faiss 0.1.3 → 0.1.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/LICENSE.txt +1 -1
- data/README.md +1 -1
- data/ext/faiss/extconf.rb +1 -1
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +36 -33
- data/vendor/faiss/faiss/AutoTune.h +6 -3
- data/vendor/faiss/faiss/Clustering.cpp +16 -12
- data/vendor/faiss/faiss/Index.cpp +3 -4
- data/vendor/faiss/faiss/Index.h +3 -3
- data/vendor/faiss/faiss/IndexBinary.cpp +3 -4
- data/vendor/faiss/faiss/IndexBinary.h +1 -1
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +2 -12
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +1 -2
- data/vendor/faiss/faiss/IndexFlat.cpp +0 -148
- data/vendor/faiss/faiss/IndexFlat.h +0 -51
- data/vendor/faiss/faiss/IndexHNSW.cpp +4 -5
- data/vendor/faiss/faiss/IndexIVF.cpp +118 -31
- data/vendor/faiss/faiss/IndexIVF.h +22 -15
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +3 -3
- data/vendor/faiss/faiss/IndexIVFFlat.h +2 -1
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +39 -15
- data/vendor/faiss/faiss/IndexIVFPQ.h +25 -9
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +1116 -0
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +166 -0
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +8 -9
- data/vendor/faiss/faiss/IndexIVFPQR.h +2 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +1 -2
- data/vendor/faiss/faiss/IndexPQ.cpp +34 -18
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +536 -0
- data/vendor/faiss/faiss/IndexPQFastScan.h +111 -0
- data/vendor/faiss/faiss/IndexPreTransform.cpp +47 -0
- data/vendor/faiss/faiss/IndexPreTransform.h +2 -0
- data/vendor/faiss/faiss/IndexRefine.cpp +256 -0
- data/vendor/faiss/faiss/IndexRefine.h +73 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +2 -2
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +1 -1
- data/vendor/faiss/faiss/gpu/GpuDistance.h +1 -1
- data/vendor/faiss/faiss/gpu/GpuIndex.h +16 -9
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +8 -1
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +11 -11
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +19 -2
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +28 -2
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +24 -14
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +29 -2
- data/vendor/faiss/faiss/gpu/GpuResources.h +4 -0
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +60 -27
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +28 -6
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +547 -0
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.h +51 -0
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +3 -3
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +3 -2
- data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +274 -0
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +7 -2
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +5 -1
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +231 -0
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +33 -0
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.cpp +1 -0
- data/vendor/faiss/faiss/gpu/utils/StaticUtils.h +6 -0
- data/vendor/faiss/faiss/gpu/utils/Timer.cpp +5 -6
- data/vendor/faiss/faiss/gpu/utils/Timer.h +2 -2
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +5 -4
- data/vendor/faiss/faiss/impl/HNSW.cpp +2 -4
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +4 -4
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +22 -12
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +2 -0
- data/vendor/faiss/faiss/impl/ResultHandler.h +452 -0
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +29 -19
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +6 -0
- data/vendor/faiss/faiss/impl/index_read.cpp +64 -96
- data/vendor/faiss/faiss/impl/index_write.cpp +34 -25
- data/vendor/faiss/faiss/impl/io.cpp +33 -2
- data/vendor/faiss/faiss/impl/io.h +7 -2
