faiss 0.2.6 → 0.2.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/ext/faiss/extconf.rb +1 -1
- data/lib/faiss/version.rb +1 -1
- data/lib/faiss.rb +2 -2
- data/vendor/faiss/faiss/AutoTune.cpp +15 -4
- data/vendor/faiss/faiss/AutoTune.h +0 -1
- data/vendor/faiss/faiss/Clustering.cpp +1 -5
- data/vendor/faiss/faiss/Clustering.h +0 -2
- data/vendor/faiss/faiss/IVFlib.h +0 -2
- data/vendor/faiss/faiss/Index.h +1 -2
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +17 -3
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.h +10 -1
- data/vendor/faiss/faiss/IndexBinary.h +0 -1
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +2 -1
- data/vendor/faiss/faiss/IndexBinaryFlat.h +4 -0
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +1 -3
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +273 -48
- data/vendor/faiss/faiss/IndexBinaryIVF.h +18 -11
- data/vendor/faiss/faiss/IndexFastScan.cpp +13 -10
- data/vendor/faiss/faiss/IndexFastScan.h +5 -1
- data/vendor/faiss/faiss/IndexFlat.cpp +16 -3
- data/vendor/faiss/faiss/IndexFlat.h +1 -1
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +5 -0
- data/vendor/faiss/faiss/IndexFlatCodes.h +7 -2
- data/vendor/faiss/faiss/IndexHNSW.cpp +3 -6
- data/vendor/faiss/faiss/IndexHNSW.h +0 -1
- data/vendor/faiss/faiss/IndexIDMap.cpp +4 -4
- data/vendor/faiss/faiss/IndexIDMap.h +0 -2
- data/vendor/faiss/faiss/IndexIVF.cpp +155 -129
- data/vendor/faiss/faiss/IndexIVF.h +121 -61
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +2 -2
- data/vendor/faiss/faiss/IndexIVFFastScan.cpp +12 -11
- data/vendor/faiss/faiss/IndexIVFFastScan.h +6 -1
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +221 -165
- data/vendor/faiss/faiss/IndexIVFPQ.h +1 -0
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +6 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +0 -2
- data/vendor/faiss/faiss/IndexNNDescent.cpp +1 -2
- data/vendor/faiss/faiss/IndexNNDescent.h +0 -1
- data/vendor/faiss/faiss/IndexNSG.cpp +1 -2
- data/vendor/faiss/faiss/IndexPQ.cpp +7 -9
- data/vendor/faiss/faiss/IndexRefine.cpp +1 -1
- data/vendor/faiss/faiss/IndexReplicas.cpp +3 -4
- data/vendor/faiss/faiss/IndexReplicas.h +0 -1
- data/vendor/faiss/faiss/IndexRowwiseMinMax.cpp +8 -1
- data/vendor/faiss/faiss/IndexRowwiseMinMax.h +7 -0
- data/vendor/faiss/faiss/IndexShards.cpp +26 -109
- data/vendor/faiss/faiss/IndexShards.h +2 -3
- data/vendor/faiss/faiss/IndexShardsIVF.cpp +246 -0
- data/vendor/faiss/faiss/IndexShardsIVF.h +42 -0
- data/vendor/faiss/faiss/MetaIndexes.cpp +86 -0
- data/vendor/faiss/faiss/MetaIndexes.h +29 -0
- data/vendor/faiss/faiss/MetricType.h +14 -0
- data/vendor/faiss/faiss/VectorTransform.cpp +8 -10
- data/vendor/faiss/faiss/VectorTransform.h +1 -3
- data/vendor/faiss/faiss/clone_index.cpp +232 -18
- data/vendor/faiss/faiss/cppcontrib/SaDecodeKernels.h +25 -3
- data/vendor/faiss/faiss/cppcontrib/detail/CoarseBitType.h +7 -0
- data/vendor/faiss/faiss/cppcontrib/detail/UintReader.h +78 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-avx2-inl.h +20 -6
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-inl.h +7 -1
- data/vendor/faiss/faiss/cppcontrib/sa_decode/Level2-neon-inl.h +21 -7
- data/vendor/faiss/faiss/cppcontrib/sa_decode/MinMax-inl.h +7 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/MinMaxFP16-inl.h +7 -0
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-avx2-inl.h +10 -3
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-inl.h +7 -1
- data/vendor/faiss/faiss/cppcontrib/sa_decode/PQ-neon-inl.h +11 -3
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +25 -2
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +76 -29
- data/vendor/faiss/faiss/gpu/GpuCloner.h +2 -2
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +14 -13
- data/vendor/faiss/faiss/gpu/GpuDistance.h +18 -6
- data/vendor/faiss/faiss/gpu/GpuIndex.h +23 -21
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +10 -10
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +11 -12
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +29 -50
