/faiss/faiss/VectorTransform.h +7 -7
  84. data/vendor/faiss/faiss/clone_index.cpp +15 -10
  85. data/vendor/faiss/faiss/clone_index.h +3 -0
  86. data/vendor/faiss/faiss/cppcontrib/detail/UintReader.h +95 -17
  87. data/vendor/faiss/faiss/cppcontrib/factory_tools.cpp +152 -0
  88. data/vendor/faiss/faiss/cppcontrib/factory_tools.h +24 -0
  89. data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-inl.h +83 -30
  90. data/vendor/faiss/faiss/gpu/GpuCloner.cpp +123 -8
  91. data/vendor/faiss/faiss/gpu/GpuCloner.h +22 -0
  92. data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +13 -0
  93. data/vendor/faiss/faiss/gpu/GpuDistance.h +46 -38
  94. data/vendor/faiss/faiss/gpu/GpuFaissAssert.h +1 -1
  95. data/vendor/faiss/faiss/gpu/GpuIndex.h +30 -12
  96. data/vendor/faiss/faiss/gpu/GpuIndexCagra.h +282 -0
  97. data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +4 -4
  98. data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +14 -9
  99. data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +20 -3
  100. data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +22 -11
  101. data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +1 -3
  102. data/vendor/faiss/faiss/gpu/GpuResources.cpp +24 -3
  103. data/vendor/faiss/faiss/gpu/GpuResources.h +39 -11
  104. data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +142 -17
  105. data/vendor/faiss/faiss/gpu/StandardGpuResources.h +57 -3
  106. data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +26 -21
  107. data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +7 -1
  108. data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +8 -5
  109. data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +25 -0
  110. data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +129 -9
  111. data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +332 -40
  112. data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +299 -208
  113. data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +1 -0
  114. data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +1 -1
  115. data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +6 -0
  116. data/vendor/faiss/faiss/gpu/utils/RaftUtils.h +75 -0
  117. data/vendor/faiss/faiss/gpu/utils/Timer.cpp +4 -1
  118. data/vendor/faiss/faiss/gpu/utils/Timer.h +1 -1
  119. data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +3 -1
  120. data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +5 -5
  121. data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +26 -1
  122. data/vendor/faiss/faiss/impl/AuxIndexStructures.h +10 -3
  123. data/vendor/faiss/faiss/impl/DistanceComputer.h +70 -1
  124. data/vendor/faiss/faiss/impl/FaissAssert.h +4 -2
  125. data/vendor/faiss/faiss/impl/FaissException.h +13 -34
  126. data/vendor/faiss/faiss/impl/HNSW.cpp +605 -186
  127. data/vendor/faiss/faiss/impl/HNSW.h +52 -30
  128. data/vendor/faiss/faiss/impl/IDSelector.h +4 -4
  129. data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +11 -9
  130. data/vendor/faiss/faiss/impl/LookupTableScaler.h +34 -0
  131. data/vendor/faiss/faiss/impl/NNDescent.cpp +42 -27
  132. data/vendor/faiss/faiss/impl/NSG.cpp +0 -29
  133. data/vendor/faiss/faiss/impl/NSG.h +1 -1
  134. data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +14 -12
  135. data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.h +1 -1
  136. data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +25 -22
  137. data/vendor/faiss/faiss/impl/ProductQuantizer.h +6 -2
  138. data/vendor/faiss/faiss/impl/Quantizer.h +1 -1
  139. data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +27 -1015
  140. data/vendor/faiss/faiss/impl/ResidualQuantizer.h +5 -63
  141. data/vendor/faiss/faiss/impl/ResultHandler.h +347 -172
  142. data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +1104 -147
  143. data/vendor/faiss/faiss/impl/ScalarQuantizer.h +3 -8
  144. data/vendor/faiss/faiss/impl/code_distance/code_distance-avx2.h +285 -42
  145. data/vendor/faiss/faiss/impl/code_distance/code_distance-avx512.h +248 -0
  146. data/vendor/faiss/faiss/impl/code_distance/code_distance-generic.h +21 -14
  147. data/vendor/faiss/faiss/impl/code_distance/code_distance.h +22 -12
  148. data/vendor/faiss/faiss/impl/index_read.cpp +74 -34
  149. data/vendor/faiss/faiss/impl/index_read_utils.h +37 -0
