faiss 0.2.3 → 0.2.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/LICENSE.txt +1 -1
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/Clustering.cpp +32 -0
- data/vendor/faiss/faiss/Clustering.h +14 -0
- data/vendor/faiss/faiss/Index.h +1 -1
- data/vendor/faiss/faiss/Index2Layer.cpp +19 -92
- data/vendor/faiss/faiss/Index2Layer.h +2 -16
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +407 -0
- data/vendor/faiss/faiss/{IndexResidual.h → IndexAdditiveQuantizer.h} +101 -58
- data/vendor/faiss/faiss/IndexFlat.cpp +22 -52
- data/vendor/faiss/faiss/IndexFlat.h +9 -15
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +67 -0
- data/vendor/faiss/faiss/IndexFlatCodes.h +47 -0
- data/vendor/faiss/faiss/IndexIVF.cpp +79 -7
- data/vendor/faiss/faiss/IndexIVF.h +25 -7
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +316 -0
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +121 -0
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +9 -12
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +5 -4
- data/vendor/faiss/faiss/IndexIVFPQ.h +1 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +60 -39
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +21 -6
- data/vendor/faiss/faiss/IndexLSH.cpp +4 -30
- data/vendor/faiss/faiss/IndexLSH.h +2 -15
- data/vendor/faiss/faiss/IndexNNDescent.cpp +0 -2
- data/vendor/faiss/faiss/IndexNSG.cpp +0 -2
- data/vendor/faiss/faiss/IndexPQ.cpp +2 -51
- data/vendor/faiss/faiss/IndexPQ.h +2 -17
- data/vendor/faiss/faiss/IndexRefine.cpp +28 -0
- data/vendor/faiss/faiss/IndexRefine.h +10 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +2 -28
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +2 -16
- data/vendor/faiss/faiss/VectorTransform.cpp +2 -1
- data/vendor/faiss/faiss/VectorTransform.h +3 -0
- data/vendor/faiss/faiss/clone_index.cpp +3 -2
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +2 -2
- data/vendor/faiss/faiss/gpu/GpuIcmEncoder.h +60 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +257 -24
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +69 -9
- data/vendor/faiss/faiss/impl/HNSW.cpp +10 -5
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +393 -210
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +100 -28
- data/vendor/faiss/faiss/impl/NSG.cpp +0 -3
- data/vendor/faiss/faiss/impl/NSG.h +1 -1
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +357 -47
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +65 -7
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +12 -19
- data/vendor/faiss/faiss/impl/index_read.cpp +102 -19
- data/vendor/faiss/faiss/impl/index_write.cpp +66 -16
- data/vendor/faiss/faiss/impl/io.cpp +1 -1
- data/vendor/faiss/faiss/impl/io_macros.h +20 -0
- data/vendor/faiss/faiss/impl/kmeans1d.cpp +301 -0
- data/vendor/faiss/faiss/impl/kmeans1d.h +48 -0
