faiss 0.2.3 → 0.2.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/LICENSE.txt +1 -1
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/Clustering.cpp +32 -0
- data/vendor/faiss/faiss/Clustering.h +14 -0
- data/vendor/faiss/faiss/Index.h +1 -1
- data/vendor/faiss/faiss/Index2Layer.cpp +19 -92
- data/vendor/faiss/faiss/Index2Layer.h +2 -16
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +407 -0
- data/vendor/faiss/faiss/{IndexResidual.h → IndexAdditiveQuantizer.h} +101 -58
- data/vendor/faiss/faiss/IndexFlat.cpp +22 -52
- data/vendor/faiss/faiss/IndexFlat.h +9 -15
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +67 -0
- data/vendor/faiss/faiss/IndexFlatCodes.h +47 -0
- data/vendor/faiss/faiss/IndexIVF.cpp +79 -7
- data/vendor/faiss/faiss/IndexIVF.h +25 -7
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +316 -0
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +121 -0
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +9 -12
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +5 -4
- data/vendor/faiss/faiss/IndexIVFPQ.h +1 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +60 -39
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +21 -6
- data/vendor/faiss/faiss/IndexLSH.cpp +4 -30
- data/vendor/faiss/faiss/IndexLSH.h +2 -15
- data/vendor/faiss/faiss/IndexNNDescent.cpp +0 -2
- data/vendor/faiss/faiss/IndexNSG.cpp +0 -2
- data/vendor/faiss/faiss/IndexPQ.cpp +2 -51
- data/vendor/faiss/faiss/IndexPQ.h +2 -17
- data/vendor/faiss/faiss/IndexRefine.cpp +28 -0
- data/vendor/faiss/faiss/IndexRefine.h +10 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +2 -28
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +2 -16
- data/vendor/faiss/faiss/VectorTransform.cpp +2 -1
- data/vendor/faiss/faiss/VectorTransform.h +3 -0
- data/vendor/faiss/faiss/clone_index.cpp +3 -2
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +2 -2
- data/vendor/faiss/faiss/gpu/GpuIcmEncoder.h +60 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +257 -24
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +69 -9
- data/vendor/faiss/faiss/impl/HNSW.cpp +10 -5
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +393 -210
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +100 -28
- data/vendor/faiss/faiss/impl/NSG.cpp +0 -3
- data/vendor/faiss/faiss/impl/NSG.h +1 -1
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +357 -47
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +65 -7
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +12 -19
- data/vendor/faiss/faiss/impl/index_read.cpp +102 -19
- data/vendor/faiss/faiss/impl/index_write.cpp +66 -16
- data/vendor/faiss/faiss/impl/io.cpp +1 -1
- data/vendor/faiss/faiss/impl/io_macros.h +20 -0
- data/vendor/faiss/faiss/impl/kmeans1d.cpp +301 -0
- data/vendor/faiss/faiss/impl/kmeans1d.h +48 -0
- data/vendor/faiss/faiss/index_factory.cpp +585 -414
- data/vendor/faiss/faiss/index_factory.h +3 -0
- data/vendor/faiss/faiss/utils/distances.cpp +4 -2
- data/vendor/faiss/faiss/utils/distances.h +36 -3
- data/vendor/faiss/faiss/utils/distances_simd.cpp +50 -0
- data/vendor/faiss/faiss/utils/utils.h +1 -1
- metadata +12 -5
- data/vendor/faiss/faiss/IndexResidual.cpp +0 -291
@@ -0,0 +1,407 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// quiet the noise
|
9
|
+
// clang-format off
|
10
|
+
|
11
|
+
#include <faiss/IndexAdditiveQuantizer.h>
|
12
|
+
|
13
|
+