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +1 -15
- data/vendor/faiss/faiss/impl/platform_macros.h +44 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +272 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +169 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +180 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +354 -0
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +559 -0
- data/vendor/faiss/faiss/index_factory.cpp +112 -7
- data/vendor/faiss/faiss/index_io.h +1 -48
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +151 -0
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +76 -0
- data/vendor/faiss/faiss/{DirectMap.cpp → invlists/DirectMap.cpp} +1 -1
- data/vendor/faiss/faiss/{DirectMap.h → invlists/DirectMap.h} +1 -1
- data/vendor/faiss/faiss/{InvertedLists.cpp → invlists/InvertedLists.cpp} +72 -1
- data/vendor/faiss/faiss/{InvertedLists.h → invlists/InvertedLists.h} +32 -1
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.cpp +107 -0
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.h +63 -0
- data/vendor/faiss/faiss/{OnDiskInvertedLists.cpp → invlists/OnDiskInvertedLists.cpp} +21 -6
- data/vendor/faiss/faiss/{OnDiskInvertedLists.h → invlists/OnDiskInvertedLists.h} +5 -2
- data/vendor/faiss/faiss/python/python_callbacks.h +8 -1
- data/vendor/faiss/faiss/utils/AlignedTable.h +141 -0
- data/vendor/faiss/faiss/utils/Heap.cpp +2 -4
- data/vendor/faiss/faiss/utils/Heap.h +61 -50
- data/vendor/faiss/faiss/utils/distances.cpp +164 -319
- data/vendor/faiss/faiss/utils/distances.h +28 -20
- data/vendor/faiss/faiss/utils/distances_simd.cpp +277 -49
- data/vendor/faiss/faiss/utils/extra_distances.cpp +1 -2
- data/vendor/faiss/faiss/utils/hamming-inl.h +4 -4
- data/vendor/faiss/faiss/utils/hamming.cpp +3 -6
- data/vendor/faiss/faiss/utils/hamming.h +2 -7
- data/vendor/faiss/faiss/utils/ordered_key_value.h +98 -0
- data/vendor/faiss/faiss/utils/partitioning.cpp +1256 -0
- data/vendor/faiss/faiss/utils/partitioning.h +69 -0
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +277 -0
- data/vendor/faiss/faiss/utils/quantize_lut.h +80 -0
- data/vendor/faiss/faiss/utils/simdlib.h +31 -0
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +461 -0
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +589 -0
- metadata +43 -141
- data/vendor/faiss/benchs/bench_6bit_codec.cpp +0 -80
- data/vendor/faiss/c_api/AutoTune_c.cpp +0 -83
- data/vendor/faiss/c_api/AutoTune_c.h +0 -66
- data/vendor/faiss/c_api/Clustering_c.cpp +0 -145
- data/vendor/faiss/c_api/Clustering_c.h +0 -123
- data/vendor/faiss/c_api/IndexFlat_c.cpp +0 -140
- data/vendor/faiss/c_api/IndexFlat_c.h +0 -115
- data/vendor/faiss/c_api/IndexIVFFlat_c.cpp +0 -64
- data/vendor/faiss/c_api/IndexIVFFlat_c.h +0 -58
- data/vendor/faiss/c_api/IndexIVF_c.cpp +0 -99
- data/vendor/faiss/c_api/IndexIVF_c.h +0 -142
- data/vendor/faiss/c_api/IndexLSH_c.cpp +0 -37
- data/vendor/faiss/c_api/IndexLSH_c.h +0 -40
- data/vendor/faiss/c_api/IndexPreTransform_c.cpp +0 -21
- data/vendor/faiss/c_api/IndexPreTransform_c.h +0 -32
- data/vendor/faiss/c_api/IndexShards_c.cpp +0 -38
- data/vendor/faiss/c_api/IndexShards_c.h +0 -39
- data/vendor/faiss/c_api/Index_c.cpp +0 -105
- data/vendor/faiss/c_api/Index_c.h +0 -183
- data/vendor/faiss/c_api/MetaIndexes_c.cpp +0 -49
- data/vendor/faiss/c_api/MetaIndexes_c.h +0 -49
- data/vendor/faiss/c_api/clone_index_c.cpp +0 -23
- data/vendor/faiss/c_api/clone_index_c.h +0 -32
- data/vendor/faiss/c_api/error_c.h +0 -42
- data/vendor/faiss/c_api/error_impl.cpp +0 -27
- data/vendor/faiss/c_api/error_impl.h +0 -16
- data/vendor/faiss/c_api/faiss_c.h +0 -58
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.cpp +0 -98
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.h +0 -56
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.cpp +0 -52
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.h +0 -68