- data/vendor/faiss/faiss/index_factory.cpp +585 -414
- data/vendor/faiss/faiss/index_factory.h +3 -0
- data/vendor/faiss/faiss/utils/distances.cpp +4 -2
- data/vendor/faiss/faiss/utils/distances.h +36 -3
- data/vendor/faiss/faiss/utils/distances_simd.cpp +50 -0
- data/vendor/faiss/faiss/utils/utils.h +1 -1
- metadata +12 -5
- data/vendor/faiss/faiss/IndexResidual.cpp +0 -291
@@ -19,6 +19,9 @@ Index* index_factory(
|
|
19
19
|
const char* description,
|
20
20
|
MetricType metric = METRIC_L2);
|
21
21
|
|
22
|
+
/// set to > 0 to get more logs from index_factory
|
23
|
+
FAISS_API extern int index_factory_verbose;
|
24
|
+
|
22
25
|
IndexBinary* index_binary_factory(int d, const char* description);
|
23
26
|
|
24
27
|
} // namespace faiss
|
@@ -105,8 +105,9 @@ void exhaustive_inner_product_seq(
|
|
105
105
|
size_t ny,
|
106
106
|
ResultHandler& res) {
|
107
107
|
using SingleResultHandler = typename ResultHandler::SingleResultHandler;
|
108
|
+
int nt = std::min(int(nx), omp_get_max_threads());
|
108
109
|
|
109
|
-
#pragma omp parallel
|
110
|
+
#pragma omp parallel num_threads(nt)
|
110
111
|
{
|
111
112
|
SingleResultHandler resi(res);
|
112
113
|
#pragma omp for
|
@@ -135,8 +136,9 @@ void exhaustive_L2sqr_seq(
|
|
135
136
|
size_t ny,
|
136
137
|
ResultHandler& res) {
|
137
138
|
using SingleResultHandler = typename ResultHandler::SingleResultHandler;
|
139
|
+
int nt = std::min(int(nx), omp_get_max_threads());
|
138
140
|
|
139
|
-
#pragma omp parallel
|
141
|
+
#pragma omp parallel num_threads(nt)
|
140
142
|
{
|
141
143
|
SingleResultHandler resi(res);
|
142
144
|
#pragma omp for
|
@@ -40,7 +40,7 @@ float fvec_Linf(const float* x, const float* y, size_t d);
|
|
40
40
|
* @param nq nb of query vectors
|
41
41
|
* @param nb nb of database vectors
|
42
42
|
* @param xq query vectors (size nq * d)
|
43
|
-
* @param xb database
|
43
|
+
* @param xb database vectors (size nb * d)
|
44
44
|
* @param dis output distances (size nq * nb)
|
45
45
|
* @param ldq,ldb, ldd strides for the matrices
|
46
46
|
*/
|
@@ -63,7 +63,7 @@ void fvec_inner_products_ny(
|
|
63
63
|
size_t d,
|
64
64
|
size_t ny);
|
65
65
|
|
66
|
-
/* compute ny square L2 distance
|
66
|
+
/* compute ny square L2 distance between x and a set of contiguous y vectors */
|
67
67
|
void fvec_L2sqr_ny(
|
68
68
|
float* dis,
|
69
69
|
const float* x,
|
@@ -87,7 +87,7 @@ void fvec_norms_L2sqr(float* norms, const float* x, size_t d, size_t nx);
|
|
87
87
|
/* L2-renormalize a set of vector. Nothing done if the vector is 0-normed */
|
88
88
|
void fvec_renorm_L2(size_t d, size_t nx, float* x);
|
89
89
|
|
90
|
-
/* This function exists because the Torch counterpart is
|
90
|
+
/* This function exists because the Torch counterpart is extremely slow
|
91
91
|
(not multi-threaded + unexpected overhead even in single thread).