  150. data/vendor/faiss/faiss/impl/index_write.cpp +88 -51
  151. data/vendor/faiss/faiss/impl/io.cpp +23 -15
  152. data/vendor/faiss/faiss/impl/io.h +4 -4
  153. data/vendor/faiss/faiss/impl/io_macros.h +6 -0
  154. data/vendor/faiss/faiss/impl/lattice_Zn.cpp +1 -1
  155. data/vendor/faiss/faiss/impl/platform_macros.h +40 -1
  156. data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +14 -0
  157. data/vendor/faiss/faiss/impl/pq4_fast_scan.h +7 -6
  158. data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +52 -38
  159. data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +487 -49
  160. data/vendor/faiss/faiss/impl/residual_quantizer_encode_steps.cpp +960 -0
  161. data/vendor/faiss/faiss/impl/residual_quantizer_encode_steps.h +176 -0
  162. data/vendor/faiss/faiss/impl/simd_result_handlers.h +481 -225
  163. data/vendor/faiss/faiss/index_factory.cpp +41 -20
  164. data/vendor/faiss/faiss/index_io.h +12 -5
  165. data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +28 -8
  166. data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +3 -0
  167. data/vendor/faiss/faiss/invlists/DirectMap.cpp +10 -2
  168. data/vendor/faiss/faiss/invlists/InvertedLists.cpp +73 -17
  169. data/vendor/faiss/faiss/invlists/InvertedLists.h +26 -8
  170. data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +24 -9
  171. data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +2 -1
  172. data/vendor/faiss/faiss/python/python_callbacks.cpp +4 -4
  173. data/vendor/faiss/faiss/utils/Heap.cpp +3 -1
  174. data/vendor/faiss/faiss/utils/Heap.h +105 -0
  175. data/vendor/faiss/faiss/utils/NeuralNet.cpp +342 -0
  176. data/vendor/faiss/faiss/utils/NeuralNet.h +147 -0
  177. data/vendor/faiss/faiss/utils/WorkerThread.h +1 -0
  178. data/vendor/faiss/faiss/utils/bf16.h +36 -0
  179. data/vendor/faiss/faiss/utils/distances.cpp +147 -123
  180. data/vendor/faiss/faiss/utils/distances.h +86 -9
  181. data/vendor/faiss/faiss/utils/distances_fused/avx512.cpp +5 -5
  182. data/vendor/faiss/faiss/utils/distances_fused/avx512.h +2 -2
  183. data/vendor/faiss/faiss/utils/distances_fused/distances_fused.cpp +2 -2
  184. data/vendor/faiss/faiss/utils/distances_fused/distances_fused.h +1 -1
  185. data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.cpp +5 -5
  186. data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.h +1 -1
  187. data/vendor/faiss/faiss/utils/distances_simd.cpp +1589 -243
  188. data/vendor/faiss/faiss/utils/extra_distances-inl.h +70 -0
  189. data/vendor/faiss/faiss/utils/extra_distances.cpp +85 -137
  190. data/vendor/faiss/faiss/utils/extra_distances.h +3 -2
  191. data/vendor/faiss/faiss/utils/fp16-arm.h +29 -0
  192. data/vendor/faiss/faiss/utils/fp16.h +2 -0
  193. data/vendor/faiss/faiss/utils/hamming.cpp +163 -111
  194. data/vendor/faiss/faiss/utils/hamming.h +58 -0
  195. data/vendor/faiss/faiss/utils/hamming_distance/avx2-inl.h +16 -89
  196. data/vendor/faiss/faiss/utils/hamming_distance/common.h +1 -0
  197. data/vendor/faiss/faiss/utils/hamming_distance/generic-inl.h +19 -88
  198. data/vendor/faiss/faiss/utils/hamming_distance/hamdis-inl.h +58 -0
  199. data/vendor/faiss/faiss/utils/hamming_distance/neon-inl.h +14 -104
  200. data/vendor/faiss/faiss/utils/partitioning.cpp +3 -4
  201. data/vendor/faiss/faiss/utils/prefetch.h +77 -0
  202. data/vendor/faiss/faiss/utils/quantize_lut.cpp +0 -14
  203. data/vendor/faiss/faiss/utils/random.cpp +43 -0
  204. data/vendor/faiss/faiss/utils/random.h +25 -0
  205. data/vendor/faiss/faiss/utils/simdlib.h +10 -1
  206. data/vendor/faiss/faiss/utils/simdlib_avx2.h +0 -6
  207. data/vendor/faiss/faiss/utils/simdlib_avx512.h +296 -0
  208. data/vendor/faiss/faiss/utils/simdlib_neon.h +77 -79
  209. data/vendor/faiss/faiss/utils/simdlib_ppc64.h +1084 -0
  210. data/vendor/faiss/faiss/utils/sorting.cpp +140 -5
  211. data/vendor/faiss/faiss/utils/sorting.h +27 -0
  212. data/vendor/faiss/faiss/utils/transpose/transpose-avx512-inl.h +176 -0
  213. data/vendor/faiss/faiss/utils/utils.cpp +120 -7
  214. data/vendor/faiss/faiss/utils/utils.h +60 -20
  215. metadata +23 -4
  216. data/vendor/faiss/faiss/impl/code_distance/code_distance_avx512.h +0 -102
@@ -5,8 +5,6 @@
5
5
  * LICENSE file in the root directory of this source tree.
6
6
  */
7
7
 
