faiss 0.1.3 → 0.1.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/LICENSE.txt +1 -1
- data/README.md +1 -1
- data/ext/faiss/extconf.rb +1 -1
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +36 -33
- data/vendor/faiss/faiss/AutoTune.h +6 -3
- data/vendor/faiss/faiss/Clustering.cpp +16 -12
- data/vendor/faiss/faiss/Index.cpp +3 -4
- data/vendor/faiss/faiss/Index.h +3 -3
- data/vendor/faiss/faiss/IndexBinary.cpp +3 -4
- data/vendor/faiss/faiss/IndexBinary.h +1 -1
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +2 -12
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +1 -2
- data/vendor/faiss/faiss/IndexFlat.cpp +0 -148
- data/vendor/faiss/faiss/IndexFlat.h +0 -51
- data/vendor/faiss/faiss/IndexHNSW.cpp +4 -5
- data/vendor/faiss/faiss/IndexIVF.cpp +118 -31
- data/vendor/faiss/faiss/IndexIVF.h +22 -15
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +3 -3
- data/vendor/faiss/faiss/IndexIVFFlat.h +2 -1
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +39 -15
- data/vendor/faiss/faiss/IndexIVFPQ.h +25 -9
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +1116 -0
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +166 -0
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +8 -9
- data/vendor/faiss/faiss/IndexIVFPQR.h +2 -1
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +1 -2
- data/vendor/faiss/faiss/IndexPQ.cpp +34 -18
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +536 -0
- data/vendor/faiss/faiss/IndexPQFastScan.h +111 -0
- data/vendor/faiss/faiss/IndexPreTransform.cpp +47 -0
- data/vendor/faiss/faiss/IndexPreTransform.h +2 -0
- data/vendor/faiss/faiss/IndexRefine.cpp +256 -0
- data/vendor/faiss/faiss/IndexRefine.h +73 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +2 -2
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +1 -1
- data/vendor/faiss/faiss/gpu/GpuDistance.h +1 -1
- data/vendor/faiss/faiss/gpu/GpuIndex.h +16 -9
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +8 -1
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +11 -11
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +19 -2
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +28 -2
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +24 -14
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +29 -2
- data/vendor/faiss/faiss/gpu/GpuResources.h +4 -0
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +60 -27
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +28 -6
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +547 -0
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.h +51 -0
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +3 -3
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +3 -2
- data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +274 -0
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +7 -2
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +5 -1
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +231 -0
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +33 -0
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.cpp +1 -0
- data/vendor/faiss/faiss/gpu/utils/StaticUtils.h +6 -0
- data/vendor/faiss/faiss/gpu/utils/Timer.cpp +5 -6
- data/vendor/faiss/faiss/gpu/utils/Timer.h +2 -2
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +5 -4
- data/vendor/faiss/faiss/impl/HNSW.cpp +2 -4
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +4 -4
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +22 -12
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +2 -0
- data/vendor/faiss/faiss/impl/ResultHandler.h +452 -0
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +29 -19
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +6 -0
- data/vendor/faiss/faiss/impl/index_read.cpp +64 -96
- data/vendor/faiss/faiss/impl/index_write.cpp +34 -25
- data/vendor/faiss/faiss/impl/io.cpp +33 -2
- data/vendor/faiss/faiss/impl/io.h +7 -2
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +1 -15
- data/vendor/faiss/faiss/impl/platform_macros.h +44 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +272 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +169 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +180 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +354 -0
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +559 -0
- data/vendor/faiss/faiss/index_factory.cpp +112 -7
- data/vendor/faiss/faiss/index_io.h +1 -48
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +151 -0
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +76 -0
- data/vendor/faiss/faiss/{DirectMap.cpp → invlists/DirectMap.cpp} +1 -1
- data/vendor/faiss/faiss/{DirectMap.h → invlists/DirectMap.h} +1 -1
- data/vendor/faiss/faiss/{InvertedLists.cpp → invlists/InvertedLists.cpp} +72 -1
- data/vendor/faiss/faiss/{InvertedLists.h → invlists/InvertedLists.h} +32 -1
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.cpp +107 -0
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.h +63 -0
- data/vendor/faiss/faiss/{OnDiskInvertedLists.cpp → invlists/OnDiskInvertedLists.cpp} +21 -6
