faiss 0.3.0 → 0.3.2

Sign up to get free protection for your applications and to get access to all the features.
Files changed (216) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +9 -0
  3. data/LICENSE.txt +1 -1
  4. data/README.md +1 -1
  5. data/ext/faiss/extconf.rb +9 -2
  6. data/ext/faiss/index.cpp +1 -1
  7. data/ext/faiss/index_binary.cpp +2 -2
  8. data/ext/faiss/product_quantizer.cpp +1 -1
  9. data/lib/faiss/version.rb +1 -1
  10. data/vendor/faiss/faiss/AutoTune.cpp +7 -7
  11. data/vendor/faiss/faiss/AutoTune.h +1 -2
  12. data/vendor/faiss/faiss/Clustering.cpp +39 -22
  13. data/vendor/faiss/faiss/Clustering.h +40 -21
  14. data/vendor/faiss/faiss/IVFlib.cpp +26 -12
  15. data/vendor/faiss/faiss/Index.cpp +1 -1
  16. data/vendor/faiss/faiss/Index.h +40 -10
  17. data/vendor/faiss/faiss/Index2Layer.cpp +7 -7
  18. data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +176 -166
  19. data/vendor/faiss/faiss/IndexAdditiveQuantizerFastScan.cpp +15 -15
  20. data/vendor/faiss/faiss/IndexBinary.cpp +9 -4
  21. data/vendor/faiss/faiss/IndexBinary.h +8 -19
  22. data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +2 -1
  23. data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +24 -31
  24. data/vendor/faiss/faiss/IndexBinaryHNSW.h +1 -1
  25. data/vendor/faiss/faiss/IndexBinaryHash.cpp +25 -50
  26. data/vendor/faiss/faiss/IndexBinaryIVF.cpp +107 -188
  27. data/vendor/faiss/faiss/IndexFastScan.cpp +95 -146
  28. data/vendor/faiss/faiss/IndexFastScan.h +9 -8
  29. data/vendor/faiss/faiss/IndexFlat.cpp +206 -10
  30. data/vendor/faiss/faiss/IndexFlat.h +20 -1
  31. data/vendor/faiss/faiss/IndexFlatCodes.cpp +170 -5
  32. data/vendor/faiss/faiss/IndexFlatCodes.h +23 -4
  33. data/vendor/faiss/faiss/IndexHNSW.cpp +231 -382
  34. data/vendor/faiss/faiss/IndexHNSW.h +62 -49
  35. data/vendor/faiss/faiss/IndexIDMap.cpp +69 -28
  36. data/vendor/faiss/faiss/IndexIDMap.h +24 -2
  37. data/vendor/faiss/faiss/IndexIVF.cpp +162 -56
  38. data/vendor/faiss/faiss/IndexIVF.h +46 -6
  39. data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +33 -26
  40. data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +6 -2
  41. data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.cpp +19 -46
  42. data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.h +4 -3
  43. data/vendor/faiss/faiss/IndexIVFFastScan.cpp +502 -401
  44. data/vendor/faiss/faiss/IndexIVFFastScan.h +63 -26
  45. data/vendor/faiss/faiss/IndexIVFFlat.cpp +15 -5
  46. data/vendor/faiss/faiss/IndexIVFFlat.h +3 -2
  47. data/vendor/faiss/faiss/IndexIVFIndependentQuantizer.cpp +172 -0
  48. data/vendor/faiss/faiss/IndexIVFIndependentQuantizer.h +56 -0
  49. data/vendor/faiss/faiss/IndexIVFPQ.cpp +79 -125
  50. data/vendor/faiss/faiss/IndexIVFPQ.h +6 -7
  51. data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +39 -52
  52. data/vendor/faiss/faiss/IndexIVFPQFastScan.h +4 -3
  53. data/vendor/faiss/faiss/IndexIVFPQR.cpp +45 -29
  54. data/vendor/faiss/faiss/IndexIVFPQR.h +5 -2
  55. data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +25 -27
  56. data/vendor/faiss/faiss/IndexIVFSpectralHash.h +6 -6
  57. data/vendor/faiss/faiss/IndexLSH.cpp +14 -16
  58. data/vendor/faiss/faiss/IndexLattice.cpp +1 -19
  59. data/vendor/faiss/faiss/IndexLattice.h +3 -22
  60. data/vendor/faiss/faiss/IndexNNDescent.cpp +3 -33
  61. data/vendor/faiss/faiss/IndexNNDescent.h +1 -1
  62. data/vendor/faiss/faiss/IndexNSG.cpp +11 -27
  63. data/vendor/faiss/faiss/IndexNSG.h +11 -11
  64. data/vendor/faiss/faiss/IndexNeuralNetCodec.cpp +56 -0
  65. data/vendor/faiss/faiss/IndexNeuralNetCodec.h +49 -0
  66. data/vendor/faiss/faiss/IndexPQ.cpp +72 -88
  67. data/vendor/faiss/faiss/IndexPQ.h +1 -4
  68. data/vendor/faiss/faiss/IndexPQFastScan.cpp +1 -1
  69. data/vendor/faiss/faiss/IndexPreTransform.cpp +25 -31
  70. data/vendor/faiss/faiss/IndexPreTransform.h +1 -1
  71. data/vendor/faiss/faiss/IndexRefine.cpp +54 -24
  72. data/vendor/faiss/faiss/IndexRefine.h +7 -0
  73. data/vendor/faiss/faiss/IndexReplicas.cpp +23 -26
  74. data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +25 -17
  75. data/vendor/faiss/faiss/IndexScalarQuantizer.h +6 -4
  76. data/vendor/faiss/faiss/IndexShards.cpp +21 -29
  77. data/vendor/faiss/faiss/IndexShardsIVF.cpp +1 -2
  78. data/vendor/faiss/faiss/MatrixStats.cpp +17 -32
  79. data/vendor/faiss/faiss/MatrixStats.h +21 -9
  80. data/vendor/faiss/faiss/MetaIndexes.cpp +35 -35
  81. data/vendor/faiss/faiss/MetricType.h +7 -2
  82. data/vendor/faiss/faiss/VectorTransform.cpp +13 -26
  83. data/vendor/faiss/faiss/VectorTransform.h +7 -7
  84. data/vendor/faiss/faiss/clone_index.cpp +15 -10
  85. data/vendor/faiss/faiss/clone_index.h +3 -0
  86. data/vendor/faiss/faiss/cppcontrib/detail/UintReader.h +95 -17
  87. data/vendor/faiss/faiss/cppcontrib/factory_tools.cpp +152 -0
  88. data/vendor/faiss/faiss/cppcontrib/factory_tools.h +24 -0
  89. data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-inl.h +83 -30
  90. data/vendor/faiss/faiss/gpu/GpuCloner.cpp +123 -8
  91. data/vendor/faiss/faiss/gpu/GpuCloner.h +22 -0
  92. data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +13 -0
  93. data/vendor/faiss/faiss/gpu/GpuDistance.h +46 -38
  94. data/vendor/faiss/faiss/gpu/GpuFaissAssert.h +1 -1
  95. data/vendor/faiss/faiss/gpu/GpuIndex.h +30 -12
  96. data/vendor/faiss/faiss/gpu/GpuIndexCagra.h +282 -0
  97. data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +4 -4
  98. data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +14 -9
  99. data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +20 -3
  100. data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +22 -11
  101. data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +1 -3
  102. data/vendor/faiss/faiss/gpu/GpuResources.cpp +24 -3
  103. data/vendor/faiss/faiss/gpu/GpuResources.h +39 -11
  104. data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +142 -17
  105. data/vendor/faiss/faiss/gpu/StandardGpuResources.h +57 -3
  106. data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +26 -21
  107. data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +7 -1
  108. data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +8 -5
  109. data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +25 -0
  110. data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +129 -9
  111. data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +332 -40
  112. data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +299 -208
  113. data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +1 -0
  114. data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +1 -1
  115. data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +6 -0