8
- // -*- c++ -*-
9
-
10
8
  #pragma once
11
9
 
12
10
  #include <queue>
@@ -42,10 +40,13 @@ namespace faiss {
42
40
  struct VisitedTable;
43
41
  struct DistanceComputer; // from AuxIndexStructures
44
42
  struct HNSWStats;
43
+ template <class C>
44
+ struct ResultHandler;
45
45
 
46
46
  struct SearchParametersHNSW : SearchParameters {
47
47
  int efSearch = 16;
48
48
  bool check_relative_distance = true;
49
+ bool bounded_queue = true;
49
50
 
50
51
  ~SearchParametersHNSW() {}
51
52
  };
@@ -54,6 +55,9 @@ struct HNSW {
54
55
  /// internal storage of vectors (32 bits: this is expensive)
55
56
  using storage_idx_t = int32_t;
56
57
 
58
+ // for now we do only these distances
59
+ using C = CMax<float, int64_t>;
60
+
57
61
  typedef std::pair<float, storage_idx_t> Node;
58
62
 
59
63
  /** Heap structure that allows fast
@@ -138,9 +142,6 @@ struct HNSW {
138
142
  /// enough?
139
143
  bool check_relative_distance = true;
140
144
 
141
- /// number of entry points in levels > 0.
142
- int upper_beam = 1;
143
-
144
145
  /// use bounded queue during exploration
145
146
  bool search_bounded_queue = true;
146
147
 
@@ -181,7 +182,8 @@ struct HNSW {
181
182
  float d_nearest,
182
183
  int level,
183
184
  omp_lock_t* locks,
184
- VisitedTable& vt);
185
+ VisitedTable& vt,
186
+ bool keep_max_size_level0 = false);
185
187
 
186
188
  /** add point pt_id on all levels <= pt_level and build the link
187
189
  * structure for them. */
@@ -190,29 +192,27 @@ struct HNSW {
190
192
  int pt_level,
191
193
  int pt_id,
192
194
  std::vector<omp_lock_t>& locks,
193
- VisitedTable& vt);
195
+ VisitedTable& vt,
196
+ bool keep_max_size_level0 = false);
194
197
 
195
198
  /// search interface for 1 point, single thread
196
199
  HNSWStats search(
197
200
  DistanceComputer& qdis,
198
- int k,
199
- idx_t* I,
200
- float* D,
201
+ ResultHandler<C>& res,
201
202
  VisitedTable& vt,
202
203
  const SearchParametersHNSW* params = nullptr) const;
203
204
 
204
205
  /// search only in level 0 from a given vertex
205
206
  void search_level_0(
206
207
  DistanceComputer& qdis,
207
- int k,
208
- idx_t* idxi,
209
- float* simi,
208
+ ResultHandler<C>& res,
210
209
  idx_t nprobe,
211
210
  const storage_idx_t* nearest_i,
212
211
  const float* nearest_d,
213
212
  int search_type,
214
213
  HNSWStats& search_stats,
215
- VisitedTable& vt) const;
214
+ VisitedTable& vt,
215
+ const SearchParametersHNSW* params = nullptr) const;
216
216
 
217
217
  void reset();
218
218
 
@@ -225,38 +225,60 @@ struct HNSW {
225
225
  DistanceComputer& qdis,
226
226
  std::priority_queue<NodeDistFarther>& input,
227
227
  std::vector<NodeDistFarther>& output,
228
- int max_size);
228
+ int max_size,
229
+ bool keep_max_size_level0 = false);
230
+
231
+ void permute_entries(const idx_t* map);
229
232
  };
230
233
 
231
234
  struct HNSWStats {
232
- size_t n1, n2, n3;
233
- size_t ndis;
234
- size_t nreorder;
235
-
236
- HNSWStats(
237
- size_t n1 = 0,
238
- size_t n2 = 0,
239
- size_t n3 = 0,
240
- size_t ndis = 0,
241
- size_t nreorder = 0)
242
- : n1(n1), n2(n2), n3(n3), ndis(ndis), nreorder(nreorder) {}
235
+ size_t n1 = 0; /// number of vectors searched
236
+ size_t n2 =
237
+ 0; /// number of queries for which the candidate list is exhausted
238
+ size_t ndis = 0; /// number of distances computed
239
+ size_t nhops = 0; /// number of hops aka number of edges traversed
243
240
 
244
241
  void reset() {
245
- n1 = n2 = n3 = 0;
242
+ n1 = n2 = 0;
246
243
  ndis = 0;
247
- nreorder = 0;
244
+ nhops = 0;
248
245
  }
249
246
 
250
247
  void combine(const HNSWStats& other) {
251
248
  n1 += other.n1;
252
249
  n2 += other.n2;
253
- n3 += other.n3;
254
250
  ndis += other.ndis;
255
- nreorder += other.nreorder;
251
+ nhops += other.nhops;
256
252
  }
257
253
  };
258
254
 