|
92
92
|
It is here to implement the usual property |x-y|^2=|x|^2+|y|^2-2<x|y> */
|
93
93
|
void inner_product_to_L2sqr(
|
@@ -97,6 +97,39 @@ void inner_product_to_L2sqr(
|
|
97
97
|
size_t n1,
|
98
98
|
size_t n2);
|
99
99
|
|
100
|
+
/*********************************************************
|
101
|
+
* Vector to vector functions
|
102
|
+
*********************************************************/
|
103
|
+
|
104
|
+
/** compute c := a + b for vectors
|
105
|
+
*
|
106
|
+
* c and a can overlap, c and b can overlap
|
107
|
+
*
|
108
|
+
* @param a size d
|
109
|
+
* @param b size d
|
110
|
+
* @param c size d
|
111
|
+
*/
|
112
|
+
void fvec_add(size_t d, const float* a, const float* b, float* c);
|
113
|
+
|
114
|
+
/** compute c := a + b for a, c vectors and b a scalar
|
115
|
+
*
|
116
|
+
* c and a can overlap
|
117
|
+
*
|
118
|
+
* @param a size d
|
119
|
+
* @param c size d
|
120
|
+
*/
|
121
|
+
void fvec_add(size_t d, const float* a, float b, float* c);
|
122
|
+
|
123
|
+
/** compute c := a - b for vectors
|
124
|
+
*
|
125
|
+
* c and a can overlap, c and b can overlap
|
126
|
+
*
|
127
|
+
* @param a size d
|
128
|
+
* @param b size d
|
129
|
+
* @param c size d
|
130
|
+
*/
|
131
|
+
void fvec_sub(size_t d, const float* a, const float* b, float* c);
|
132
|
+
|
100
133
|
/***************************************************************************
|
101
134
|
* Compute a subset of distances
|
102
135
|
***************************************************************************/
|
@@ -9,6 +9,7 @@
|
|
9
9
|
|
10
10
|
#include <faiss/utils/distances.h>
|
11
11
|
|
12
|
+
#include <algorithm>
|
12
13
|
#include <cassert>
|
13
14
|
#include <cmath>
|
14
15
|
#include <cstdio>
|
@@ -973,4 +974,53 @@ void compute_PQ_dis_tables_dsub2(
|
|
973
974
|
}
|
974
975
|
}
|
975
976
|
|
977
|
+
/*********************************************************
|
978
|
+
* Vector to vector functions
|
979
|
+
*********************************************************/
|
980
|
+
|
981
|
+
void fvec_sub(size_t d, const float* a, const float* b, float* c) {
|
982
|
+
size_t i;
|
983
|
+
for (i = 0; i + 7 < d; i += 8) {
|
984
|
+
simd8float32 ci, ai, bi;
|
985
|
+
ai.loadu(a + i);
|
986
|
+
bi.loadu(b + i);
|
987
|
+
ci = ai - bi;
|
988
|
+
ci.storeu(c + i);
|
989
|
+
}
|
990
|
+
// finish non-multiple of 8 remainder
|
991
|
+
for (; i < d; i++) {
|
992
|
+
c[i] = a[i] - b[i];
|
993
|
+
}
|
994
|
+
}
|
995
|
+
|
996
|
+
void fvec_add(size_t d, const float* a, const float* b, float* c) {
|
997
|
+
size_t i;
|
998
|
+
for (i = 0; i + 7 < d; i += 8) {
|
999
|
+
simd8float32 ci, ai, bi;
|
1000
|
+
ai.loadu(a + i);
|
1001
|
+
bi.loadu(b + i);
|
1002
|
+
ci = ai + bi;
|
1003
|
+
ci.storeu(c + i);
|
1004
|
+
}
|
1005
|
+
// finish non-multiple of 8 remainder
|
1006
|
+
for (; i < d; i++) {
|
1007
|
+
c[i] = a[i] + b[i];
|
1008
|
+
}
|
1009
|
+
}
|
1010
|
+
|
1011
|
+
void fvec_add(size_t d, const float* a, float b, float* c) {
|
1012
|
+
size_t i;
|
1013
|
+
simd8float32 bv(b);
|
1014
|
+
for (i = 0; i + 7 < d; i += 8) {
|
1015
|
+
simd8float32 ci, ai, bi;
|
1016
|
+
ai.loadu(a + i);
|
1017
|
+
ci = ai + bv;
|
1018
|
+
ci.storeu(c + i);
|
1019
|
+
}
|
1020
|
+
// finish non-multiple of 8 remainder
|
1021
|
+
for (; i < d; i++) {
|
1022
|
+
c[i] = a[i] + b;
|
1023
|
+
}
|
1024
|
+
}
|
1025
|
+
|
976
1026
|
} // namespace faiss
|
@@ -80,7 +80,7 @@ void matrix_qr(int m, int n, float* a);
|
|
80
80
|
/** distances are supposed to be sorted. Sorts indices with same distance*/
|
81
81
|
void ranklist_handle_ties(int k, int64_t* idx, const float* dis);
|
82
82
|
|
83
|
-
/** count the number of
|
83
|
+
/** count the number of common elements between v1 and v2
|
84
84
|
* algorithm = sorting + bissection to avoid double-counting duplicates
|
85
85
|
*/
|
86
86
|
size_t ranklist_intersection_size(
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: faiss
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.2.