  116. data/vendor/faiss/faiss/gpu/utils/RaftUtils.h +75 -0
  117. data/vendor/faiss/faiss/gpu/utils/Timer.cpp +4 -1
  118. data/vendor/faiss/faiss/gpu/utils/Timer.h +1 -1
  119. data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +3 -1
  120. data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +5 -5
  121. data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +26 -1
  122. data/vendor/faiss/faiss/impl/AuxIndexStructures.h +10 -3
  123. data/vendor/faiss/faiss/impl/DistanceComputer.h +70 -1
  124. data/vendor/faiss/faiss/impl/FaissAssert.h +4 -2
  125. data/vendor/faiss/faiss/impl/FaissException.h +13 -34
  126. data/vendor/faiss/faiss/impl/HNSW.cpp +605 -186
  127. data/vendor/faiss/faiss/impl/HNSW.h +52 -30
  128. data/vendor/faiss/faiss/impl/IDSelector.h +4 -4
  129. data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +11 -9
  130. data/vendor/faiss/faiss/impl/LookupTableScaler.h +34 -0
  131. data/vendor/faiss/faiss/impl/NNDescent.cpp +42 -27
  132. data/vendor/faiss/faiss/impl/NSG.cpp +0 -29
  133. data/vendor/faiss/faiss/impl/NSG.h +1 -1
  134. data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +14 -12
  135. data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.h +1 -1
  136. data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +25 -22
  137. data/vendor/faiss/faiss/impl/ProductQuantizer.h +6 -2
  138. data/vendor/faiss/faiss/impl/Quantizer.h +1 -1
  139. data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +27 -1015
  140. data/vendor/faiss/faiss/impl/ResidualQuantizer.h +5 -63
  141. data/vendor/faiss/faiss/impl/ResultHandler.h +347 -172
  142. data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +1104 -147
  143. data/vendor/faiss/faiss/impl/ScalarQuantizer.h +3 -8
  144. data/vendor/faiss/faiss/impl/code_distance/code_distance-avx2.h +285 -42
  145. data/vendor/faiss/faiss/impl/code_distance/code_distance-avx512.h +248 -0
  146. data/vendor/faiss/faiss/impl/code_distance/code_distance-generic.h +21 -14
  147. data/vendor/faiss/faiss/impl/code_distance/code_distance.h +22 -12
  148. data/vendor/faiss/faiss/impl/index_read.cpp +74 -34
  149. data/vendor/faiss/faiss/impl/index_read_utils.h +37 -0
  150. data/vendor/faiss/faiss/impl/index_write.cpp +88 -51
  151. data/vendor/faiss/faiss/impl/io.cpp +23 -15
  152. data/vendor/faiss/faiss/impl/io.h +4 -4
  153. data/vendor/faiss/faiss/impl/io_macros.h +6 -0
  154. data/vendor/faiss/faiss/impl/lattice_Zn.cpp +1 -1
  155. data/vendor/faiss/faiss/impl/platform_macros.h +40 -1
  156. data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +14 -0
  157. data/vendor/faiss/faiss/impl/pq4_fast_scan.h +7 -6
  158. data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +52 -38
  159. data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +487 -49
  160. data/vendor/faiss/faiss/impl/residual_quantizer_encode_steps.cpp +960 -0
  161. data/vendor/faiss/faiss/impl/residual_quantizer_encode_steps.h +176 -0
  162. data/vendor/faiss/faiss/impl/simd_result_handlers.h +481 -225
  163. data/vendor/faiss/faiss/index_factory.cpp +41 -20
  164. data/vendor/faiss/faiss/index_io.h +12 -5
  165. data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +28 -8
  166. data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +3 -0
  167. data/vendor/faiss/faiss/invlists/DirectMap.cpp +10 -2
  168. data/vendor/faiss/faiss/invlists/InvertedLists.cpp +73 -17
  169. data/vendor/faiss/faiss/invlists/InvertedLists.h +26 -8
  170. data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +24 -9
  171. data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +2 -1
  172. data/vendor/faiss/faiss/python/python_callbacks.cpp +4 -4
  173. data/vendor/faiss/faiss/utils/Heap.cpp +3 -1
  174. data/vendor/faiss/faiss/utils/Heap.h +105 -0
  175. data/vendor/faiss/faiss/utils/NeuralNet.cpp +342 -0
  176. data/vendor/faiss/faiss/utils/NeuralNet.h +147 -0
  177. data/vendor/faiss/faiss/utils/WorkerThread.h +1 -0
  178. data/vendor/faiss/faiss/utils/bf16.h +36 -0
  179. data/vendor/faiss/faiss/utils/distances.cpp +147 -123
  180. data/vendor/faiss/faiss/utils/distances.h +86 -9
  181. data/vendor/faiss/faiss/utils/distances_fused/avx512.cpp +5 -5
  182. data/vendor/faiss/faiss/utils/distances_fused/avx512.h +2 -2
  183. data/vendor/faiss/faiss/utils/distances_fused/distances_fused.cpp +2 -2
  184. data/vendor/faiss/faiss/utils/distances_fused/distances_fused.h +1 -1
  185. data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.cpp +5 -5
  186. data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.h +1 -1
  187. data/vendor/faiss/faiss/utils/distances_simd.cpp +1589 -243
  188. data/vendor/faiss/faiss/utils/extra_distances-inl.h +70 -0
  189. data/vendor/faiss/faiss/utils/extra_distances.cpp +85 -137
  190. data/vendor/faiss/faiss/utils/extra_distances.h +3 -2
  191. data/vendor/faiss/faiss/utils/fp16-arm.h +29 -0
  192. data/vendor/faiss/faiss/utils/fp16.h +2 -0
  193. data/vendor/faiss/faiss/utils/hamming.cpp +163 -111
  194. data/vendor/faiss/faiss/utils/hamming.h +58 -0
  195. data/vendor/faiss/faiss/utils/hamming_distance/avx2-inl.h +16 -89
  196. data/vendor/faiss/faiss/utils/hamming_distance/common.h +1 -0
  197. data/vendor/faiss/faiss/utils/hamming_distance/generic-inl.h +19 -88
  198. data/vendor/faiss/faiss/utils/hamming_distance/hamdis-inl.h +58 -0
  199. data/vendor/faiss/faiss/utils/hamming_distance/neon-inl.h +14 -104
  200. data/vendor/faiss/faiss/utils/partitioning.cpp +3 -4
  201. data/vendor/faiss/faiss/utils/prefetch.h +77 -0
  202. data/vendor/faiss/faiss/utils/quantize_lut.cpp +0 -14
  203. data/vendor/faiss/faiss/utils/random.cpp +43 -0
  204. data/vendor/faiss/faiss/utils/random.h +25 -0
  205. data/vendor/faiss/faiss/utils/simdlib.h +10 -1
  206. data/vendor/faiss/faiss/utils/simdlib_avx2.h +0 -6
  207. data/vendor/faiss/faiss/utils/simdlib_avx512.h +296 -0
  208. data/vendor/faiss/faiss/utils/simdlib_neon.h +77 -79
  209. data/vendor/faiss/faiss/utils/simdlib_ppc64.h +1084 -0
  210. data/vendor/faiss/faiss/utils/sorting.cpp +140 -5
  211. data/vendor/faiss/faiss/utils/sorting.h +27 -0
  212. data/vendor/faiss/faiss/utils/transpose/transpose-avx512-inl.h +176 -0
  213. data/vendor/faiss/faiss/utils/utils.cpp +120 -7
  214. data/vendor/faiss/faiss/utils/utils.h +60 -20
  215. metadata +23 -4
  216. data/vendor/faiss/faiss/impl/code_distance/code_distance_avx512.h +0 -102
@@ -43,6 +43,8 @@ IndexIVFFastScan::IndexIVFFastScan(
43
43
  size_t code_size,
44
44
  MetricType metric)
45
45
  : IndexIVF(quantizer, d, nlist, code_size, metric) {
46
+ // unlike other indexes, we prefer no residuals for performance reasons.
47
+ by_residual = false;
46
48
  FAISS_THROW_IF_NOT(metric == METRIC_L2 || metric == METRIC_INNER_PRODUCT);
47
49
  }
48
50
 