- data/vendor/faiss/faiss/{OnDiskInvertedLists.h → invlists/OnDiskInvertedLists.h} +5 -2
- data/vendor/faiss/faiss/python/python_callbacks.h +8 -1
- data/vendor/faiss/faiss/utils/AlignedTable.h +141 -0
- data/vendor/faiss/faiss/utils/Heap.cpp +2 -4
- data/vendor/faiss/faiss/utils/Heap.h +61 -50
- data/vendor/faiss/faiss/utils/distances.cpp +164 -319
- data/vendor/faiss/faiss/utils/distances.h +28 -20
- data/vendor/faiss/faiss/utils/distances_simd.cpp +277 -49
- data/vendor/faiss/faiss/utils/extra_distances.cpp +1 -2
- data/vendor/faiss/faiss/utils/hamming-inl.h +4 -4
- data/vendor/faiss/faiss/utils/hamming.cpp +3 -6
- data/vendor/faiss/faiss/utils/hamming.h +2 -7
- data/vendor/faiss/faiss/utils/ordered_key_value.h +98 -0
- data/vendor/faiss/faiss/utils/partitioning.cpp +1256 -0
- data/vendor/faiss/faiss/utils/partitioning.h +69 -0
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +277 -0
- data/vendor/faiss/faiss/utils/quantize_lut.h +80 -0
- data/vendor/faiss/faiss/utils/simdlib.h +31 -0
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +461 -0
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +589 -0
- metadata +43 -141
- data/vendor/faiss/benchs/bench_6bit_codec.cpp +0 -80
- data/vendor/faiss/c_api/AutoTune_c.cpp +0 -83
- data/vendor/faiss/c_api/AutoTune_c.h +0 -66
- data/vendor/faiss/c_api/Clustering_c.cpp +0 -145
- data/vendor/faiss/c_api/Clustering_c.h +0 -123
- data/vendor/faiss/c_api/IndexFlat_c.cpp +0 -140
- data/vendor/faiss/c_api/IndexFlat_c.h +0 -115
- data/vendor/faiss/c_api/IndexIVFFlat_c.cpp +0 -64
- data/vendor/faiss/c_api/IndexIVFFlat_c.h +0 -58
- data/vendor/faiss/c_api/IndexIVF_c.cpp +0 -99
- data/vendor/faiss/c_api/IndexIVF_c.h +0 -142
- data/vendor/faiss/c_api/IndexLSH_c.cpp +0 -37
- data/vendor/faiss/c_api/IndexLSH_c.h +0 -40
- data/vendor/faiss/c_api/IndexPreTransform_c.cpp +0 -21
- data/vendor/faiss/c_api/IndexPreTransform_c.h +0 -32
- data/vendor/faiss/c_api/IndexShards_c.cpp +0 -38
- data/vendor/faiss/c_api/IndexShards_c.h +0 -39
- data/vendor/faiss/c_api/Index_c.cpp +0 -105
- data/vendor/faiss/c_api/Index_c.h +0 -183
- data/vendor/faiss/c_api/MetaIndexes_c.cpp +0 -49
- data/vendor/faiss/c_api/MetaIndexes_c.h +0 -49
- data/vendor/faiss/c_api/clone_index_c.cpp +0 -23
- data/vendor/faiss/c_api/clone_index_c.h +0 -32
- data/vendor/faiss/c_api/error_c.h +0 -42
- data/vendor/faiss/c_api/error_impl.cpp +0 -27
- data/vendor/faiss/c_api/error_impl.h +0 -16
- data/vendor/faiss/c_api/faiss_c.h +0 -58
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.cpp +0 -98
- data/vendor/faiss/c_api/gpu/GpuAutoTune_c.h +0 -56
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.cpp +0 -52
- data/vendor/faiss/c_api/gpu/GpuClonerOptions_c.h +0 -68
- data/vendor/faiss/c_api/gpu/GpuIndex_c.cpp +0 -17
- data/vendor/faiss/c_api/gpu/GpuIndex_c.h +0 -30
- data/vendor/faiss/c_api/gpu/GpuIndicesOptions_c.h +0 -38
- data/vendor/faiss/c_api/gpu/GpuResources_c.cpp +0 -86
- data/vendor/faiss/c_api/gpu/GpuResources_c.h +0 -66
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.cpp +0 -54
- data/vendor/faiss/c_api/gpu/StandardGpuResources_c.h +0 -53
- data/vendor/faiss/c_api/gpu/macros_impl.h +0 -42
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.cpp +0 -220
- data/vendor/faiss/c_api/impl/AuxIndexStructures_c.h +0 -149
- data/vendor/faiss/c_api/index_factory_c.cpp +0 -26
- data/vendor/faiss/c_api/index_factory_c.h +0 -30
- data/vendor/faiss/c_api/index_io_c.cpp +0 -42
- data/vendor/faiss/c_api/index_io_c.h +0 -50
- data/vendor/faiss/c_api/macros_impl.h +0 -110
- data/vendor/faiss/demos/demo_imi_flat.cpp +0 -154
- data/vendor/faiss/demos/demo_imi_pq.cpp +0 -203
- data/vendor/faiss/demos/demo_ivfpq_indexing.cpp +0 -151
- data/vendor/faiss/demos/demo_sift1M.cpp +0 -252
- data/vendor/faiss/demos/demo_weighted_kmeans.cpp +0 -185
- data/vendor/faiss/misc/test_blas.cpp +0 -87
- data/vendor/faiss/tests/test_binary_flat.cpp +0 -62
- data/vendor/faiss/tests/test_dealloc_invlists.cpp +0 -188
- data/vendor/faiss/tests/test_ivfpq_codec.cpp +0 -70
- data/vendor/faiss/tests/test_ivfpq_indexing.cpp +0 -100
- data/vendor/faiss/tests/test_lowlevel_ivf.cpp +0 -573
- data/vendor/faiss/tests/test_merge.cpp +0 -260
- data/vendor/faiss/tests/test_omp_threads.cpp +0 -14
- data/vendor/faiss/tests/test_ondisk_ivf.cpp +0 -225
- data/vendor/faiss/tests/test_pairs_decoding.cpp +0 -193
- data/vendor/faiss/tests/test_params_override.cpp +0 -236
- data/vendor/faiss/tests/test_pq_encoding.cpp +0 -98
- data/vendor/faiss/tests/test_sliding_ivf.cpp +0 -246
- data/vendor/faiss/tests/test_threaded_index.cpp +0 -253
- data/vendor/faiss/tests/test_transfer_invlists.cpp +0 -159
- data/vendor/faiss/tutorial/cpp/1-Flat.cpp +0 -104
- data/vendor/faiss/tutorial/cpp/2-IVFFlat.cpp +0 -85
- data/vendor/faiss/tutorial/cpp/3-IVFPQ.cpp +0 -98
- data/vendor/faiss/tutorial/cpp/4-GPU.cpp +0 -122
- data/vendor/faiss/tutorial/cpp/5-Multiple-GPUs.cpp +0 -104
@@ -176,8 +176,7 @@ void knn_extra_metrics_template (
|
|
176
176
|
float disij = vd (x_i, y_j);
|
177
177
|
|
178
178
|
