faiss 0.1.3 → 0.1.4

Sign up to get free protection for your applications and to get access to all the features.
Files changed (184) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +4 -0
  3. data/LICENSE.txt +1 -1
  4. data/README.md +1 -1
  5. data/ext/faiss/extconf.rb +1 -1
  6. data/lib/faiss/version.rb +1 -1
  7. data/vendor/faiss/faiss/AutoTune.cpp +36 -33
  8. data/vendor/faiss/faiss/AutoTune.h +6 -3
  9. data/vendor/faiss/faiss/Clustering.cpp +16 -12
  10. data/vendor/faiss/faiss/Index.cpp +3 -4
  11. data/vendor/faiss/faiss/Index.h +3 -3
  12. data/vendor/faiss/faiss/IndexBinary.cpp +3 -4
  13. data/vendor/faiss/faiss/IndexBinary.h +1 -1
  14. data/vendor/faiss/faiss/IndexBinaryHash.cpp +2 -12
  15. data/vendor/faiss/faiss/IndexBinaryIVF.cpp +1 -2
  16. data/vendor/faiss/faiss/IndexFlat.cpp +0 -148
  17. data/vendor/faiss/faiss/IndexFlat.h +0 -51
  18. data/vendor/faiss/faiss/IndexHNSW.cpp +4 -5
  19. data/vendor/faiss/faiss/IndexIVF.cpp +118 -31
  20. data/vendor/faiss/faiss/IndexIVF.h +22 -15
  21. data/vendor/faiss/faiss/IndexIVFFlat.cpp +3 -3
  22. data/vendor/faiss/faiss/IndexIVFFlat.h +2 -1
  23. data/vendor/faiss/faiss/IndexIVFPQ.cpp +39 -15
  24. data/vendor/faiss/faiss/IndexIVFPQ.h +25 -9
  25. data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +1116 -0
  26. data/vendor/faiss/faiss/IndexIVFPQFastScan.h +166 -0
  27. data/vendor/faiss/faiss/IndexIVFPQR.cpp +8 -9
  28. data/vendor/faiss/faiss/IndexIVFPQR.h +2 -1
  29. data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +1 -2
  30. data/vendor/faiss/faiss/IndexPQ.cpp +34 -18
  31. data/vendor/faiss/faiss/IndexPQFastScan.cpp +536 -0
  32. data/vendor/faiss/faiss/IndexPQFastScan.h +111 -0
  33. data/vendor/faiss/faiss/IndexPreTransform.cpp +47 -0
  34. data/vendor/faiss/faiss/IndexPreTransform.h +2 -0
  35. data/vendor/faiss/faiss/IndexRefine.cpp +256 -0
  36. data/vendor/faiss/faiss/IndexRefine.h +73 -0
  37. data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +2 -2
  38. data/vendor/faiss/faiss/IndexScalarQuantizer.h +1 -1
  39. data/vendor/faiss/faiss/gpu/GpuDistance.h +1 -1
  40. data/vendor/faiss/faiss/gpu/GpuIndex.h +16 -9
  41. data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +8 -1
  42. data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +11 -11
  43. data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +19 -2
  44. data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +28 -2
  45. data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +24 -14
  46. data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +29 -2
  47. data/vendor/faiss/faiss/gpu/GpuResources.h +4 -0
  48. data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +60 -27
  49. data/vendor/faiss/faiss/gpu/StandardGpuResources.h +28 -6
  50. data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +547 -0
  51. data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.h +51 -0
  52. data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +3 -3
  53. data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +3 -2
  54. data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +274 -0
  55. data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +7 -2
  56. data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +5 -1
  57. data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +231 -0
  58. data/vendor/faiss/faiss/gpu/test/TestUtils.h +33 -0
  59. data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.cpp +1 -0