259
255
  // global var that collects them all
260
256
  FAISS_API extern HNSWStats hnsw_stats;
261
257
 
258
+ int search_from_candidates(
259
+ const HNSW& hnsw,
260
+ DistanceComputer& qdis,
261
+ ResultHandler<HNSW::C>& res,
262
+ HNSW::MinimaxHeap& candidates,
263
+ VisitedTable& vt,
264
+ HNSWStats& stats,
265
+ int level,
266
+ int nres_in = 0,
267
+ const SearchParametersHNSW* params = nullptr);
268
+
269
+ HNSWStats greedy_update_nearest(
270
+ const HNSW& hnsw,
271
+ DistanceComputer& qdis,
272
+ int level,
273
+ HNSW::storage_idx_t& nearest,
274
+ float& d_nearest);
275
+
276
+ std::priority_queue<HNSW::Node> search_from_candidate_unbounded(
277
+ const HNSW& hnsw,
278
+ const HNSW::Node& node,
279
+ DistanceComputer& qdis,
280
+ int ef,
281
+ VisitedTable* vt,
282
+ HNSWStats& stats);
283
+
262
284
  } // namespace faiss
@@ -10,7 +10,7 @@
10
10
  #include <unordered_set>
11
11
  #include <vector>
12
12
 
13
- #include <faiss/Index.h>
13
+ #include <faiss/MetricType.h>
14
14
 
15
15
  /** IDSelector is intended to define a subset of vectors to handle (for removal
16
16
  * or as subset to search) */
@@ -140,7 +140,7 @@ struct IDSelectorAnd : IDSelector {
140
140
  : lhs(lhs), rhs(rhs) {}
141
141
  bool is_member(idx_t id) const final {
142
142
  return lhs->is_member(id) && rhs->is_member(id);
143
- };
143
+ }
144
144
  virtual ~IDSelectorAnd() {}
145
145
  };
146
146
 
@@ -153,7 +153,7 @@ struct IDSelectorOr : IDSelector {
153
153
  : lhs(lhs), rhs(rhs) {}
154
154
  bool is_member(idx_t id) const final {
155
155
  return lhs->is_member(id) || rhs->is_member(id);
156
- };
156
+ }
157
157
  virtual ~IDSelectorOr() {}
158
158
  };
159
159
 
@@ -166,7 +166,7 @@ struct IDSelectorXOr : IDSelector {
166
166
  : lhs(lhs), rhs(rhs) {}
167
167
  bool is_member(idx_t id) const final {
168
168
  return lhs->is_member(id) ^ rhs->is_member(id);
169
- };
169
+ }
170
170
  virtual ~IDSelectorXOr() {}
171
171
  };
172
172
 
@@ -104,10 +104,10 @@ int dgemm_(
104
104
 
105
105
  namespace {
106
106
 
107
- void fmat_inverse(float* a, int n) {
108
- int info;
109
- int lwork = n * n;
110
- std::vector<int> ipiv(n);
107
+ void fmat_inverse(float* a, FINTEGER n) {
108
+ FINTEGER info;
109
+ FINTEGER lwork = n * n;
110
+ std::vector<FINTEGER> ipiv(n);
111
111
  std::vector<float> workspace(lwork);
112
112
 
113
113
  sgetrf_(&n, &n, a, &n, ipiv.data(), &info);
@@ -123,10 +123,10 @@ void dfvec_add(size_t d, const double* a, const float* b, double* c) {
123
123
  }
124
124
  }
125
125
 
126
- void dmat_inverse(double* a, int n) {
127
- int info;
128
- int lwork = n * n;
129
- std::vector<int> ipiv(n);
126
+ void dmat_inverse(double* a, FINTEGER n) {
127
+ FINTEGER info;
128
+ FINTEGER lwork = n * n;
129
+ std::vector<FINTEGER> ipiv(n);
130
130
  std::vector<double> workspace(lwork);
131
131
 
132
132
  dgetrf_(&n, &n, a, &n, ipiv.data(), &info);
@@ -628,7 +628,9 @@ void LocalSearchQuantizer::icm_encode_step(
628
628
  {
629
629
  size_t binary_idx = (other_m + 1) * M * K * K +
630
630
  m * K * K + code2 * K + code;
631
- _mm_prefetch(binaries + binary_idx, _MM_HINT_T0);
631
+ _mm_prefetch(
632
+ (const char*)(binaries + binary_idx),
633
+ _MM_HINT_T0);
632
634
  }
633
635
  }
634
636
  #endif
@@ -38,6 +38,23 @@ struct DummyScaler {
38
38
  return simd16uint16(0);
39
39
  }
40
40
 