- data/vendor/faiss/c_api/gpu/GpuIndex_c.cpp +0 -17
- data/vendor/faiss/c_api/gpu/GpuIndex_c.h +0 -30
- data/vendor/faiss/c_api/gpu/GpuIndicesOptions_c.h +0 -38
- data/vendor/faiss/c_api/gpu/GpuResources_c.cpp +0 -86
- data/vendor/faiss/c_api/gpu/GpuResources_c.h +0 -66
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.cpp +0 -54
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.h +0 -53
- data/vendor/faiss/c_api/gpu/macros_impl.h +0 -42
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.cpp +0 -220
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.h +0 -149
- data/vendor/faiss/c_api/index_factory_c.cpp +0 -26
- data/vendor/faiss/c_api/index_factory_c.h +0 -30
- data/vendor/faiss/c_api/index_io_c.cpp +0 -42
- data/vendor/faiss/c_api/index_io_c.h +0 -50
- data/vendor/faiss/c_api/macros_impl.h +0 -110
- data/vendor/faiss/demos/demo_imi_flat.cpp +0 -154
- data/vendor/faiss/demos/demo_imi_pq.cpp +0 -203
- data/vendor/faiss/demos/demo_ivfpq_indexing.cpp +0 -151
- data/vendor/faiss/demos/demo_sift1M.cpp +0 -252
- data/vendor/faiss/demos/demo_weighted_kmeans.cpp +0 -185
- data/vendor/faiss/misc/test_blas.cpp +0 -87
- data/vendor/faiss/tests/test_binary_flat.cpp +0 -62
- data/vendor/faiss/tests/test_dealloc_invlists.cpp +0 -188
- data/vendor/faiss/tests/test_ivfpq_codec.cpp +0 -70
- data/vendor/faiss/tests/test_ivfpq_indexing.cpp +0 -100
- data/vendor/faiss/tests/test_lowlevel_ivf.cpp +0 -573
- data/vendor/faiss/tests/test_merge.cpp +0 -260
- data/vendor/faiss/tests/test_omp_threads.cpp +0 -14
- data/vendor/faiss/tests/test_ondisk_ivf.cpp +0 -225
- data/vendor/faiss/tests/test_pairs_decoding.cpp +0 -193
- data/vendor/faiss/tests/test_params_override.cpp +0 -236
- data/vendor/faiss/tests/test_pq_encoding.cpp +0 -98
- data/vendor/faiss/tests/test_sliding_ivf.cpp +0 -246
- data/vendor/faiss/tests/test_threaded_index.cpp +0 -253
- data/vendor/faiss/tests/test_transfer_invlists.cpp +0 -159
- data/vendor/faiss/tutorial/cpp/1-Flat.cpp +0 -104
- data/vendor/faiss/tutorial/cpp/2-IVFFlat.cpp +0 -85
- data/vendor/faiss/tutorial/cpp/3-IVFPQ.cpp +0 -98
- data/vendor/faiss/tutorial/cpp/4-GPU.cpp +0 -122
- data/vendor/faiss/tutorial/cpp/5-Multiple-GPUs.cpp +0 -104
@@ -1,151 +0,0 @@
|
|
1
|
-
/**
|
2
|
-
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
-
*
|
4
|
-
* This source code is licensed under the MIT license found in the
|
5
|
-
* LICENSE file in the root directory of this source tree.
|
6
|
-
*/
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
#include <cmath>
|
11
|
-
#include <cstdio>
|
12
|
-
#include <cstdlib>
|
13
|
-
#include <random>
|
14
|
-
|
15
|
-
#include <sys/time.h>
|
16
|
-
|
17
|
-
|
18
|
-
#include <faiss/IndexIVFPQ.h>
|
19
|
-
#include <faiss/IndexFlat.h>
|
20
|
-
#include <faiss/index_io.h>
|
21
|
-
|
22
|
-
double elapsed ()
|
23
|
-
{
|
24
|
-
struct timeval tv;
|
25
|
-
gettimeofday (&tv, NULL);
|
26
|
-
return tv.tv_sec + tv.tv_usec * 1e-6;
|
27
|
-
}
|
28
|
-
|
29
|
-
|
30
|
-
int main ()
|
31
|
-
{
|
32
|
-
|
33
|
-
double t0 = elapsed();
|
34
|
-
|
35
|
-
// dimension of the vectors to index
|
36
|
-
int d = 128;
|
37
|
-
|
38
|
-
// size of the database we plan to index
|
39
|
-
size_t nb = 200 * 1000;
|
40
|
-
|
41
|
-
// make a set of nt training vectors in the unit cube
|
42
|
-
// (could be the database)
|
43
|
-
size_t nt = 100 * 1000;
|
44
|
-
|
45
|
-
// make the index object and train it
|
46
|
-
faiss::IndexFlatL2 coarse_quantizer (d);
|
47
|
-
|
48
|
-
// a reasonable number of centroids to index nb vectors
|
49
|
-
int ncentroids = int (4 * sqrt (nb));
|
50
|
-
|
51
|
-
// the coarse quantizer should not be dealloced before the index
|
52
|
-
// 4 = nb of bytes per code (d must be a multiple of this)
|
53
|
-
// 8 = nb of bits per sub-code (almost always 8)
|
54
|
-
faiss::IndexIVFPQ index (&coarse_quantizer, d,
|
55
|