@@ -50,6 +52,7 @@ IndexIVFFastScan::IndexIVFFastScan() {
50
52
  bbs = 0;
51
53
  M2 = 0;
52
54
  is_trained = false;
55
+ by_residual = false;
53
56
  }
54
57
 
55
58
  void IndexIVFFastScan::init_fastscan(
@@ -79,7 +82,7 @@ void IndexIVFFastScan::init_code_packer() {
79
82
  bil->packer = get_CodePacker();
80
83
  }
81
84
 
82
- IndexIVFFastScan::~IndexIVFFastScan() {}
85
+ IndexIVFFastScan::~IndexIVFFastScan() = default;
83
86
 
84
87
  /*********************************************************
85
88
  * Code management functions
@@ -195,7 +198,7 @@ CodePacker* IndexIVFFastScan::get_CodePacker() const {
195
198
 
196
199
  namespace {
197
200
 
198
- template <class C, typename dis_t, class Scaler>
201
+ template <class C, typename dis_t>
199
202
  void estimators_from_tables_generic(
200
203
  const IndexIVFFastScan& index,
201
204
  const uint8_t* codes,
@@ -206,22 +209,26 @@ void estimators_from_tables_generic(
206
209
  size_t k,
207
210
  typename C::T* heap_dis,
208
211
  int64_t* heap_ids,
209
- const Scaler& scaler) {
212
+ const NormTableScaler* scaler) {
210
213
  using accu_t = typename C::T;
214
+ size_t nscale = scaler ? scaler->nscale : 0;
211
215
  for (size_t j = 0; j < ncodes; ++j) {
212
216
  BitstringReader bsr(codes + j * index.code_size, index.code_size);
213
217
  accu_t dis = bias;
214
218
  const dis_t* __restrict dt = dis_table;
215
- for (size_t m = 0; m < index.M - scaler.nscale; m++) {
219
+
220
+ for (size_t m = 0; m < index.M - nscale; m++) {
216
221
  uint64_t c = bsr.read(index.nbits);
217
222
  dis += dt[c];
218
223
  dt += index.ksub;
219
224
  }
220
225
 
221
- for (size_t m = 0; m < scaler.nscale; m++) {
222
- uint64_t c = bsr.read(index.nbits);
223
- dis += scaler.scale_one(dt[c]);
224
- dt += index.ksub;
226
+ if (scaler) {
227
+ for (size_t m = 0; m < nscale; m++) {
228
+ uint64_t c = bsr.read(index.nbits);
229
+ dis += scaler->scale_one(dt[c]);
230
+ dt += index.ksub;
231
+ }
225
232
  }
226
233
 
227
234
  if (C::cmp(heap_dis[0], dis)) {
@@ -242,18 +249,15 @@ using namespace quantize_lut;
242
249
  void IndexIVFFastScan::compute_LUT_uint8(
243
250
  size_t n,
244
251
  const float* x,
245
- const idx_t* coarse_ids,
246
- const float* coarse_dis,
252
+ const CoarseQuantized& cq,
247
253
  AlignedTable<uint8_t>& dis_tables,
248
254
  AlignedTable<uint16_t>& biases,
249
255
  float* normalizers) const {
250
256
  AlignedTable<float> dis_tables_float;
251
257
  AlignedTable<float> biases_float;
252
258
 
253
- uint64_t t0 = get_cy();
254
- compute_LUT(n, x, coarse_ids, coarse_dis, dis_tables_float, biases_float);
255
- IVFFastScan_stats.t_compute_distance_tables += get_cy() - t0;
256
-
259
+ compute_LUT(n, x, cq, dis_tables_float, biases_float);
260
+ size_t nprobe = cq.nprobe;
257
261
  bool lut_is_3d = lookup_table_is_3d();
258
262
  size_t dim123 = ksub * M;
259
263
  size_t dim123_2 = ksub * M2;
@@ -265,8 +269,8 @@ void IndexIVFFastScan::compute_LUT_uint8(
265
269
  if (biases_float.get()) {
266
270
  biases.resize(n * nprobe);
267
271
  }
268
- uint64_t t1 = get_cy();
269
272
 
273
+ // OMP for MSVC requires i to have signed integral type
270
274
  #pragma omp parallel for if (n > 100)
271
275
  for (int64_t i = 0; i < n; i++) {
272
276
  const float* t_in = dis_tables_float.get() + i * dim123;
@@ -291,7 +295,6 @@ void IndexIVFFastScan::compute_LUT_uint8(
291
295
  normalizers + 2 * i,
292
296
  normalizers + 2 * i + 1);
293
297
  }
294
- IVFFastScan_stats.t_round += get_cy() - t1;
295
298
  }
296
299
 
297
300
  /*********************************************************
@@ -304,45 +307,195 @@ void IndexIVFFastScan::search(
304
307
  idx_t k,
305
308
  float* distances,
306
309
  idx_t* labels,
307
- const SearchParameters* params) const {
310
+ const SearchParameters* params_in) const {
311
+ const IVFSearchParameters* params = nullptr;
312
+ if (params_in) {
313
+ params = dynamic_cast<const IVFSearchParameters*>(params_in);
314
+ FAISS_THROW_IF_NOT_MSG(
315
+ params, "IndexIVFFastScan params have incorrect type");
316
+ }
317
+
318
+ search_preassigned(
319
+ n, x, k, nullptr, nullptr, distances, labels, false, params);
320
+ }
321
+
322
+ void IndexIVFFastScan::search_preassigned(
323
+ idx_t n,
324
+ const float* x,
325
+ idx_t k,
326
+ const idx_t* assign,
327
+ const float* centroid_dis,
328
+ float* distances,
329
+ idx_t* labels,
330
+ bool store_pairs,
331
+ const IVFSearchParameters* params,
332
+ IndexIVFStats* stats) const {
333
+ size_t nprobe = this->nprobe;
334
+ if (params) {
335
+ FAISS_THROW_IF_NOT(params->max_codes == 0);
336
+ nprobe = params->nprobe;
337
+ }
338
+
308
339
  FAISS_THROW_IF_NOT_MSG(
309
- !params, "search params not supported for this index");
340
+ !store_pairs, "store_pairs not supported for this index");
341
+ FAISS_THROW_IF_NOT_MSG(!stats, "stats not supported for this index");
310
342
  FAISS_THROW_IF_NOT(k > 0);
311
343
 
312
- DummyScaler scaler;
313
- if (metric_type == METRIC_L2) {
314
- search_dispatch_implem<true>(n, x, k, distances, labels, scaler);
344
+ const CoarseQuantized cq = {nprobe, centroid_dis, assign};
345
+ search_dispatch_implem(n, x, k, distances, labels, cq, nullptr, params);
346
+ }
347
+
348
+ void IndexIVFFastScan::range_search(
349
+ idx_t n,
350
+ const float* x,
351
+ float radius,
352
+ RangeSearchResult* result,
353
+ const SearchParameters* params_in) const {
354
+ size_t nprobe = this->nprobe;
355
+ const IVFSearchParameters* params = nullptr;
356
+ if (params_in) {
357
+ params = dynamic_cast<const IVFSearchParameters*>(params_in);
358
+ FAISS_THROW_IF_NOT_MSG(
359
+ params, "IndexIVFFastScan params have incorrect type");
360
+ nprobe = params->nprobe;
361
+ }
362
+
363
+ const CoarseQuantized cq = {nprobe, nullptr, nullptr};
364
+ range_search_dispatch_implem(n, x, radius, *result, cq, nullptr, params);
365
+ }
366
+
367
+ namespace {
368
+
369
+ template <class C>
370
+ ResultHandlerCompare<C, true>* make_knn_handler_fixC(
371
+ int impl,
372
+ idx_t n,
373
+ idx_t k,
374
+ float* distances,
375
+ idx_t* labels,
376
+ const IDSelector* sel) {
377
+ using HeapHC = HeapHandler<C, true>;
378
+ using ReservoirHC = ReservoirHandler<C, true>;
379
+ using SingleResultHC = SingleResultHandler<C, true>;
380
+
381
+ if (k == 1) {
382
+ return new SingleResultHC(n, 0, distances, labels, sel);
383
+ } else if (impl % 2 == 0) {
384
+ return new HeapHC(n, 0, k, distances, labels, sel);
385
+ } else /* if (impl % 2 == 1) */ {
386
+ return new ReservoirHC(n, 0, k, 2 * k, distances, labels, sel);
387
+ }
388
+ }
389
+
390
+ SIMDResultHandlerToFloat* make_knn_handler(
391
+ bool is_max,
392
+ int impl,
393
+ idx_t n,
394
+ idx_t k,
395
+ float* distances,
396
+ idx_t* labels,
397
+ const IDSelector* sel) {
398
+ if (is_max) {
399
+ return make_knn_handler_fixC<CMax<uint16_t, int64_t>>(
400
+ impl, n, k, distances, labels, sel);
315
401
  } else {
316
- search_dispatch_implem<false>(n, x, k, distances, labels, scaler);
402
+ return make_knn_handler_fixC<CMin<uint16_t, int64_t>>(
403
+ impl, n, k, distances, labels, sel);
317
404
  }
318
405
  }
319
406
 