41
+ #ifdef __AVX512F__
42
+ inline simd64uint8 lookup(const simd64uint8&, const simd64uint8&) const {
43
+ FAISS_THROW_MSG("DummyScaler::lookup should not be called.");
44
+ return simd64uint8(0);
45
+ }
46
+
47
+ inline simd32uint16 scale_lo(const simd64uint8&) const {
48
+ FAISS_THROW_MSG("DummyScaler::scale_lo should not be called.");
49
+ return simd32uint16(0);
50
+ }
51
+
52
+ inline simd32uint16 scale_hi(const simd64uint8&) const {
53
+ FAISS_THROW_MSG("DummyScaler::scale_hi should not be called.");
54
+ return simd32uint16(0);
55
+ }
56
+ #endif
57
+
41
58
  template <class dist_t>
42
59
  inline dist_t scale_one(const dist_t&) const {
43
60
  FAISS_THROW_MSG("DummyScaler::scale_one should not be called.");
@@ -67,6 +84,23 @@ struct NormTableScaler {
67
84
  return (simd16uint16(res) >> 8) * scale_simd;
68
85
  }
69
86
 
87
+ #ifdef __AVX512F__
88
+ inline simd64uint8 lookup(const simd64uint8& lut, const simd64uint8& c)
89
+ const {
90
+ return lut.lookup_4_lanes(c);
91
+ }
92
+
93
+ inline simd32uint16 scale_lo(const simd64uint8& res) const {
94
+ auto scale_simd_wide = simd32uint16(scale_simd, scale_simd);
95
+ return simd32uint16(res) * scale_simd_wide;
96
+ }
97
+
98
+ inline simd32uint16 scale_hi(const simd64uint8& res) const {
99
+ auto scale_simd_wide = simd32uint16(scale_simd, scale_simd);
100
+ return (simd32uint16(res) >> 8) * scale_simd_wide;
101
+ }
102
+ #endif
103
+
70
104
  // for non-SIMD implem 2, 3, 4
71
105
  template <class dist_t>
72
106
  inline dist_t scale_one(const dist_t& x) const {
@@ -154,15 +154,20 @@ NNDescent::NNDescent(const int d, const int K) : K(K), d(d) {
154
154
  NNDescent::~NNDescent() {}
155
155
 
156
156
  void NNDescent::join(DistanceComputer& qdis) {
157
+ idx_t check_period = InterruptCallback::get_period_hint(d * search_L);
158
+ for (idx_t i0 = 0; i0 < (idx_t)ntotal; i0 += check_period) {
159
+ idx_t i1 = std::min(i0 + check_period, (idx_t)ntotal);
157
160
  #pragma omp parallel for default(shared) schedule(dynamic, 100)
158
- for (int n = 0; n < ntotal; n++) {
159
- graph[n].join([&](int i, int j) {
160
- if (i != j) {
161
- float dist = qdis.symmetric_dis(i, j);
162
- graph[i].insert(j, dist);
163
- graph[j].insert(i, dist);
164
- }
165
- });
161
+ for (idx_t n = i0; n < i1; n++) {
162
+ graph[n].join([&](int i, int j) {
163
+ if (i != j) {
164
+ float dist = qdis.symmetric_dis(i, j);
165
+ graph[i].insert(j, dist);
166
+ graph[j].insert(i, dist);
167
+ }
168
+ });
169
+ }
170
+ InterruptCallback::check();
166
171
  }
167
172
  }
168
173
 
@@ -195,8 +200,9 @@ void NNDescent::update() {
195
200
  int l = 0;
196
201
 
197
202
  while ((l < maxl) && (c < S)) {
198
- if (nn.pool[l].flag)
203
+ if (nn.pool[l].flag) {
199
204
  ++c;
205
+ }
200
206
  ++l;
201
207
  }
202
208
  nn.M = l;
@@ -305,8 +311,9 @@ void NNDescent::generate_eval_set(
305
311
  for (int i = 0; i < c.size(); i++) {
306
312
  std::vector<Neighbor> tmp;
307
313
  for (int j = 0; j < N; j++) {
308
- if (c[i] == j)
314
+ if (c[i] == j) {
309
315
  continue; // skip itself
316
+ }
310
317
  float dist = qdis.symmetric_dis(c[i], j);
311
318
  tmp.push_back(Neighbor(j, dist, true));
312
319
  }
@@ -360,8 +367,9 @@ void NNDescent::init_graph(DistanceComputer& qdis) {
360
367
 
361
368
  for (int j = 0; j < S; j++) {
362
369
  int id = tmp[j];
363
- if (id == i)
370
+ if (id == i) {
364
371
  continue;
372
+ }
365
373
  float dist = qdis.symmetric_dis(i, id);
366
374
 
367
375
  graph[i].pool.push_back(Neighbor(id, dist, true));
@@ -374,6 +382,10 @@ void NNDescent::init_graph(DistanceComputer& qdis) {
374
382
 