#include <algorithm>
|
14
|
+
#include <cmath>
|
15
|
+
#include <cstring>
|
16
|
+
|
17
|
+
#include <faiss/impl/FaissAssert.h>
|
18
|
+
#include <faiss/impl/ResidualQuantizer.h>
|
19
|
+
#include <faiss/impl/ResultHandler.h>
|
20
|
+
#include <faiss/utils/distances.h>
|
21
|
+
#include <faiss/utils/extra_distances.h>
|
22
|
+
#include <faiss/utils/utils.h>
|
23
|
+
|
24
|
+
|
25
|
+
namespace faiss {
|
26
|
+
|
27
|
+
/**************************************************************************************
|
28
|
+
* IndexAdditiveQuantizer
|
29
|
+
**************************************************************************************/
|
30
|
+
|
31
|
+
IndexAdditiveQuantizer::IndexAdditiveQuantizer(
|
32
|
+
idx_t d,
|
33
|
+
AdditiveQuantizer* aq,
|
34
|
+
MetricType metric):
|
35
|
+
IndexFlatCodes(aq->code_size, d, metric), aq(aq)
|
36
|
+
{
|
37
|
+
FAISS_THROW_IF_NOT(metric == METRIC_INNER_PRODUCT || metric == METRIC_L2);
|
38
|
+
}
|
39
|
+
|
40
|
+
|
41
|
+
namespace {
|
42
|
+
|
43
|
+
template <class VectorDistance, class ResultHandler>
|
44
|
+
void search_with_decompress(
|
45
|
+
const IndexAdditiveQuantizer& ir,
|
46
|
+
const float* xq,
|
47
|
+
VectorDistance& vd,
|
48
|
+
ResultHandler& res) {
|
49
|
+
const uint8_t* codes = ir.codes.data();
|
50
|
+
size_t ntotal = ir.ntotal;
|
51
|
+
size_t code_size = ir.code_size;
|
52
|
+
const AdditiveQuantizer *aq = ir.aq;
|
53
|
+
|
54
|
+
using SingleResultHandler = typename ResultHandler::SingleResultHandler;
|
55
|
+
|
56
|
+
#pragma omp parallel for if(res.nq > 100)
|
57
|
+
for (int64_t q = 0; q < res.nq; q++) {
|
58
|
+
SingleResultHandler resi(res);
|
59
|
+
resi.begin(q);
|
60
|
+
std::vector<float> tmp(ir.d);
|
61
|
+
const float* x = xq + ir.d * q;
|
62
|
+
for (size_t i = 0; i < ntotal; i++) {
|
63
|
+
aq->decode(codes + i * code_size, tmp.data(), 1);
|
64
|
+
float dis = vd(x, tmp.data());
|
65
|
+
resi.add_result(dis, i);
|
66
|
+
}
|
67
|
+
resi.end();
|
68
|
+
}
|
69
|
+
}
|
70
|
+
|
71
|
+
template<bool is_IP, AdditiveQuantizer::Search_type_t st, class ResultHandler>
|
72
|
+
void search_with_LUT(
|
73
|
+
const IndexAdditiveQuantizer& ir,
|
74
|
+
const float* xq,
|
75
|
+
ResultHandler& res)
|
76
|
+
{
|
77
|
+
const AdditiveQuantizer & aq = *ir.aq;
|
78
|
+
const uint8_t* codes = ir.codes.data();
|
79
|
+
size_t ntotal = ir.ntotal;
|
80
|
+
size_t code_size = aq.code_size;
|
81
|
+
size_t nq = res.nq;
|
82
|
+
size_t d = ir.d;
|
83
|
+
|
84
|
+
using SingleResultHandler = typename ResultHandler::SingleResultHandler;
|
85
|
+
std::unique_ptr<float []> LUT(new float[nq * aq.total_codebook_size]);
|
86
|
+
|
87
|
+
aq.compute_LUT(nq, xq, LUT.get());
|
88
|
+
|
89
|
+
#pragma omp parallel for if(nq > 100)
|
90
|
+
for (int64_t q = 0; q < nq; q++) {
|
91
|
+
SingleResultHandler resi(res);
|
92
|
+
resi.begin(q);
|
93
|
+
std::vector<float> tmp(aq.d);
|
94
|
+
const float *LUT_q = LUT.get() + aq.total_codebook_size * q;
|
95
|
+
float bias = 0;
|
96
|
+
if (!is_IP) { // the LUT function returns ||y||^2 - 2 * <x, y>, need to add ||x||^2
|
97
|
+
bias = fvec_norm_L2sqr(xq + q * d, d);
|
98
|
+
}
|
99
|
+
for (size_t i = 0; i < ntotal; i++) {
|
100
|
+
float dis = aq.compute_1_distance_LUT<is_IP, st>(
|
101
|
+
codes + i * code_size,
|
102
|
+
LUT_q
|
103
|
+
);
|
104
|
+
resi.add_result(dis + bias, i);
|
105
|
+
}
|
106
|
+
resi.end();
|
107
|
+
}
|
108
|
+
|