  60. data/vendor/faiss/faiss/gpu/utils/StaticUtils.h +6 -0
  61. data/vendor/faiss/faiss/gpu/utils/Timer.cpp +5 -6
  62. data/vendor/faiss/faiss/gpu/utils/Timer.h +2 -2
  63. data/vendor/faiss/faiss/impl/AuxIndexStructures.h +5 -4
  64. data/vendor/faiss/faiss/impl/HNSW.cpp +2 -4
  65. data/vendor/faiss/faiss/impl/PolysemousTraining.h +4 -4
  66. data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +22 -12
  67. data/vendor/faiss/faiss/impl/ProductQuantizer.h +2 -0
  68. data/vendor/faiss/faiss/impl/ResultHandler.h +452 -0
  69. data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +29 -19
  70. data/vendor/faiss/faiss/impl/ScalarQuantizer.h +6 -0
  71. data/vendor/faiss/faiss/impl/index_read.cpp +64 -96
  72. data/vendor/faiss/faiss/impl/index_write.cpp +34 -25
  73. data/vendor/faiss/faiss/impl/io.cpp +33 -2
  74. data/vendor/faiss/faiss/impl/io.h +7 -2
  75. data/vendor/faiss/faiss/impl/lattice_Zn.cpp +1 -15
  76. data/vendor/faiss/faiss/impl/platform_macros.h +44 -0
  77. data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +272 -0
  78. data/vendor/faiss/faiss/impl/pq4_fast_scan.h +169 -0
  79. data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +180 -0
  80. data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +354 -0
  81. data/vendor/faiss/faiss/impl/simd_result_handlers.h +559 -0
  82. data/vendor/faiss/faiss/index_factory.cpp +112 -7
  83. data/vendor/faiss/faiss/index_io.h +1 -48
  84. data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +151 -0
  85. data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +76 -0
  86. data/vendor/faiss/faiss/{DirectMap.cpp → invlists/DirectMap.cpp} +1 -1
  87. data/vendor/faiss/faiss/{DirectMap.h → invlists/DirectMap.h} +1 -1
  88. data/vendor/faiss/faiss/{InvertedLists.cpp → invlists/InvertedLists.cpp} +72 -1
  89. data/vendor/faiss/faiss/{InvertedLists.h → invlists/InvertedLists.h} +32 -1
  90. data/vendor/faiss/faiss/invlists/InvertedListsIOHook.cpp +107 -0
  91. data/vendor/faiss/faiss/invlists/InvertedListsIOHook.h +63 -0
  92. data/vendor/faiss/faiss/{OnDiskInvertedLists.cpp → invlists/OnDiskInvertedLists.cpp} +21 -6
  93. data/vendor/faiss/faiss/{OnDiskInvertedLists.h → invlists/OnDiskInvertedLists.h} +5 -2
  94. data/vendor/faiss/faiss/python/python_callbacks.h +8 -1
  95. data/vendor/faiss/faiss/utils/AlignedTable.h +141 -0
  96. data/vendor/faiss/faiss/utils/Heap.cpp +2 -4
  97. data/vendor/faiss/faiss/utils/Heap.h +61 -50
  98. data/vendor/faiss/faiss/utils/distances.cpp +164 -319
  99. data/vendor/faiss/faiss/utils/distances.h +28 -20
  100. data/vendor/faiss/faiss/utils/distances_simd.cpp +277 -49
  101. data/vendor/faiss/faiss/utils/extra_distances.cpp +1 -2
  102. data/vendor/faiss/faiss/utils/hamming-inl.h +4 -4
  103. data/vendor/faiss/faiss/utils/hamming.cpp +3 -6
  104. data/vendor/faiss/faiss/utils/hamming.h +2 -7
  105. data/vendor/faiss/faiss/utils/ordered_key_value.h +98 -0
  106. data/vendor/faiss/faiss/utils/partitioning.cpp +1256 -0
  107. data/vendor/faiss/faiss/utils/partitioning.h +69 -0
  108. data/vendor/faiss/faiss/utils/quantize_lut.cpp +277 -0
  109. data/vendor/faiss/faiss/utils/quantize_lut.h +80 -0
  110. data/vendor/faiss/faiss/utils/simdlib.h +31 -0
  111. data/vendor/faiss/faiss/utils/simdlib_avx2.h +461 -0
  112. data/vendor/faiss/faiss/utils/simdlib_emulated.h +589 -0
  113. metadata +43 -141
  114. data/vendor/faiss/benchs/bench_6bit_codec.cpp +0 -80
