faiss 0.2.6 → 0.2.7
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/ext/faiss/extconf.rb +1 -1
- data/lib/faiss/version.rb +1 -1
- data/lib/faiss.rb +2 -2
- data/vendor/faiss/faiss/AutoTune.cpp +15 -4
- data/vendor/faiss/faiss/AutoTune.h +0 -1
- data/vendor/faiss/faiss/Clustering.cpp +1 -5
- data/vendor/faiss/faiss/Clustering.h +0 -2
- data/vendor/faiss/faiss/IVFlib.h +0 -2
- data/vendor/faiss/faiss/Index.h +1 -2
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +17 -3
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.h +10 -1
- data/vendor/faiss/faiss/IndexBinary.h +0 -1
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +2 -1
- data/vendor/faiss/faiss/IndexBinaryFlat.h +4 -0
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +1 -3
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +273 -48
- data/vendor/faiss/faiss/IndexBinaryIVF.h +18 -11
- data/vendor/faiss/faiss/IndexFastScan.cpp +13 -10
- data/vendor/faiss/faiss/IndexFastScan.h +5 -1
- data/vendor/faiss/faiss/IndexFlat.cpp +16 -3
- data/vendor/faiss/faiss/IndexFlat.h +1 -1
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +5 -0
- data/vendor/faiss/faiss/IndexFlatCodes.h +7 -2
- data/vendor/faiss/faiss/IndexHNSW.cpp +3 -6
- data/vendor/faiss/faiss/IndexHNSW.h +0 -1
- data/vendor/faiss/faiss/IndexIDMap.cpp +4 -4
- data/vendor/faiss/faiss/IndexIDMap.h +0 -2
- data/vendor/faiss/faiss/IndexIVF.cpp +155 -129
- data/vendor/faiss/faiss/IndexIVF.h +121 -61
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +2 -2
- data/vendor/faiss/faiss/IndexIVFFastScan.cpp +12 -11
- data/vendor/faiss/faiss/IndexIVFFastScan.h +6 -1
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +221 -165
- data/vendor/faiss/faiss/IndexIVFPQ.h +1 -0
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +6 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +0 -2
- data/vendor/faiss/faiss/IndexNNDescent.cpp +1 -2
- data/vendor/faiss/faiss/IndexNNDescent.h +0 -1
- data/vendor/faiss/faiss/IndexNSG.cpp +1 -2
- data/vendor/faiss/faiss/IndexPQ.cpp +7 -9
- data/vendor/faiss/faiss/IndexRefine.cpp +1 -1
- data/vendor/faiss/faiss/IndexReplicas.cpp +3 -4
- data/vendor/faiss/faiss/IndexReplicas.h +0 -1
- data/vendor/faiss/faiss/IndexRowwiseMinMax.cpp +8 -1
- data/vendor/faiss/faiss/IndexRowwiseMinMax.h +7 -0
- data/vendor/faiss/faiss/IndexShards.cpp +26 -109
- data/vendor/faiss/faiss/IndexShards.h +2 -3
- data/vendor/faiss/faiss/IndexShardsIVF.cpp +246 -0
- data/vendor/faiss/faiss/IndexShardsIVF.h +42 -0
- data/vendor/faiss/faiss/MetaIndexes.cpp +86 -0
- data/vendor/faiss/faiss/MetaIndexes.h +29 -0
- data/vendor/faiss/faiss/MetricType.h +14 -0
- data/vendor/faiss/faiss/VectorTransform.cpp +8 -10
- data/vendor/faiss/faiss/VectorTransform.h +1 -3
- data/vendor/faiss/faiss/clone_index.cpp +232 -18
- data/vendor/faiss/faiss/cppcontrib/SaDecodeKernels.h +25 -3
- data/vendor/faiss/faiss/cppcontrib/detail/CoarseBitType.h +7 -0
- data/vendor/faiss/faiss/cppcontrib/detail/UintReader.h +78 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-avx2-inl.h +20 -6
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-inl.h +7 -1
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-neon-inl.h +21 -7
- data/vendor/faiss/faiss/cppcontrib/sa_decode/MinMax-inl.h +7 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/MinMaxFP16-inl.h +7 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-avx2-inl.h +10 -3
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-inl.h +7 -1
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-neon-inl.h +11 -3
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +25 -2
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +76 -29
- data/vendor/faiss/faiss/gpu/GpuCloner.h +2 -2
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +14 -13
- data/vendor/faiss/faiss/gpu/GpuDistance.h +18 -6
- data/vendor/faiss/faiss/gpu/GpuIndex.h +23 -21
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +10 -10
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +11 -12