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +3 -3
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +8 -8
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +4 -4
- data/vendor/faiss/faiss/gpu/impl/IndexUtils.h +2 -5
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +9 -7
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +4 -4
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper-inl.h +2 -2
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper.h +1 -1
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +55 -6
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +20 -6
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +95 -25
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +67 -16
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +4 -4
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +7 -7
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +4 -4
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +1 -1
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +6 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +0 -7
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +9 -9
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +1 -1
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +2 -7
- data/vendor/faiss/faiss/impl/CodePacker.cpp +67 -0
- data/vendor/faiss/faiss/impl/CodePacker.h +71 -0
- data/vendor/faiss/faiss/impl/DistanceComputer.h +0 -2
- data/vendor/faiss/faiss/impl/HNSW.cpp +3 -7
- data/vendor/faiss/faiss/impl/HNSW.h +6 -9
- data/vendor/faiss/faiss/impl/IDSelector.cpp +1 -1
- data/vendor/faiss/faiss/impl/IDSelector.h +39 -1
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +62 -51
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +11 -12
- data/vendor/faiss/faiss/impl/NNDescent.cpp +3 -9
- data/vendor/faiss/faiss/impl/NNDescent.h +10 -10
- data/vendor/faiss/faiss/impl/NSG.cpp +1 -6
- data/vendor/faiss/faiss/impl/NSG.h +4 -7
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +1 -15
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +11 -10
- data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.cpp +0 -7
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +25 -12
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +2 -4
- data/vendor/faiss/faiss/impl/Quantizer.h +6 -3
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +796 -174
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +16 -8
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +3 -5
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +4 -4
- data/vendor/faiss/faiss/impl/ThreadedIndex-inl.h +3 -3
- data/vendor/faiss/faiss/impl/ThreadedIndex.h +4 -4
- data/vendor/faiss/faiss/impl/code_distance/code_distance-avx2.h +291 -0
- data/vendor/faiss/faiss/impl/code_distance/code_distance-generic.h +74 -0
- data/vendor/faiss/faiss/impl/code_distance/code_distance.h +123 -0
- data/vendor/faiss/faiss/impl/code_distance/code_distance_avx512.h +102 -0
- data/vendor/faiss/faiss/impl/index_read.cpp +13 -10
- data/vendor/faiss/faiss/impl/index_write.cpp +3 -4
- data/vendor/faiss/faiss/impl/kmeans1d.cpp +0 -1
- data/vendor/faiss/faiss/impl/kmeans1d.h +3 -3
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +1 -1
- data/vendor/faiss/faiss/impl/platform_macros.h +61 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +48 -4
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +18 -4
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +2 -2
- data/vendor/faiss/faiss/index_factory.cpp +8 -10
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +29 -12
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +8 -2
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +1 -1
- data/vendor/faiss/faiss/invlists/DirectMap.h +2 -4
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +118 -18
- data/vendor/faiss/faiss/invlists/InvertedLists.h +44 -4
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +3 -3
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +1 -1
- data/vendor/faiss/faiss/python/python_callbacks.cpp +1 -1