  115. data/vendor/faiss/c_api/AutoTune_c.cpp +0 -83
  116. data/vendor/faiss/c_api/AutoTune_c.h +0 -66
  117. data/vendor/faiss/c_api/Clustering_c.cpp +0 -145
  118. data/vendor/faiss/c_api/Clustering_c.h +0 -123
  119. data/vendor/faiss/c_api/IndexFlat_c.cpp +0 -140
  120. data/vendor/faiss/c_api/IndexFlat_c.h +0 -115
  121. data/vendor/faiss/c_api/IndexIVFFlat_c.cpp +0 -64
  122. data/vendor/faiss/c_api/IndexIVFFlat_c.h +0 -58
  123. data/vendor/faiss/c_api/IndexIVF_c.cpp +0 -99
  124. data/vendor/faiss/c_api/IndexIVF_c.h +0 -142
  125. data/vendor/faiss/c_api/IndexLSH_c.cpp +0 -37
  126. data/vendor/faiss/c_api/IndexLSH_c.h +0 -40
  127. data/vendor/faiss/c_api/IndexPreTransform_c.cpp +0 -21
  128. data/vendor/faiss/c_api/IndexPreTransform_c.h +0 -32
  129. data/vendor/faiss/c_api/IndexShards_c.cpp +0 -38
  130. data/vendor/faiss/c_api/IndexShards_c.h +0 -39
  131. data/vendor/faiss/c_api/Index_c.cpp +0 -105
  132. data/vendor/faiss/c_api/Index_c.h +0 -183
  133. data/vendor/faiss/c_api/MetaIndexes_c.cpp +0 -49
  134. data/vendor/faiss/c_api/MetaIndexes_c.h +0 -49
  135. data/vendor/faiss/c_api/clone_index_c.cpp +0 -23
  136. data/vendor/faiss/c_api/clone_index_c.h +0 -32
  137. data/vendor/faiss/c_api/error_c.h +0 -42
  138. data/vendor/faiss/c_api/error_impl.cpp +0 -27
  139. data/vendor/faiss/c_api/error_impl.h +0 -16
  140. data/vendor/faiss/c_api/faiss_c.h +0 -58
  141. data/vendor/faiss/c_api/gpu/GpuAutoTune_c.cpp +0 -98
  142. data/vendor/faiss/c_api/gpu/GpuAutoTune_c.h +0 -56
  143. data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.cpp +0 -52
  144. data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.h +0 -68
  145. data/vendor/faiss/c_api/gpu/GpuIndex_c.cpp +0 -17
  146. data/vendor/faiss/c_api/gpu/GpuIndex_c.h +0 -30
  147. data/vendor/faiss/c_api/gpu/GpuIndicesOptions_c.h +0 -38
  148. data/vendor/faiss/c_api/gpu/GpuResources_c.cpp +0 -86
  149. data/vendor/faiss/c_api/gpu/GpuResources_c.h +0 -66
  150. data/vendor/faiss/c_api/gpu/StandardGpuResources_c.cpp +0 -54
  151. data/vendor/faiss/c_api/gpu/StandardGpuResources_c.h +0 -53
  152. data/vendor/faiss/c_api/gpu/macros_impl.h +0 -42
  153. data/vendor/faiss/c_api/impl/AuxIndexStructures_c.cpp +0 -220
  154. data/vendor/faiss/c_api/impl/AuxIndexStructures_c.h +0 -149
  155. data/vendor/faiss/c_api/index_factory_c.cpp +0 -26
  156. data/vendor/faiss/c_api/index_factory_c.h +0 -30
  157. data/vendor/faiss/c_api/index_io_c.cpp +0 -42
  158. data/vendor/faiss/c_api/index_io_c.h +0 -50
  159. data/vendor/faiss/c_api/macros_impl.h +0 -110
  160. data/vendor/faiss/demos/demo_imi_flat.cpp +0 -154
  161. data/vendor/faiss/demos/demo_imi_pq.cpp +0 -203
  162. data/vendor/faiss/demos/demo_ivfpq_indexing.cpp +0 -151
  163. data/vendor/faiss/demos/demo_sift1M.cpp +0 -252
  164. data/vendor/faiss/demos/demo_weighted_kmeans.cpp +0 -185
  165. data/vendor/faiss/misc/test_blas.cpp +0 -87
  166. data/vendor/faiss/tests/test_binary_flat.cpp +0 -62
  167. data/vendor/faiss/tests/test_dealloc_invlists.cpp +0 -188
  168. data/vendor/faiss/tests/test_ivfpq_codec.cpp +0 -70
  169. data/vendor/faiss/tests/test_ivfpq_indexing.cpp +0 -100
  170. data/vendor/faiss/tests/test_lowlevel_ivf.cpp +0 -573
  171. data/vendor/faiss/tests/test_merge.cpp +0 -260
  172. data/vendor/faiss/tests/test_omp_threads.cpp +0 -14
  173. data/vendor/faiss/tests/test_ondisk_ivf.cpp +0 -225
  174. data/vendor/faiss/tests/test_pairs_decoding.cpp +0 -193