320
- void IndexIVFFastScan::range_search(
321
- idx_t,
322
- const float*,
323
- float,
324
- RangeSearchResult*,
325
- const SearchParameters*) const {
326
- FAISS_THROW_MSG("not implemented");
407
+ using CoarseQuantized = IndexIVFFastScan::CoarseQuantized;
408
+
409
+ struct CoarseQuantizedWithBuffer : CoarseQuantized {
410
+ explicit CoarseQuantizedWithBuffer(const CoarseQuantized& cq)
411
+ : CoarseQuantized(cq) {}
412
+
413
+ bool done() const {
414
+ return ids != nullptr;
415
+ }
416
+
417
+ std::vector<idx_t> ids_buffer;
418
+ std::vector<float> dis_buffer;
419
+
420
+ void quantize(
421
+ const Index* quantizer,
422
+ idx_t n,
423
+ const float* x,
424
+ const SearchParameters* quantizer_params) {
425
+ dis_buffer.resize(nprobe * n);
426
+ ids_buffer.resize(nprobe * n);
427
+ quantizer->search(
428
+ n,
429
+ x,
430
+ nprobe,
431
+ dis_buffer.data(),
432
+ ids_buffer.data(),
433
+ quantizer_params);
434
+ dis = dis_buffer.data();
435
+ ids = ids_buffer.data();
436
+ }
437
+ };
438
+
439
+ struct CoarseQuantizedSlice : CoarseQuantizedWithBuffer {
440
+ size_t i0, i1;
441
+ CoarseQuantizedSlice(const CoarseQuantized& cq, size_t i0, size_t i1)
442
+ : CoarseQuantizedWithBuffer(cq), i0(i0), i1(i1) {
443
+ if (done()) {
444
+ dis += nprobe * i0;
445
+ ids += nprobe * i0;
446
+ }
447
+ }
448
+
449
+ void quantize_slice(
450
+ const Index* quantizer,
451
+ const float* x,
452
+ const SearchParameters* quantizer_params) {
453
+ quantize(quantizer, i1 - i0, x + quantizer->d * i0, quantizer_params);
454
+ }
455
+ };
456
+
457
+ int compute_search_nslice(
458
+ const IndexIVFFastScan* index,
459
+ size_t n,
460
+ size_t nprobe) {
461
+ int nslice;
462
+ if (n <= omp_get_max_threads()) {
463
+ nslice = n;
464
+ } else if (index->lookup_table_is_3d()) {
465
+ // make sure we don't make too big LUT tables
466
+ size_t lut_size_per_query = index->M * index->ksub * nprobe *
467
+ (sizeof(float) + sizeof(uint8_t));
468
+
469
+ size_t max_lut_size = precomputed_table_max_bytes;
470
+ // how many queries we can handle within mem budget
471
+ size_t nq_ok = std::max(max_lut_size / lut_size_per_query, size_t(1));
472
+ nslice = roundup(
473
+ std::max(size_t(n / nq_ok), size_t(1)), omp_get_max_threads());
474
+ } else {
475
+ // LUTs unlikely to be a limiting factor
476
+ nslice = omp_get_max_threads();
477
+ }
478
+ return nslice;
327
479
  }
328
480
 
329
- template <bool is_max, class Scaler>
481
+ } // namespace
482
+
330
483
  void IndexIVFFastScan::search_dispatch_implem(
331
484
  idx_t n,
332
485
  const float* x,
333
486
  idx_t k,
334
487
  float* distances,
335
488
  idx_t* labels,
336
- const Scaler& scaler) const {
337
- using Cfloat = typename std::conditional<
338
- is_max,
339
- CMax<float, int64_t>,
340
- CMin<float, int64_t>>::type;
489
+ const CoarseQuantized& cq_in,
490
+ const NormTableScaler* scaler,
491
+ const IVFSearchParameters* params) const {
492
+ const idx_t nprobe = params ? params->nprobe : this->nprobe;
493
+ const IDSelector* sel = (params) ? params->sel : nullptr;
494
+ const SearchParameters* quantizer_params =
495
+ params ? params->quantizer_params : nullptr;
341
496
 
342
- using C = typename std::conditional<
343
- is_max,
344
- CMax<uint16_t, int64_t>,
345
- CMin<uint16_t, int64_t>>::type;
497
+ bool is_max = !is_similarity_metric(metric_type);
498
+ using RH = SIMDResultHandlerToFloat;
346
499
 
347
500
  if (n == 0) {
348
501
  return;
@@ -357,70 +510,93 @@ void IndexIVFFastScan::search_dispatch_implem(
357
510
  } else {
358
511
  impl = 10;
359
512
  }
360
- if (k > 20) {
513
+ if (k > 20) { // use reservoir rather than heap
361
514
  impl++;
362
515
  }
363
516
  }
364
517
 
518
+ bool multiple_threads =
519
+ n > 1 && impl >= 10 && impl <= 13 && omp_get_max_threads() > 1;
520
+ if (impl >= 100) {
521
+ multiple_threads = false;
522
+ impl -= 100;
523
+ }
524
+
525
+ CoarseQuantizedWithBuffer cq(cq_in);
526
+ cq.nprobe = nprobe;
527
+
528
+ if (!cq.done() && !multiple_threads) {
529
+ // we do the coarse quantization here execpt when search is
530
+ // sliced over threads (then it is more efficient to have each thread do
531
+ // its own coarse quantization)
532
+ cq.quantize(quantizer, n, x, quantizer_params);
533
+ invlists->prefetch_lists(cq.ids, n * cq.nprobe);
534
+ }
535
+
365
536
  if (impl == 1) {
366
- search_implem_1<Cfloat>(n, x, k, distances, labels, scaler);
537
+ if (is_max) {
538
+ search_implem_1<CMax<float, int64_t>>(
539
+ n, x, k, distances, labels, cq, scaler, params);
540
+ } else {
541
+ search_implem_1<CMin<float, int64_t>>(
542
+ n, x, k, distances, labels, cq, scaler, params);
543
+ }
367
544
  } else if (impl == 2) {
368
- search_implem_2<C>(n, x, k, distances, labels, scaler);
369
-
545
+ if (is_max) {
546
+ search_implem_2<CMax<uint16_t, int64_t>>(
547
+ n, x, k, distances, labels, cq, scaler, params);
548
+ } else {
549
+ search_implem_2<CMin<uint16_t, int64_t>>(
550
+ n, x, k, distances, labels, cq, scaler, params);
551
+ }
370
552
  } else if (impl >= 10 && impl <= 15) {
371
553
  size_t ndis = 0, nlist_visited = 0;
372
554
 
373
- if (n < 2) {
555
+ if (!multiple_threads) {
556
+ // clang-format off
374
557
  if (impl == 12 || impl == 13) {
375
- search_implem_12<C>(
376
- n,
377
- x,
378
- k,
379
- distances,
380
- labels,
381
- impl,
382
- &ndis,
383
- &nlist_visited,
384
- scaler);
558
+ std::unique_ptr<RH> handler(
559
+ make_knn_handler(
560
+ is_max,
561
+ impl,
562
+ n,
563
+ k,
564
+ distances,
565
+ labels, sel
566
+ )
567
+ );
568
+ search_implem_12(
569
+ n, x, *handler.get(),
570
+ cq, &ndis, &nlist_visited, scaler, params);
385
571
  } else if (impl == 14 || impl == 15) {
386
- search_implem_14<C>(n, x, k, distances, labels, impl, scaler);
572
+ search_implem_14(
573
+ n, x, k, distances, labels,
574
+ cq, impl, scaler, params);
387
575
  } else {
388
- search_implem_10<C>(
389
- n,
390
- x,
391
- k,
392
- distances,
576
+ std::unique_ptr<RH> handler(
577
+ make_knn_handler(
578
+ is_max,
579
+ impl,
580
+ n,
581
+ k,
582
+ distances,
393
583
  labels,
394
- impl,
395
- &ndis,
396
- &nlist_visited,
397
- scaler);
584
+ sel
585
+ )
586
+ );
587
+ search_implem_10(
588
+ n, x, *handler.get(), cq,
589
+ &ndis, &nlist_visited, scaler, params);
398
590
  }
591
+ // clang-format on
399
592
  } else {
400
593
  // explicitly slice over threads
401
- int nslice;
402
- if (n <= omp_get_max_threads()) {
403
- nslice = n;
404
- } else if (lookup_table_is_3d()) {
405
- // make sure we don't make too big LUT tables
406
- size_t lut_size_per_query =
407
- M * ksub * nprobe * (sizeof(float) + sizeof(uint8_t));
408
-
409
- size_t max_lut_size = precomputed_table_max_bytes;
410
- // how many queries we can handle within mem budget
411
- size_t nq_ok =
412
- std::max(max_lut_size / lut_size_per_query, size_t(1));
413
- nslice =
414
- roundup(std::max(size_t(n / nq_ok), size_t(1)),
415
- omp_get_max_threads());
416
- } else {
417
- // LUTs unlikely to be a limiting factor
418
- nslice = omp_get_max_threads();
419
- }
420
- if (impl == 14 ||
421
- impl == 15) { // this might require slicing if there are too
422
- // many queries (for now we keep this simple)
423
- search_implem_14<C>(n, x, k, distances, labels, impl, scaler);
594
+ int nslice = compute_search_nslice(this, n, cq.nprobe);
595
+ if (impl == 14 || impl == 15) {
596
+ // this might require slicing if there are too
597
+ // many queries (for now we keep this simple)
598
+ search_implem_14(
599
+ n, x, k, distances, labels, cq, impl, scaler, params);
424
600
  } else {
425
601
  #pragma omp parallel for reduction(+ : ndis, nlist_visited)
426
602
  for (int slice = 0; slice < nslice; slice++) {
@@ -428,29 +604,23 @@ void IndexIVFFastScan::search_dispatch_implem(
428
604
  idx_t i1 = n * (slice + 1) / nslice;
429
605
  float* dis_i = distances + i0 * k;
430
606
  idx_t* lab_i = labels + i0 * k;
607
+ CoarseQuantizedSlice cq_i(cq, i0, i1);
608
+ if (!cq_i.done()) {
609
+ cq_i.quantize_slice(quantizer, x, quantizer_params);
610
+ }
611
+ std::unique_ptr<RH> handler(make_knn_handler(
612
+ is_max, impl, i1 - i0, k, dis_i, lab_i, sel));
613
+ // clang-format off
431
614
  if (impl == 12 || impl == 13) {
432
- search_implem_12<C>(
433
- i1 - i0,
434
- x + i0 * d,
435
- k,
436
- dis_i,
437
- lab_i,
438
- impl,
439
- &ndis,
440
- &nlist_visited,
441
- scaler);
615
+ search_implem_12(
616
+ i1 - i0, x + i0 * d, *handler.get(),
617
+ cq_i, &ndis, &nlist_visited, scaler, params);
442
618
  } else {
443
- search_implem_10<C>(
444
- i1 - i0,
445
- x + i0 * d,
446
- k,
447
- dis_i,
448
- lab_i,
449
- impl,
450
- &ndis,
451
- &nlist_visited,
452
- scaler);
619
+ search_implem_10(
620
+ i1 - i0, x + i0 * d, *handler.get(),
621
+ cq_i, &ndis, &nlist_visited, scaler, params);
453
622
  }
623
+ // clang-format on
454
624
  }
455
625
  }
456
626
  }
@@ -462,31 +632,149 @@ void IndexIVFFastScan::search_dispatch_implem(
462
632
  }
463
633
  }
464
634
 