if (disij < simi[0]) {
|
179
|
-
|
180
|
-
maxheap_push (k, simi, idxi, disij, j);
|
179
|
+
maxheap_replace_top (k, simi, idxi, disij, j);
|
181
180
|
}
|
182
181
|
y_j += d;
|
183
182
|
}
|
@@ -8,7 +8,7 @@
|
|
8
8
|
namespace faiss {
|
9
9
|
|
10
10
|
|
11
|
-
inline BitstringWriter::BitstringWriter(uint8_t *code,
|
11
|
+
inline BitstringWriter::BitstringWriter(uint8_t *code, size_t code_size):
|
12
12
|
code (code), code_size (code_size), i(0)
|
13
13
|
{
|
14
14
|
memset (code, 0, code_size);
|
@@ -24,7 +24,7 @@ inline void BitstringWriter::write(uint64_t x, int nbit) {
|
|
24
24
|
i += nbit;
|
25
25
|
return;
|
26
26
|
} else {
|
27
|
-
|
27
|
+
size_t j = i >> 3;
|
28
28
|
code[j++] |= x << (i & 7);
|
29
29
|
i += nbit;
|
30
30
|
x >>= na;
|
@@ -36,7 +36,7 @@ inline void BitstringWriter::write(uint64_t x, int nbit) {
|
|
36
36
|
}
|
37
37
|
|
38
38
|
|
39
|
-
inline BitstringReader::BitstringReader(const uint8_t *code,
|
39
|
+
inline BitstringReader::BitstringReader(const uint8_t *code, size_t code_size):
|
40
40
|
code (code), code_size (code_size), i(0)
|
41
41
|
{}
|
42
42
|
|
@@ -52,7 +52,7 @@ inline uint64_t BitstringReader::read(int nbit) {
|
|
52
52
|
return res;
|
53
53
|
} else {
|
54
54
|
int ofs = na;
|
55
|
-
|
55
|
+
size_t j = (i >> 3) + 1;
|
56
56
|
i += nbit;
|
57
57
|
nbit -= na;
|
58
58
|
while (nbit > 8) {
|
@@ -292,8 +292,7 @@ void hammings_knn_hc (
|
|
292
292
|
for (j = j0; j < j1; j++, bs2_+= bytes_per_code) {
|
293
293
|
dis = hc.hamming (bs2_);
|
294
294
|
if (dis < bh_val_[0]) {
|
295
|
-
faiss::
|
296
|
-
faiss::maxheap_push<hamdis_t> (k, bh_val_, bh_ids_, dis, j);
|
295
|
+
faiss::maxheap_replace_top<hamdis_t> (k, bh_val_, bh_ids_, dis, j);
|
297
296
|
}
|
298
297
|
}
|
299
298
|
}
|
@@ -391,8 +390,7 @@ void hammings_knn_hc_1 (
|
|
391
390
|
for (j = 0; j < n2; j++, bs2_+= nwords) {
|
392
391
|
dis = popcount64 (bs1_ ^ *bs2_);
|
393
392
|
if (dis < bh_val_0) {
|
394
|
-
faiss::
|
395
|
-
faiss::maxheap_push<hamdis_t> (k, bh_val_, bh_ids_, dis, j);
|
393
|
+
faiss::maxheap_replace_top<hamdis_t> (k, bh_val_, bh_ids_, dis, j);
|
396
394
|
bh_val_0 = bh_val_[0];
|
397
395
|
}
|
398
396
|
}
|
@@ -818,8 +816,7 @@ static void hamming_dis_inner_loop (
|
|
818
816
|
int ndiff = hc.hamming (cb);
|
819
817
|
cb += code_size;
|
820
818
|
if (ndiff < bh_val_[0]) {
|
821
|
-
|
822
|
-
maxheap_push<hamdis_t> (k, bh_val_, bh_ids_, ndiff, j);
|
819
|
+
maxheap_replace_top<hamdis_t> (k, bh_val_, bh_ids_, ndiff, j);
|
823
820
|
}
|
824
821
|
}
|
825
822
|
}
|
@@ -27,11 +27,6 @@
|
|
27
27
|
|
28
28
|
#include <stdint.h>
|
29
29
|
|
30
|
-
#ifdef _MSC_VER
|
31
|
-
#include <intrin.h>
|
32
|
-
#define __builtin_popcountl __popcnt64
|
33
|
-
#endif // _MSC_VER
|
34
|
-
|
35
30
|
#include <faiss/impl/platform_macros.h>
|
36
31
|
#include <faiss/utils/Heap.h>
|
37
32
|
|
@@ -91,7 +86,7 @@ struct BitstringWriter {
|
|
91
86
|
size_t i; // current bit offset
|
92
87
|
|
93
88
|
// code_size in bytes
|
94
|
-
BitstringWriter(uint8_t *code,
|
89
|
+
BitstringWriter(uint8_t *code, size_t code_size);
|
95
90
|
|
96
91
|
// write the nbit low bits of x
|
97
92
|
void write(uint64_t x, int nbit);
|
@@ -103,7 +98,7 @@ struct BitstringReader {
|
|
103
98
|
size_t i;
|
104
99
|
|
105
100
|
// code_size in bytes
|
106
|
-
BitstringReader(const uint8_t *code,
|
101
|
+
BitstringReader(const uint8_t *code, size_t code_size);
|
107
102
|
|
108
103
|
// read nbit bits from the code
|
109
104
|
uint64_t read(int nbit);
|
@@ -0,0 +1,98 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
|
9
|
+
|
10
|
+
#pragma once
|
11
|
+
|
12
|
+
#include <climits>
|
13
|
+
#include <cmath>
|
14
|
+
|
15
|
+
#include <limits>
|
16
|
+
|
17
|
+
|
18
|
+
namespace faiss {
|
19
|
+
|
20
|
+
/*******************************************************************
|
21
|
+
* C object: uniform handling of min and max heap
|
22
|
+
*******************************************************************/
|
23
|
+
|
24
|
+
/** The C object gives the type T of the values of a key-value storage, the type
|
25
|
+
* of the keys, TI and the comparison that is done: CMax for a decreasing
|
26
|
+
* series and CMin for increasing series. In other words, for a given threshold
|
27
|
+
* threshold, an incoming value x is kept if
|
28
|
+
*
|
29
|
+
* C::cmp(threshold, x)
|
30
|
+
*
|
31
|
+
* is true.
|
32
|
+
*/
|
33
|
+
|
34
|
+
template <typename T_, typename TI_>
|
35
|
+
struct CMax;
|
36
|
+
|
37
|
+
template<typename T> inline T cmin_nextafter(T x);
|
38
|
+
template<typename T> inline T cmax_nextafter(T x);
|
39
|
+
|
40
|
+
// traits of minheaps = heaps where the minimum value is stored on top
|
41
|
+
// useful to find the *max* values of an array
|
42
|
+
template <typename T_, typename TI_>
|
43
|
+
struct CMin {
|
44
|
+
typedef T_ T;
|
45
|
+
typedef TI_ TI;
|
46
|
+
typedef CMax<T_, TI_> Crev; // reference to reverse comparison
|
47
|
+
inline static bool cmp (T a, T b) {
|
48
|
+
return a < b;
|
49
|
+
}
|
50
|
+
inline static T neutral () {
|
51
|
+