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +29 -50
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +3 -3
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +8 -8
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +4 -4
- data/vendor/faiss/faiss/gpu/impl/IndexUtils.h +2 -5
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +9 -7
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +4 -4
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper-inl.h +2 -2
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper.h +1 -1
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +55 -6
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +20 -6
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +95 -25
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +67 -16
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +4 -4
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +7 -7
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +4 -4
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +1 -1
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +6 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +0 -7
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +9 -9
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +1 -1
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +2 -7
- data/vendor/faiss/faiss/impl/CodePacker.cpp +67 -0
- data/vendor/faiss/faiss/impl/CodePacker.h +71 -0
- data/vendor/faiss/faiss/impl/DistanceComputer.h +0 -2
- data/vendor/faiss/faiss/impl/HNSW.cpp +3 -7
- data/vendor/faiss/faiss/impl/HNSW.h +6 -9
- data/vendor/faiss/faiss/impl/IDSelector.cpp +1 -1
- data/vendor/faiss/faiss/impl/IDSelector.h +39 -1
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +62 -51
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +11 -12
- data/vendor/faiss/faiss/impl/NNDescent.cpp +3 -9
- data/vendor/faiss/faiss/impl/NNDescent.h +10 -10
- data/vendor/faiss/faiss/impl/NSG.cpp +1 -6
- data/vendor/faiss/faiss/impl/NSG.h +4 -7
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +1 -15
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +11 -10
- data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.cpp +0 -7
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +25 -12
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +2 -4
- data/vendor/faiss/faiss/impl/Quantizer.h +6 -3
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +796 -174
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +16 -8
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +3 -5
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +4 -4
- data/vendor/faiss/faiss/impl/ThreadedIndex-inl.h +3 -3
- data/vendor/faiss/faiss/impl/ThreadedIndex.h +4 -4
- data/vendor/faiss/faiss/impl/code_distance/code_distance-avx2.h +291 -0
- data/vendor/faiss/faiss/impl/code_distance/code_distance-generic.h +74 -0
- data/vendor/faiss/faiss/impl/code_distance/code_distance.h +123 -0
- data/vendor/faiss/faiss/impl/code_distance/code_distance_avx512.h +102 -0
- data/vendor/faiss/faiss/impl/index_read.cpp +13 -10
- data/vendor/faiss/faiss/impl/index_write.cpp +3 -4
- data/vendor/faiss/faiss/impl/kmeans1d.cpp +0 -1
- data/vendor/faiss/faiss/impl/kmeans1d.h +3 -3
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +1 -1
- data/vendor/faiss/faiss/impl/platform_macros.h +61 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +48 -4
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +18 -4
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +2 -2
- data/vendor/faiss/faiss/index_factory.cpp +8 -10
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +29 -12
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +8 -2
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +1 -1
- data/vendor/faiss/faiss/invlists/DirectMap.h +2 -4
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +118 -18
- data/vendor/faiss/faiss/invlists/InvertedLists.h +44 -4
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +3 -3
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +1 -1