- data/vendor/faiss/faiss/python/python_callbacks.h +1 -1
- data/vendor/faiss/faiss/utils/AlignedTable.h +3 -1
- data/vendor/faiss/faiss/utils/Heap.cpp +139 -3
- data/vendor/faiss/faiss/utils/Heap.h +35 -1
- data/vendor/faiss/faiss/utils/approx_topk/approx_topk.h +84 -0
- data/vendor/faiss/faiss/utils/approx_topk/avx2-inl.h +196 -0
- data/vendor/faiss/faiss/utils/approx_topk/generic.h +138 -0
- data/vendor/faiss/faiss/utils/approx_topk/mode.h +34 -0
- data/vendor/faiss/faiss/utils/approx_topk_hamming/approx_topk_hamming.h +367 -0
- data/vendor/faiss/faiss/utils/distances.cpp +61 -7
- data/vendor/faiss/faiss/utils/distances.h +11 -0
- data/vendor/faiss/faiss/utils/distances_fused/avx512.cpp +346 -0
- data/vendor/faiss/faiss/utils/distances_fused/avx512.h +36 -0
- data/vendor/faiss/faiss/utils/distances_fused/distances_fused.cpp +42 -0
- data/vendor/faiss/faiss/utils/distances_fused/distances_fused.h +40 -0
- data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.cpp +352 -0
- data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.h +32 -0
- data/vendor/faiss/faiss/utils/distances_simd.cpp +515 -327
- data/vendor/faiss/faiss/utils/extra_distances-inl.h +17 -1
- data/vendor/faiss/faiss/utils/extra_distances.cpp +37 -8
- data/vendor/faiss/faiss/utils/extra_distances.h +2 -1
- data/vendor/faiss/faiss/utils/fp16-fp16c.h +7 -0
- data/vendor/faiss/faiss/utils/fp16-inl.h +7 -0
- data/vendor/faiss/faiss/utils/fp16.h +7 -0
- data/vendor/faiss/faiss/utils/hamming-inl.h +0 -456
- data/vendor/faiss/faiss/utils/hamming.cpp +104 -120
- data/vendor/faiss/faiss/utils/hamming.h +21 -10
- data/vendor/faiss/faiss/utils/hamming_distance/avx2-inl.h +535 -0
- data/vendor/faiss/faiss/utils/hamming_distance/common.h +48 -0
- data/vendor/faiss/faiss/utils/hamming_distance/generic-inl.h +519 -0
- data/vendor/faiss/faiss/utils/hamming_distance/hamdis-inl.h +26 -0
- data/vendor/faiss/faiss/utils/hamming_distance/neon-inl.h +614 -0
- data/vendor/faiss/faiss/utils/partitioning.cpp +21 -25
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +344 -3
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +390 -0
- data/vendor/faiss/faiss/utils/simdlib_neon.h +655 -130
- data/vendor/faiss/faiss/utils/sorting.cpp +692 -0
- data/vendor/faiss/faiss/utils/sorting.h +71 -0
- data/vendor/faiss/faiss/utils/transpose/transpose-avx2-inl.h +165 -0
- data/vendor/faiss/faiss/utils/utils.cpp +4 -176
- data/vendor/faiss/faiss/utils/utils.h +2 -9
- metadata +29 -3
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.cpp +0 -26
@@ -0,0 +1,346 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#include <faiss/utils/distances_fused/avx512.h>
|
11
|
+
|
12
|
+
#ifdef __AVX512__
|
13
|
+
|
14
|
+
#include <immintrin.h>
|
15
|
+
|
16
|
+
namespace faiss {
|
17
|
+
|
18
|
+
namespace {
|
19
|
+
|
20
|
+
// It makes sense to like to overload certain cases because the further
|
21
|
+
// kernels are in need of AVX512 registers. So, let's tell compiler
|
22
|
+
// not to waste registers on a bit faster code, if needed.
|
23
|
+
template <size_t DIM>
|
24
|
+
float l2_sqr(const float* const x) {
|
25
|
+
// compiler should be smart enough to handle that
|
26
|
+
float output = x[0] * x[0];
|
27
|
+
for (size_t i = 1; i < DIM; i++) {
|
28
|
+
output += x[i] * x[i];
|
29
|
+
}
|
30
|
+
|
31
|
+
return output;
|
32
|
+
}
|
33
|
+
|
34
|
+
template <>
|
35
|
+
float l2_sqr<4>(const float* const x) {
|
36
|
+
__m128 v = _mm_loadu_ps(x);
|
37
|
+
__m128 v2 = _mm_mul_ps(v, v);
|
38
|
+
v2 = _mm_hadd_ps(v2, v2);
|
39
|
+
v2 = _mm_hadd_ps(v2, v2);
|
40
|
+
|
41
|
+
return _mm_cvtss_f32(v2);
|
42
|
+
}
|
43
|
+
|
44
|
+
template <size_t DIM>
|
45
|
+
float dot_product(
|
46
|
+
const float* const __restrict x,
|
47
|
+
const float* const __restrict y) {
|
48
|
+
// compiler should be smart enough to handle that
|
49
|
+
float output = x[0] * y[0];
|
50
|
+
for (size_t i = 1; i < DIM; i++) {
|
51
|
+
output += x[i] * y[i];
|
52
|
+
}
|
53
|
+
|
54
|
+
return output;
|
55
|
+
}
|
56
|
+
|
57
|
+
// The kernel for low dimensionality vectors.