-
ncentroids, 4, 8);
|
56
|
-
|
57
|
-
|
58
|
-
std::mt19937 rng;
|
59
|
-
|
60
|
-
{ // training
|
61
|
-
printf ("[%.3f s] Generating %ld vectors in %dD for training\n",
|
62
|
-
elapsed() - t0, nt, d);
|
63
|
-
|
64
|
-
std::vector <float> trainvecs (nt * d);
|
65
|
-
std::uniform_real_distribution<> distrib;
|
66
|
-
for (size_t i = 0; i < nt * d; i++) {
|
67
|
-
trainvecs[i] = distrib(rng);
|
68
|
-
}
|
69
|
-
|
70
|
-
printf ("[%.3f s] Training the index\n",
|
71
|
-
elapsed() - t0);
|
72
|
-
index.verbose = true;
|
73
|
-
|
74
|
-
index.train (nt, trainvecs.data());
|
75
|
-
}
|
76
|
-
|
77
|
-
{ // I/O demo
|
78
|
-
const char *outfilename = "/tmp/index_trained.faissindex";
|
79
|
-
printf ("[%.3f s] storing the pre-trained index to %s\n",
|
80
|
-
elapsed() - t0, outfilename);
|
81
|
-
|
82
|
-
write_index (&index, outfilename);
|
83
|
-
}
|
84
|
-
|
85
|
-
size_t nq;
|
86
|
-
std::vector<float> queries;
|
87
|
-
|
88
|
-
{ // populating the database
|
89
|
-
printf ("[%.3f s] Building a dataset of %ld vectors to index\n",
|
90
|
-
elapsed() - t0, nb);
|
91
|
-
|
92
|
-
std::vector <float> database (nb * d);
|
93
|
-
std::uniform_real_distribution<> distrib;
|
94
|
-
for (size_t i = 0; i < nb * d; i++) {
|
95
|
-
database[i] = distrib(rng);
|
96
|
-
}
|
97
|
-
|
98
|
-
printf ("[%.3f s] Adding the vectors to the index\n",
|
99
|
-
elapsed() - t0);
|
100
|
-
|
101
|
-
index.add (nb, database.data());
|
102
|
-
|
103
|
-
printf ("[%.3f s] imbalance factor: %g\n",
|
104
|
-
elapsed() - t0, index.invlists->imbalance_factor ());
|
105
|
-
|
106
|
-
// remember a few elements from the database as queries
|
107
|
-
int i0 = 1234;
|
108
|
-
int i1 = 1243;
|
109
|
-
|
110
|
-
nq = i1 - i0;
|
111
|
-
queries.resize (nq * d);
|
112
|
-
for (int i = i0; i < i1; i++) {
|
113
|
-
for (int j = 0; j < d; j++) {
|
114
|
-
queries [(i - i0) * d + j] = database [i * d + j];
|
115
|
-
}
|
116
|
-
}
|
117
|
-
|
118
|
-
}
|
119
|
-
|
120
|
-
{ // searching the database
|
121
|
-
int k = 5;
|
122
|
-
printf ("[%.3f s] Searching the %d nearest neighbors "
|
123
|
-
"of %ld vectors in the index\n",
|
124
|
-
elapsed() - t0, k, nq);
|
125
|
-
|
126
|
-
std::vector<faiss::Index::idx_t> nns (k * nq);
|
127
|
-
std::vector<float> dis (k * nq);
|
128
|
-
|
129
|
-
index.search (nq, queries.data(), k, dis.data(), nns.data());
|
130
|
-
|
131
|
-
printf ("[%.3f s] Query results (vector ids, then distances):\n",
|
132
|
-
elapsed() - t0);
|
133
|
-
|
134
|
-
for (int i = 0; i < nq; i++) {
|
135
|
-
printf ("query %2d: ", i);
|
136
|
-
for (int j = 0; j < k; j++) {
|
137
|
-
printf ("%7ld ", nns[j + i * k]);
|
138
|
-
}
|
139
|
-
printf ("\n dis: ");
|
140
|
-
for (int j = 0; j < k; j++) {
|
141
|
-
printf ("%7g ", dis[j + i * k]);
|
142
|
-
}
|
143
|
-
printf ("\n");
|
144
|
-
}
|
145
|
-
|
146
|
-
printf ("note that the nearest neighbor is not at "
|
147
|
-
"distance 0 due to quantization errors\n");
|
148
|
-
}
|
149
|
-
|
150
|
-
return 0;
|
151
|
-
}
|
@@ -1,252 +0,0 @@
|
|
1
|
-
/**
|
2
|
-
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
-
*
|
4
|
-
* This source code is licensed under the MIT license found in the
|
5
|
-
* LICENSE file in the root directory of this source tree.
|
6
|
-
*/
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
#include <cmath>
|
11
|
-
#include <cstdio>
|
12
|
-
#include <cstdlib>
|
13
|
-
#include <cassert>
|
14
|
-
#include <cstring>
|
15
|
-
|
16
|
-
#include <sys/types.h>
|
17
|
-
#include <sys/stat.h>
|
18
|
-
#include <unistd.h>
|
19
|
-
|
20
|
-
#include <sys/time.h>
|
21
|
-
|
22
|
-
#include <faiss/AutoTune.h>
|
23
|
-
#include <faiss/index_factory.h>
|
24
|
-
|
25
|
-
/**
|
26
|
-
* To run this demo, please download the ANN_SIFT1M dataset from
|
27
|
-
*
|
28
|
-
* http://corpus-texmex.irisa.fr/
|
29
|
-
*
|
30
|
-
* and unzip it to the sudirectory sift1M.