109
|
+
}
|
110
|
+
|
111
|
+
|
112
|
+
} // anonymous namespace
|
113
|
+
|
114
|
+
void IndexAdditiveQuantizer::search(
|
115
|
+
idx_t n,
|
116
|
+
const float* x,
|
117
|
+
idx_t k,
|
118
|
+
float* distances,
|
119
|
+
idx_t* labels) const {
|
120
|
+
if (aq->search_type == AdditiveQuantizer::ST_decompress) {
|
121
|
+
if (metric_type == METRIC_L2) {
|
122
|
+
using VD = VectorDistance<METRIC_L2>;
|
123
|
+
VD vd = {size_t(d), metric_arg};
|
124
|
+
HeapResultHandler<VD::C> rh(n, distances, labels, k);
|
125
|
+
search_with_decompress(*this, x, vd, rh);
|
126
|
+
} else if (metric_type == METRIC_INNER_PRODUCT) {
|
127
|
+
using VD = VectorDistance<METRIC_INNER_PRODUCT>;
|
128
|
+
VD vd = {size_t(d), metric_arg};
|
129
|
+
HeapResultHandler<VD::C> rh(n, distances, labels, k);
|
130
|
+
search_with_decompress(*this, x, vd, rh);
|
131
|
+
}
|
132
|
+
} else {
|
133
|
+
if (metric_type == METRIC_INNER_PRODUCT) {
|
134
|
+
HeapResultHandler<CMin<float, idx_t> > rh(n, distances, labels, k);
|
135
|
+
search_with_LUT<true, AdditiveQuantizer::ST_LUT_nonorm> (*this, x, rh);
|
136
|
+
} else {
|
137
|
+
HeapResultHandler<CMax<float, idx_t> > rh(n, distances, labels, k);
|
138
|
+
|
139
|
+
if (aq->search_type == AdditiveQuantizer::ST_norm_float) {
|
140
|
+
search_with_LUT<false, AdditiveQuantizer::ST_norm_float> (*this, x, rh);
|
141
|
+
} else if (aq->search_type == AdditiveQuantizer::ST_LUT_nonorm) {
|
142
|
+
search_with_LUT<false, AdditiveQuantizer::ST_norm_float> (*this, x, rh);
|
143
|
+
} else if (aq->search_type == AdditiveQuantizer::ST_norm_qint8) {
|
144
|
+
search_with_LUT<false, AdditiveQuantizer::ST_norm_qint8> (*this, x, rh);
|
145
|
+
} else if (aq->search_type == AdditiveQuantizer::ST_norm_qint4) {
|
146
|
+
search_with_LUT<false, AdditiveQuantizer::ST_norm_qint4> (*this, x, rh);
|
147
|
+
} else if (aq->search_type == AdditiveQuantizer::ST_norm_cqint8) {
|
148
|
+
search_with_LUT<false, AdditiveQuantizer::ST_norm_cqint8> (*this, x, rh);
|
149
|
+
} else if (aq->search_type == AdditiveQuantizer::ST_norm_cqint4) {
|
150
|
+
search_with_LUT<false, AdditiveQuantizer::ST_norm_cqint4> (*this, x, rh);
|
151
|
+
} else {
|
152
|
+
FAISS_THROW_FMT("search type %d not supported", aq->search_type);
|
153
|
+
}
|
154
|
+
}
|
155
|
+
|
156
|
+
}
|
157
|
+
}
|
158
|
+
|
159
|
+
void IndexAdditiveQuantizer::sa_encode(idx_t n, const float* x, uint8_t* bytes) const {
|
160
|
+
return aq->compute_codes(x, bytes, n);
|
161
|
+
}
|
162
|
+
|
163
|
+
void IndexAdditiveQuantizer::sa_decode(idx_t n, const uint8_t* bytes, float* x) const {
|
164
|
+
return aq->decode(bytes, x, n);
|
165
|
+
}
|
166
|
+
|
167
|
+
|
168
|
+
|
169
|
+
|
170
|
+
/**************************************************************************************
|
171
|
+
* IndexResidualQuantizer
|
172
|
+
**************************************************************************************/
|
173
|
+
|
174
|
+
IndexResidualQuantizer::IndexResidualQuantizer(
|
175
|
+
int d, ///< dimensionality of the input vectors
|
176
|
+
size_t M, ///< number of subquantizers
|
177
|
+
size_t nbits, ///< number of bit per subvector index
|
178
|
+
MetricType metric,
|
179
|
+
Search_type_t search_type)
|
180
|
+
: IndexResidualQuantizer(d, std::vector<size_t>(M, nbits), metric, search_type) {
|
181
|
+
}
|
182
|
+
|
183
|
+
IndexResidualQuantizer::IndexResidualQuantizer(
|
184
|