375
383
  void NNDescent::build(DistanceComputer& qdis, const int n, bool verbose) {
376
384
  FAISS_THROW_IF_NOT_MSG(L >= K, "L should be >= K in NNDescent.build");
385
+ FAISS_THROW_IF_NOT_FMT(
386
+ n > NUM_EVAL_POINTS,
387
+ "NNDescent.build cannot build a graph smaller than %d",
388
+ int(NUM_EVAL_POINTS));
377
389
 
378
390
  if (verbose) {
379
391
  printf("Parameters: K=%d, S=%d, R=%d, L=%d, iter=%d\n",
@@ -403,7 +415,7 @@ void NNDescent::build(DistanceComputer& qdis, const int n, bool verbose) {
403
415
  has_built = true;
404
416
 
405
417
  if (verbose) {
406
- printf("Addes %d points into the index\n", ntotal);
418
+ printf("Added %d points into the index\n", ntotal);
407
419
  }
408
420
  }
409
421
 
@@ -414,30 +426,30 @@ void NNDescent::search(
414
426
  float* dists,
415
427
  VisitedTable& vt) const {
416
428
  FAISS_THROW_IF_NOT_MSG(has_built, "The index is not build yet.");
417
- int L = std::max(search_L, topk);
429
+ int L_2 = std::max(search_L, topk);
418
430
 
419
431
  // candidate pool, the K best items is the result.
420
- std::vector<Neighbor> retset(L + 1);
432
+ std::vector<Neighbor> retset(L_2 + 1);
421
433
 
422
- // Randomly choose L points to initialize the candidate pool
423
- std::vector<int> init_ids(L);
434
+ // Randomly choose L_2 points to initialize the candidate pool
435
+ std::vector<int> init_ids(L_2);
424
436
  std::mt19937 rng(random_seed);
425
437
 
426
- gen_random(rng, init_ids.data(), L, ntotal);
427
- for (int i = 0; i < L; i++) {
438
+ gen_random(rng, init_ids.data(), L_2, ntotal);
439
+ for (int i = 0; i < L_2; i++) {
428
440
  int id = init_ids[i];
429
441
  float dist = qdis(id);
430
442
  retset[i] = Neighbor(id, dist, true);
431
443
  }
432
444
 
433
445
  // Maintain the candidate pool in ascending order
434
- std::sort(retset.begin(), retset.begin() + L);
446
+ std::sort(retset.begin(), retset.begin() + L_2);
435
447
 
436
448
  int k = 0;
437
449
 
438
- // Stop until the smallest position updated is >= L
439
- while (k < L) {
440
- int nk = L;
450
+ // Stop until the smallest position updated is >= L_2
451
+ while (k < L_2) {
452
+ int nk = L_2;
441
453
 
442
454
  if (retset[k].flag) {
443
455
  retset[k].flag = false;
@@ -445,25 +457,28 @@ void NNDescent::search(
445
457
 
446
458
  for (int m = 0; m < K; ++m) {
447
459
  int id = final_graph[n * K + m];
448
- if (vt.get(id))
460
+ if (vt.get(id)) {
449
461
  continue;
462
+ }
450
463
 
451
464
  vt.set(id);
452
465
  float dist = qdis(id);
453
- if (dist >= retset[L - 1].distance)
466
+ if (dist >= retset[L_2 - 1].distance) {
454
467
  continue;
468
+ }
455
469
 
456
470
  Neighbor nn(id, dist, true);
457
- int r = insert_into_pool(retset.data(), L, nn);
471
+ int r = insert_into_pool(retset.data(), L_2, nn);
458
472
 
459
473
  if (r < nk)
460
474
  nk = r;
461
475
  }
462
476
  }
463
- if (nk <= k)
477
+ if (nk <= k) {
464
478
  k = nk;
465
- else
479
+ } else {
466
480
  ++k;
481
+ }
467
482
  }
468
483
  for (size_t i = 0; i < topk; i++) {
469
484
  indices[i] = retset[i].id;
@@ -25,35 +25,6 @@ namespace {
25
25
  // It needs to be smaller than 0
26
26
  constexpr int EMPTY_ID = -1;
27
27
 
28
- /* Wrap the distance computer into one that negates the
29
- distances. This makes supporting INNER_PRODUCE search easier */
30
-
31
- struct NegativeDistanceComputer : DistanceComputer {
32
- /// owned by this
33
- DistanceComputer* basedis;
34
-
35
- explicit NegativeDistanceComputer(DistanceComputer* basedis)
36
- : basedis(basedis) {}
37
-
38
- void set_query(const float* x) override {
39
- basedis->set_query(x);
40
- }
41
-
42
- /// compute distance of vector i to current query
43
- float operator()(idx_t i) override {
44
- return -(*basedis)(i);
45
- }
46
-
47
- /// compute distance between two stored vectors
48
- float symmetric_dis(idx_t i, idx_t j) override {
49
- return -basedis->symmetric_dis(i, j);
50
- }
51
-
52
- ~NegativeDistanceComputer() override {
53
- delete basedis;
54
- }
55
- };
56
-
57
28
  } // namespace
58
29
 