|
31
|
-
**/
|
32
|
-
|
33
|
-
/*****************************************************
|
34
|
-
* I/O functions for fvecs and ivecs
|
35
|
-
*****************************************************/
|
36
|
-
|
37
|
-
|
38
|
-
float * fvecs_read (const char *fname,
|
39
|
-
size_t *d_out, size_t *n_out)
|
40
|
-
{
|
41
|
-
FILE *f = fopen(fname, "r");
|
42
|
-
if(!f) {
|
43
|
-
fprintf(stderr, "could not open %s\n", fname);
|
44
|
-
perror("");
|
45
|
-
abort();
|
46
|
-
}
|
47
|
-
int d;
|
48
|
-
fread(&d, 1, sizeof(int), f);
|
49
|
-
assert((d > 0 && d < 1000000) || !"unreasonable dimension");
|
50
|
-
fseek(f, 0, SEEK_SET);
|
51
|
-
struct stat st;
|
52
|
-
fstat(fileno(f), &st);
|
53
|
-
size_t sz = st.st_size;
|
54
|
-
assert(sz % ((d + 1) * 4) == 0 || !"weird file size");
|
55
|
-
size_t n = sz / ((d + 1) * 4);
|
56
|
-
|
57
|
-
*d_out = d; *n_out = n;
|
58
|
-
float *x = new float[n * (d + 1)];
|
59
|
-
size_t nr = fread(x, sizeof(float), n * (d + 1), f);
|
60
|
-
assert(nr == n * (d + 1) || !"could not read whole file");
|
61
|
-
|
62
|
-
// shift array to remove row headers
|
63
|
-
for(size_t i = 0; i < n; i++)
|
64
|
-
memmove(x + i * d, x + 1 + i * (d + 1), d * sizeof(*x));
|
65
|
-
|
66
|
-
fclose(f);
|
67
|
-
return x;
|
68
|
-
}
|
69
|
-
|
70
|
-
// not very clean, but works as long as sizeof(int) == sizeof(float)
|
71
|
-
int *ivecs_read(const char *fname, size_t *d_out, size_t *n_out)
|
72
|
-
{
|
73
|
-
return (int*)fvecs_read(fname, d_out, n_out);
|
74
|
-
}
|
75
|
-
|
76
|
-
double elapsed ()
|
77
|
-
{
|
78
|
-
struct timeval tv;
|
79
|
-
gettimeofday (&tv, nullptr);
|
80
|
-
return tv.tv_sec + tv.tv_usec * 1e-6;
|
81
|
-
}
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
int main()
|
86
|
-
{
|
87
|
-
double t0 = elapsed();
|
88
|
-
|
89
|
-
// this is typically the fastest one.
|
90
|
-
const char *index_key = "IVF4096,Flat";
|
91
|
-
|
92
|
-
// these ones have better memory usage
|
93
|
-
// const char *index_key = "Flat";
|
94
|
-
// const char *index_key = "PQ32";
|
95
|
-
// const char *index_key = "PCA80,Flat";
|
96
|
-
// const char *index_key = "IVF4096,PQ8+16";
|
97
|
-
// const char *index_key = "IVF4096,PQ32";
|
98
|
-
// const char *index_key = "IMI2x8,PQ32";
|
99
|
-
// const char *index_key = "IMI2x8,PQ8+16";
|
100
|
-
// const char *index_key = "OPQ16_64,IMI2x8,PQ8+16";
|
101
|
-
|
102
|
-
faiss::Index * index;
|
103
|
-
|
104
|
-
size_t d;
|
105
|
-
|
106
|
-
{
|
107
|
-
printf ("[%.3f s] Loading train set\n", elapsed() - t0);
|
108
|
-
|
109
|
-
size_t nt;
|
110
|
-
float *xt = fvecs_read("sift1M/sift_learn.fvecs", &d, &nt);
|
111
|
-
|
112
|
-
printf ("[%.3f s] Preparing index \"%s\" d=%ld\n",
|
113
|
-
elapsed() - t0, index_key, d);
|
114
|
-
index = faiss::index_factory(d, index_key);
|
115
|
-
|
116
|
-
printf ("[%.3f s] Training on %ld vectors\n", elapsed() - t0, nt);
|
117
|
-
|
118
|
-
index->train(nt, xt);
|
119
|
-
delete [] xt;
|
120
|
-
}
|
121
|
-
|
122
|
-
|
123
|
-
{
|
124
|
-
printf ("[%.3f s] Loading database\n", elapsed() - t0);
|
125
|
-
|
126
|
-
size_t nb, d2;
|
127
|
-
float *xb = fvecs_read("sift1M/sift_base.fvecs", &d2, &nb);
|
128
|
-
assert(d == d2 || !"dataset does not have same dimension as train set");
|
129
|
-
|
130
|
-
printf ("[%.3f s] Indexing database, size %ld*%ld\n",
|
131
|
-
elapsed() - t0, nb, d);
|
132
|
-
|
133