return std::numeric_limits<T>::lowest();
|
52
|
+
}
|
53
|
+
static const bool is_max = false;
|
54
|
+
|
55
|
+
inline static T nextafter(T x) {
|
56
|
+
return cmin_nextafter(x);
|
57
|
+
}
|
58
|
+
};
|
59
|
+
|
60
|
+
|
61
|
+
|
62
|
+
|
63
|
+
template <typename T_, typename TI_>
|
64
|
+
struct CMax {
|
65
|
+
typedef T_ T;
|
66
|
+
typedef TI_ TI;
|
67
|
+
typedef CMin<T_, TI_> Crev;
|
68
|
+
inline static bool cmp (T a, T b) {
|
69
|
+
return a > b;
|
70
|
+
}
|
71
|
+
inline static T neutral () {
|
72
|
+
return std::numeric_limits<T>::max();
|
73
|
+
}
|
74
|
+
static const bool is_max = true;
|
75
|
+
inline static T nextafter(T x) {
|
76
|
+
return cmax_nextafter(x);
|
77
|
+
}
|
78
|
+
};
|
79
|
+
|
80
|
+
|
81
|
+
template<> inline float cmin_nextafter<float>(float x) {
|
82
|
+
return std::nextafterf(x, -HUGE_VALF);
|
83
|
+
}
|
84
|
+
|
85
|
+
template<> inline float cmax_nextafter<float>(float x) {
|
86
|
+
return std::nextafterf(x, HUGE_VALF);
|
87
|
+
}
|
88
|
+
|
89
|
+
template<> inline uint16_t cmin_nextafter<uint16_t>(uint16_t x) {
|
90
|
+
return x - 1;
|
91
|
+
}
|
92
|
+
|
93
|
+
template<> inline uint16_t cmax_nextafter<uint16_t>(uint16_t x) {
|
94
|
+
return x + 1;
|
95
|
+
}
|
96
|
+
|
97
|
+
|
98
|
+
} // namespace faiss
|
@@ -0,0 +1,1256 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
#include <faiss/utils/partitioning.h>
|
9
|
+
|
10
|
+
#include <cmath>
|
11
|
+
#include <cassert>
|
12
|
+
|
13
|
+
#include <faiss/impl/FaissAssert.h>
|
14
|
+
#include <faiss/utils/AlignedTable.h>
|
15
|
+
#include <faiss/utils/ordered_key_value.h>
|
16
|
+
#include <faiss/utils/simdlib.h>
|
17
|
+
|
18
|
+
#include <faiss/impl/platform_macros.h>
|
19
|
+
|
20
|
+
namespace faiss {
|
21
|
+
|
22
|
+
|
23
|
+
/******************************************************************
|
24
|
+
* Internal routines
|
25
|
+
******************************************************************/
|
26
|
+
|
27
|
+
|
28
|
+
namespace partitioning {
|
29
|
+
|
30
|
+
template<typename T>
|
31
|
+
T median3(T a, T b, T c) {
|
32
|
+
if (a > b) {
|
33
|
+
std::swap(a, b);
|
34
|
+
}
|
35
|
+
if (c > b) {
|
36
|
+
return b;
|
37
|
+
}
|
38
|
+
if (c > a) {
|
39
|
+
return c;
|
40
|
+
}
|
41
|
+
return a;
|
42
|
+
}
|
43
|
+
|
44
|
+
|
45
|
+
template<class C>
|
46
|
+
typename C::T sample_threshold_median3(
|
47
|
+
const typename C::T * vals, int n,
|
48
|
+
typename C::T thresh_inf, typename C::T thresh_sup
|
49
|
+
) {
|
50
|
+
using T = typename C::T;
|
51
|
+
size_t big_prime = 6700417;
|
52
|
+
T val3[3];
|
53
|
+
int vi = 0;
|
54
|
+
|
55
|
+
for (size_t i = 0; i < n; i++) {
|
56
|
+
T v = vals[(i * big_prime) % n];
|
57
|
+
// thresh_inf < v < thresh_sup (for CMax)
|
58
|
+
if (C::cmp(v, thresh_inf) && C::cmp(thresh_sup, v)) {
|
59
|
+
val3[vi++] = v;
|
60
|
+
if (vi == 3) {
|
61
|
+
break;
|
62
|
+
}
|
63
|
+
}
|
64
|
+
}
|
65
|
+
|
66
|
+
if (vi == 3) {
|
67
|
+
return median3(val3[0], val3[1], val3[2]);
|
68
|
+
} else if (vi != 0) {
|
69
|
+
return val3[0];
|
70
|
+
} else {
|
71
|
+
return thresh_inf;
|
72
|
+
// FAISS_THROW_MSG("too few values to compute a median");
|
73
|
+
}
|
74
|
+
}
|
75
|
+
|
76
|
+
template<class C>
|
77
|
+
void count_lt_and_eq(
|
78
|
+
const typename C::T * vals, size_t n, typename C::T thresh,
|
79
|
+
size_t & n_lt, size_t & n_eq
|
80
|
+
) {
|
81
|
+
n_lt = n_eq = 0;
|
82
|
+
|
83
|
+
for(size_t i = 0; i < n; i++) {
|
84
|
+
typename C::T v = *vals++;
|
85
|
+
if(C::cmp(thresh, v)) {
|
86
|
+
n_lt++;
|
87
|
+
} else if(v == thresh) {
|
88
|
+
n_eq++;
|
89
|
+
}
|
90
|
+
}
|
91
|
+
}
|
92
|
+
|
93
|
+
|
94
|
+
template<class C>
|
95
|
+
size_t compress_array(
|
96
|
+
typename C::T *vals, typename C::TI * ids,
|
97
|
+
size_t n, typename C::T thresh, size_t n_eq
|
98
|
+
) {
|
99
|
+
size_t wp = 0;
|
100
|
+
for(size_t i = 0; i < n; i++) {
|
101
|
+
if (C::cmp(thresh, vals[i])) {
|
102
|
+
vals[wp] = vals[i];
|
103
|
+
ids[wp] = ids[i];
|
104
|
+
wp++;
|
105
|
+
} else if (n_eq > 0 && vals[i] == thresh) {
|
106
|
+
vals[wp] = vals[i];
|
107
|
+
ids[wp] = ids[i];
|
108
|
+
wp++;
|
109
|
+
n_eq--;
|
110
|
+
}
|
111
|
+
}
|
112
|
+
assert(n_eq == 0);
|
113
|
+
return wp;
|
114
|
+
}
|
115
|
+
|
116
|
+
|
117
|
+
#define IFV if(false)
|
118
|
+
|
119
|
+
template<class C>
|
120
|
+
typename C::T partition_fuzzy_median3(
|
121
|
+
typename C::T *vals, typename C::TI * ids, size_t n,
|
122
|
+
size_t q_min, size_t q_max, size_t * q_out)
|
123
|
+
{
|
124
|
+
|
125
|
+
if (q_min == 0) {
|
126
|
+
if (q_out) {
|
127
|
+
*q_out = C::Crev::neutral();
|
128
|
+
}
|
129
|
+
return 0;
|
130
|
+
}
|
131
|
+
if (q_max >= n) {
|
132
|
+
if (q_out) {
|
133
|
+
*q_out = q_max;
|
134
|
+
}
|
135
|
+
return C::neutral();
|
136
|
+
}
|
137
|
+
|
138
|
+
using T = typename C::T;
|
139
|
+
|
140
|
+
// here we use bissection with a median of 3 to find the threshold and
|
141
|
+
// compress the arrays afterwards. So it's a n*log(n) algoirithm rather than
|
142
|
+
// qselect's O(n) but it avoids shuffling around the array.