- data/vendor/faiss/faiss/python/python_callbacks.cpp +1 -1
- data/vendor/faiss/faiss/python/python_callbacks.h +1 -1
- data/vendor/faiss/faiss/utils/AlignedTable.h +3 -1
- data/vendor/faiss/faiss/utils/Heap.cpp +139 -3
- data/vendor/faiss/faiss/utils/Heap.h +35 -1
- data/vendor/faiss/faiss/utils/approx_topk/approx_topk.h +84 -0
- data/vendor/faiss/faiss/utils/approx_topk/avx2-inl.h +196 -0
- data/vendor/faiss/faiss/utils/approx_topk/generic.h +138 -0
- data/vendor/faiss/faiss/utils/approx_topk/mode.h +34 -0
- data/vendor/faiss/faiss/utils/approx_topk_hamming/approx_topk_hamming.h +367 -0
- data/vendor/faiss/faiss/utils/distances.cpp +61 -7
- data/vendor/faiss/faiss/utils/distances.h +11 -0
- data/vendor/faiss/faiss/utils/distances_fused/avx512.cpp +346 -0
- data/vendor/faiss/faiss/utils/distances_fused/avx512.h +36 -0
- data/vendor/faiss/faiss/utils/distances_fused/distances_fused.cpp +42 -0
- data/vendor/faiss/faiss/utils/distances_fused/distances_fused.h +40 -0
- data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.cpp +352 -0
- data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.h +32 -0
- data/vendor/faiss/faiss/utils/distances_simd.cpp +515 -327
- data/vendor/faiss/faiss/utils/extra_distances-inl.h +17 -1
- data/vendor/faiss/faiss/utils/extra_distances.cpp +37 -8
- data/vendor/faiss/faiss/utils/extra_distances.h +2 -1
- data/vendor/faiss/faiss/utils/fp16-fp16c.h +7 -0
- data/vendor/faiss/faiss/utils/fp16-inl.h +7 -0
- data/vendor/faiss/faiss/utils/fp16.h +7 -0
- data/vendor/faiss/faiss/utils/hamming-inl.h +0 -456
- data/vendor/faiss/faiss/utils/hamming.cpp +104 -120
- data/vendor/faiss/faiss/utils/hamming.h +21 -10
- data/vendor/faiss/faiss/utils/hamming_distance/avx2-inl.h +535 -0
- data/vendor/faiss/faiss/utils/hamming_distance/common.h +48 -0
- data/vendor/faiss/faiss/utils/hamming_distance/generic-inl.h +519 -0
- data/vendor/faiss/faiss/utils/hamming_distance/hamdis-inl.h +26 -0
- data/vendor/faiss/faiss/utils/hamming_distance/neon-inl.h +614 -0
- data/vendor/faiss/faiss/utils/partitioning.cpp +21 -25
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +344 -3
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +390 -0
- data/vendor/faiss/faiss/utils/simdlib_neon.h +655 -130
- data/vendor/faiss/faiss/utils/sorting.cpp +692 -0
- data/vendor/faiss/faiss/utils/sorting.h +71 -0
- data/vendor/faiss/faiss/utils/transpose/transpose-avx2-inl.h +165 -0
- data/vendor/faiss/faiss/utils/utils.cpp +4 -176
- data/vendor/faiss/faiss/utils/utils.h +2 -9
- metadata +29 -3
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.cpp +0 -26
@@ -0,0 +1,352 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#include <faiss/utils/distances_fused/simdlib_based.h>
|
11
|
+
|
12
|
+
#if defined(__AVX2__) || defined(__aarch64__)
|
13
|
+
|
14
|
+
#include <faiss/utils/simdlib.h>
|
15
|
+
|
16
|
+
#if defined(__AVX2__)
|
17
|
+
#include <immintrin.h>
|
18
|
+
#endif
|
19
|
+
|
20
|
+
namespace faiss {
|
21
|
+
|
22
|
+
namespace {
|
23
|
+
|
24
|
+
// It makes sense to like to overload certain cases because the further
|
25
|
+
// kernels are in need of registers. So, let's tell compiler
|
26
|
+
// not to waste registers on a bit faster code, if needed.
|
27
|
+
template <size_t DIM>
|
28
|
+
float l2_sqr(const float* const x) {
|
29
|
+
// compiler should be smart enough to handle that
|
30
|
+
float output = x[0] * x[0];
|
31
|
+
for (size_t i = 1; i < DIM; i++) {
|
32
|
+
output += x[i] * x[i];
|
33
|
+
}
|
34
|
+
|
35
|
+
return output;
|
36
|
+
}
|
37
|
+
|
38
|
+
template <size_t DIM>
|
39
|
+
float dot_product(
|
40
|
+
const float* const __restrict x,
|
41
|
+
const float* const __restrict y) {
|
42
|
+
// compiler should be smart enough to handle that
|
43
|
+
float output = x[0] * y[0];
|
44
|
+
for (size_t i = 1; i < DIM; i++) {
|
45
|
+
output += x[i] * y[i];
|
46
|
+
}
|
47
|
+
|
48
|
+
return output;
|
49
|
+
}
|
50
|
+
|
51
|
+
// The kernel for low dimensionality vectors.