|
58
|
+
// Finds the closest one from y for every given NX_POINTS_PER_LOOP points from x
|
59
|
+
//
|
60
|
+
// DIM is the dimensionality of the data
|
61
|
+
// NX_POINTS_PER_LOOP is the number of x points that get processed
|
62
|
+
// simultaneously.
|
63
|
+
// NY_POINTS_PER_LOOP is the number of y points that get processed
|
64
|
+
// simultaneously.
|
65
|
+
template <size_t DIM, size_t NX_POINTS_PER_LOOP, size_t NY_POINTS_PER_LOOP>
|
66
|
+
void kernel(
|
67
|
+
const float* const __restrict x,
|
68
|
+
const float* const __restrict y,
|
69
|
+
const float* const __restrict y_transposed,
|
70
|
+
size_t ny,
|
71
|
+
SingleBestResultHandler<CMax<float, int64_t>>& res,
|
72
|
+
const float* __restrict y_norms,
|
73
|
+
size_t i) {
|
74
|
+
const size_t ny_p =
|
75
|
+
(ny / (16 * NY_POINTS_PER_LOOP)) * (16 * NY_POINTS_PER_LOOP);
|
76
|
+
|
77
|
+
// compute
|
78
|
+
const float* const __restrict xd_0 = x + i * DIM;
|
79
|
+
|
80
|
+
// prefetch the next point
|
81
|
+
_mm_prefetch(xd_0 + DIM * sizeof(float), _MM_HINT_NTA);
|
82
|
+
|
83
|
+
// load a single point from x
|
84
|
+
// load -2 * value
|
85
|
+
__m512 x_i[NX_POINTS_PER_LOOP][DIM];
|
86
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
87
|
+
for (size_t dd = 0; dd < DIM; dd++) {
|
88
|
+
x_i[nx_k][dd] = _mm512_set1_ps(-2 * *(xd_0 + nx_k * DIM + dd));
|
89
|
+
}
|
90
|
+
}
|
91
|
+
|
92
|
+
// compute x_norm
|
93
|
+
float x_norm_i[NX_POINTS_PER_LOOP];
|
94
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
95
|
+
x_norm_i[nx_k] = l2_sqr<DIM>(xd_0 + nx_k * DIM);
|
96
|
+
}
|
97
|
+
|
98
|
+
// distances and indices
|
99
|
+
__m512 min_distances_i[NX_POINTS_PER_LOOP];
|
100
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
101
|
+
min_distances_i[nx_k] =
|
102
|
+
_mm512_set1_ps(res.dis_tab[i + nx_k] - x_norm_i[nx_k]);
|
103
|
+
}
|
104
|
+
|
105
|
+
__m512i min_indices_i[NX_POINTS_PER_LOOP];
|
106
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
107
|
+
min_indices_i[nx_k] = _mm512_set1_epi32(0);
|
108
|
+
}
|
109
|
+
|
110
|
+
//
|
111
|
+
__m512i current_indices = _mm512_setr_epi32(
|
112
|
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
113
|
+
const __m512i indices_delta = _mm512_set1_epi32(16);
|
114
|
+
|
115
|
+
// main loop
|
116
|
+
size_t j = 0;
|
117
|
+
for (; j < ny_p; j += NY_POINTS_PER_LOOP * 16) {
|
118
|
+
// compute dot products for NX_POINTS from x and NY_POINTS from y
|
119
|
+
// technically, we're multiplying -2x and y
|
120
|
+
__m512 dp_i[NX_POINTS_PER_LOOP][NY_POINTS_PER_LOOP];
|
121
|
+
|
122
|
+
// DIM 0 that uses MUL
|
123
|
+
for (size_t ny_k = 0; ny_k < NY_POINTS_PER_LOOP; ny_k++) {
|
124
|
+
__m512 y_i = _mm512_loadu_ps(y_transposed + j + ny_k * 16 + ny * 0);
|
125