  175. data/vendor/faiss/tests/test_params_override.cpp +0 -236
  176. data/vendor/faiss/tests/test_pq_encoding.cpp +0 -98
  177. data/vendor/faiss/tests/test_sliding_ivf.cpp +0 -246
  178. data/vendor/faiss/tests/test_threaded_index.cpp +0 -253
  179. data/vendor/faiss/tests/test_transfer_invlists.cpp +0 -159
  180. data/vendor/faiss/tutorial/cpp/1-Flat.cpp +0 -104
  181. data/vendor/faiss/tutorial/cpp/2-IVFFlat.cpp +0 -85
  182. data/vendor/faiss/tutorial/cpp/3-IVFPQ.cpp +0 -98
  183. data/vendor/faiss/tutorial/cpp/4-GPU.cpp +0 -122
  184. data/vendor/faiss/tutorial/cpp/5-Multiple-GPUs.cpp +0 -104
@@ -1,151 +0,0 @@
1
- /**
2
- * Copyright (c) Facebook, Inc. and its affiliates.
3
- *
4
- * This source code is licensed under the MIT license found in the
5
- * LICENSE file in the root directory of this source tree.
6
- */
7
-
8
-
9
-
10
- #include <cmath>
11
- #include <cstdio>
12
- #include <cstdlib>
13
- #include <random>
14
-
15
- #include <sys/time.h>
16
-
17
-
18
- #include <faiss/IndexIVFPQ.h>
19
- #include <faiss/IndexFlat.h>
20
- #include <faiss/index_io.h>
21
-
22
- double elapsed ()
23
- {
24
- struct timeval tv;
25
- gettimeofday (&tv, NULL);
26
- return tv.tv_sec + tv.tv_usec * 1e-6;
27
- }
28
-
29
-
30
- int main ()
31
- {
32
-
33
- double t0 = elapsed();
34
-
35
- // dimension of the vectors to index
36
- int d = 128;
37
-
38
- // size of the database we plan to index
39
- size_t nb = 200 * 1000;
40
-
41
- // make a set of nt training vectors in the unit cube
42
- // (could be the database)
43
- size_t nt = 100 * 1000;
44
-
45
- // make the index object and train it
46
- faiss::IndexFlatL2 coarse_quantizer (d);
47
-
48
- // a reasonable number of centroids to index nb vectors
49
- int ncentroids = int (4 * sqrt (nb));
50
-
51
- // the coarse quantizer should not be dealloced before the index
52
- // 4 = nb of bytes per code (d must be a multiple of this)
53
- // 8 = nb of bits per sub-code (almost always 8)
54
- faiss::IndexIVFPQ index (&coarse_quantizer, d,
55
- ncentroids, 4, 8);
56
-
57
-
58
- std::mt19937 rng;
59
-
60
- { // training
61
- printf ("[%.3f s] Generating %ld vectors in %dD for training\n",
62
- elapsed() - t0, nt, d);
63
-
64
- std::vector <float> trainvecs (nt * d);
65
- std::uniform_real_distribution<> distrib;
66
- for (size_t i = 0; i < nt * d; i++) {
67
- trainvecs[i] = distrib(rng);
68
- }
69
-
70
- printf ("[%.3f s] Training the index\n",
71
- elapsed() - t0);
72
- index.verbose = true;
73
-
74
- index.train (nt, trainvecs.data());
75
- }
76
-
77
- { // I/O demo
78
- const char *outfilename = "/tmp/index_trained.faissindex";
79
- printf ("[%.3f s] storing the pre-trained index to %s\n",
80
- elapsed() - t0, outfilename);
81
-
82
- write_index (&index, outfilename);
83
- }
84
-
85
- size_t nq;
86
- std::vector<float> queries;
87
-
88
- { // populating the database
89
- printf ("[%.3f s] Building a dataset of %ld vectors to index\n",
90
- elapsed() - t0, nb);
91
-
92
- std::vector <float> database (nb * d);
93
- std::uniform_real_distribution<> distrib;
94
- for (size_t i = 0; i < nb * d; i++) {
95
- database[i] = distrib(rng);
96
- }
97
-
98
- printf ("[%.3f s] Adding the vectors to the index\n",
99
- elapsed() - t0);
100
-
101
- index.add (nb, database.data());
102
-
103
- printf ("[%.3f s] imbalance factor: %g\n",
104
- elapsed() - t0, index.invlists->imbalance_factor ());
105
-
106
- // remember a few elements from the database as queries
107
- int i0 = 1234;
108