|
4
|
+
version: 0.2.4
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2022-01-10 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rice
|
@@ -71,6 +71,8 @@ files:
|
|
71
71
|
- vendor/faiss/faiss/Index.h
|
72
72
|
- vendor/faiss/faiss/Index2Layer.cpp
|
73
73
|
- vendor/faiss/faiss/Index2Layer.h
|
74
|
+
- vendor/faiss/faiss/IndexAdditiveQuantizer.cpp
|
75
|
+
- vendor/faiss/faiss/IndexAdditiveQuantizer.h
|
74
76
|
- vendor/faiss/faiss/IndexBinary.cpp
|
75
77
|
- vendor/faiss/faiss/IndexBinary.h
|
76
78
|
- vendor/faiss/faiss/IndexBinaryFlat.cpp
|
@@ -85,10 +87,14 @@ files:
|
|
85
87
|
- vendor/faiss/faiss/IndexBinaryIVF.h
|
86
88
|
- vendor/faiss/faiss/IndexFlat.cpp
|
87
89
|
- vendor/faiss/faiss/IndexFlat.h
|
90
|
+
- vendor/faiss/faiss/IndexFlatCodes.cpp
|
91
|
+
- vendor/faiss/faiss/IndexFlatCodes.h
|
88
92
|
- vendor/faiss/faiss/IndexHNSW.cpp
|
89
93
|
- vendor/faiss/faiss/IndexHNSW.h
|
90
94
|
- vendor/faiss/faiss/IndexIVF.cpp
|
91
95
|
- vendor/faiss/faiss/IndexIVF.h
|
96
|
+
- vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp
|
97
|
+
- vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h
|
92
98
|
- vendor/faiss/faiss/IndexIVFFlat.cpp
|
93
99
|
- vendor/faiss/faiss/IndexIVFFlat.h
|
94
100
|
- vendor/faiss/faiss/IndexIVFPQ.cpp
|
@@ -117,8 +123,6 @@ files:
|
|
117
123
|
- vendor/faiss/faiss/IndexRefine.h
|
118
124
|
- vendor/faiss/faiss/IndexReplicas.cpp
|
119
125
|
- vendor/faiss/faiss/IndexReplicas.h
|
120
|
-
- vendor/faiss/faiss/IndexResidual.cpp
|
121
|
-
- vendor/faiss/faiss/IndexResidual.h
|
122
126
|
- vendor/faiss/faiss/IndexScalarQuantizer.cpp
|
123
127
|
- vendor/faiss/faiss/IndexScalarQuantizer.h
|
124
128
|
- vendor/faiss/faiss/IndexShards.cpp
|
@@ -140,6 +144,7 @@ files:
|
|
140
144
|
- vendor/faiss/faiss/gpu/GpuClonerOptions.h
|
141
145
|
- vendor/faiss/faiss/gpu/GpuDistance.h
|
142
146
|
- vendor/faiss/faiss/gpu/GpuFaissAssert.h
|
147
|
+
- vendor/faiss/faiss/gpu/GpuIcmEncoder.h
|
143
148
|
- vendor/faiss/faiss/gpu/GpuIndex.h
|
144
149
|
- vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h
|
145
150
|
- vendor/faiss/faiss/gpu/GpuIndexFlat.h
|
@@ -209,6 +214,8 @@ files:
|
|
209
214
|
- vendor/faiss/faiss/impl/io.cpp
|
210
215
|
- vendor/faiss/faiss/impl/io.h
|
211
216
|
- vendor/faiss/faiss/impl/io_macros.h
|
217
|
+
- vendor/faiss/faiss/impl/kmeans1d.cpp
|
218
|
+
- vendor/faiss/faiss/impl/kmeans1d.h
|
212
219
|
- vendor/faiss/faiss/impl/lattice_Zn.cpp
|
213
220
|
- vendor/faiss/faiss/impl/lattice_Zn.h
|
214
221
|
- vendor/faiss/faiss/impl/platform_macros.h
|
@@ -278,7 +285,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
278
285
|
- !ruby/object:Gem::Version
|
279
286
|
version: '0'
|
280
287
|
requirements: []
|
281
|
-
rubygems_version: 3.