|
52
|
+
// Finds the closest one from y for every given NX_POINTS_PER_LOOP points from x
|
53
|
+
//
|
54
|
+
// DIM is the dimensionality of the data
|
55
|
+
// NX_POINTS_PER_LOOP is the number of x points that get processed
|
56
|
+
// simultaneously.
|
57
|
+
// NY_POINTS_PER_LOOP is the number of y points that get processed
|
58
|
+
// simultaneously.
|
59
|
+
template <size_t DIM, size_t NX_POINTS_PER_LOOP, size_t NY_POINTS_PER_LOOP>
|
60
|
+
void kernel(
|
61
|
+
const float* const __restrict x,
|
62
|
+
const float* const __restrict y,
|
63
|
+
const float* const __restrict y_transposed,
|
64
|
+
const size_t ny,
|
65
|
+
SingleBestResultHandler<CMax<float, int64_t>>& res,
|
66
|
+
const float* __restrict y_norms,
|
67
|
+
const size_t i) {
|
68
|
+
const size_t ny_p =
|
69
|
+
(ny / (8 * NY_POINTS_PER_LOOP)) * (8 * NY_POINTS_PER_LOOP);
|
70
|
+
|
71
|
+
// compute
|
72
|
+
const float* const __restrict xd_0 = x + i * DIM;
|
73
|
+
|
74
|
+
// prefetch the next point
|
75
|
+
#if defined(__AVX2__)
|
76
|
+
_mm_prefetch(xd_0 + DIM * sizeof(float), _MM_HINT_NTA);
|
77
|
+
#endif
|
78
|
+
|
79
|
+
// load a single point from x
|
80
|
+
// load -2 * value
|
81
|
+
simd8float32 x_i[NX_POINTS_PER_LOOP][DIM];
|
82
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
83
|
+
for (size_t dd = 0; dd < DIM; dd++) {
|
84
|
+
x_i[nx_k][dd] = simd8float32(-2 * *(xd_0 + nx_k * DIM + dd));
|
85
|
+
}
|
86
|
+
}
|
87
|
+
|
88
|
+
// compute x_norm
|
89
|
+
float x_norm_i[NX_POINTS_PER_LOOP];
|
90
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
91
|
+
x_norm_i[nx_k] = l2_sqr<DIM>(xd_0 + nx_k * DIM);
|
92
|
+
}
|
93
|
+
|
94
|
+
// distances and indices
|
95
|
+
simd8float32 min_distances_i[NX_POINTS_PER_LOOP];
|
96
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
97
|
+
min_distances_i[nx_k] =
|
98
|
+
simd8float32(res.dis_tab[i + nx_k] - x_norm_i[nx_k]);
|
99
|
+
}
|
100
|
+
|
101
|
+
simd8uint32 min_indices_i[NX_POINTS_PER_LOOP];
|
102
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
103
|
+
min_indices_i[nx_k] = simd8uint32((uint32_t)0);
|
104
|
+
}
|
105
|
+
|
106
|
+
//
|
107
|
+
simd8uint32 current_indices = simd8uint32(0, 1, 2, 3, 4, 5, 6, 7);
|
108
|
+
const simd8uint32 indices_delta = simd8uint32(8);
|
109
|
+
|
110
|
+
// main loop
|
111
|
+
size_t j = 0;
|
112
|
+
for (; j < ny_p; j += NY_POINTS_PER_LOOP * 8) {
|
113
|
+
// compute dot products for NX_POINTS from x and NY_POINTS from y
|
114
|
+
// technically, we're multiplying -2x and y
|
115
|
+
simd8float32 dp_i[NX_POINTS_PER_LOOP][NY_POINTS_PER_LOOP];
|
116
|
+
|
117
|
+
// DIM 0 that uses MUL
|
118
|
+
for (size_t ny_k = 0; ny_k < NY_POINTS_PER_LOOP; ny_k++) {
|
119
|
+
simd8float32 y_i =
|
120
|
+
simd8float32(y_transposed + j + ny_k * 8 + ny * 0);
|
121
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
122
|
+
dp_i[nx_k][ny_k] = x_i[nx_k][0] * y_i;
|
123
|
+
}
|
124
|
+
}
|
125
|
+
|
126
|
+
// other DIMs that use FMA
|
127
|
+
for (size_t dd = 1; dd < DIM; dd++) {
|
128
|
+