465
- template <class C, class Scaler>
635
+ void IndexIVFFastScan::range_search_dispatch_implem(
636
+ idx_t n,
637
+ const float* x,
638
+ float radius,
639
+ RangeSearchResult& rres,
640
+ const CoarseQuantized& cq_in,
641
+ const NormTableScaler* scaler,
642
+ const IVFSearchParameters* params) const {
643
+ // const idx_t nprobe = params ? params->nprobe : this->nprobe;
644
+ const IDSelector* sel = (params) ? params->sel : nullptr;
645
+ const SearchParameters* quantizer_params =
646
+ params ? params->quantizer_params : nullptr;
647
+
648
+ bool is_max = !is_similarity_metric(metric_type);
649
+
650
+ if (n == 0) {
651
+ return;
652
+ }
653
+
654
+ // actual implementation used
655
+ int impl = implem;
656
+
657
+ if (impl == 0) {
658
+ if (bbs == 32) {
659
+ impl = 12;
660
+ } else {
661
+ impl = 10;
662
+ }
663
+ }
664
+
665
+ CoarseQuantizedWithBuffer cq(cq_in);
666
+
667
+ bool multiple_threads =
668
+ n > 1 && impl >= 10 && impl <= 13 && omp_get_max_threads() > 1;
669
+ if (impl >= 100) {
670
+ multiple_threads = false;
671
+ impl -= 100;
672
+ }
673
+
674
+ if (!multiple_threads && !cq.done()) {
675
+ cq.quantize(quantizer, n, x, quantizer_params);
676
+ invlists->prefetch_lists(cq.ids, n * cq.nprobe);
677
+ }
678
+
679
+ size_t ndis = 0, nlist_visited = 0;
680
+
681
+ if (!multiple_threads) { // single thread
682
+ std::unique_ptr<SIMDResultHandlerToFloat> handler;
683
+ if (is_max) {
684
+ handler.reset(new RangeHandler<CMax<uint16_t, int64_t>, true>(
685
+ rres, radius, 0, sel));
686
+ } else {
687
+ handler.reset(new RangeHandler<CMin<uint16_t, int64_t>, true>(
688
+ rres, radius, 0, sel));
689
+ }
690
+ if (impl == 12) {
691
+ search_implem_12(
692
+ n, x, *handler.get(), cq, &ndis, &nlist_visited, scaler);
693
+ } else if (impl == 10) {
694
+ search_implem_10(
695
+ n, x, *handler.get(), cq, &ndis, &nlist_visited, scaler);
696
+ } else {
697
+ FAISS_THROW_FMT("Range search implem %d not implemented", impl);
698
+ }
699
+ } else {
700
+ // explicitly slice over threads
701
+ int nslice = compute_search_nslice(this, n, cq.nprobe);
702
+ #pragma omp parallel
703
+ {
704
+ RangeSearchPartialResult pres(&rres);
705
+
706
+ #pragma omp for reduction(+ : ndis, nlist_visited)
707
+ for (int slice = 0; slice < nslice; slice++) {
708
+ idx_t i0 = n * slice / nslice;
709
+ idx_t i1 = n * (slice + 1) / nslice;
710
+ CoarseQuantizedSlice cq_i(cq, i0, i1);
711
+ if (!cq_i.done()) {
712
+ cq_i.quantize_slice(quantizer, x, quantizer_params);
713
+ }
714
+ std::unique_ptr<SIMDResultHandlerToFloat> handler;
715
+ if (is_max) {
716
+ handler.reset(new PartialRangeHandler<
717
+ CMax<uint16_t, int64_t>,
718
+ true>(pres, radius, 0, i0, i1, sel));
719
+ } else {
720
+ handler.reset(new PartialRangeHandler<
721
+ CMin<uint16_t, int64_t>,
722
+ true>(pres, radius, 0, i0, i1, sel));
723
+ }
724
+
725
+ if (impl == 12 || impl == 13) {
726
+ search_implem_12(
727
+ i1 - i0,
728
+ x + i0 * d,
729
+ *handler.get(),
730
+ cq_i,
731
+ &ndis,
732
+ &nlist_visited,
733
+ scaler,
734
+ params);
735
+ } else {
736
+ search_implem_10(
737
+ i1 - i0,
738
+ x + i0 * d,
739
+ *handler.get(),
740
+ cq_i,
741
+ &ndis,
742
+ &nlist_visited,
743
+ scaler,
744
+ params);
745
+ }
746
+ }
747
+ pres.finalize();
748
+ }
749
+ }
750
+
751
+ indexIVF_stats.nq += n;
752
+ indexIVF_stats.ndis += ndis;
753
+ indexIVF_stats.nlist += nlist_visited;
754
+ }
755
+
756
+ template <class C>
466
757
  void IndexIVFFastScan::search_implem_1(
467
758
  idx_t n,
468
759
  const float* x,
469
760
  idx_t k,
470
761
  float* distances,
471
762
  idx_t* labels,
472
- const Scaler& scaler) const {
763
+ const CoarseQuantized& cq,
764
+ const NormTableScaler* scaler,
765
+ const IVFSearchParameters* params) const {
473
766
  FAISS_THROW_IF_NOT(orig_invlists);
474
767
 
475
- std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
476
- std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
477
-
478
- quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
479
-
480
768
  size_t dim12 = ksub * M;
481
769
  AlignedTable<float> dis_tables;
482
770
  AlignedTable<float> biases;
483
771
 
484
- compute_LUT(n, x, coarse_ids.get(), coarse_dis.get(), dis_tables, biases);
772
+ compute_LUT(n, x, cq, dis_tables, biases);
485
773
 
486
774
  bool single_LUT = !lookup_table_is_3d();
487
775
 
488
776
  size_t ndis = 0, nlist_visited = 0;
489
-
777
+ size_t nprobe = cq.nprobe;
490
778
  #pragma omp parallel for reduction(+ : ndis, nlist_visited)
491
779
  for (idx_t i = 0; i < n; i++) {
492
780
  int64_t* heap_ids = labels + i * k;
@@ -501,7 +789,7 @@ void IndexIVFFastScan::search_implem_1(
501
789
  if (!single_LUT) {
502
790
  LUT = dis_tables.get() + (i * nprobe + j) * dim12;
503
791
  }
504
- idx_t list_no = coarse_ids[i * nprobe + j];
792
+ idx_t list_no = cq.ids[i * nprobe + j];
505
793
  if (list_no < 0)
506
794
  continue;
507
795
  size_t ls = orig_invlists->list_size(list_no);
@@ -533,38 +821,29 @@ void IndexIVFFastScan::search_implem_1(
533
821
  indexIVF_stats.nlist += nlist_visited;
534
822
  }
535
823
 