|
288
|
+
rubygems_version: 3.3.3
|
282
289
|
signing_key:
|
283
290
|
specification_version: 4
|
284
291
|
summary: Efficient similarity search and clustering for Ruby
|
@@ -1,291 +0,0 @@
|
|
1
|
-
/**
|
2
|
-
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
-
*
|
4
|
-
* This source code is licensed under the MIT license found in the
|
5
|
-
* LICENSE file in the root directory of this source tree.
|
6
|
-
*/
|
7
|
-
|
8
|
-
#include <faiss/IndexResidual.h>
|
9
|
-
|
10
|
-
#include <algorithm>
|
11
|
-
#include <cmath>
|
12
|
-
#include <cstring>
|
13
|
-
|
14
|
-
#include <faiss/impl/FaissAssert.h>
|
15
|
-
#include <faiss/impl/ResultHandler.h>
|
16
|
-
#include <faiss/utils/distances.h>
|
17
|
-
#include <faiss/utils/extra_distances.h>
|
18
|
-
#include <faiss/utils/utils.h>
|
19
|
-
|
20
|
-
namespace faiss {
|
21
|
-
|
22
|
-
/**************************************************************************************
|
23
|
-
* IndexResidual
|
24
|
-
**************************************************************************************/
|
25
|
-
|
26
|
-
IndexResidual::IndexResidual(
|
27
|
-
int d, ///< dimensionality of the input vectors
|
28
|
-
size_t M, ///< number of subquantizers
|
29
|
-
size_t nbits, ///< number of bit per subvector index
|
30
|
-
MetricType metric,
|
31
|
-
Search_type_t search_type_in)
|
32
|
-
: Index(d, metric), rq(d, M, nbits), search_type(ST_decompress) {
|
33
|
-
is_trained = false;
|
34
|
-
norm_max = norm_min = NAN;
|
35
|
-
set_search_type(search_type_in);
|
36
|
-
}
|
37
|
-
|
38
|
-
IndexResidual::IndexResidual(
|
39
|
-
int d,
|
40
|
-
const std::vector<size_t>& nbits,
|
41
|
-
MetricType metric,
|
42
|
-
Search_type_t search_type_in)
|
43
|
-
: Index(d, metric), rq(d, nbits), search_type(ST_decompress) {
|
44
|
-
is_trained = false;
|
45
|
-
norm_max = norm_min = NAN;
|
46
|
-
set_search_type(search_type_in);
|
47
|
-
}
|
48
|
-
|
49
|
-
IndexResidual::IndexResidual() : IndexResidual(0, 0, 0) {}
|
50
|
-
|
51
|
-
void IndexResidual::set_search_type(Search_type_t new_search_type) {
|
52
|
-
int norm_bits = new_search_type == ST_norm_float ? 32
|
53
|
-
: new_search_type == ST_norm_qint8 ? 8
|
54
|
-
: 0;
|
55
|
-
|
56
|
-
FAISS_THROW_IF_NOT(ntotal == 0);
|
57
|
-
|
58
|
-
search_type = new_search_type;
|
59
|
-
code_size = (rq.tot_bits + norm_bits + 7) / 8;
|
60
|
-
}
|
61
|
-
|
62
|
-
void IndexResidual::train(idx_t n, const float* x) {
|
63
|
-
rq.train(n, x);
|
64
|
-
|
65
|
-
std::vector<float> norms(n);
|
66
|
-
fvec_norms_L2sqr(norms.data(), x, d, n);
|
67
|
-
|
68
|
-
norm_min = HUGE_VALF;