for (size_t ny_k = 0; ny_k < NY_POINTS_PER_LOOP; ny_k++) {
|
129
|
+
simd8float32 y_i =
|
130
|
+
simd8float32(y_transposed + j + ny_k * 8 + ny * dd);
|
131
|
+
|
132
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
133
|
+
dp_i[nx_k][ny_k] =
|
134
|
+
fmadd(x_i[nx_k][dd], y_i, dp_i[nx_k][ny_k]);
|
135
|
+
}
|
136
|
+
}
|
137
|
+
}
|
138
|
+
|
139
|
+
// compute y^2 + (-2x,y)
|
140
|
+
for (size_t ny_k = 0; ny_k < NY_POINTS_PER_LOOP; ny_k++) {
|
141
|
+
simd8float32 y_l2_sqr = simd8float32(y_norms + j + ny_k * 8);
|
142
|
+
|
143
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
144
|
+
dp_i[nx_k][ny_k] = dp_i[nx_k][ny_k] + y_l2_sqr;
|
145
|
+
}
|
146
|
+
}
|
147
|
+
|
148
|
+
// do the comparisons and alter the min indices
|
149
|
+
for (size_t ny_k = 0; ny_k < NY_POINTS_PER_LOOP; ny_k++) {
|
150
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
151
|
+
// cmpps
|
152
|
+
cmplt_and_blend_inplace(
|
153
|
+
dp_i[nx_k][ny_k],
|
154
|
+
current_indices,
|
155
|
+
min_distances_i[nx_k],
|
156
|
+
min_indices_i[nx_k]);
|
157
|
+
}
|
158
|
+
|
159
|
+
current_indices = current_indices + indices_delta;
|
160
|
+
}
|
161
|
+
}
|
162
|
+
|
163
|
+
// dump values and find the minimum distance / minimum index
|
164
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
165
|
+
float min_distances_scalar[8];
|
166
|
+
uint32_t min_indices_scalar[8];
|
167
|
+
|
168
|
+
min_distances_i[nx_k].storeu(min_distances_scalar);
|
169
|
+
min_indices_i[nx_k].storeu(min_indices_scalar);
|
170
|
+
|
171
|
+
float current_min_distance = res.dis_tab[i + nx_k];
|
172
|
+
uint32_t current_min_index = res.ids_tab[i + nx_k];
|
173
|
+
|
174
|
+
// This unusual comparison is needed to maintain the behavior
|
175
|
+
// of the original implementation: if two indices are
|
176
|
+
// represented with equal distance values, then
|
177
|
+
// the index with the min value is returned.
|
178
|
+
for (size_t jv = 0; jv < 8; jv++) {
|
179
|
+
// add missing x_norms[i]
|
180
|
+
float distance_candidate =
|
181
|
+
min_distances_scalar[jv] + x_norm_i[nx_k];
|
182
|
+
|
183
|
+
// negative values can occur for identical vectors
|
184
|
+
// due to roundoff errors.
|
185
|
+
if (distance_candidate < 0) {
|
186
|
+
distance_candidate = 0;
|
187
|
+
}
|
188
|
+
|
189
|
+
const int64_t index_candidate = min_indices_scalar[jv];
|
190
|
+
|
191
|
+
if (current_min_distance > distance_candidate) {
|
192
|
+
current_min_distance = distance_candidate;
|
193
|
+
current_min_index = index_candidate;
|
194
|
+
} else if (
|
195
|
+
current_min_distance == distance_candidate &&
|
196
|
+
current_min_index > index_candidate) {
|
197
|
+
current_min_index = index_candidate;
|
198
|
+
}
|
199
|
+
}
|
200
|
+
|
201
|
+
// process leftovers
|
202
|
+
for (size_t j0 = j; j0 < ny; j0++) {
|
203
|
+
const float dp =
|
204
|
+
dot_product<DIM>(x + (i + nx_k) * DIM, y + j0 * DIM);
|
205
|
+
float dis = x_norm_i[nx_k] + y_norms[j0] - 2 * dp;
|
206
|
+
// negative values can occur for identical vectors
|
207
|
+
// due to roundoff errors.