+
int d,
|
185
|
+
const std::vector<size_t>& nbits,
|
186
|
+
MetricType metric,
|
187
|
+
Search_type_t search_type)
|
188
|
+
: IndexAdditiveQuantizer(d, &rq, metric), rq(d, nbits, search_type) {
|
189
|
+
code_size = rq.code_size;
|
190
|
+
is_trained = false;
|
191
|
+
}
|
192
|
+
|
193
|
+
IndexResidualQuantizer::IndexResidualQuantizer() : IndexResidualQuantizer(0, 0, 0) {}
|
194
|
+
|
195
|
+
void IndexResidualQuantizer::train(idx_t n, const float* x) {
|
196
|
+
rq.train(n, x);
|
197
|
+
is_trained = true;
|
198
|
+
}
|
199
|
+
|
200
|
+
|
201
|
+
/**************************************************************************************
|
202
|
+
* IndexLocalSearchQuantizer
|
203
|
+
**************************************************************************************/
|
204
|
+
|
205
|
+
IndexLocalSearchQuantizer::IndexLocalSearchQuantizer(
|
206
|
+
int d,
|
207
|
+
size_t M, ///< number of subquantizers
|
208
|
+
size_t nbits, ///< number of bit per subvector index
|
209
|
+
MetricType metric,
|
210
|
+
Search_type_t search_type)
|
211
|
+
: IndexAdditiveQuantizer(d, &lsq, metric), lsq(d, M, nbits, search_type) {
|
212
|
+
code_size = lsq.code_size;
|
213
|
+
is_trained = false;
|
214
|
+
}
|
215
|
+
|
216
|
+
IndexLocalSearchQuantizer::IndexLocalSearchQuantizer() : IndexLocalSearchQuantizer(0, 0, 0) {}
|
217
|
+
|
218
|
+
void IndexLocalSearchQuantizer::train(idx_t n, const float* x) {
|
219
|
+
lsq.train(n, x);
|
220
|
+
is_trained = true;
|
221
|
+
}
|
222
|
+
|
223
|
+
/**************************************************************************************
|
224
|
+
* AdditiveCoarseQuantizer
|
225
|
+
**************************************************************************************/
|
226
|
+
|
227
|
+
AdditiveCoarseQuantizer::AdditiveCoarseQuantizer(
|
228
|
+
idx_t d,
|
229
|
+
AdditiveQuantizer* aq,
|
230
|
+
MetricType metric):
|
231
|
+
Index(d, metric), aq(aq)
|
232
|
+
{}
|
233
|
+
|
234
|
+
void AdditiveCoarseQuantizer::add(idx_t, const float*) {
|
235
|
+
FAISS_THROW_MSG("not applicable");
|
236
|
+
}
|
237
|
+
|
238
|
+
void AdditiveCoarseQuantizer::reconstruct(idx_t key, float* recons) const {
|
239
|
+
aq->decode_64bit(key, recons);
|
240
|
+
}
|
241
|
+
|
242
|
+
void AdditiveCoarseQuantizer::reset() {
|
243
|
+
FAISS_THROW_MSG("not applicable");
|
244
|
+
}
|
245
|
+
|
246
|
+
|
247
|
+
void AdditiveCoarseQuantizer::train(idx_t n, const float* x) {
|
248
|
+
if (verbose) {
|
249
|
+
printf("AdditiveCoarseQuantizer::train: training on %zd vectors\n", size_t(n));
|
250
|
+
}
|
251
|
+
aq->train(n, x);
|
252
|
+
is_trained = true;
|
253
|
+
ntotal = (idx_t)1 << aq->tot_bits;
|
254
|
+
|
255
|
+
if (metric_type == METRIC_L2) {
|
256
|
+
if (verbose) {
|
257
|
+
printf("AdditiveCoarseQuantizer::train: computing centroid norms for %zd centroids\n", size_t(ntotal));
|
258
|
+
}
|
259
|
+
// this is not necessary for the residualcoarsequantizer when
|
260
|
+
// using beam search. We'll see if the memory overhead is too high
|
261
|
+
centroid_norms.resize(ntotal);
|
262
|
+
aq->compute_centroid_norms(centroid_norms.data());
|
263
|
+
}
|
264
|
+
}
|
265
|
+
|
266
|
+
void AdditiveCoarseQuantizer::search(
|
267
|
+
idx_t n,
|
268
|
+
const float* x,
|
269
|
+
idx_t k,
|
270
|
+
float* distances,
|
271
|
+
idx_t* labels) const {
|
272
|
+
if (metric_type == METRIC_INNER_PRODUCT) {
|
273
|
+