|
69
|
-
norm_max = -HUGE_VALF;
|
70
|
-
for (idx_t i = 0; i < n; i++) {
|
71
|
-
if (norms[i] < norm_min) {
|
72
|
-
norm_min = norms[i];
|
73
|
-
}
|
74
|
-
if (norms[i] > norm_min) {
|
75
|
-
norm_max = norms[i];
|
76
|
-
}
|
77
|
-
}
|
78
|
-
|
79
|
-
is_trained = true;
|
80
|
-
}
|
81
|
-
|
82
|
-
void IndexResidual::add(idx_t n, const float* x) {
|
83
|
-
FAISS_THROW_IF_NOT(is_trained);
|
84
|
-
codes.resize((n + ntotal) * rq.code_size);
|
85
|
-
if (search_type == ST_decompress || search_type == ST_LUT_nonorm) {
|
86
|
-
rq.compute_codes(x, &codes[ntotal * rq.code_size], n);
|
87
|
-
} else {
|
88
|
-
// should compute codes + compute and quantize norms
|
89
|
-
FAISS_THROW_MSG("not implemented");
|
90
|
-
}
|
91
|
-
ntotal += n;
|
92
|
-
}
|
93
|
-
|
94
|
-
namespace {
|
95
|
-
|
96
|
-
template <class VectorDistance, class ResultHandler>
|
97
|
-
void search_with_decompress(
|
98
|
-
const IndexResidual& ir,
|
99
|
-
const float* xq,
|
100
|
-
VectorDistance& vd,
|
101
|
-
ResultHandler& res) {
|
102
|
-
const uint8_t* codes = ir.codes.data();
|
103
|
-
size_t ntotal = ir.ntotal;
|
104
|
-
size_t code_size = ir.code_size;
|
105
|
-
|
106
|
-
using SingleResultHandler = typename ResultHandler::SingleResultHandler;
|
107
|
-
|
108
|
-
#pragma omp parallel for
|
109
|
-
for (int64_t q = 0; q < res.nq; q++) {
|
110
|
-
SingleResultHandler resi(res);
|
111
|
-
resi.begin(q);
|
112
|
-
std::vector<float> tmp(ir.d);
|
113
|
-
const float* x = xq + ir.d * q;
|
114
|
-
for (size_t i = 0; i < ntotal; i++) {
|
115
|
-
ir.rq.decode(codes + i * code_size, tmp.data(), 1);
|
116
|
-
float dis = vd(x, tmp.data());
|
117
|
-
resi.add_result(dis, i);
|
118
|
-
}
|
119
|
-
resi.end();
|
120
|
-
}
|
121
|
-
}
|
122
|
-
|
123
|
-
} // anonymous namespace
|
124
|
-
|
125
|
-
void IndexResidual::search(
|
126
|
-
idx_t n,
|
127
|
-
const float* x,
|
128
|
-
idx_t k,
|
129
|
-
float* distances,
|
130
|
-
idx_t* labels) const {
|
131
|
-
if (search_type == ST_decompress) {
|
132
|
-
if (metric_type == METRIC_L2) {
|
133
|
-
using VD = VectorDistance<METRIC_L2>;
|
134
|
-
VD vd = {size_t(d), metric_arg};
|
135
|
-
HeapResultHandler<VD::C> rh(n, distances, labels, k);
|
136
|
-
search_with_decompress(*this, x, vd, rh);
|
137
|
-
} else if (metric_type == METRIC_INNER_PRODUCT) {
|
138
|
-
using VD = VectorDistance<METRIC_INNER_PRODUCT>;
|
139
|
-
VD vd = {size_t(d), metric_arg};
|
140
|
-
HeapResultHandler<VD::C> rh(n, distances, labels, k);
|
141
|
-
search_with_decompress(*this, x, vd, rh);
|
142
|
-
}
|
143
|
-
} else {
|
144
|
-
FAISS_THROW_MSG("not implemented");