- int i1 = 1243;
109
-
110
- nq = i1 - i0;
111
- queries.resize (nq * d);
112
- for (int i = i0; i < i1; i++) {
113
- for (int j = 0; j < d; j++) {
114
- queries [(i - i0) * d + j] = database [i * d + j];
115
- }
116
- }
117
-
118
- }
119
-
120
- { // searching the database
121
- int k = 5;
122
- printf ("[%.3f s] Searching the %d nearest neighbors "
123
- "of %ld vectors in the index\n",
124
- elapsed() - t0, k, nq);
125
-
126
- std::vector<faiss::Index::idx_t> nns (k * nq);
127
- std::vector<float> dis (k * nq);
128
-
129
- index.search (nq, queries.data(), k, dis.data(), nns.data());
130
-
131
- printf ("[%.3f s] Query results (vector ids, then distances):\n",
132
- elapsed() - t0);
133
-
134
- for (int i = 0; i < nq; i++) {
135
- printf ("query %2d: ", i);
136
- for (int j = 0; j < k; j++) {
137
- printf ("%7ld ", nns[j + i * k]);
138
- }
139
- printf ("\n dis: ");
140
- for (int j = 0; j < k; j++) {
141
- printf ("%7g ", dis[j + i * k]);
142
- }
143
- printf ("\n");
144
- }
145
-
146
- printf ("note that the nearest neighbor is not at "
147
- "distance 0 due to quantization errors\n");
148
- }
149
-
150
- return 0;
151
- }
@@ -1,252 +0,0 @@
1
- /**
2
- * Copyright (c) Facebook, Inc. and its affiliates.
3
- *
4
- * This source code is licensed under the MIT license found in the
5
- * LICENSE file in the root directory of this source tree.
6
- */
7
-
8
-
9
-
10
- #include <cmath>
11
- #include <cstdio>
12
- #include <cstdlib>
13
- #include <cassert>
14
- #include <cstring>
15
-
16
- #include <sys/types.h>
17
- #include <sys/stat.h>
18
- #include <unistd.h>
19
-
20
- #include <sys/time.h>
21
-
22
- #include <faiss/AutoTune.h>
23
- #include <faiss/index_factory.h>
24
-
25
- /**
26
- * To run this demo, please download the ANN_SIFT1M dataset from
27
- *
28
- * http://corpus-texmex.irisa.fr/
29
- *
30
- * and unzip it to the sudirectory sift1M.
31
- **/
32
-
33
- /*****************************************************
34
- * I/O functions for fvecs and ivecs
35
- *****************************************************/
36
-
37
-
38
- float * fvecs_read (const char *fname,
39
- size_t *d_out, size_t *n_out)
40
- {
41
- FILE *f = fopen(fname, "r");
42
- if(!f) {
43
- fprintf(stderr, "could not open %s\n", fname);
44
- perror("");
45
- abort();
46
- }
47
- int d;
48
- fread(&d, 1, sizeof(int), f);
49
- assert((d > 0 && d < 1000000) || !"unreasonable dimension");
50
- fseek(f, 0, SEEK_SET);
51
- struct stat st;
52
- fstat(fileno(f), &st);
53
- size_t sz = st.st_size;
54
- assert(sz % ((d + 1) * 4) == 0 || !"weird file size");
55
- size_t n = sz / ((d + 1) * 4);
56
-
57
- *d_out = d; *n_out = n;
58
- float *x = new float[n * (d + 1)];
59
- size_t nr = fread(x, sizeof(float), n * (d + 1), f);
60
- assert(nr == n * (d + 1) || !"could not read whole file");
61
-
62
- // shift array to remove row headers
63
- for(size_t i = 0; i < n; i++)
64
- memmove(x + i * d, x + 1 + i * (d + 1), d * sizeof(*x));
65
-
66
- fclose(f);
67
- return x;
68
- }
69
-
70
- // not very clean, but works as long as sizeof(int) == sizeof(float)
71
- int *ivecs_read(const char *fname, size_t *d_out, size_t *n_out)
72
- {
73
- return (int*)fvecs_read(fname, d_out, n_out);
74
- }
75
-
76
- double elapsed ()
77
- {
78
- struct timeval tv;
79
- gettimeofday (&tv, nullptr);
80
- return tv.tv_sec + tv.tv_usec * 1e-6;
81
- }
82
-
83
-
84
-
85
- int main()
86
- {
87
- double t0 = elapsed();
88
-
89
- // this is typically the fastest one.