aq->knn_centroids_inner_product(n, x, k, distances, labels);
|
274
|
+
} else if (metric_type == METRIC_L2) {
|
275
|
+
FAISS_THROW_IF_NOT(centroid_norms.size() == ntotal);
|
276
|
+
aq->knn_centroids_L2(
|
277
|
+
n, x, k, distances, labels, centroid_norms.data());
|
278
|
+
}
|
279
|
+
}
|
280
|
+
|
281
|
+
/**************************************************************************************
|
282
|
+
* ResidualCoarseQuantizer
|
283
|
+
**************************************************************************************/
|
284
|
+
|
285
|
+
ResidualCoarseQuantizer::ResidualCoarseQuantizer(
|
286
|
+
int d, ///< dimensionality of the input vectors
|
287
|
+
const std::vector<size_t>& nbits,
|
288
|
+
MetricType metric)
|
289
|
+
: AdditiveCoarseQuantizer(d, &rq, metric), rq(d, nbits), beam_factor(4.0) {
|
290
|
+
FAISS_THROW_IF_NOT(rq.tot_bits <= 63);
|
291
|
+
is_trained = false;
|
292
|
+
}
|
293
|
+
|
294
|
+
ResidualCoarseQuantizer::ResidualCoarseQuantizer(
|
295
|
+
int d,
|
296
|
+
size_t M, ///< number of subquantizers
|
297
|
+
size_t nbits, ///< number of bit per subvector index
|
298
|
+
MetricType metric)
|
299
|
+
: ResidualCoarseQuantizer(d, std::vector<size_t>(M, nbits), metric) {}
|
300
|
+
|
301
|
+
ResidualCoarseQuantizer::ResidualCoarseQuantizer(): ResidualCoarseQuantizer(0, 0, 0) {}
|
302
|
+
|
303
|
+
|
304
|
+
|
305
|
+
void ResidualCoarseQuantizer::set_beam_factor(float new_beam_factor) {
|
306
|
+
beam_factor = new_beam_factor;
|
307
|
+
if (new_beam_factor > 0) {
|
308
|
+
FAISS_THROW_IF_NOT(new_beam_factor >= 1.0);
|
309
|
+
return;
|
310
|
+
} else if (metric_type == METRIC_L2 && ntotal != centroid_norms.size()) {
|
311
|
+
if (verbose) {
|
312
|
+
printf("AdditiveCoarseQuantizer::train: computing centroid norms for %zd centroids\n", size_t(ntotal));
|
313
|
+
}
|
314
|
+
centroid_norms.resize(ntotal);
|
315
|
+
aq->compute_centroid_norms(centroid_norms.data());
|
316
|
+
}
|
317
|
+
}
|
318
|
+
|
319
|
+
void ResidualCoarseQuantizer::search(
|
320
|
+
idx_t n,
|
321
|
+
const float* x,
|
322
|
+
idx_t k,
|
323
|
+
float* distances,
|
324
|
+
idx_t* labels) const {
|
325
|
+
if (beam_factor < 0) {
|
326
|
+
AdditiveCoarseQuantizer::search(n, x, k, distances, labels);
|
327
|
+
return;
|
328
|
+
}
|
329
|
+
|
330
|
+
int beam_size = int(k * beam_factor);
|
331
|
+
if (beam_size > ntotal) {
|
332
|
+
beam_size = ntotal;
|
333
|
+
}
|
334
|
+
size_t memory_per_point = rq.memory_per_point(beam_size);
|
335
|
+
|
336
|
+
/*
|
337
|
+
|
338
|
+
printf("mem per point %ld n=%d max_mem_distance=%ld mem_kb=%zd\n",
|
339
|
+
memory_per_point, int(n), rq.max_mem_distances, get_mem_usage_kb());
|
340
|
+
*/
|
341
|
+
if (n > 1 && memory_per_point * n > rq.max_mem_distances) {
|
342
|
+
// then split queries to reduce temp memory
|
343
|
+
idx_t bs = rq.max_mem_distances / memory_per_point;
|
344
|
+
if (bs == 0) {
|
345
|
+
bs = 1; // otherwise we can't do much
|
346
|
+
}
|
347
|
+
if (verbose) {
|
348
|
+
printf("ResidualCoarseQuantizer::search: run %d searches in batches of size %d\n",
|
349
|
+
int(n),
|
350
|
+
int(bs));
|
351
|
+
}
|
352
|
+
for (idx_t i0 = 0; i0 < n; i0 += bs) {
|
353
|
+
idx_t i1 = std::min(n, i0 + bs);
|
354
|
+
search(i1 - i0, x + i0 * d, k, distances + i0 * k, labels + i0 * k);
|
355
|
+
InterruptCallback::check();
|
356
|
+
}
|
357
|
+
return;
|
358
|
+
}
|
359
|
+
|
360
|
+