|
145
|
-
}
|
146
|
-
}
|
147
|
-
|
148
|
-
void IndexResidual::reset() {
|
149
|
-
codes.clear();
|
150
|
-
ntotal = 0;
|
151
|
-
}
|
152
|
-
|
153
|
-
size_t IndexResidual::sa_code_size() const {
|
154
|
-
return code_size;
|
155
|
-
}
|
156
|
-
|
157
|
-
void IndexResidual::sa_encode(idx_t n, const float* x, uint8_t* bytes) const {
|
158
|
-
return rq.compute_codes(x, bytes, n);
|
159
|
-
}
|
160
|
-
|
161
|
-
void IndexResidual::sa_decode(idx_t n, const uint8_t* bytes, float* x) const {
|
162
|
-
return rq.decode(bytes, x, n);
|
163
|
-
}
|
164
|
-
|
165
|
-
/**************************************************************************************
|
166
|
-
* ResidualCoarseQuantizer
|
167
|
-
**************************************************************************************/
|
168
|
-
|
169
|
-
ResidualCoarseQuantizer::ResidualCoarseQuantizer(
|
170
|
-
int d, ///< dimensionality of the input vectors
|
171
|
-
size_t M, ///< number of subquantizers
|
172
|
-
size_t nbits, ///< number of bit per subvector index
|
173
|
-
MetricType metric)
|
174
|
-
: Index(d, metric), rq(d, M, nbits), beam_factor(4.0) {
|
175
|
-
FAISS_THROW_IF_NOT(rq.tot_bits <= 63);
|
176
|
-
is_trained = false;
|
177
|
-
}
|
178
|
-
|
179
|
-
ResidualCoarseQuantizer::ResidualCoarseQuantizer(
|
180
|
-
int d,
|
181
|
-
const std::vector<size_t>& nbits,
|
182
|
-
MetricType metric)
|
183
|
-
: Index(d, metric), rq(d, nbits), beam_factor(4.0) {
|
184
|
-
FAISS_THROW_IF_NOT(rq.tot_bits <= 63);
|
185
|
-
is_trained = false;
|
186
|
-
}
|
187
|
-
|
188
|
-
ResidualCoarseQuantizer::ResidualCoarseQuantizer() {}
|
189
|
-
|
190
|
-
void ResidualCoarseQuantizer::train(idx_t n, const float* x) {
|
191
|
-
rq.train(n, x);
|
192
|
-
is_trained = true;
|
193
|
-
ntotal = (idx_t)1 << rq.tot_bits;
|
194
|
-
}
|
195
|
-
|
196
|
-
void ResidualCoarseQuantizer::add(idx_t, const float*) {
|
197
|
-
FAISS_THROW_MSG("not applicable");
|
198
|
-
}
|
199
|
-
|
200
|
-
void ResidualCoarseQuantizer::set_beam_factor(float new_beam_factor) {
|
201
|
-
centroid_norms.resize(0);
|
202
|
-
beam_factor = new_beam_factor;
|
203
|
-
if (new_beam_factor > 0) {
|
204
|
-
FAISS_THROW_IF_NOT(new_beam_factor >= 1.0);
|
205
|
-
return;
|
206
|
-
}
|
207
|
-
|
208
|
-
if (metric_type == METRIC_L2) {
|
209
|
-
centroid_norms.resize((size_t)1 << rq.tot_bits);
|
210
|
-
rq.compute_centroid_norms(centroid_norms.data());
|
211
|
-
}
|
212
|
-
}
|
213
|
-
|
214
|
-
void ResidualCoarseQuantizer::search(
|
215
|
-
idx_t n,
|
216
|
-
const float* x,
|
217
|
-
idx_t k,
|
218
|
-
float* distances,