|
143
|
+
|
144
|
+
FAISS_THROW_IF_NOT(n >= 3);
|
145
|
+
|
146
|
+
T thresh_inf = C::Crev::neutral();
|
147
|
+
T thresh_sup = C::neutral();
|
148
|
+
T thresh = median3(vals[0], vals[n / 2], vals[n - 1]);
|
149
|
+
|
150
|
+
size_t n_eq = 0, n_lt = 0;
|
151
|
+
size_t q = 0;
|
152
|
+
|
153
|
+
for(int it = 0; it < 200; it++) {
|
154
|
+
count_lt_and_eq<C>(vals, n, thresh, n_lt, n_eq);
|
155
|
+
|
156
|
+
IFV printf(" thresh=%g [%g %g] n_lt=%ld n_eq=%ld, q=%ld:%ld/%ld\n",
|
157
|
+
float(thresh), float(thresh_inf), float(thresh_sup),
|
158
|
+
long(n_lt), long(n_eq), long(q_min), long(q_max), long(n));
|
159
|
+
|
160
|
+
if (n_lt <= q_min) {
|
161
|
+
if (n_lt + n_eq >= q_min) {
|
162
|
+
q = q_min;
|
163
|
+
break;
|
164
|
+
} else {
|
165
|
+
thresh_inf = thresh;
|
166
|
+
}
|
167
|
+
} else if (n_lt <= q_max) {
|
168
|
+
q = n_lt;
|
169
|
+
break;
|
170
|
+
} else {
|
171
|
+
thresh_sup = thresh;
|
172
|
+
}
|
173
|
+
|
174
|
+
// FIXME avoid a second pass over the array to sample the threshold
|
175
|
+
IFV printf(" sample thresh in [%g %g]\n", float(thresh_inf), float(thresh_sup));
|
176
|
+
T new_thresh = sample_threshold_median3<C>(vals, n, thresh_inf, thresh_sup);
|
177
|
+
if (new_thresh == thresh_inf) {
|
178
|
+
// then there is nothing between thresh_inf and thresh_sup
|
179
|
+
break;
|
180
|
+
}
|
181
|
+
thresh = new_thresh;
|
182
|
+
}
|
183
|
+
|
184
|
+
int64_t n_eq_1 = q - n_lt;
|
185
|
+
|
186
|
+
IFV printf("shrink: thresh=%g n_eq_1=%ld\n", float(thresh), long(n_eq_1));
|
187
|
+
|
188
|
+
if (n_eq_1 < 0) { // happens when > q elements are at lower bound
|
189
|
+
q = q_min;
|
190
|
+
thresh = C::Crev::nextafter(thresh);
|
191
|
+
n_eq_1 = q;
|
192
|
+
} else {
|
193
|
+
assert(n_eq_1 <= n_eq);
|
194
|
+
}
|
195
|
+
|
196
|
+
int wp = compress_array<C>(vals, ids, n, thresh, n_eq_1);
|
197
|
+
|
198
|
+
assert(wp == q);
|
199
|
+
if (q_out) {
|
200
|
+
*q_out = q;
|
201
|
+
}
|
202
|
+
|
203
|
+
return thresh;
|
204
|
+
}
|
205
|
+
|
206
|
+
|
207
|
+
} // namespace partitioning
|
208
|
+
|
209
|
+
|
210
|
+
|
211
|
+
/******************************************************************
|
212
|
+
* SIMD routines when vals is an aligned array of uint16_t
|
213
|
+
******************************************************************/
|
214
|
+
|
215
|
+
|
216
|
+
namespace simd_partitioning {
|
217
|
+
|
218
|
+
|
219
|
+
|
220
|
+
void find_minimax(
|
221
|
+
const uint16_t * vals, size_t n,
|
222
|
+
uint16_t & smin, uint16_t & smax
|
223
|
+
) {
|
224
|
+
|
225
|
+
simd16uint16 vmin(0xffff), vmax(0);
|
226
|
+
for (size_t i = 0; i + 15 < n; i += 16) {
|
227
|
+
simd16uint16 v(vals + i);
|
228
|
+
vmin.accu_min(v);
|
229
|
+
vmax.accu_max(v);
|
230
|
+
}
|
231
|
+
|
232
|
+
ALIGNED(32) uint16_t tab32[32];
|
233
|
+
vmin.store(tab32);
|
234
|
+
vmax.store(tab32 + 16);
|
235
|
+
|
236
|
+
smin = tab32[0], smax = tab32[16];
|
237
|
+
|
238
|
+
for(int i = 1; i < 16; i++) {
|
239
|
+
smin = std::min(smin, tab32[i]);
|
240
|
+
smax = std::max(smax, tab32[i + 16]);
|
241
|
+
}
|
242
|
+
|
243
|
+
// missing values
|
244
|
+
for(size_t i = (n & ~15); i < n; i++) {
|
245
|
+
smin = std::min(smin, vals[i]);
|
246
|
+
smax = std::max(smax, vals[i]);
|
247
|
+
}
|
248
|
+
|
249
|
+
}
|
250
|
+
|
251
|
+
|
252
|
+
// max func differentiates between CMin and CMax (keep lowest or largest)
|
253
|
+
template<class C>
|
254
|
+
simd16uint16 max_func(simd16uint16 v, simd16uint16 thr16) {
|
255
|
+
constexpr bool is_max = C::is_max;
|
256
|
+
if (is_max) {
|
257
|
+
return max(v, thr16);
|
258
|
+
} else {
|
259
|
+
return min(v, thr16);
|
260
|
+
}
|
261
|
+
}
|
262
|
+
|
263
|
+
template<class C>
|
264
|
+
void count_lt_and_eq(
|
265
|
+
const uint16_t * vals, int n, uint16_t thresh,
|
266
|
+
size_t & n_lt, size_t & n_eq
|
267
|
+
) {
|
268
|
+
n_lt = n_eq = 0;
|
269
|
+
simd16uint16 thr16(thresh);
|
270
|
+
|
271
|
+
size_t n1 = n / 16;
|
272
|
+
|
273
|
+
for (size_t i = 0; i < n1; i++) {
|
274
|
+
simd16uint16 v(vals);
|
275
|
+
vals += 16;
|
276
|
+
simd16uint16 eqmask = (v == thr16);
|
277
|
+
simd16uint16 max2 = max_func<C>(v, thr16);
|
278
|
+
simd16uint16 gemask = (v == max2);
|
279
|
+
uint32_t bits = get_MSBs(uint16_to_uint8_saturate(eqmask, gemask));
|
280
|
+
int i_eq = __builtin_popcount(bits & 0x00ff00ff);
|
281
|
+
int i_ge = __builtin_popcount(bits) - i_eq;
|
282
|