|
-
index->add(nb, xb);
|
134
|
-
|
135
|
-
delete [] xb;
|
136
|
-
}
|
137
|
-
|
138
|
-
size_t nq;
|
139
|
-
float *xq;
|
140
|
-
|
141
|
-
{
|
142
|
-
printf ("[%.3f s] Loading queries\n", elapsed() - t0);
|
143
|
-
|
144
|
-
size_t d2;
|
145
|
-
xq = fvecs_read("sift1M/sift_query.fvecs", &d2, &nq);
|
146
|
-
assert(d == d2 || !"query does not have same dimension as train set");
|
147
|
-
|
148
|
-
}
|
149
|
-
|
150
|
-
size_t k; // nb of results per query in the GT
|
151
|
-
faiss::Index::idx_t *gt; // nq * k matrix of ground-truth nearest-neighbors
|
152
|
-
|
153
|
-
{
|
154
|
-
printf ("[%.3f s] Loading ground truth for %ld queries\n",
|
155
|
-
elapsed() - t0, nq);
|
156
|
-
|
157
|
-
// load ground-truth and convert int to long
|
158
|
-
size_t nq2;
|
159
|
-
int *gt_int = ivecs_read("sift1M/sift_groundtruth.ivecs", &k, &nq2);
|
160
|
-
assert(nq2 == nq || !"incorrect nb of ground truth entries");
|
161
|
-
|
162
|
-
gt = new faiss::Index::idx_t[k * nq];
|
163
|
-
for(int i = 0; i < k * nq; i++) {
|
164
|
-
gt[i] = gt_int[i];
|
165
|
-
}
|
166
|
-
delete [] gt_int;
|
167
|
-
}
|
168
|
-
|
169
|
-
// Result of the auto-tuning
|
170
|
-
std::string selected_params;
|
171
|
-
|
172
|
-
{ // run auto-tuning
|
173
|
-
|
174
|
-
printf ("[%.3f s] Preparing auto-tune criterion 1-recall at 1 "
|
175
|
-
"criterion, with k=%ld nq=%ld\n", elapsed() - t0, k, nq);
|
176
|
-
|
177
|
-
faiss::OneRecallAtRCriterion crit(nq, 1);
|
178
|
-
crit.set_groundtruth (k, nullptr, gt);
|
179
|
-
crit.nnn = k; // by default, the criterion will request only 1 NN
|
180
|
-
|
181
|
-
printf ("[%.3f s] Preparing auto-tune parameters\n", elapsed() - t0);
|
182
|
-
|
183
|
-
faiss::ParameterSpace params;
|
184
|
-
params.initialize(index);
|
185
|
-
|
186
|
-
printf ("[%.3f s] Auto-tuning over %ld parameters (%ld combinations)\n",
|
187
|
-
elapsed() - t0, params.parameter_ranges.size(),
|
188
|
-
params.n_combinations());
|
189
|
-
|
190
|
-
faiss::OperatingPoints ops;
|
191
|
-
params.explore (index, nq, xq, crit, &ops);
|
192
|
-
|
193
|
-
printf ("[%.3f s] Found the following operating points: \n",
|
194
|
-
elapsed() - t0);
|
195
|
-
|
196
|
-
ops.display ();
|
197
|
-
|
198
|
-
// keep the first parameter that obtains > 0.5 1-recall@1
|
199
|
-
for (int i = 0; i < ops.optimal_pts.size(); i++) {
|
200
|
-
if (ops.optimal_pts[i].perf > 0.5) {
|
201
|
-
selected_params = ops.optimal_pts[i].key;
|
202
|
-
break;
|
203
|
-
}
|
204
|
-
}
|
205
|
-
assert (selected_params.size() >= 0 ||
|
206
|
-
!"could not find good enough op point");
|
207
|
-
}
|
208
|
-
|
209
|
-
|
210
|
-
{ // Use the found configuration to perform a search
|
211
|
-
|
212
|
-
faiss::ParameterSpace params;
|
213
|
-
|
214
|
-
printf ("[%.3f s] Setting parameter configuration \"%s\" on index\n",
|
215
|
-
elapsed() - t0, selected_params.c_str());
|
216
|
-
|
217
|
-
params.set_index_parameters (index, selected_params.c_str());
|
218
|
-
|
219
|
-
printf ("[%.3f s] Perform a search on %ld queries\n",
|
220
|
-
elapsed() - t0, nq);
|
221
|
-
|
222
|
-
// output buffers
|
223
|
-
faiss::Index::idx_t *I = new faiss::Index::idx_t[nq * k];
|
224
|
-
float *D = new float[nq * k];
|
225
|
-
|
226
|
-
index->search(nq, xq, k, D, I);
|
227
|
-
|
228
|
-
printf ("[%.3f s] Compute recalls\n", elapsed() - t0);
|
229
|
-
|
230
|
-
// evaluate result by hand.