|
219
|
-
idx_t* labels) const {
|
220
|
-
if (beam_factor < 0) {
|
221
|
-
if (metric_type == METRIC_INNER_PRODUCT) {
|
222
|
-
rq.knn_exact_inner_product(n, x, k, distances, labels);
|
223
|
-
} else if (metric_type == METRIC_L2) {
|
224
|
-
FAISS_THROW_IF_NOT(centroid_norms.size() == ntotal);
|
225
|
-
rq.knn_exact_L2(n, x, k, distances, labels, centroid_norms.data());
|
226
|
-
}
|
227
|
-
return;
|
228
|
-
}
|
229
|
-
|
230
|
-
int beam_size = int(k * beam_factor);
|
231
|
-
|
232
|
-
size_t memory_per_point = rq.memory_per_point(beam_size);
|
233
|
-
|
234
|
-
/*
|
235
|
-
|
236
|
-
printf("mem per point %ld n=%d max_mem_distance=%ld mem_kb=%zd\n",
|
237
|
-
memory_per_point, int(n), rq.max_mem_distances, get_mem_usage_kb());
|
238
|
-
*/
|
239
|
-
if (n > 1 && memory_per_point * n > rq.max_mem_distances) {
|
240
|
-
// then split queries to reduce temp memory
|
241
|
-
idx_t bs = rq.max_mem_distances / memory_per_point;
|
242
|
-
if (bs == 0) {
|
243
|
-
bs = 1; // otherwise we can't do much
|
244
|
-
}
|
245
|
-
if (verbose) {
|
246
|
-
printf("ResidualCoarseQuantizer::search: run %d searches in batches of size %d\n",
|
247
|
-
int(n),
|
248
|
-
int(bs));
|
249
|
-
}
|
250
|
-
for (idx_t i0 = 0; i0 < n; i0 += bs) {
|
251
|
-
idx_t i1 = std::min(n, i0 + bs);
|
252
|
-
search(i1 - i0, x + i0 * d, k, distances + i0 * k, labels + i0 * k);
|
253
|
-
InterruptCallback::check();
|
254
|
-
}
|
255
|
-
return;
|
256
|
-
}
|
257
|
-
|
258
|
-
std::vector<int32_t> codes(beam_size * rq.M * n);
|
259
|
-
std::vector<float> beam_distances(n * beam_size);
|
260
|
-
|
261
|
-
rq.refine_beam(
|
262
|
-
n, 1, x, beam_size, codes.data(), nullptr, beam_distances.data());
|
263
|
-
|
264
|
-
#pragma omp parallel for if (n > 4000)
|
265
|
-
for (idx_t i = 0; i < n; i++) {
|
266
|
-
memcpy(distances + i * k,
|
267
|
-
beam_distances.data() + beam_size * i,
|
268
|
-
k * sizeof(distances[0]));
|
269
|
-
|
270
|
-
const int32_t* codes_i = codes.data() + beam_size * i * rq.M;
|
271
|
-
for (idx_t j = 0; j < k; j++) {
|
272
|
-
idx_t l = 0;
|
273
|
-
int shift = 0;
|
274
|
-
for (int m = 0; m < rq.M; m++) {
|
275
|
-
l |= (*codes_i++) << shift;
|
276
|
-
shift += rq.nbits[m];
|
277
|
-
}
|
278
|
-
labels[i * k + j] = l;
|
279
|
-
}
|
280
|
-
}
|
281
|
-
}
|
282
|
-
|
283
|
-
void ResidualCoarseQuantizer::reconstruct(idx_t key, float* recons) const {
|
284
|
-
rq.decode_64bit(key, recons);
|
285
|
-
}
|
286
|
-
|
287
|
-
void ResidualCoarseQuantizer::reset() {
|
288
|
-
FAISS_THROW_MSG("not applicable");
|
289
|
-
}
|
290
|
-
|
291
|
-
} // namespace faiss
|