59
30
  DistanceComputer* storage_distance_computer(const Index* storage) {
@@ -54,7 +54,7 @@ namespace nsg {
54
54
 
55
55
  template <class node_t>
56
56
  struct Graph {
57
- node_t* data; ///< the flattened adjacency matrix
57
+ node_t* data; ///< the flattened adjacency matrix, size N-by-K
58
58
  int K; ///< nb of neighbors per node
59
59
  int N; ///< total nb of nodes
60
60
  bool own_fields; ///< the underlying data owned by itself or not
@@ -12,11 +12,11 @@
12
12
  #include <omp.h>
13
13
  #include <stdint.h>
14
14
 
15
+ #include <algorithm>
15
16
  #include <cmath>
16
17
  #include <cstdlib>
17
18
  #include <cstring>
18
-
19
- #include <algorithm>
19
+ #include <memory>
20
20
 
21
21
  #include <faiss/utils/distances.h>
22
22
  #include <faiss/utils/hamming.h>
@@ -683,18 +683,21 @@ struct RankingScore2 : Score3Computer<float, double> {
683
683
  double accum_gt_weight_diff(
684
684
  const std::vector<int>& a,
685
685
  const std::vector<int>& b) {
686
- int nb = b.size(), na = a.size();
686
+ const auto nb_2 = b.size();
687
+ const auto na = a.size();
687
688
 
688
689
  double accu = 0;
689
- int j = 0;
690
- for (int i = 0; i < na; i++) {
691
- int ai = a[i];
692
- while (j < nb && ai >= b[j])
690
+ size_t j = 0;
691
+ for (size_t i = 0; i < na; i++) {
692
+ const auto ai = a[i];
693
+ while (j < nb_2 && ai >= b[j]) {
693
694
  j++;
695
+ }
694
696
 
695
697
  double accu_i = 0;
696
- for (int k = j; k < b.size(); k++)
698
+ for (auto k = j; k < b.size(); k++) {
697
699
  accu_i += rank_weight(b[k] - ai);
700
+ }
698
701
 
699
702
  accu += rank_weight(ai) * accu_i;
700
703
  }
@@ -882,14 +885,13 @@ void PolysemousTraining::optimize_ranking(
882
885
 
883
886
  double t0 = getmillisecs();
884
887
 
885
- PermutationObjective* obj = new RankingScore2(
888
+ std::unique_ptr<PermutationObjective> obj(new RankingScore2(
886
889
  nbits,
887
890
  nq,
888
891
  nb,
889
892
  codes.data(),
890
893
  codes.data() + nq,
891
- gt_distances.data());
892
- ScopeDeleter1<PermutationObjective> del(obj);
894
+ gt_distances.data()));
893
895
 
894
896
  if (verbose > 0) {
895
897
  printf(" m=%d, nq=%zd, nb=%zd, initialize RankingScore "
@@ -900,7 +902,7 @@ void PolysemousTraining::optimize_ranking(
900
902
  getmillisecs() - t0);
901
903
  }
902
904
 
903
- SimulatedAnnealingOptimizer optim(obj, *this);
905
+ SimulatedAnnealingOptimizer optim(obj.get(), *this);
904
906
 
905
907
  if (log_pattern.size()) {
906
908
  char fname[256];
@@ -151,4 +151,4 @@ struct ProductResidualQuantizer : ProductAdditiveQuantizer {
151
151
  ProductResidualQuantizer();
152
152
  };
153
153
 
154
- }; // namespace faiss
154
+ } // namespace faiss
@@ -61,6 +61,7 @@ void ProductQuantizer::set_derived_values() {
61
61
  "The dimension of the vector (d) should be a multiple of the number of subquantizers (M)");
62
62
  dsub = d / M;
63
63
  code_size = (nbits * M + 7) / 8;
64
+ FAISS_THROW_IF_MSG(nbits > 24, "nbits larger than 24 is not practical.");
64
65
  ksub = 1 << nbits;
65
66
  centroids.resize(d * ksub);
66
67
  verbose = false;
@@ -135,11 +136,10 @@ void ProductQuantizer::train(size_t n, const float* x) {
135
136
  }
136
137
  }
137
138
 
138
- float* xslice = new float[n * dsub];
139
- ScopeDeleter<float> del(xslice);
139
+ std::unique_ptr<float[]> xslice(new float[n * dsub]);
140
140
  for (int m = 0; m < M; m++) {
141
141
  for (int j = 0; j < n; j++)
142
- memcpy(xslice + j * dsub,
142
+ memcpy(xslice.get() + j * dsub,
143
143
  x + j * d + m * dsub,
144
144
  dsub * sizeof(float));
145
145
 