|
231
|
-
int n_1 = 0, n_10 = 0, n_100 = 0;
|
232
|
-
for(int i = 0; i < nq; i++) {
|
233
|
-
int gt_nn = gt[i * k];
|
234
|
-
for(int j = 0; j < k; j++) {
|
235
|
-
if (I[i * k + j] == gt_nn) {
|
236
|
-
if(j < 1) n_1++;
|
237
|
-
if(j < 10) n_10++;
|
238
|
-
if(j < 100) n_100++;
|
239
|
-
}
|
240
|
-
}
|
241
|
-
}
|
242
|
-
printf("R@1 = %.4f\n", n_1 / float(nq));
|
243
|
-
printf("R@10 = %.4f\n", n_10 / float(nq));
|
244
|
-
printf("R@100 = %.4f\n", n_100 / float(nq));
|
245
|
-
|
246
|
-
}
|
247
|
-
|
248
|
-
delete [] xq;
|
249
|
-
delete [] gt;
|
250
|
-
delete index;
|
251
|
-
return 0;
|
252
|
-
}
|
@@ -1,185 +0,0 @@
|
|
1
|
-
/**
|
2
|
-
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
-
*
|
4
|
-
* This source code is licensed under the MIT license found in the
|
5
|
-
* LICENSE file in the root directory of this source tree.
|
6
|
-
*/
|
7
|
-
|
8
|
-
#include <cstdio>
|
9
|
-
#include <cstdlib>
|
10
|
-
|
11
|
-
#include <faiss/Clustering.h>
|
12
|
-
#include <faiss/utils/random.h>
|
13
|
-
#include <faiss/utils/distances.h>
|
14
|
-
#include <faiss/IndexFlat.h>
|
15
|
-
#include <faiss/IndexHNSW.h>
|
16
|
-
|
17
|
-
|
18
|
-
namespace {
|
19
|
-
|
20
|
-
|
21
|
-
enum WeightedKMeansType {
|
22
|
-
WKMT_FlatL2,
|
23
|
-
WKMT_FlatIP,
|
24
|
-
WKMT_FlatIP_spherical,
|
25
|
-
WKMT_HNSW,
|
26
|
-
};
|
27
|
-
|
28
|
-
|
29
|
-
float weighted_kmeans_clustering (size_t d, size_t n, size_t k,
|
30
|
-
const float *input,
|
31
|
-
const float *weights,
|
32
|
-
float *centroids,
|
33
|
-
WeightedKMeansType index_num)
|
34
|
-
{
|
35
|
-
using namespace faiss;
|
36
|
-
Clustering clus (d, k);
|
37
|
-
clus.verbose = true;
|
38
|
-
|
39
|
-
std::unique_ptr<Index> index;
|
40
|
-
|
41
|
-
switch (index_num) {
|
42
|
-
case WKMT_FlatL2:
|
43
|
-
index.reset(new IndexFlatL2 (d));
|
44
|
-
break;
|
45
|
-
case WKMT_FlatIP:
|
46
|
-
index.reset(new IndexFlatIP (d));
|
47
|
-
break;
|
48
|
-
case WKMT_FlatIP_spherical:
|
49
|
-
index.reset(new IndexFlatIP (d));
|
50
|
-
clus.spherical = true;
|
51
|
-
break;
|
52
|
-
case WKMT_HNSW:
|
53
|
-
IndexHNSWFlat *ihnsw = new IndexHNSWFlat (d, 32);
|
54
|
-
ihnsw->hnsw.efSearch = 128;
|
55
|
-
index.reset(ihnsw);
|
56
|
-
break;
|
57
|
-
}
|
58
|
-
|
59
|
-
clus.train(n, input, *index.get(), weights);
|
60
|
-
// on output the index contains the centroids.