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
126
|
+
dp_i[nx_k][ny_k] = _mm512_mul_ps(x_i[nx_k][0], y_i);
|
127
|
+
}
|
128
|
+
}
|
129
|
+
|
130
|
+
// other DIMs that use FMA
|
131
|
+
for (size_t dd = 1; dd < DIM; dd++) {
|
132
|
+
for (size_t ny_k = 0; ny_k < NY_POINTS_PER_LOOP; ny_k++) {
|
133
|
+
__m512 y_i =
|
134
|
+
_mm512_loadu_ps(y_transposed + j + ny_k * 16 + ny * dd);
|
135
|
+
|
136
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
137
|
+
dp_i[nx_k][ny_k] = _mm512_fmadd_ps(
|
138
|
+
x_i[nx_k][dd], y_i, dp_i[nx_k][ny_k]);
|
139
|
+
}
|
140
|
+
}
|
141
|
+
}
|
142
|
+
|
143
|
+
// compute y^2 - 2 * (x,y)
|
144
|
+
for (size_t ny_k = 0; ny_k < NY_POINTS_PER_LOOP; ny_k++) {
|
145
|
+
__m512 y_l2_sqr = _mm512_loadu_ps(y_norms + j + ny_k * 16);
|
146
|
+
|
147
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
148
|
+
dp_i[nx_k][ny_k] = _mm512_add_ps(dp_i[nx_k][ny_k], y_l2_sqr);
|
149
|
+
}
|
150
|
+
}
|
151
|
+
|
152
|
+
// do the comparisons and alter the min indices
|
153
|
+
for (size_t ny_k = 0; ny_k < NY_POINTS_PER_LOOP; ny_k++) {
|
154
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
155
|
+
const __mmask16 comparison = _mm512_cmp_ps_mask(
|
156
|
+
dp_i[nx_k][ny_k], min_distances_i[nx_k], _CMP_LT_OS);
|
157
|
+
min_distances_i[nx_k] = _mm512_mask_blend_ps(
|
158
|
+
comparison, min_distances_i[nx_k], dp_i[nx_k][ny_k]);
|
159
|
+
min_indices_i[nx_k] = _mm512_castps_si512(_mm512_mask_blend_ps(
|
160
|
+
comparison,
|
161
|
+
_mm512_castsi512_ps(min_indices_i[nx_k]),
|
162
|
+
_mm512_castsi512_ps(current_indices)));
|
163
|
+
}
|
164
|
+
|
165
|
+
current_indices = _mm512_add_epi32(current_indices, indices_delta);
|
166
|
+
}
|
167
|
+
}
|
168
|
+
|
169
|
+
// dump values and find the minimum distance / minimum index
|
170
|
+
for (size_t nx_k = 0; nx_k < NX_POINTS_PER_LOOP; nx_k++) {
|
171
|
+
float min_distances_scalar[16];
|
172
|
+
uint32_t min_indices_scalar[16];
|
173
|
+
_mm512_storeu_ps(min_distances_scalar, min_distances_i[nx_k]);
|
174
|
+
_mm512_storeu_si512(
|
175
|
+
(__m512i*)(min_indices_scalar), min_indices_i[nx_k]);
|
176
|
+
|
177
|
+
float current_min_distance = res.dis_tab[i + nx_k];
|
178
|
+
uint32_t current_min_index = res.ids_tab[i + nx_k];
|
179
|
+
|
180
|
+
// This unusual comparison is needed to maintain the behavior
|
181
|
+
// of the original implementation: if two indices are
|
182
|
+
// represented with equal distance values, then
|
183
|
+
// the index with the min value is returned.
|
184
|
+
for (size_t jv = 0; jv < 16; jv++) {
|
185
|
+
// add missing x_norms[i]
|
186
|
+
float distance_candidate =
|
187
|
+
min_distances_scalar[jv] + x_norm_i[nx_k];
|
188
|
+
|
189
|
+
// negative values can occur for identical vectors
|
190
|
+
// due to roundoff errors.