90
- const char *index_key = "IVF4096,Flat";
91
-
92
- // these ones have better memory usage
93
- // const char *index_key = "Flat";
94
- // const char *index_key = "PQ32";
95
- // const char *index_key = "PCA80,Flat";
96
- // const char *index_key = "IVF4096,PQ8+16";
97
- // const char *index_key = "IVF4096,PQ32";
98
- // const char *index_key = "IMI2x8,PQ32";
99
- // const char *index_key = "IMI2x8,PQ8+16";
100
- // const char *index_key = "OPQ16_64,IMI2x8,PQ8+16";
101
-
102
- faiss::Index * index;
103
-
104
- size_t d;
105
-
106
- {
107
- printf ("[%.3f s] Loading train set\n", elapsed() - t0);
108
-
109
- size_t nt;
110
- float *xt = fvecs_read("sift1M/sift_learn.fvecs", &d, &nt);
111
-
112
- printf ("[%.3f s] Preparing index \"%s\" d=%ld\n",
113
- elapsed() - t0, index_key, d);
114
- index = faiss::index_factory(d, index_key);
115
-
116
- printf ("[%.3f s] Training on %ld vectors\n", elapsed() - t0, nt);
117
-
118
- index->train(nt, xt);
119
- delete [] xt;
120
- }
121
-
122
-
123
- {
124
- printf ("[%.3f s] Loading database\n", elapsed() - t0);
125
-
126
- size_t nb, d2;
127
- float *xb = fvecs_read("sift1M/sift_base.fvecs", &d2, &nb);
128
- assert(d == d2 || !"dataset does not have same dimension as train set");
129
-
130
- printf ("[%.3f s] Indexing database, size %ld*%ld\n",
131
- elapsed() - t0, nb, d);
132
-
133
- index->add(nb, xb);
134
-
135
- delete [] xb;
136
- }
137
-
138
- size_t nq;
139
- float *xq;
140
-
141
- {
142
- printf ("[%.3f s] Loading queries\n", elapsed() - t0);
143
-
144
- size_t d2;
145
- xq = fvecs_read("sift1M/sift_query.fvecs", &d2, &nq);
146
- assert(d == d2 || !"query does not have same dimension as train set");
147
-
148
- }
149
-
150
- size_t k; // nb of results per query in the GT
151
- faiss::Index::idx_t *gt; // nq * k matrix of ground-truth nearest-neighbors
152
-
153
- {
154
- printf ("[%.3f s] Loading ground truth for %ld queries\n",
155
- elapsed() - t0, nq);
156
-
157
- // load ground-truth and convert int to long
158
- size_t nq2;
159
- int *gt_int = ivecs_read("sift1M/sift_groundtruth.ivecs", &k, &nq2);
160
- assert(nq2 == nq || !"incorrect nb of ground truth entries");
161
-
162
- gt = new faiss::Index::idx_t[k * nq];
163
- for(int i = 0; i < k * nq; i++) {
164
- gt[i] = gt_int[i];
165
- }
166
- delete [] gt_int;
167
- }
168
-
169
- // Result of the auto-tuning
170
- std::string selected_params;
171
-
172
- { // run auto-tuning
173
-
174
- printf ("[%.3f s] Preparing auto-tune criterion 1-recall at 1 "
175
- "criterion, with k=%ld nq=%ld\n", elapsed() - t0, k, nq);
176
-
177
- faiss::OneRecallAtRCriterion crit(nq, 1);
178
- crit.set_groundtruth (k, nullptr, gt);
179
- crit.nnn = k; // by default, the criterion will request only 1 NN
180
-
181
- printf ("[%.3f s] Preparing auto-tune parameters\n", elapsed() - t0);
182
-
183
- faiss::ParameterSpace params;
184
- params.initialize(index);
185
-
186
- printf ("[%.3f s] Auto-tuning over %ld parameters (%ld combinations)\n",
187
- elapsed() - t0, params.parameter_ranges.size(),
188
- params.n_combinations());
189
-
190
- faiss::OperatingPoints ops;
191
- params.explore (index, nq, xq, crit, &ops);
192
-
193