std::vector<int32_t> codes(beam_size * rq.M * n);
|
361
|
+
std::vector<float> beam_distances(n * beam_size);
|
362
|
+
|
363
|
+
rq.refine_beam(
|
364
|
+
n, 1, x, beam_size, codes.data(), nullptr, beam_distances.data());
|
365
|
+
|
366
|
+
#pragma omp parallel for if (n > 4000)
|
367
|
+
for (idx_t i = 0; i < n; i++) {
|
368
|
+
memcpy(distances + i * k,
|
369
|
+
beam_distances.data() + beam_size * i,
|
370
|
+
k * sizeof(distances[0]));
|
371
|
+
|
372
|
+
const int32_t* codes_i = codes.data() + beam_size * i * rq.M;
|
373
|
+
for (idx_t j = 0; j < k; j++) {
|
374
|
+
idx_t l = 0;
|
375
|
+
int shift = 0;
|
376
|
+
for (int m = 0; m < rq.M; m++) {
|
377
|
+
l |= (*codes_i++) << shift;
|
378
|
+
shift += rq.nbits[m];
|
379
|
+
}
|
380
|
+
labels[i * k + j] = l;
|
381
|
+
}
|
382
|
+
}
|
383
|
+
}
|
384
|
+
|
385
|
+
/**************************************************************************************
|
386
|
+
* LocalSearchCoarseQuantizer
|
387
|
+
**************************************************************************************/
|
388
|
+
|
389
|
+
LocalSearchCoarseQuantizer::LocalSearchCoarseQuantizer(
|
390
|
+
int d, ///< dimensionality of the input vectors
|
391
|
+
size_t M, ///< number of subquantizers
|
392
|
+
size_t nbits, ///< number of bit per subvector index
|
393
|
+
MetricType metric)
|
394
|
+
: AdditiveCoarseQuantizer(d, &lsq, metric), lsq(d, M, nbits) {
|
395
|
+
FAISS_THROW_IF_NOT(lsq.tot_bits <= 63);
|
396
|
+
is_trained = false;
|
397
|
+
}
|
398
|
+
|
399
|
+
|
400
|
+
LocalSearchCoarseQuantizer::LocalSearchCoarseQuantizer() {
|
401
|
+
aq = &lsq;
|
402
|
+
}
|
403
|
+
|
404
|
+
|
405
|
+
|
406
|
+
|
407
|
+
} // namespace faiss
|
@@ -5,74 +5,117 @@
|
|
5
5
|
* LICENSE file in the root directory of this source tree.
|
6
6
|
*/
|
7
7
|
|
8
|
-
#ifndef
|
9
|
-
#define
|
8
|
+
#ifndef FAISS_INDEX_ADDITIVE_QUANTIZER_H
|
9
|
+
#define FAISS_INDEX_ADDITIVE_QUANTIZER_H
|
10
10
|
|
11
|
-
#include <
|
11
|
+
#include <faiss/impl/AdditiveQuantizer.h>
|
12
12
|
|
13
|
+
#include <cstdint>
|
13
14
|
#include <vector>
|
14
15
|
|
15
|
-
#include <faiss/
|
16
|
+
#include <faiss/IndexFlatCodes.h>
|
17
|
+
#include <faiss/impl/LocalSearchQuantizer.h>
|
16
18
|
#include <faiss/impl/ResidualQuantizer.h>
|
17
19
|
#include <faiss/impl/platform_macros.h>
|
18
20
|
|
19
21
|
namespace faiss {
|
20
22
|
|
23
|
+
/// Abstract class for additive quantizers. The search functions are in common.
|
24
|
+
struct IndexAdditiveQuantizer : IndexFlatCodes {
|
25
|
+
// the quantizer, this points to the relevant field in the inheriting
|
26
|
+
// classes
|
27
|
+
AdditiveQuantizer* aq;
|
28
|
+
using Search_type_t = AdditiveQuantizer::Search_type_t;
|
29
|
+
|
30
|
+
explicit IndexAdditiveQuantizer(
|
31
|
+
idx_t d = 0,
|
32
|
+
AdditiveQuantizer* aq = nullptr,
|
33
|
+
MetricType metric = METRIC_L2);
|
34
|
+
|
35
|
+
void search(
|
36
|
+
idx_t n,
|
37
|
+
const float* x,
|
38
|
+
idx_t k,
|
39
|
+
float* distances,
|
40
|
+
idx_t* labels) const override;
|
41
|
+
|
42
|
+
/* The standalone codec interface */
|
43
|
+
void sa_encode(idx_t n, const float* x, uint8_t* bytes) const override;
|
44
|
+
|
45
|
+
void sa_decode(idx_t n, const uint8_t* bytes, float* x) const override;
|
46
|
+
};
|
47
|
+
|
21
48
|
/** Index based on a residual quantizer. Stored vectors are
|
22
49
|
* approximated by residual quantization codes.