|
191
|
+
if (distance_candidate < 0)
|
192
|
+
distance_candidate = 0;
|
193
|
+
|
194
|
+
const int64_t index_candidate = min_indices_scalar[jv];
|
195
|
+
|
196
|
+
if (current_min_distance > distance_candidate) {
|
197
|
+
current_min_distance = distance_candidate;
|
198
|
+
current_min_index = index_candidate;
|
199
|
+
} else if (
|
200
|
+
current_min_distance == distance_candidate &&
|
201
|
+
current_min_index > index_candidate) {
|
202
|
+
current_min_index = index_candidate;
|
203
|
+
}
|
204
|
+
}
|
205
|
+
|
206
|
+
// process leftovers
|
207
|
+
for (size_t j0 = j; j0 < ny; j0++) {
|
208
|
+
const float dp =
|
209
|
+
dot_product<DIM>(x + (i + nx_k) * DIM, y + j0 * DIM);
|
210
|
+
float dis = x_norm_i[nx_k] + y_norms[j0] - 2 * dp;
|
211
|
+
// negative values can occur for identical vectors
|
212
|
+
// due to roundoff errors.
|
213
|
+
if (dis < 0) {
|
214
|
+
dis = 0;
|
215
|
+
}
|
216
|
+
|
217
|
+
if (current_min_distance > dis) {
|
218
|
+
current_min_distance = dis;
|
219
|
+
current_min_index = j0;
|
220
|
+
}
|
221
|
+
}
|
222
|
+
|
223
|
+
// done
|
224
|
+
res.add_result(i + nx_k, current_min_distance, current_min_index);
|
225
|
+
}
|
226
|
+
}
|
227
|
+
|
228
|
+
template <size_t DIM, size_t NX_POINTS_PER_LOOP, size_t NY_POINTS_PER_LOOP>
|
229
|
+
void exhaustive_L2sqr_fused_cmax(
|
230
|
+
const float* const __restrict x,
|
231
|
+
const float* const __restrict y,
|
232
|
+
size_t nx,
|
233
|
+
size_t ny,
|
234
|
+
SingleBestResultHandler<CMax<float, int64_t>>& res,
|
235
|
+
const float* __restrict y_norms) {
|
236
|
+
// BLAS does not like empty matrices
|
237
|
+
if (nx == 0 || ny == 0) {
|
238
|
+
return;
|
239
|
+
}
|
240
|
+
|
241
|
+
// compute norms for y
|
242
|
+
std::unique_ptr<float[]> del2;
|
243
|
+
if (!y_norms) {
|
244
|
+
float* y_norms2 = new float[ny];
|
245
|
+
del2.reset(y_norms2);
|
246
|
+
|
247
|
+
for (size_t i = 0; i < ny; i++) {
|
248
|
+
y_norms2[i] = l2_sqr<DIM>(y + i * DIM);
|
249
|
+
}
|
250
|
+
|
251
|
+
y_norms = y_norms2;
|
252
|
+
}
|
253
|
+
|
254
|
+
// initialize res
|
255
|
+
res.begin_multiple(0, nx);
|
256
|
+
|
257
|
+
// transpose y
|
258
|
+
std::vector<float> y_transposed(DIM * ny);
|
259
|
+
for (size_t j = 0; j < DIM; j++) {
|
260
|
+
for (size_t i = 0; i < ny; i++) {
|
261
|
+
y_transposed[j * ny + i] = y[j + i * DIM];
|
262
|
+
}
|
263
|
+
}
|
264
|
+
|
265
|
+
const size_t nx_p = (nx / NX_POINTS_PER_LOOP) * NX_POINTS_PER_LOOP;
|
266
|
+
// the main loop.
|
267
|
+
#pragma omp parallel for schedule(dynamic)
|
268
|
+
for (size_t i = 0; i < nx_p; i += NX_POINTS_PER_LOOP) {
|
269
|
+
kernel<DIM, NX_POINTS_PER_LOOP, NY_POINTS_PER_LOOP>(
|
270
|
+
x, y, y_transposed.data(), ny, res, y_norms, i);
|
271
|
+
}
|
272
|
+
|
273
|
+
for (size_t i = nx_p; i < nx; i++) {
|
274
|
+
kernel<DIM, 1, NY_POINTS_PER_LOOP>(
|
275
|
+
x, y, y_transposed.data(), ny, res, y_norms, i);
|
276
|
+
}
|
277
|
+
|
278
|
+
// Does nothing for SingleBestResultHandler, but
|
279
|
+
// keeping the call for the consistency.