536
- template <class C, class Scaler>
824
+ template <class C>
537
825
  void IndexIVFFastScan::search_implem_2(
538
826
  idx_t n,
539
827
  const float* x,
540
828
  idx_t k,
541
829
  float* distances,
542
830
  idx_t* labels,
543
- const Scaler& scaler) const {
831
+ const CoarseQuantized& cq,
832
+ const NormTableScaler* scaler,
833
+ const IVFSearchParameters* params) const {
544
834
  FAISS_THROW_IF_NOT(orig_invlists);
545
835
 
546
- std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
547
- std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
548
-
549
- quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
550
-
551
836
  size_t dim12 = ksub * M2;
552
837
  AlignedTable<uint8_t> dis_tables;
553
838
  AlignedTable<uint16_t> biases;
554
839
  std::unique_ptr<float[]> normalizers(new float[2 * n]);
555
840
 
556
- compute_LUT_uint8(
557
- n,
558
- x,
559
- coarse_ids.get(),
560
- coarse_dis.get(),
561
- dis_tables,
562
- biases,
563
- normalizers.get());
841
+ compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get());
564
842
 
565
843
  bool single_LUT = !lookup_table_is_3d();
566
844
 
567
845
  size_t ndis = 0, nlist_visited = 0;
846
+ size_t nprobe = cq.nprobe;
568
847
 
569
848
  #pragma omp parallel for reduction(+ : ndis, nlist_visited)
570
849
  for (idx_t i = 0; i < n; i++) {
@@ -581,7 +860,7 @@ void IndexIVFFastScan::search_implem_2(
581
860
  if (!single_LUT) {
582
861
  LUT = dis_tables.get() + (i * nprobe + j) * dim12;
583
862
  }
584
- idx_t list_no = coarse_ids[i * nprobe + j];
863
+ idx_t list_no = cq.ids[i * nprobe + j];
585
864
  if (list_no < 0)
586
865
  continue;
587
866
  size_t ls = orig_invlists->list_size(list_no);
@@ -626,171 +905,103 @@ void IndexIVFFastScan::search_implem_2(
626
905
  indexIVF_stats.nlist += nlist_visited;
627
906
  }
628
907
 
629
- template <class C, class Scaler>
630
908
  void IndexIVFFastScan::search_implem_10(
631
909
  idx_t n,
632
910
  const float* x,
633
- idx_t k,
634
- float* distances,
635
- idx_t* labels,
636
- int impl,
911
+ SIMDResultHandlerToFloat& handler,
912
+ const CoarseQuantized& cq,
637
913
  size_t* ndis_out,
638
914
  size_t* nlist_out,
639
- const Scaler& scaler) const {
640
- memset(distances, -1, sizeof(float) * k * n);
641
- memset(labels, -1, sizeof(idx_t) * k * n);
642
-
643
- using HeapHC = HeapHandler<C, true>;
644
- using ReservoirHC = ReservoirHandler<C, true>;
645
- using SingleResultHC = SingleResultHandler<C, true>;
646
-
647
- std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
648
- std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
649
-
650
- uint64_t times[10];
651
- memset(times, 0, sizeof(times));
652
- int ti = 0;
653
- #define TIC times[ti++] = get_cy()
654
- TIC;
655
-
656
- quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
657
-
658
- TIC;
659
-
915
+ const NormTableScaler* scaler,
916
+ const IVFSearchParameters* params) const {
660
917
  size_t dim12 = ksub * M2;
661
918
  AlignedTable<uint8_t> dis_tables;
662
919
  AlignedTable<uint16_t> biases;
663
920
  std::unique_ptr<float[]> normalizers(new float[2 * n]);
664
921
 
665
- compute_LUT_uint8(
666
- n,
667
- x,
668
- coarse_ids.get(),
669
- coarse_dis.get(),
670
- dis_tables,
671
- biases,
672
- normalizers.get());
673
-
674
- TIC;
922
+ compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get());
675
923
 
676
924
  bool single_LUT = !lookup_table_is_3d();
677
925
 
678
- TIC;
679
- size_t ndis = 0, nlist_visited = 0;
926
+ size_t ndis = 0;
927
+ int qmap1[1];
680
928
 
681
- {
682
- AlignedTable<uint16_t> tmp_distances(k);
683
- for (idx_t i = 0; i < n; i++) {
684
- const uint8_t* LUT = nullptr;
685
- int qmap1[1] = {0};
686
- std::unique_ptr<SIMDResultHandler<C, true>> handler;
687
-
688
- if (k == 1) {
689
- handler.reset(new SingleResultHC(1, 0));
690
- } else if (impl == 10) {
691
- handler.reset(new HeapHC(
692
- 1, tmp_distances.get(), labels + i * k, k, 0));
693
- } else if (impl == 11) {
694
- handler.reset(new ReservoirHC(1, 0, k, 2 * k));
695
- } else {
696
- FAISS_THROW_MSG("invalid");
697
- }
929
+ handler.q_map = qmap1;
930
+ handler.begin(skip & 16 ? nullptr : normalizers.get());
931
+ size_t nprobe = cq.nprobe;
698
932
 
699
- handler->q_map = qmap1;
933
+ for (idx_t i = 0; i < n; i++) {
934
+ const uint8_t* LUT = nullptr;
935
+ qmap1[0] = i;
700
936
 
701
- if (single_LUT) {
702
- LUT = dis_tables.get() + i * dim12;
937
+ if (single_LUT) {
938
+ LUT = dis_tables.get() + i * dim12;
939
+ }
940
+ for (idx_t j = 0; j < nprobe; j++) {
941
+ size_t ij = i * nprobe + j;
942
+ if (!single_LUT) {
943
+ LUT = dis_tables.get() + ij * dim12;
944
+ }
945
+ if (biases.get()) {
946
+ handler.dbias = biases.get() + ij;
703
947
  }
704
- for (idx_t j = 0; j < nprobe; j++) {
705
- size_t ij = i * nprobe + j;
706
- if (!single_LUT) {
707
- LUT = dis_tables.get() + ij * dim12;
708
- }
709
- if (biases.get()) {
710
- handler->dbias = biases.get() + ij;
711
- }
712
-
713
- idx_t list_no = coarse_ids[ij];
714
- if (list_no < 0)
715
- continue;
716
- size_t ls = invlists->list_size(list_no);
717
- if (ls == 0)
718
- continue;
719
948
 
720
- InvertedLists::ScopedCodes codes(invlists, list_no);
721
- InvertedLists::ScopedIds ids(invlists, list_no);
949
+ idx_t list_no = cq.ids[ij];
950
+ if (list_no < 0) {
951
+ continue;
952
+ }
953
+ size_t ls = invlists->list_size(list_no);
954
+ if (ls == 0) {
955
+ continue;
956
+ }
722
957
 
723
- handler->ntotal = ls;
724
- handler->id_map = ids.get();
958
+ InvertedLists::ScopedCodes codes(invlists, list_no);
959
+ InvertedLists::ScopedIds ids(invlists, list_no);
725
960
 
726
- #define DISPATCH(classHC) \
727
- if (dynamic_cast<classHC*>(handler.get())) { \
728
- auto* res = static_cast<classHC*>(handler.get()); \
729
- pq4_accumulate_loop( \
730
- 1, roundup(ls, bbs), bbs, M2, codes.get(), LUT, *res, scaler); \
731
- }
732
- DISPATCH(HeapHC)
733
- else DISPATCH(ReservoirHC) else DISPATCH(SingleResultHC)
734
- #undef DISPATCH
961
+ handler.ntotal = ls;
962
+ handler.id_map = ids.get();
735
963
 
736
- nlist_visited++;
737
- ndis++;
738
- }
964
+ pq4_accumulate_loop(
965
+ 1,
966
+ roundup(ls, bbs),
967
+ bbs,
968
+ M2,
969
+ codes.get(),
970
+ LUT,
971
+ handler,
972
+ scaler);
739
973
 
740
- handler->to_flat_arrays(
741
- distances + i * k,
742
- labels + i * k,
743
- skip & 16 ? nullptr : normalizers.get() + i * 2);
974
+ ndis++;
744
975
  }
745
976
  }
977
+
978
+ handler.end();
746
979
  *ndis_out = ndis;
747
980
  *nlist_out = nlist;
748
981
  }
749
982
 