|
208
|
+
if (dis < 0) {
|
209
|
+
dis = 0;
|
210
|
+
}
|
211
|
+
|
212
|
+
if (current_min_distance > dis) {
|
213
|
+
current_min_distance = dis;
|
214
|
+
current_min_index = j0;
|
215
|
+
}
|
216
|
+
}
|
217
|
+
|
218
|
+
// done
|
219
|
+
res.add_result(i + nx_k, current_min_distance, current_min_index);
|
220
|
+
}
|
221
|
+
}
|
222
|
+
|
223
|
+
template <size_t DIM, size_t NX_POINTS_PER_LOOP, size_t NY_POINTS_PER_LOOP>
|
224
|
+
void exhaustive_L2sqr_fused_cmax(
|
225
|
+
const float* const __restrict x,
|
226
|
+
const float* const __restrict y,
|
227
|
+
size_t nx,
|
228
|
+
size_t ny,
|
229
|
+
SingleBestResultHandler<CMax<float, int64_t>>& res,
|
230
|
+
const float* __restrict y_norms) {
|
231
|
+
// BLAS does not like empty matrices
|
232
|
+
if (nx == 0 || ny == 0) {
|
233
|
+
return;
|
234
|
+
}
|
235
|
+
|
236
|
+
// compute norms for y
|
237
|
+
std::unique_ptr<float[]> del2;
|
238
|
+
if (!y_norms) {
|
239
|
+
float* y_norms2 = new float[ny];
|
240
|
+
del2.reset(y_norms2);
|
241
|
+
|
242
|
+
for (size_t i = 0; i < ny; i++) {
|
243
|
+
y_norms2[i] = l2_sqr<DIM>(y + i * DIM);
|
244
|
+
}
|
245
|
+
|
246
|
+
y_norms = y_norms2;
|
247
|
+
}
|
248
|
+
|
249
|
+
// initialize res
|
250
|
+
res.begin_multiple(0, nx);
|
251
|
+
|
252
|
+
// transpose y
|
253
|
+
std::vector<float> y_transposed(DIM * ny);
|
254
|
+
for (size_t j = 0; j < DIM; j++) {
|
255
|
+
for (size_t i = 0; i < ny; i++) {
|
256
|
+
y_transposed[j * ny + i] = y[j + i * DIM];
|
257
|
+
}
|
258
|
+
}
|
259
|
+
|
260
|
+
const size_t nx_p = (nx / NX_POINTS_PER_LOOP) * NX_POINTS_PER_LOOP;
|
261
|
+
// the main loop.
|
262
|
+
#pragma omp parallel for schedule(dynamic)
|
263
|
+
for (size_t i = 0; i < nx_p; i += NX_POINTS_PER_LOOP) {
|
264
|
+
kernel<DIM, NX_POINTS_PER_LOOP, NY_POINTS_PER_LOOP>(
|
265
|
+
x, y, y_transposed.data(), ny, res, y_norms, i);
|
266
|
+
}
|
267
|
+
|
268
|
+
for (size_t i = nx_p; i < nx; i++) {
|
269
|
+
kernel<DIM, 1, NY_POINTS_PER_LOOP>(
|
270
|
+
x, y, y_transposed.data(), ny, res, y_norms, i);
|
271
|
+
}
|
272
|
+
|
273
|
+
// Does nothing for SingleBestResultHandler, but
|
274
|
+
// keeping the call for the consistency.
|
275
|
+
res.end_multiple();
|
276
|
+
InterruptCallback::check();
|
277
|
+
}
|
278
|
+
|
279
|
+
} // namespace
|
280
|
+
|
281
|
+
bool exhaustive_L2sqr_fused_cmax_simdlib(
|
282
|
+
const float* x,
|
283
|
+
const float* y,
|
284
|
+
size_t d,
|
285
|
+
size_t nx,
|
286
|
+
size_t ny,
|
287
|
+
SingleBestResultHandler<CMax<float, int64_t>>& res,
|
288
|
+
const float* y_norms) {
|
289
|
+
// Process only cases with certain dimensionalities.
|
290
|
+
// An acceptable dimensionality value is limited by the number of
|
291
|
+
// available registers.