+
n_eq += i_eq;
|
283
|
+
n_lt += 16 - i_ge;
|
284
|
+
}
|
285
|
+
|
286
|
+
for(size_t i = n1 * 16; i < n; i++) {
|
287
|
+
uint16_t v = *vals++;
|
288
|
+
if(C::cmp(thresh, v)) {
|
289
|
+
n_lt++;
|
290
|
+
} else if(v == thresh) {
|
291
|
+
n_eq++;
|
292
|
+
}
|
293
|
+
}
|
294
|
+
}
|
295
|
+
|
296
|
+
|
297
|
+
|
298
|
+
/* compress separated values and ids table, keeping all values < thresh and at
|
299
|
+
* most n_eq equal values */
|
300
|
+
template<class C>
|
301
|
+
int simd_compress_array(
|
302
|
+
uint16_t *vals, typename C::TI * ids, size_t n, uint16_t thresh, int n_eq
|
303
|
+
) {
|
304
|
+
simd16uint16 thr16(thresh);
|
305
|
+
simd16uint16 mixmask(0xff00);
|
306
|
+
|
307
|
+
int wp = 0;
|
308
|
+
size_t i0;
|
309
|
+
|
310
|
+
// loop while there are eqs to collect
|
311
|
+
for (i0 = 0; i0 + 15 < n && n_eq > 0; i0 += 16) {
|
312
|
+
simd16uint16 v(vals + i0);
|
313
|
+
simd16uint16 max2 = max_func<C>(v, thr16);
|
314
|
+
simd16uint16 gemask = (v == max2);
|
315
|
+
simd16uint16 eqmask = (v == thr16);
|
316
|
+
uint32_t bits = get_MSBs(blendv(
|
317
|
+
simd32uint8(eqmask), simd32uint8(gemask), simd32uint8(mixmask)));
|
318
|
+
bits ^= 0xAAAAAAAA;
|
319
|
+
// bit 2*i : eq
|
320
|
+
// bit 2*i + 1 : lt
|
321
|
+
|
322
|
+
while(bits) {
|
323
|
+
int j = __builtin_ctz(bits) & (~1);
|
324
|
+
bool is_eq = (bits >> j) & 1;
|
325
|
+
bool is_lt = (bits >> j) & 2;
|
326
|
+
bits &= ~(3 << j);
|
327
|
+
j >>= 1;
|
328
|
+
|
329
|
+
if (is_lt) {
|
330
|
+
vals[wp] = vals[i0 + j];
|
331
|
+
ids[wp] = ids[i0 + j];
|
332
|
+
wp++;
|
333
|
+
} else if(is_eq && n_eq > 0) {
|
334
|
+
vals[wp] = vals[i0 + j];
|
335
|
+
ids[wp] = ids[i0 + j];
|
336
|
+
wp++;
|
337
|
+
n_eq--;
|
338
|
+
}
|
339
|
+
}
|
340
|
+
}
|
341
|
+
|
342
|
+
// handle remaining, only striclty lt ones.
|
343
|
+
for (; i0 + 15 < n; i0 += 16) {
|
344
|
+
simd16uint16 v(vals + i0);
|
345
|
+
simd16uint16 max2 = max_func<C>(v, thr16);
|
346
|
+
simd16uint16 gemask = (v == max2);
|
347
|
+
uint32_t bits = ~get_MSBs(simd32uint8(gemask));
|
348
|
+
|
349
|
+
while(bits) {
|
350
|
+
int j = __builtin_ctz(bits);
|
351
|
+
bits &= ~(3 << j);
|
352
|
+
j >>= 1;
|
353
|
+
|
354
|
+
vals[wp] = vals[i0 + j];
|
355
|
+
ids[wp] = ids[i0 + j];
|
356
|
+
wp++;
|
357
|
+
}
|
358
|
+
}
|
359
|
+
|
360
|
+
// end with scalar
|
361
|
+
for(int i = (n & ~15); i < n; i++) {
|
362
|
+
if (C::cmp(thresh, vals[i])) {
|
363
|
+
vals[wp] = vals[i];
|
364
|
+
ids[wp] = ids[i];
|
365
|
+
wp++;
|
366
|
+
} else if (vals[i] == thresh && n_eq > 0) {
|
367
|
+
vals[wp] = vals[i];
|
368
|
+
ids[wp] = ids[i];
|
369
|
+
wp++;
|
370
|
+
n_eq--;
|
371
|
+
}
|
372
|
+
}
|
373
|
+
assert(n_eq == 0);
|
374
|
+
return wp;
|
375
|
+
}
|
376
|
+
|
377
|
+
// #define MICRO_BENCHMARK
|
378
|
+
|
379
|
+
static uint64_t get_cy () {
|
380
|
+
#ifdef MICRO_BENCHMARK
|
381
|
+
uint32_t high, low;
|
382
|
+
asm volatile("rdtsc \n\t"
|
383
|
+
: "=a" (low),
|
384
|
+
"=d" (high));
|
385
|
+
return ((uint64_t)high << 32) | (low);
|
386
|
+
#else
|
387
|
+
return 0;
|
388
|
+
#endif
|
389
|
+
}
|
390
|
+
|
391
|
+
|
392
|
+
|
393
|
+
#define IFV if(false)
|
394
|
+
|
395
|
+
template<class C>
|
396
|
+
uint16_t simd_partition_fuzzy_with_bounds(
|
397
|
+
uint16_t *vals, typename C::TI * ids, size_t n,
|
398
|
+
size_t q_min, size_t q_max, size_t * q_out,
|
399
|
+
uint16_t s0i, uint16_t s1i)
|
400
|
+
{
|
401
|
+
|
402
|
+
if (q_min == 0) {
|
403
|
+
if (q_out) {
|
404
|
+
*q_out = 0;
|
405
|
+
}
|
406
|
+
return 0;
|
407
|
+
}
|
408
|
+
if (q_max >= n) {
|
409
|
+
if (q_out) {
|
410
|
+
*q_out = q_max;
|
411
|
+
}
|
412
|
+
return 0xffff;
|
413
|
+
}
|
414
|
+
if (s0i == s1i) {
|
415
|
+
if (q_out) {
|
416
|
+
*q_out = q_min;
|
417
|
+
}
|
418
|
+
return s0i;
|
419
|
+
}
|
420
|
+
uint64_t t0 = get_cy();
|
421
|
+
|
422
|
+
// lower bound inclusive, upper exclusive
|
423
|
+
size_t s0 = s0i, s1 = s1i + 1;
|
424
|
+
|
425
|
+
IFV printf("bounds: %ld %ld\n", s0, s1 - 1);
|
426
|
+
|
427
|
+
int thresh;
|
428
|
+
size_t n_eq = 0, n_lt = 0;
|
429
|
+
size_t q = 0;
|
430
|
+
|
431
|
+
for(int it = 0; it < 200; it++) {
|
432
|
+
// while(s0 + 1 < s1) {
|
433
|
+
thresh = (s0 + s1) / 2;
|
434
|
+
count_lt_and_eq<C>(vals, n, thresh, n_lt, n_eq);
|
435
|
+
|
436
|
+
IFV printf(" [%ld %ld] thresh=%d n_lt=%ld n_eq=%ld, q=%ld:%ld/%ld\n",
|
437
|
+
s0, s1, thresh, n_lt, n_eq, q_min, q_max, n);