- printf ("[%.3f s] Found the following operating points: \n",
194
- elapsed() - t0);
195
-
196
- ops.display ();
197
-
198
- // keep the first parameter that obtains > 0.5 1-recall@1
199
- for (int i = 0; i < ops.optimal_pts.size(); i++) {
200
- if (ops.optimal_pts[i].perf > 0.5) {
201
- selected_params = ops.optimal_pts[i].key;
202
- break;
203
- }
204
- }
205
- assert (selected_params.size() >= 0 ||
206
- !"could not find good enough op point");
207
- }
208
-
209
-
210
- { // Use the found configuration to perform a search
211
-
212
- faiss::ParameterSpace params;
213
-
214
- printf ("[%.3f s] Setting parameter configuration \"%s\" on index\n",
215
- elapsed() - t0, selected_params.c_str());
216
-
217
- params.set_index_parameters (index, selected_params.c_str());
218
-
219
- printf ("[%.3f s] Perform a search on %ld queries\n",
220
- elapsed() - t0, nq);
221
-
222
- // output buffers
223
- faiss::Index::idx_t *I = new faiss::Index::idx_t[nq * k];
224
- float *D = new float[nq * k];
225
-
226
- index->search(nq, xq, k, D, I);
227
-
228
- printf ("[%.3f s] Compute recalls\n", elapsed() - t0);
229
-
230
- // evaluate result by hand.
231
- int n_1 = 0, n_10 = 0, n_100 = 0;
232
- for(int i = 0; i < nq; i++) {
233
- int gt_nn = gt[i * k];
234
- for(int j = 0; j < k; j++) {
235
- if (I[i * k + j] == gt_nn) {
236
- if(j < 1) n_1++;
237
- if(j < 10) n_10++;
238
- if(j < 100) n_100++;
239
- }
240
- }
241
- }
242
- printf("R@1 = %.4f\n", n_1 / float(nq));
243
- printf("R@10 = %.4f\n", n_10 / float(nq));
244
- printf("R@100 = %.4f\n", n_100 / float(nq));
245
-
246
- }
247
-
248
- delete [] xq;
249
- delete [] gt;
250
- delete index;
251
- return 0;
252
- }
@@ -1,185 +0,0 @@
1
- /**
2
- * Copyright (c) Facebook, Inc. and its affiliates.
3
- *
4
- * This source code is licensed under the MIT license found in the
5
- * LICENSE file in the root directory of this source tree.
6
- */
7
-
8
- #include <cstdio>
9
- #include <cstdlib>
10
-
11
- #include <faiss/Clustering.h>
12
- #include <faiss/utils/random.h>
13
- #include <faiss/utils/distances.h>
14
- #include <faiss/IndexFlat.h>
15
- #include <faiss/IndexHNSW.h>
16
-
17
-
18
- namespace {
19
-
20
-
21
- enum WeightedKMeansType {
22
- WKMT_FlatL2,
23
- WKMT_FlatIP,
24
- WKMT_FlatIP_spherical,
25
- WKMT_HNSW,
26
- };
27
-
28
-
29
- float weighted_kmeans_clustering (size_t d, size_t n, size_t k,
30
- const float *input,
31
- const float *weights,
32
- float *centroids,
33
- WeightedKMeansType index_num)
34
- {
35
- using namespace faiss;
36
- Clustering clus (d, k);
37
- clus.verbose = true;
38
-
39
- std::unique_ptr<Index> index;
40
-
41
- switch (index_num) {
42
- case WKMT_FlatL2:
43
- index.reset(new IndexFlatL2 (d));
44
- break;
45
- case WKMT_FlatIP:
46
- index.reset(new IndexFlatIP (d));
47
- break;
48
- case WKMT_FlatIP_spherical:
49
- index.reset(new IndexFlatIP (d));
50
- clus.spherical = true;
51
- break;
52
- case WKMT_HNSW:
53
- IndexHNSWFlat *ihnsw = new IndexHNSWFlat (d, 32);
54
- ihnsw->hnsw.efSearch = 128;
55
- index.reset(ihnsw);
56
- break;
57
- }
58
-
59
- clus.train(n, input, *index.get(), weights);
60
- // on output the index contains the centroids.