|
61
|
-
memcpy(centroids, clus.centroids.data(), sizeof(*centroids) * d * k);
|
62
|
-
return clus.iteration_stats.back().obj;
|
63
|
-
}
|
64
|
-
|
65
|
-
|
66
|
-
int d = 32;
|
67
|
-
float sigma = 0.1;
|
68
|
-
|
69
|
-
#define BIGTEST
|
70
|
-
|
71
|
-
#ifdef BIGTEST
|
72
|
-
// the production setup = setting of https://fb.quip.com/CWgnAAYbwtgs
|
73
|
-
int nc = 200000;
|
74
|
-
int n_big = 4;
|
75
|
-
int n_small = 2;
|
76
|
-
#else
|
77
|
-
int nc = 5;
|
78
|
-
int n_big = 100;
|
79
|
-
int n_small = 10;
|
80
|
-
#endif
|
81
|
-
|
82
|
-
int n; // number of training points
|
83
|
-
|
84
|
-
void generate_trainset (std::vector<float> & ccent,
|
85
|
-
std::vector<float> & x,
|
86
|
-
std::vector<float> & weights)
|
87
|
-
{
|
88
|
-
// same sampling as test_build_blocks.py test_weighted
|
89
|
-
|
90
|
-
ccent.resize (d * 2 * nc);
|
91
|
-
faiss::float_randn (ccent.data(), d * 2 * nc, 123);
|
92
|
-
faiss::fvec_renorm_L2 (d, 2 * nc, ccent.data());
|
93
|
-
n = nc * n_big + nc * n_small;
|
94
|
-
x.resize(d * n);
|
95
|
-
weights.resize(n);
|
96
|
-
faiss::float_randn (x.data(), x.size(), 1234);
|
97
|
-
|
98
|
-
float *xi = x.data();
|
99
|
-
float *w = weights.data();
|
100
|
-
for (int ci = 0; ci < nc * 2; ci++) { // loop over centroids
|
101
|
-
int np = ci < nc ? n_big : n_small; // nb of points around this centroid
|
102
|
-
for (int i = 0; i < np; i++) {
|
103
|
-
for (int j = 0; j < d; j++) {
|
104
|
-
xi[j] = xi[j] * sigma + ccent[ci * d + j];
|
105
|
-
}
|
106
|
-
*w++ = ci < nc ? 0.1 : 10;
|
107
|
-
xi += d;
|
108
|
-
}
|
109
|
-
}
|
110
|
-
}
|
111
|
-
|
112
|
-
}
|
113
|
-
|
114
|
-
|
115
|
-
int main(int argc, char **argv) {
|
116
|
-
std::vector<float> ccent;
|
117
|
-
std::vector<float> x;
|
118
|
-
std::vector<float> weights;
|
119
|
-
|
120
|
-
printf("generate training set\n");
|
121
|
-
generate_trainset(ccent, x, weights);
|
122
|
-
|
123
|
-
std::vector<float> centroids;
|
124
|
-
centroids.resize(nc * d);
|
125
|
-
|
126
|
-
int the_index_num = -1;
|
127
|
-
int the_with_weights = -1;
|
128
|
-
|
129
|
-
if (argc == 3) {
|
130
|
-
the_index_num = atoi(argv[1]);
|
131
|
-
the_with_weights = atoi(argv[2]);
|
132
|
-
}
|
133
|
-
|
134
|
-
|
135
|
-
for (int index_num = WKMT_FlatL2;
|
136
|
-
index_num <= WKMT_HNSW;
|
137
|
-
index_num++) {
|
138
|
-
|
139
|
-
if (the_index_num >= 0 && index_num != the_index_num) {
|
140
|
-
continue;
|
141
|
-
}
|
142
|
-
|
143
|
-
for (int with_weights = 0; with_weights <= 1; with_weights++) {
|
144
|
-
if (the_with_weights >= 0 && with_weights != the_with_weights) {
|
145
|
-
continue;
|
146
|
-
}
|
147
|
-
|
148
|
-
printf("=================== index_num=%d Run %s weights\n",
|
149
|
-
index_num, with_weights ? "with" : "without");
|
150
|
-
|
151
|
-
weighted_kmeans_clustering (
|
152
|
-
d, n, nc, x.data(),
|
153
|
-
with_weights ? weights.data() : nullptr,
|
154
|
-
centroids.data(), (WeightedKMeansType)index_num
|
155
|
-
);
|
156
|
-
|
157
|
-
{ // compute distance of points to centroids
|
158
|
-
faiss::IndexFlatL2 cent_index(d);
|
159
|
-
cent_index.add(nc, centroids.data());
|
160
|
-
std::vector<float> dis (n);
|
161
|
-
std::vector<faiss::Index::idx_t> idx (n);
|
162
|
-
|
163
|
-
cent_index.search (nc * 2, ccent.data(), 1,
|
164
|
-
dis.data(), idx.data());
|
165
|
-
|
166
|
-
float dis1 = 0, dis2 = 0;
|
167
|
-
for (int i = 0; i < nc ; i++) {
|
168
|
-
dis1 += dis[i];
|
169
|
-
}
|
170
|
-
printf("average distance of points from big clusters: %g\n",
|
171
|
-
dis1 / nc);
|
172
|
-
|
173
|
-
for (int i = 0; i < nc ; i++) {
|
174
|
-
dis2 += dis[i + nc];
|
175
|
-
}
|
176
|
-
|
177
|
-
printf("average distance of points from small clusters: %g\n",
|
178
|
-
dis2 / nc);
|
179
|
-
|
180
|
-
}
|
181
|
-
|
182
|
-
}
|
183
|
-
}
|
184
|
-
return 0;
|
185
|
-
}
|