|
438
|
+
if (n_lt <= q_min) {
|
439
|
+
if (n_lt + n_eq >= q_min) {
|
440
|
+
q = q_min;
|
441
|
+
break;
|
442
|
+
} else {
|
443
|
+
if (C::is_max) {
|
444
|
+
s0 = thresh;
|
445
|
+
} else {
|
446
|
+
s1 = thresh;
|
447
|
+
}
|
448
|
+
}
|
449
|
+
} else if (n_lt <= q_max) {
|
450
|
+
q = n_lt;
|
451
|
+
break;
|
452
|
+
} else {
|
453
|
+
if (C::is_max) {
|
454
|
+
s1 = thresh;
|
455
|
+
} else {
|
456
|
+
s0 = thresh;
|
457
|
+
}
|
458
|
+
}
|
459
|
+
|
460
|
+
}
|
461
|
+
|
462
|
+
uint64_t t1 = get_cy();
|
463
|
+
|
464
|
+
// number of equal values to keep
|
465
|
+
int64_t n_eq_1 = q - n_lt;
|
466
|
+
|
467
|
+
IFV printf("shrink: thresh=%d q=%ld n_eq_1=%ld\n", thresh, q, n_eq_1);
|
468
|
+
if (n_eq_1 < 0) { // happens when > q elements are at lower bound
|
469
|
+
assert(s0 + 1 == s1);
|
470
|
+
q = q_min;
|
471
|
+
if (C::is_max) {
|
472
|
+
thresh--;
|
473
|
+
} else {
|
474
|
+
thresh++;
|
475
|
+
}
|
476
|
+
n_eq_1 = q;
|
477
|
+
IFV printf(" override: thresh=%d n_eq_1=%ld\n", thresh, n_eq_1);
|
478
|
+
} else {
|
479
|
+
assert(n_eq_1 <= n_eq);
|
480
|
+
}
|
481
|
+
|
482
|
+
size_t wp = simd_compress_array<C>(vals, ids, n, thresh, n_eq_1);
|
483
|
+
|
484
|
+
IFV printf("wp=%ld\n", wp);
|
485
|
+
assert(wp == q);
|
486
|
+
if (q_out) {
|
487
|
+
*q_out = q;
|
488
|
+
}
|
489
|
+
|
490
|
+
uint64_t t2 = get_cy();
|
491
|
+
|
492
|
+
partition_stats.bissect_cycles += t1 - t0;
|
493
|
+
partition_stats.compress_cycles += t2 - t1;
|
494
|
+
|
495
|
+
return thresh;
|
496
|
+
}
|
497
|
+
|
498
|
+
|
499
|
+
template<class C>
|
500
|
+
uint16_t simd_partition_fuzzy_with_bounds_histogram(
|
501
|
+
uint16_t *vals, typename C::TI * ids, size_t n,
|
502
|
+
size_t q_min, size_t q_max, size_t * q_out,
|
503
|
+
uint16_t s0i, uint16_t s1i)
|
504
|
+
{
|
505
|
+
|
506
|
+
if (q_min == 0) {
|
507
|
+
if (q_out) {
|
508
|
+
*q_out = 0;
|
509
|
+
}
|
510
|
+
return 0;
|
511
|
+
}
|
512
|
+
if (q_max >= n) {
|
513
|
+
if (q_out) {
|
514
|
+
*q_out = q_max;
|
515
|
+
}
|
516
|
+
return 0xffff;
|
517
|
+
}
|
518
|
+
if (s0i == s1i) {
|
519
|
+
if (q_out) {
|
520
|
+
*q_out = q_min;
|
521
|
+
}
|
522
|
+
return s0i;
|
523
|
+
}
|
524
|
+
|
525
|
+
IFV printf("partition fuzzy, q=%ld:%ld / %ld, bounds=%d %d\n",
|
526
|
+
q_min, q_max, n, s0i, s1i);
|
527
|
+
|
528
|
+
if (!C::is_max) {
|
529
|
+
IFV printf("revert due to CMin, q_min:q_max -> %ld:%ld\n", q_min, q_max);
|
530
|
+
q_min = n - q_min;
|
531
|
+
q_max = n - q_max;
|
532
|
+
}
|
533
|
+
|
534
|
+
// lower and upper bound of range, inclusive
|
535
|
+
int s0 = s0i, s1 = s1i;
|
536
|
+
// number of values < s0 and > s1
|
537
|
+
size_t n_lt = 0, n_gt = 0;
|
538
|
+
|
539
|
+
// output of loop:
|
540
|
+
int thresh; // final threshold
|
541
|
+
uint64_t tot_eq = 0; // total nb of equal values
|
542
|
+
uint64_t n_eq = 0; // nb of equal values to keep
|
543
|
+
size_t q; // final quantile
|
544
|
+
|
545
|
+
// buffer for the histograms
|
546
|
+
int hist[16];
|
547
|
+
|
548
|
+
for(int it = 0; it < 20; it++) {
|
549
|
+
// otherwise we would be done already
|
550
|
+
|
551
|
+
int shift = 0;
|
552
|
+
|
553
|
+
IFV printf(" it %d bounds: %d %d n_lt=%ld n_gt=%ld\n",
|
554
|
+
it, s0, s1, n_lt, n_gt);
|
555
|
+
|
556
|
+
int maxval = s1 - s0;
|
557
|
+
|
558
|
+
while(maxval > 15) {
|
559
|
+
shift++;
|
560
|
+
maxval >>= 1;
|
561
|
+
}
|
562
|
+
|
563
|
+
IFV printf(" histogram shift %d maxval %d ?= %d\n",
|
564
|
+
shift, maxval, int((s1 - s0) >> shift));
|
565
|
+
|
566
|
+
if (maxval > 7) {
|
567
|
+
simd_histogram_16(vals, n, s0, shift, hist);
|
568
|
+
} else {
|
569
|
+
simd_histogram_8(vals, n, s0, shift, hist);
|
570
|
+
}
|
571
|
+
IFV {
|
572
|
+
int sum = n_lt + n_gt;
|
573
|
+
printf(" n_lt=%ld hist=[", n_lt);
|
574
|
+
for(int i = 0; i <= maxval; i++) {
|
575
|
+
printf("%d ", hist[i]);
|
576
|
+
sum += hist[i];
|
577
|
+
}
|
578
|
+
printf("] n_gt=%ld sum=%d\n", n_gt, sum);
|
579
|
+
assert(sum == n);
|
580
|
+
}
|
581
|
+
|
582
|
+
size_t sum_below = n_lt;
|
583
|
+
int i;
|
584
|
+
for (i = 0; i <= maxval; i++) {
|
585
|
+
sum_below += hist[i];
|
586
|
+
if (sum_below >= q_min) {
|
587
|
+
break;
|
588
|
+
}
|
589
|
+
}
|
590
|
+
IFV printf(" i=%d sum_below=%ld\n", i, sum_below);
|
591
|
+
if (i <= maxval) {
|
592
|
+
s0 = s0 + (i << shift);
|
593
|
+
s1 = s0 + (1 << shift) - 1;
|
594
|
+