750
- template <class C, class Scaler>
751
983
  void IndexIVFFastScan::search_implem_12(
752
984
  idx_t n,
753
985
  const float* x,
754
- idx_t k,
755
- float* distances,
756
- idx_t* labels,
757
- int impl,
986
+ SIMDResultHandlerToFloat& handler,
987
+ const CoarseQuantized& cq,
758
988
  size_t* ndis_out,
759
989
  size_t* nlist_out,
760
- const Scaler& scaler) const {
990
+ const NormTableScaler* scaler,
991
+ const IVFSearchParameters* params) const {
761
992
  if (n == 0) { // does not work well with reservoir
762
993
  return;
763
994
  }
764
995
  FAISS_THROW_IF_NOT(bbs == 32);
765
996
 
766
- std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
767
- std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
768
-
769
- uint64_t times[10];
770
- memset(times, 0, sizeof(times));
771
- int ti = 0;
772
- #define TIC times[ti++] = get_cy()
773
- TIC;
774
-
775
- quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
776
-
777
- TIC;
778
-
779
997
  size_t dim12 = ksub * M2;
780
998
  AlignedTable<uint8_t> dis_tables;
781
999
  AlignedTable<uint16_t> biases;
782
1000
  std::unique_ptr<float[]> normalizers(new float[2 * n]);
783
1001
 
784
- compute_LUT_uint8(
785
- n,
786
- x,
787
- coarse_ids.get(),
788
- coarse_dis.get(),
789
- dis_tables,
790
- biases,
791
- normalizers.get());
1002
+ compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get());
792
1003
 
793
- TIC;
1004
+ handler.begin(skip & 16 ? nullptr : normalizers.get());
794
1005
 
795
1006
  struct QC {
796
1007
  int qno; // sequence number of the query
@@ -798,14 +1009,15 @@ void IndexIVFFastScan::search_implem_12(
798
1009
  int rank; // this is the rank'th result of the coarse quantizer
799
1010
  };
800
1011
  bool single_LUT = !lookup_table_is_3d();
1012
+ size_t nprobe = cq.nprobe;
801
1013
 
802
1014
  std::vector<QC> qcs;
803
1015
  {
804
1016
  int ij = 0;
805
1017
  for (int i = 0; i < n; i++) {
806
1018
  for (int j = 0; j < nprobe; j++) {
807
- if (coarse_ids[ij] >= 0) {
808
- qcs.push_back(QC{i, int(coarse_ids[ij]), int(j)});
1019
+ if (cq.ids[ij] >= 0) {
1020
+ qcs.push_back(QC{i, int(cq.ids[ij]), int(j)});
809
1021
  }
810
1022
  ij++;
811
1023
  }
@@ -814,42 +1026,22 @@ void IndexIVFFastScan::search_implem_12(
814
1026
  return a.list_no < b.list_no;
815
1027
  });
816
1028
  }
817
- TIC;
818
1029
 
819
1030
  // prepare the result handlers
820
1031
 
821
- std::unique_ptr<SIMDResultHandler<C, true>> handler;
822
- AlignedTable<uint16_t> tmp_distances;
823
-
824
- using HeapHC = HeapHandler<C, true>;
825
- using ReservoirHC = ReservoirHandler<C, true>;
826
- using SingleResultHC = SingleResultHandler<C, true>;
827
-
828
- if (k == 1) {
829
- handler.reset(new SingleResultHC(n, 0));
830
- } else if (impl == 12) {
831
- tmp_distances.resize(n * k);
832
- handler.reset(new HeapHC(n, tmp_distances.get(), labels, k, 0));
833
- } else if (impl == 13) {
834
- handler.reset(new ReservoirHC(n, 0, k, 2 * k));
835
- }
836
-
837
1032
  int qbs2 = this->qbs2 ? this->qbs2 : 11;
838
1033
 
839
1034
  std::vector<uint16_t> tmp_bias;
840
1035
  if (biases.get()) {
841
1036
  tmp_bias.resize(qbs2);
842
- handler->dbias = tmp_bias.data();
1037
+ handler.dbias = tmp_bias.data();
843
1038
  }
844
- TIC;
845
1039
 
846
1040
  size_t ndis = 0;
847
1041
 
848
1042
  size_t i0 = 0;
849
1043
  uint64_t t_copy_pack = 0, t_scan = 0;
850
1044
  while (i0 < qcs.size()) {
851
- uint64_t tt0 = get_cy();
852
-
853
1045
  // find all queries that access this inverted list
854
1046
  int list_no = qcs[i0].list_no;
855
1047
  size_t i1 = i0 + 1;
@@ -897,93 +1089,50 @@ void IndexIVFFastScan::search_implem_12(
897
1089
 
898
1090
  // prepare the handler
899
1091
 
900
- handler->ntotal = list_size;
901
- handler->q_map = q_map.data();
902
- handler->id_map = ids.get();
903
- uint64_t tt1 = get_cy();
1092
+ handler.ntotal = list_size;
1093
+ handler.q_map = q_map.data();
1094
+ handler.id_map = ids.get();
904
1095
 
905
- #define DISPATCH(classHC) \
906
- if (dynamic_cast<classHC*>(handler.get())) { \
907
- auto* res = static_cast<classHC*>(handler.get()); \
908
- pq4_accumulate_loop_qbs( \
909
- qbs, list_size, M2, codes.get(), LUT.get(), *res, scaler); \
910
- }
911
- DISPATCH(HeapHC)
912
- else DISPATCH(ReservoirHC) else DISPATCH(SingleResultHC)
913
-
914
- // prepare for next loop
915
- i0 = i1;
916
-
917
- uint64_t tt2 = get_cy();
918
- t_copy_pack += tt1 - tt0;
919
- t_scan += tt2 - tt1;
1096
+ pq4_accumulate_loop_qbs(
1097
+ qbs, list_size, M2, codes.get(), LUT.get(), handler, scaler);
1098
+ // prepare for next loop
1099
+ i0 = i1;
920
1100
  }
921
- TIC;
922
1101
 
923
- // labels is in-place for HeapHC
924
- handler->to_flat_arrays(
925
- distances, labels, skip & 16 ? nullptr : normalizers.get());
926
-
927
- TIC;
1102
+ handler.end();
928
1103
 
929
1104
  // these stats are not thread-safe
930
1105
 
931
- for (int i = 1; i < ti; i++) {
932
- IVFFastScan_stats.times[i] += times[i] - times[i - 1];
933
- }
934
1106
  IVFFastScan_stats.t_copy_pack += t_copy_pack;
935
1107
  IVFFastScan_stats.t_scan += t_scan;
936
1108
 
937
- if (auto* rh = dynamic_cast<ReservoirHC*>(handler.get())) {
938
- for (int i = 0; i < 4; i++) {
939
- IVFFastScan_stats.reservoir_times[i] += rh->times[i];
940
- }
941
- }
942
-
943
1109
  *ndis_out = ndis;
944
1110
  *nlist_out = nlist;
945
1111
  }
946
1112
 
947
- template <class C, class Scaler>
948
1113
  void IndexIVFFastScan::search_implem_14(
949
1114
  idx_t n,
950
1115
  const float* x,
951
1116
  idx_t k,
952
1117
  float* distances,
953
1118
  idx_t* labels,
1119
+ const CoarseQuantized& cq,
954
1120
  int impl,
955
- const Scaler& scaler) const {
1121
+ const NormTableScaler* scaler,
1122
+ const IVFSearchParameters* params) const {
956
1123
  if (n == 0) { // does not work well with reservoir
957
1124
  return;
958
1125
  }
959
1126
  FAISS_THROW_IF_NOT(bbs == 32);
960
1127
 
961
- std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
962
- std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
963
-
964
- uint64_t ttg0 = get_cy();
965
-
966
- quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
967
-
968
- uint64_t ttg1 = get_cy();
969
- uint64_t coarse_search_tt = ttg1 - ttg0;
1128
+ const IDSelector* sel = params ? params->sel : nullptr;
970
1129
 
971
1130
  size_t dim12 = ksub * M2;
972
1131
  AlignedTable<uint8_t> dis_tables;
973
1132
  AlignedTable<uint16_t> biases;
974
1133
  std::unique_ptr<float[]> normalizers(new float[2 * n]);
975
1134
 
976
- compute_LUT_uint8(
977
- n,
978
- x,
979
- coarse_ids.get(),
980
- coarse_dis.get(),
981
- dis_tables,
982
- biases,
983
- normalizers.get());
984
-
985
- uint64_t ttg2 = get_cy();
986
- uint64_t lut_compute_tt = ttg2 - ttg1;
1135
+ compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get());
987
1136
 