|
23
50
|
* Can also be used as a codec
|
24
51
|
*/
|
25
|
-
struct
|
52
|
+
struct IndexResidualQuantizer : IndexAdditiveQuantizer {
|
26
53
|
/// The residual quantizer used to encode the vectors
|
27
54
|
ResidualQuantizer rq;
|
28
55
|
|
29
|
-
enum Search_type_t {
|
30
|
-
ST_decompress, ///< decompress database vector
|
31
|
-
ST_LUT_nonorm, ///< use a LUT, don't include norms (OK for IP or
|
32
|
-
///< normalized vectors)
|
33
|
-
ST_norm_float, ///< use a LUT, and store float32 norm with the vectors
|
34
|
-
ST_norm_qint8, ///< use a LUT, and store 8bit-quantized norm
|
35
|
-
};
|
36
|
-
Search_type_t search_type;
|
37
|
-
|
38
|
-
/// min/max for quantization of norms
|
39
|
-
float norm_min, norm_max;
|
40
|
-
|
41
|
-
/// size of residual quantizer codes + norms
|
42
|
-
size_t code_size;
|
43
|
-
|
44
|
-
/// Codes. Size ntotal * rq.code_size
|
45
|
-
std::vector<uint8_t> codes;
|
46
|
-
|
47
56
|
/** Constructor.
|
48
57
|
*
|
49
58
|
* @param d dimensionality of the input vectors
|
50
59
|
* @param M number of subquantizers
|
51
60
|
* @param nbits number of bit per subvector index
|
52
61
|
*/
|
53
|
-
|
62
|
+
IndexResidualQuantizer(
|
54
63
|
int d, ///< dimensionality of the input vectors
|
55
64
|
size_t M, ///< number of subquantizers
|
56
65
|
size_t nbits, ///< number of bit per subvector index
|
57
66
|
MetricType metric = METRIC_L2,
|
58
|
-
Search_type_t search_type = ST_decompress);
|
67
|
+
Search_type_t search_type = AdditiveQuantizer::ST_decompress);
|
59
68
|
|
60
|
-
|
69
|
+
IndexResidualQuantizer(
|
61
70
|
int d,
|
62
71
|
const std::vector<size_t>& nbits,
|
63
72
|
MetricType metric = METRIC_L2,
|
64
|
-
Search_type_t search_type = ST_decompress);
|
73
|
+
Search_type_t search_type = AdditiveQuantizer::ST_decompress);
|
74
|
+
|
75
|
+
IndexResidualQuantizer();
|
65
76
|
|
66
|
-
|
77
|
+
void train(idx_t n, const float* x) override;
|
78
|
+
};
|
67
79
|
|
68
|
-
|
69
|
-
|
80
|
+
struct IndexLocalSearchQuantizer : IndexAdditiveQuantizer {
|
81
|
+
LocalSearchQuantizer lsq;
|
82
|
+
|
83
|
+
/** Constructor.
|
84
|
+
*
|
85
|
+
* @param d dimensionality of the input vectors
|
86
|
+
* @param M number of subquantizers
|
87
|
+
* @param nbits number of bit per subvector index
|
88
|
+
*/
|
89
|
+
IndexLocalSearchQuantizer(
|
90
|
+
int d, ///< dimensionality of the input vectors
|
91
|
+
size_t M, ///< number of subquantizers
|
92
|
+
size_t nbits, ///< number of bit per subvector index
|
93
|
+
MetricType metric = METRIC_L2,
|
94
|
+
Search_type_t search_type = AdditiveQuantizer::ST_decompress);
|
95
|
+
|
96
|
+
IndexLocalSearchQuantizer();
|
70
97
|
|
71
98
|
void train(idx_t n, const float* x) override;
|
99
|
+
};
|
100
|
+
|
101
|
+
/** A "virtual" index where the elements are the residual quantizer centroids.
|
102
|
+
*
|
103
|
+
* Intended for use as a coarse quantizer in an IndexIVF.