61
- memcpy(centroids, clus.centroids.data(), sizeof(*centroids) * d * k);
62
- return clus.iteration_stats.back().obj;
63
- }
64
-
65
-
66
- int d = 32;
67
- float sigma = 0.1;
68
-
69
- #define BIGTEST
70
-
71
- #ifdef BIGTEST
72
- // the production setup = setting of https://fb.quip.com/CWgnAAYbwtgs
73
- int nc = 200000;
74
- int n_big = 4;
75
- int n_small = 2;
76
- #else
77
- int nc = 5;
78
- int n_big = 100;
79
- int n_small = 10;
80
- #endif
81
-
82
- int n; // number of training points
83
-
84
- void generate_trainset (std::vector<float> & ccent,
85
- std::vector<float> & x,
86
- std::vector<float> & weights)
87
- {
88
- // same sampling as test_build_blocks.py test_weighted
89
-
90
- ccent.resize (d * 2 * nc);
91
- faiss::float_randn (ccent.data(), d * 2 * nc, 123);
92
- faiss::fvec_renorm_L2 (d, 2 * nc, ccent.data());
93
- n = nc * n_big + nc * n_small;
94
- x.resize(d * n);
95
- weights.resize(n);
96
- faiss::float_randn (x.data(), x.size(), 1234);
97
-
98
- float *xi = x.data();
99
- float *w = weights.data();
100
- for (int ci = 0; ci < nc * 2; ci++) { // loop over centroids
101
- int np = ci < nc ? n_big : n_small; // nb of points around this centroid
102
- for (int i = 0; i < np; i++) {
103
- for (int j = 0; j < d; j++) {
104
- xi[j] = xi[j] * sigma + ccent[ci * d + j];
105
- }
106
- *w++ = ci < nc ? 0.1 : 10;
107
- xi += d;
108
- }
109
- }
110
- }
111
-
112
- }
113
-
114
-
115
- int main(int argc, char **argv) {
116
- std::vector<float> ccent;
117
- std::vector<float> x;
118
- std::vector<float> weights;
119
-
120
- printf("generate training set\n");
121
- generate_trainset(ccent, x, weights);
122
-
123
- std::vector<float> centroids;
124
- centroids.resize(nc * d);
125
-
126
- int the_index_num = -1;
127
- int the_with_weights = -1;
128
-
129
- if (argc == 3) {
130
- the_index_num = atoi(argv[1]);
131
- the_with_weights = atoi(argv[2]);
132
- }
133
-
134
-
135
- for (int index_num = WKMT_FlatL2;
136
- index_num <= WKMT_HNSW;
137
- index_num++) {
138
-
139
- if (the_index_num >= 0 && index_num != the_index_num) {
140
- continue;
141
- }
142
-
143
- for (int with_weights = 0; with_weights <= 1; with_weights++) {
144
- if (the_with_weights >= 0 && with_weights != the_with_weights) {
145
- continue;
146
- }
147
-
148
- printf("=================== index_num=%d Run %s weights\n",
149
- index_num, with_weights ? "with" : "without");
150
-
151
- weighted_kmeans_clustering (
152
- d, n, nc, x.data(),
153
- with_weights ? weights.data() : nullptr,
154
- centroids.data(), (WeightedKMeansType)index_num
155
- );
156
-
157
- { // compute distance of points to centroids
158
- faiss::IndexFlatL2 cent_index(d);
159
- cent_index.add(nc, centroids.data());
160
- std::vector<float> dis (n);
161
- std::vector<faiss::Index::idx_t> idx (n);
162
-
163
- cent_index.search (nc * 2, ccent.data(), 1,
164
- dis.data(), idx.data());
165
-
166
- float dis1 = 0, dis2 = 0;
167
- for (int i = 0; i < nc ; i++) {
168
- dis1 += dis[i];
169
- }
170
- printf("average distance of points from big clusters: %g\n",
171
- dis1 / nc);
172
-
173
- for (int i = 0; i < nc ; i++) {
174
- dis2 += dis[i + nc];
175
- }
176
-
177
- printf("average distance of points from small clusters: %g\n",
178
- dis2 / nc);
179
-
180
- }
181
-
182
- }
183
- }
184
- return 0;
185
- }