|
292
|
+
|
293
|
+
#define DISPATCH(DIM, NX_POINTS_PER_LOOP, NY_POINTS_PER_LOOP) \
|
294
|
+
case DIM: { \
|
295
|
+
exhaustive_L2sqr_fused_cmax< \
|
296
|
+
DIM, \
|
297
|
+
NX_POINTS_PER_LOOP, \
|
298
|
+
NY_POINTS_PER_LOOP>(x, y, nx, ny, res, y_norms); \
|
299
|
+
return true; \
|
300
|
+
}
|
301
|
+
|
302
|
+
// faiss/benchs/bench_quantizer.py was used for benchmarking
|
303
|
+
// and tuning 2nd and 3rd parameters values.
|
304
|
+
// Basically, the larger the values for 2nd and 3rd parameters are,
|
305
|
+
// the faster the execution is, but the more SIMD registers are needed.
|
306
|
+
// This can be compensated with L1 cache, this is why this
|
307
|
+
// code might operate with more registers than available
|
308
|
+
// because of concurrent ports operations for ALU and LOAD/STORE.
|
309
|
+
|
310
|
+
#if defined(__AVX2__)
|
311
|
+
// It was possible to tweak these parameters on x64 machine.
|
312
|
+
switch (d) {
|
313
|
+
DISPATCH(1, 6, 1)
|
314
|
+
DISPATCH(2, 6, 1)
|
315
|
+
DISPATCH(3, 6, 1)
|
316
|
+
DISPATCH(4, 8, 1)
|
317
|
+
DISPATCH(5, 8, 1)
|
318
|
+
DISPATCH(6, 8, 1)
|
319
|
+
DISPATCH(7, 8, 1)
|
320
|
+
DISPATCH(8, 8, 1)
|
321
|
+
DISPATCH(9, 8, 1)
|
322
|
+
DISPATCH(10, 8, 1)
|
323
|
+
DISPATCH(11, 8, 1)
|
324
|
+
DISPATCH(12, 8, 1)
|
325
|
+
DISPATCH(13, 6, 1)
|
326
|
+
DISPATCH(14, 6, 1)
|
327
|
+
DISPATCH(15, 6, 1)
|
328
|
+
DISPATCH(16, 6, 1)
|
329
|
+
}
|
330
|
+
#else
|
331
|
+
// Please feel free to alter 2nd and 3rd parameters if you have access
|
332
|
+
// to ARM-based machine so that you are able to benchmark this code.
|
333
|
+
// Or to enable other dimensions.
|
334
|
+
switch (d) {
|
335
|
+
DISPATCH(1, 4, 2)
|
336
|
+
DISPATCH(2, 2, 2)
|
337
|
+
DISPATCH(3, 2, 2)
|
338
|
+
DISPATCH(4, 2, 1)
|
339
|
+
DISPATCH(5, 1, 1)
|
340
|
+
DISPATCH(6, 1, 1)
|
341
|
+
DISPATCH(7, 1, 1)
|
342
|
+
DISPATCH(8, 1, 1)
|
343
|
+
}
|
344
|
+
#endif
|
345
|
+
|
346
|
+
return false;
|
347
|
+
#undef DISPATCH
|
348
|
+
}
|
349
|
+
|
350
|
+
} // namespace faiss
|
351
|
+
|
352
|
+
#endif
|
@@ -0,0 +1,32 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
#pragma once
|
9
|
+
|
10
|
+
#include <faiss/impl/ResultHandler.h>
|
11
|
+
#include <faiss/impl/platform_macros.h>
|
12
|
+
|
13
|
+
#include <faiss/utils/Heap.h>
|
14
|
+
|
15
|
+
#if defined(__AVX2__) || defined(__aarch64__)
|
16
|
+
|
17
|
+
namespace faiss {
|
18
|
+
|
19
|
+
// Returns true if the fused kernel is available and the data was processed.
|
20
|
+
// Returns false if the fused kernel is not available.
|
21
|
+
bool exhaustive_L2sqr_fused_cmax_simdlib(
|
22
|
+
const float* x,
|
23
|
+
const float* y,
|
24
|
+
size_t d,
|
25
|
+
size_t nx,
|
26
|
+
size_t ny,
|
27
|
+
SingleBestResultHandler<CMax<float, int64_t>>& res,
|
28
|
+
const float* y_norms);
|
29
|
+
|
30
|
+
} // namespace faiss
|
31
|
+
|
32
|
+
#endif
|