988
1137
  struct QC {
989
1138
  int qno; // sequence number of the query
@@ -991,14 +1140,15 @@ void IndexIVFFastScan::search_implem_14(
991
1140
  int rank; // this is the rank'th result of the coarse quantizer
992
1141
  };
993
1142
  bool single_LUT = !lookup_table_is_3d();
1143
+ size_t nprobe = cq.nprobe;
994
1144
 
995
1145
  std::vector<QC> qcs;
996
1146
  {
997
1147
  int ij = 0;
998
1148
  for (int i = 0; i < n; i++) {
999
1149
  for (int j = 0; j < nprobe; j++) {
1000
- if (coarse_ids[ij] >= 0) {
1001
- qcs.push_back(QC{i, int(coarse_ids[ij]), int(j)});
1150
+ if (cq.ids[ij] >= 0) {
1151
+ qcs.push_back(QC{i, int(cq.ids[ij]), int(j)});
1002
1152
  }
1003
1153
  ij++;
1004
1154
  }
@@ -1036,14 +1186,13 @@ void IndexIVFFastScan::search_implem_14(
1036
1186
  ses.push_back(SE{i0_l, i1, list_size});
1037
1187
  i0_l = i1;
1038
1188
  }
1039
- uint64_t ttg3 = get_cy();
1040
- uint64_t compute_clusters_tt = ttg3 - ttg2;
1041
1189
 
1042
1190
  // function to handle the global heap
1191
+ bool is_max = !is_similarity_metric(metric_type);
1043
1192
  using HeapForIP = CMin<float, idx_t>;
1044
1193
  using HeapForL2 = CMax<float, idx_t>;
1045
1194
  auto init_result = [&](float* simi, idx_t* idxi) {
1046
- if (metric_type == METRIC_INNER_PRODUCT) {
1195
+ if (!is_max) {
1047
1196
  heap_heapify<HeapForIP>(k, simi, idxi);
1048
1197
  } else {
1049
1198
  heap_heapify<HeapForL2>(k, simi, idxi);
@@ -1054,7 +1203,7 @@ void IndexIVFFastScan::search_implem_14(
1054
1203
  const idx_t* local_idx,
1055
1204
  float* simi,
1056
1205
  idx_t* idxi) {
1057
- if (metric_type == METRIC_INNER_PRODUCT) {
1206
+ if (!is_max) {
1058
1207
  heap_addn<HeapForIP>(k, simi, idxi, local_dis, local_idx, k);
1059
1208
  } else {
1060
1209
  heap_addn<HeapForL2>(k, simi, idxi, local_dis, local_idx, k);
@@ -1062,14 +1211,12 @@ void IndexIVFFastScan::search_implem_14(
1062
1211
  };
1063
1212
 
1064
1213
  auto reorder_result = [&](float* simi, idx_t* idxi) {
1065
- if (metric_type == METRIC_INNER_PRODUCT) {
1214
+ if (!is_max) {
1066
1215
  heap_reorder<HeapForIP>(k, simi, idxi);
1067
1216
  } else {
1068
1217
  heap_reorder<HeapForL2>(k, simi, idxi);
1069
1218
  }
1070
1219
  };
1071
- uint64_t ttg4 = get_cy();
1072
- uint64_t fn_tt = ttg4 - ttg3;
1073
1220
 
1074
1221
  size_t ndis = 0;
1075
1222
  size_t nlist_visited = 0;
@@ -1081,22 +1228,9 @@ void IndexIVFFastScan::search_implem_14(
1081
1228
  std::vector<float> local_dis(k * n);
1082
1229
 
1083
1230
  // prepare the result handlers
1084
- std::unique_ptr<SIMDResultHandler<C, true>> handler;
1085
- AlignedTable<uint16_t> tmp_distances;
1086
-
1087
- using HeapHC = HeapHandler<C, true>;
1088
- using ReservoirHC = ReservoirHandler<C, true>;
1089
- using SingleResultHC = SingleResultHandler<C, true>;
1090
-
1091
- if (k == 1) {
1092
- handler.reset(new SingleResultHC(n, 0));
1093
- } else if (impl == 14) {
1094
- tmp_distances.resize(n * k);
1095
- handler.reset(
1096
- new HeapHC(n, tmp_distances.get(), local_idx.data(), k, 0));
1097
- } else if (impl == 15) {
1098
- handler.reset(new ReservoirHC(n, 0, k, 2 * k));
1099
- }
1231
+ std::unique_ptr<SIMDResultHandlerToFloat> handler(make_knn_handler(
1232
+ is_max, impl, n, k, local_dis.data(), local_idx.data(), sel));
1233
+ handler->begin(normalizers.get());
1100
1234
 
1101
1235
  int qbs2 = this->qbs2 ? this->qbs2 : 11;
1102
1236
 
@@ -1106,14 +1240,10 @@ void IndexIVFFastScan::search_implem_14(
1106
1240
  handler->dbias = tmp_bias.data();
1107
1241
  }
1108
1242
 
1109
- uint64_t ttg5 = get_cy();
1110
- uint64_t handler_tt = ttg5 - ttg4;
1111
-
1112
1243
  std::set<int> q_set;
1113
1244
  uint64_t t_copy_pack = 0, t_scan = 0;
1114
1245
  #pragma omp for schedule(dynamic)
1115
1246
  for (idx_t cluster = 0; cluster < ses.size(); cluster++) {
1116
- uint64_t tt0 = get_cy();
1117
1247
  size_t i0 = ses[cluster].start;
1118
1248
  size_t i1 = ses[cluster].end;
1119
1249
  size_t list_size = ses[cluster].list_size;
@@ -1153,28 +1283,21 @@ void IndexIVFFastScan::search_implem_14(
1153
1283
  handler->ntotal = list_size;
1154
1284
  handler->q_map = q_map.data();
1155
1285
  handler->id_map = ids.get();
1156
- uint64_t tt1 = get_cy();
1157
-
1158
- #define DISPATCH(classHC) \
1159
- if (dynamic_cast<classHC*>(handler.get())) { \
1160
- auto* res = static_cast<classHC*>(handler.get()); \
1161
- pq4_accumulate_loop_qbs( \
1162
- qbs, list_size, M2, codes.get(), LUT.get(), *res, scaler); \
1163
- }
1164
- DISPATCH(HeapHC)
1165
- else DISPATCH(ReservoirHC) else DISPATCH(SingleResultHC)
1166
1286
 
1167
- uint64_t tt2 = get_cy();
1168
- t_copy_pack += tt1 - tt0;
1169
- t_scan += tt2 - tt1;
1287
+ pq4_accumulate_loop_qbs(
1288
+ qbs,
1289
+ list_size,
1290
+ M2,
1291
+ codes.get(),
1292
+ LUT.get(),
1293
+ *handler.get(),
1294
+ scaler);
1170
1295
  }
1171
1296
 
1172
1297
  // labels is in-place for HeapHC
1173
- handler->to_flat_arrays(
1174
- local_dis.data(),
1175
- local_idx.data(),
1176
- skip & 16 ? nullptr : normalizers.get());
1298
+ handler->end();
1177
1299
 
1300
+ // merge per-thread results
1178
1301
  #pragma omp single
1179
1302
  {
1180
1303
  // we init the results as a heap
@@ -1197,12 +1320,6 @@ void IndexIVFFastScan::search_implem_14(
1197
1320
 
1198
1321
  IVFFastScan_stats.t_copy_pack += t_copy_pack;
1199
1322
  IVFFastScan_stats.t_scan += t_scan;
1200
-
1201
- if (auto* rh = dynamic_cast<ReservoirHC*>(handler.get())) {
1202
- for (int i = 0; i < 4; i++) {
1203
- IVFFastScan_stats.reservoir_times[i] += rh->times[i];
1204
- }
1205
- }
1206
1323
  }
1207
1324
  #pragma omp barrier
1208
1325
  #pragma omp single
@@ -1272,20 +1389,4 @@ void IndexIVFFastScan::reconstruct_orig_invlists() {
1272
1389
 
1273
1390
  IVFFastScanStats IVFFastScan_stats;
1274
1391
 
1275
- template void IndexIVFFastScan::search_dispatch_implem<true, NormTableScaler>(
1276
- idx_t n,
1277
- const float* x,
1278
- idx_t k,
1279
- float* distances,
1280
- idx_t* labels,
1281
- const NormTableScaler& scaler) const;
1282
-
1283
- template void IndexIVFFastScan::search_dispatch_implem<false, NormTableScaler>(
1284
- idx_t n,
1285
- const float* x,
1286
- idx_t k,
1287
- float* distances,
1288
- idx_t* labels,
1289
- const NormTableScaler& scaler) const;
1290
-
1291
1392
  } // namespace faiss