@@ -153,11 +153,19 @@ void ProductQuantizer::train(size_t n, const float* x) {
153
153
  switch (final_train_type) {
154
154
  case Train_hypercube:
155
155
  init_hypercube(
156
- dsub, nbits, n, xslice, clus.centroids.data());
156
+ dsub,
157
+ nbits,
158
+ n,
159
+ xslice.get(),
160
+ clus.centroids.data());
157
161
  break;
158
162
  case Train_hypercube_pca:
159
163
  init_hypercube_pca(
160
- dsub, nbits, n, xslice, clus.centroids.data());
164
+ dsub,
165
+ nbits,
166
+ n,
167
+ xslice.get(),
168
+ clus.centroids.data());
161
169
  break;
162
170
  case Train_hot_start:
163
171
  memcpy(clus.centroids.data(),
@@ -172,7 +180,7 @@ void ProductQuantizer::train(size_t n, const float* x) {
172
180
  printf("Training PQ slice %d/%zd\n", m, M);
173
181
  }
174
182
  IndexFlatL2 index(dsub);
175
- clus.train(n, xslice, assign_index ? *assign_index : index);
183
+ clus.train(n, xslice.get(), assign_index ? *assign_index : index);
176
184
  set_params(clus.centroids.data(), m);
177
185
  }
178
186
 
@@ -306,7 +314,8 @@ void ProductQuantizer::decode(const uint8_t* code, float* x) const {
306
314
  }
307
315
 
308
316
  void ProductQuantizer::decode(const uint8_t* code, float* x, size_t n) const {
309
- for (size_t i = 0; i < n; i++) {
317
+ #pragma omp parallel for if (n > 100)
318
+ for (int64_t i = 0; i < n; i++) {
310
319
  this->decode(code + code_size * i, x + d * i);
311
320
  }
312
321
  }
@@ -342,21 +351,20 @@ void ProductQuantizer::compute_codes_with_assign_index(
342
351
  assign_index->reset();
343
352
  assign_index->add(ksub, get_centroids(m, 0));
344
353
  size_t bs = 65536;
345
- float* xslice = new float[bs * dsub];
346
- ScopeDeleter<float> del(xslice);
347
- idx_t* assign = new idx_t[bs];
348
- ScopeDeleter<idx_t> del2(assign);
354
+
355
+ std::unique_ptr<float[]> xslice(new float[bs * dsub]);
356
+ std::unique_ptr<idx_t[]> assign(new idx_t[bs]);
349
357
 
350
358
  for (size_t i0 = 0; i0 < n; i0 += bs) {
351
359
  size_t i1 = std::min(i0 + bs, n);
352
360
 
353
361
  for (size_t i = i0; i < i1; i++) {
354
- memcpy(xslice + (i - i0) * dsub,
362
+ memcpy(xslice.get() + (i - i0) * dsub,
355
363
  x + i * d + m * dsub,
356
364
  dsub * sizeof(float));
357
365
  }
358
366
 
359
- assign_index->assign(i1 - i0, xslice, assign);
367
+ assign_index->assign(i1 - i0, xslice.get(), assign.get());
360
368
 
361
369
  if (nbits == 8) {
362
370
  uint8_t* c = codes + code_size * i0 + m;
@@ -405,15 +413,14 @@ void ProductQuantizer::compute_codes(const float* x, uint8_t* codes, size_t n)
405
413
  for (int64_t i = 0; i < n; i++)
406
414
  compute_code(x + i * d, codes + i * code_size);
407
415
 
408
- } else { // worthwile to use BLAS
409
- float* dis_tables = new float[n * ksub * M];
410
- ScopeDeleter<float> del(dis_tables);
411
- compute_distance_tables(n, x, dis_tables);
416
+ } else { // worthwhile to use BLAS
417
+ std::unique_ptr<float[]> dis_tables(new float[n * ksub * M]);
418
+ compute_distance_tables(n, x, dis_tables.get());
412
419
 
413
420
  #pragma omp parallel for
414
421
  for (int64_t i = 0; i < n; i++) {
415
422
  uint8_t* code = codes + i * code_size;
416
- const float* tab = dis_tables + i * ksub * M;
423
+ const float* tab = dis_tables.get() + i * ksub * M;
417
424
  compute_code_from_distance_table(tab, code);
418
425
  }
419
426
  }
@@ -774,10 +781,6 @@ void ProductQuantizer::search_ip(
774
781
  init_finalize_heap);
775
782
  }
776
783
 
777
- static float sqr(float x) {
778
- return x * x;
779
- }
780
-
781
784
  void ProductQuantizer::compute_sdc_table() {
782
785
  sdc_table.resize(M * ksub * ksub);
783
786