|
104
|
+
*/
|
105
|
+
struct AdditiveCoarseQuantizer : Index {
|
106
|
+
AdditiveQuantizer* aq;
|
107
|
+
|
108
|
+
explicit AdditiveCoarseQuantizer(
|
109
|
+
idx_t d = 0,
|
110
|
+
AdditiveQuantizer* aq = nullptr,
|
111
|
+
MetricType metric = METRIC_L2);
|
112
|
+
|
113
|
+
/// norms of centroids, useful for knn-search
|
114
|
+
std::vector<float> centroid_norms;
|
72
115
|
|
116
|
+
/// N/A
|
73
117
|
void add(idx_t n, const float* x) override;
|
74
118
|
|
75
|
-
/// not implemented
|
76
119
|
void search(
|
77
120
|
idx_t n,
|
78
121
|
const float* x,
|
@@ -80,23 +123,17 @@ struct IndexResidual : Index {
|
|
80
123
|
float* distances,
|
81
124
|
idx_t* labels) const override;
|
82
125
|
|
83
|
-
void
|
84
|
-
|
85
|
-
/* The standalone codec interface */
|
86
|
-
size_t sa_code_size() const override;
|
87
|
-
|
88
|
-
void sa_encode(idx_t n, const float* x, uint8_t* bytes) const override;
|
89
|
-
|
90
|
-
void sa_decode(idx_t n, const uint8_t* bytes, float* x) const override;
|
126
|
+
void reconstruct(idx_t key, float* recons) const override;
|
127
|
+
void train(idx_t n, const float* x) override;
|
91
128
|
|
92
|
-
|
129
|
+
/// N/A
|
130
|
+
void reset() override;
|
93
131
|
};
|
94
132
|
|
95
|
-
/**
|
96
|
-
*
|
97
|
-
*
|
98
|
-
|
99
|
-
struct ResidualCoarseQuantizer : Index {
|
133
|
+
/** The ResidualCoarseQuantizer is a bit specialized compared to the
|
134
|
+
* default AdditiveCoarseQuantizer because it can use a beam search
|
135
|
+
* at search time (slow but may be useful for very large vocabularies) */
|
136
|
+
struct ResidualCoarseQuantizer : AdditiveCoarseQuantizer {
|
100
137
|
/// The residual quantizer used to encode the vectors
|
101
138
|
ResidualQuantizer rq;
|
102
139
|
|
@@ -104,9 +141,6 @@ struct ResidualCoarseQuantizer : Index {
|
|
104
141
|
/// if negative, use exact search-to-centroid
|
105
142
|
float beam_factor;
|
106
143
|
|
107
|
-
/// norms of centroids, useful for knn-search
|
108
|
-
std::vector<float> centroid_norms;
|
109
|
-
|
110
144
|
/// computes centroid norms if required
|
111
145
|
void set_beam_factor(float new_beam_factor);
|
112
146
|
|
@@ -127,13 +161,6 @@ struct ResidualCoarseQuantizer : Index {
|
|
127
161
|
const std::vector<size_t>& nbits,
|
128
162
|
MetricType metric = METRIC_L2);
|
129
163
|
|
130
|
-
ResidualCoarseQuantizer();
|
131
|
-
|
132
|
-
void train(idx_t n, const float* x) override;
|
133
|
-
|
134
|
-
/// N/A
|
135
|
-
void add(idx_t n, const float* x) override;
|
136
|
-
|
137
164
|
void search(
|
138
165
|
idx_t n,
|
139
166
|
const float* x,
|
@@ -141,10 +168,26 @@ struct ResidualCoarseQuantizer : Index {
|
|
141
168
|
float* distances,
|
142
169
|
idx_t* labels) const override;
|
143
170
|
|
144
|
-
|
171
|
+
ResidualCoarseQuantizer();
|
172
|
+
};
|
145
173
|
|
146
|
-
|
147
|
-
|
174
|
+
struct LocalSearchCoarseQuantizer : AdditiveCoarseQuantizer {
|
175
|
+
/// The residual quantizer used to encode the vectors
|
176
|
+
LocalSearchQuantizer lsq;
|
177
|
+
|
178
|
+
/** Constructor.
|
179
|
+
*
|
180
|
+
* @param d dimensionality of the input vectors
|
181
|
+
* @param M number of subquantizers
|
182
|
+
* @param nbits number of bit per subvector index
|
183
|
+
*/
|
184
|
+
LocalSearchCoarseQuantizer(
|
185
|
+
int d, ///< dimensionality of the input vectors
|
186
|
+
size_t M, ///< number of subquantizers
|
187
|
+
size_t nbits, ///< number of bit per subvector index
|
188
|
+
MetricType metric = METRIC_L2);
|
189
|
+
|
190
|
+
LocalSearchCoarseQuantizer();
|
148
191
|
};
|
149
192
|
|
150
193
|
} // namespace faiss
|