|
280
|
+
res.end_multiple();
|
281
|
+
InterruptCallback::check();
|
282
|
+
}
|
283
|
+
|
284
|
+
} // namespace
|
285
|
+
|
286
|
+
bool exhaustive_L2sqr_fused_cmax_AVX512(
|
287
|
+
const float* x,
|
288
|
+
const float* y,
|
289
|
+
size_t d,
|
290
|
+
size_t nx,
|
291
|
+
size_t ny,
|
292
|
+
SingleBestResultHandler<CMax<float, int64_t>>& res,
|
293
|
+
const float* y_norms) {
|
294
|
+
// process only cases with certain dimensionalities
|
295
|
+
|
296
|
+
#define DISPATCH(DIM, NX_POINTS_PER_LOOP, NY_POINTS_PER_LOOP) \
|
297
|
+
case DIM: { \
|
298
|
+
exhaustive_L2sqr_fused_cmax< \
|
299
|
+
DIM, \
|
300
|
+
NX_POINTS_PER_LOOP, \
|
301
|
+
NY_POINTS_PER_LOOP>(x, y, nx, ny, res, y_norms); \
|
302
|
+
return true; \
|
303
|
+
}
|
304
|
+
|
305
|
+
switch (d) {
|
306
|
+
DISPATCH(1, 8, 1)
|
307
|
+
DISPATCH(2, 8, 1)
|
308
|
+
DISPATCH(3, 8, 1)
|
309
|
+
DISPATCH(4, 8, 1)
|
310
|
+
DISPATCH(5, 8, 1)
|
311
|
+
DISPATCH(6, 8, 1)
|
312
|
+
DISPATCH(7, 8, 1)
|
313
|
+
DISPATCH(8, 8, 1)
|
314
|
+
DISPATCH(9, 8, 1)
|
315
|
+
DISPATCH(10, 8, 1)
|
316
|
+
DISPATCH(11, 8, 1)
|
317
|
+
DISPATCH(12, 8, 1)
|
318
|
+
DISPATCH(13, 8, 1)
|
319
|
+
DISPATCH(14, 8, 1)
|
320
|
+
DISPATCH(15, 8, 1)
|
321
|
+
DISPATCH(16, 8, 1)
|
322
|
+
DISPATCH(17, 8, 1)
|
323
|
+
DISPATCH(18, 8, 1)
|
324
|
+
DISPATCH(19, 8, 1)
|
325
|
+
DISPATCH(20, 8, 1)
|
326
|
+
DISPATCH(21, 8, 1)
|
327
|
+
DISPATCH(22, 8, 1)
|
328
|
+
DISPATCH(23, 8, 1)
|
329
|
+
DISPATCH(24, 8, 1)
|
330
|
+
DISPATCH(25, 8, 1)
|
331
|
+
DISPATCH(26, 8, 1)
|
332
|
+
DISPATCH(27, 8, 1)
|
333
|
+
DISPATCH(28, 8, 1)
|
334
|
+
DISPATCH(29, 8, 1)
|
335
|
+
DISPATCH(30, 8, 1)
|
336
|
+
DISPATCH(31, 8, 1)
|
337
|
+
DISPATCH(32, 8, 1)
|
338
|
+
}
|
339
|
+
|
340
|
+
return false;
|
341
|
+
#undef DISPATCH
|
342
|
+
}
|
343
|
+
|
344
|
+
} // namespace faiss
|
345
|
+
|
346
|
+
#endif
|
@@ -0,0 +1,36 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// AVX512 might be not used, but this version provides ~2x speedup
|
9
|
+
// over AVX2 kernel, say, for training PQx10 or PQx12, and speeds up
|
10
|
+
// additional cases with larger dimensionalities.
|
11
|
+
|
12
|
+
#pragma once
|
13
|
+
|
14
|
+
#include <faiss/impl/ResultHandler.h>
|
15
|
+
#include <faiss/impl/platform_macros.h>
|
16
|
+
|
17
|
+
#include <faiss/utils/Heap.h>
|
18
|
+
|
19
|
+
#ifdef __AVX512__
|
20
|
+
|
21
|
+
namespace faiss {
|
22
|
+
|
23
|
+
// Returns true if the fused kernel is available and the data was processed.
|
24
|
+
// Returns false if the fused kernel is not available.
|
25
|
+
bool exhaustive_L2sqr_fused_cmax_AVX512(
|
26
|
+
const float* x,
|
27
|
+
const float* y,
|
28
|
+
size_t d,
|
29
|
+
size_t nx,
|
30
|
+
size_t ny,
|
31
|
+
SingleBestResultHandler<CMax<float, int64_t>>& res,
|
32
|
+
const float* y_norms);
|
33
|
+
|
34
|
+
} // namespace faiss
|
35
|
+
|
36
|
+
#endif
|
@@ -0,0 +1,42 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
#include <faiss/utils/distances_fused/distances_fused.h>
|
9
|
+
|
10
|
+
#include <faiss/impl/platform_macros.h>
|
11
|
+
|
12
|
+
#include <faiss/utils/distances_fused/avx512.h>
|
13
|
+
#include <faiss/utils/distances_fused/simdlib_based.h>
|
14
|
+
|
15
|
+
namespace faiss {
|
16
|
+
|
17
|
+
bool exhaustive_L2sqr_fused_cmax(
|
18
|
+
const float* x,
|
19
|
+
const float* y,
|
20
|
+
size_t d,
|
21
|
+
size_t nx,
|
22
|
+
size_t ny,
|
23
|
+
SingleBestResultHandler<CMax<float, int64_t>>& res,
|
24
|
+
const float* y_norms) {
|
25
|
+
if (nx == 0 || ny == 0) {
|
26
|
+
// nothing to do
|
27
|
+
return true;
|
28
|
+
}
|
29
|
+
|
30
|
+
#ifdef __AVX512__
|
31
|
+
// avx512 kernel
|
32
|
+
return exhaustive_L2sqr_fused_cmax_AVX512(x, y, d, nx, ny, res, y_norms);
|
33
|
+
#elif defined(__AVX2__) || defined(__aarch64__)
|
34
|
+
// avx2 or arm neon kernel
|
35
|
+
return exhaustive_L2sqr_fused_cmax_simdlib(x, y, d, nx, ny, res, y_norms);
|
36
|
+
#else
|
37
|
+
// not supported, please use a general-purpose kernel
|
38
|
+
return false;
|
39
|
+
#endif
|
40
|
+
}
|
41
|
+
|
42
|
+
} // namespace faiss
|
@@ -0,0 +1,40 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// This file contains a fused kernel that combines distance computation
|
9
|
+
// and the search for the CLOSEST point. Currently, this is done for small
|
10
|
+
// dimensionality vectors when it is beneficial to avoid storing temporary
|
11
|
+
// dot product information in RAM. This is particularly effective
|
12
|
+
// when training PQx10 or PQx12 with the default parameters.
|
13
|
+
//
|
14
|
+
// InterruptCallback::check() is not used, because it is assumed that the
|
15
|
+
// kernel takes a little time because of a tiny dimensionality.
|
16
|
+
//
|
17
|
+
// Later on, similar optimization can be implemented for large size vectors,
|
18
|
+
// but a different kernel is needed.
|
19
|
+
//
|
20
|
+
|
21
|
+
#pragma once
|
22
|
+
|
23
|
+
#include <faiss/impl/ResultHandler.h>
|
24
|
+
|
25
|
+
#include <faiss/utils/Heap.h>
|
26
|
+
|
27
|
+
namespace faiss {
|
28
|
+
|
29
|
+
// Returns true if the fused kernel is available and the data was processed.
|
30
|
+
// Returns false if the fused kernel is not available.
|
31
|
+
bool exhaustive_L2sqr_fused_cmax(
|
32
|
+
const float* x,
|
33
|
+
const float* y,
|
34
|
+
size_t d,
|
35
|
+
size_t nx,
|
36
|
+
size_t ny,
|
37
|
+
SingleBestResultHandler<CMax<float, int64_t>>& res,
|
38
|
+
const float* y_norms);
|
39
|
+
|
40
|
+
} // namespace faiss
|