n_lt = sum_below - hist[i];
|
595
|
+
n_gt = n - sum_below;
|
596
|
+
} else {
|
597
|
+
assert(!"not implemented");
|
598
|
+
}
|
599
|
+
|
600
|
+
IFV printf(" new bin: s0=%d s1=%d n_lt=%ld n_gt=%ld\n", s0, s1, n_lt, n_gt);
|
601
|
+
|
602
|
+
if (s1 > s0) {
|
603
|
+
if (n_lt >= q_min && q_max >= n_lt) {
|
604
|
+
IFV printf(" FOUND1\n");
|
605
|
+
thresh = s0;
|
606
|
+
q = n_lt;
|
607
|
+
break;
|
608
|
+
}
|
609
|
+
|
610
|
+
size_t n_lt_2 = n - n_gt;
|
611
|
+
if (n_lt_2 >= q_min && q_max >= n_lt_2) {
|
612
|
+
thresh = s1 + 1;
|
613
|
+
q = n_lt_2;
|
614
|
+
IFV printf(" FOUND2\n");
|
615
|
+
break;
|
616
|
+
}
|
617
|
+
} else {
|
618
|
+
thresh = s0;
|
619
|
+
q = q_min;
|
620
|
+
tot_eq = n - n_gt - n_lt;
|
621
|
+
n_eq = q_min - n_lt;
|
622
|
+
IFV printf(" FOUND3\n");
|
623
|
+
break;
|
624
|
+
}
|
625
|
+
}
|
626
|
+
|
627
|
+
IFV printf("end bissection: thresh=%d q=%ld n_eq=%ld\n", thresh, q, n_eq);
|
628
|
+
|
629
|
+
if (!C::is_max) {
|
630
|
+
if (n_eq == 0) {
|
631
|
+
thresh --;
|
632
|
+
} else {
|
633
|
+
// thresh unchanged
|
634
|
+
n_eq = tot_eq - n_eq;
|
635
|
+
}
|
636
|
+
q = n - q;
|
637
|
+
IFV printf("revert due to CMin, q->%ld n_eq->%ld\n", q, n_eq);
|
638
|
+
}
|
639
|
+
|
640
|
+
size_t wp = simd_compress_array<C>(vals, ids, n, thresh, n_eq);
|
641
|
+
IFV printf("wp=%ld ?= %ld\n", wp, q);
|
642
|
+
assert(wp == q);
|
643
|
+
if (q_out) {
|
644
|
+
*q_out = wp;
|
645
|
+
}
|
646
|
+
|
647
|
+
return thresh;
|
648
|
+
}
|
649
|
+
|
650
|
+
|
651
|
+
|
652
|
+
template<class C>
|
653
|
+
uint16_t simd_partition_fuzzy(
|
654
|
+
uint16_t *vals, typename C::TI * ids, size_t n,
|
655
|
+
size_t q_min, size_t q_max, size_t * q_out
|
656
|
+
) {
|
657
|
+
|
658
|
+
assert(is_aligned_pointer(vals));
|
659
|
+
|
660
|
+
uint16_t s0i, s1i;
|
661
|
+
find_minimax(vals, n, s0i, s1i);
|
662
|
+
// QSelect_stats.t0 += get_cy() - t0;
|
663
|
+
|
664
|
+
return simd_partition_fuzzy_with_bounds<C>(
|
665
|
+
vals, ids, n, q_min, q_max, q_out, s0i, s1i);
|
666
|
+
}
|
667
|
+
|
668
|
+
|
669
|
+
|
670
|
+
template<class C>
|
671
|
+
uint16_t simd_partition(uint16_t *vals, typename C::TI * ids, size_t n, size_t q) {
|
672
|
+
|
673
|
+
assert(is_aligned_pointer(vals));
|
674
|
+
|
675
|
+
if (q == 0) {
|
676
|
+
return 0;
|
677
|
+
}
|
678
|
+
if (q >= n) {
|
679
|
+
return 0xffff;
|
680
|
+
}
|
681
|
+
|
682
|
+
uint16_t s0i, s1i;
|
683
|
+
find_minimax(vals, n, s0i, s1i);
|
684
|
+
|
685
|
+
return simd_partition_fuzzy_with_bounds<C>(
|
686
|
+
vals, ids, n, q, q, nullptr, s0i, s1i);
|
687
|
+
}
|
688
|
+
|
689
|
+
template<class C>
|
690
|
+
uint16_t simd_partition_with_bounds(
|
691
|
+
uint16_t *vals, typename C::TI * ids, size_t n, size_t q,
|
692
|
+
uint16_t s0i, uint16_t s1i)
|
693
|
+
{
|
694
|
+
return simd_partition_fuzzy_with_bounds<C>(
|
695
|
+
vals, ids, n, q, q, nullptr, s0i, s1i);
|
696
|
+
}
|
697
|
+
|
698
|
+
} // namespace simd_partitioning
|
699
|
+
|
700
|
+
|
701
|
+
/******************************************************************
|
702
|
+
* Driver routine
|
703
|
+
******************************************************************/
|
704
|
+
|
705
|
+
|
706
|
+
template<class C>
|
707
|
+
typename C::T partition_fuzzy(
|
708
|
+
typename C::T *vals, typename C::TI * ids, size_t n,
|
709
|
+
size_t q_min, size_t q_max, size_t * q_out)
|
710
|
+
{
|
711
|
+
// the code below compiles and runs without AVX2 but it's slower than
|
712
|
+
// the scalar implementation
|
713
|
+
#ifdef __AVX2__
|
714
|
+
constexpr bool is_uint16 = std::is_same<typename C::T, uint16_t>::value;
|
715
|
+
if (is_uint16 && is_aligned_pointer(vals)) {
|
716
|
+
return simd_partitioning::simd_partition_fuzzy<C>(
|
717
|
+
(uint16_t*)vals, ids, n, q_min, q_max, q_out);
|
718
|
+
}
|
719
|
+
#endif
|
720
|
+
return partitioning::partition_fuzzy_median3<C>(
|
721
|
+
vals, ids, n, q_min, q_max, q_out);
|
722
|
+
}
|
723
|
+
|
724
|
+
|
725
|
+
// explicit template instanciations
|
726
|
+
|
727
|
+
template float partition_fuzzy<CMin<float, int64_t>> (
|
728
|
+
float *vals, int64_t * ids, size_t n,
|
729
|
+
size_t q_min, size_t q_max, size_t * q_out);
|
730
|
+
|
731
|
+
template float partition_fuzzy<CMax<float, int64_t>> (
|
732
|
+
float *vals, int64_t * ids, size_t n,
|
733
|
+
size_t q_min, size_t q_max, size_t * q_out);
|
734
|
+
|
735
|
+
template uint16_t partition_fuzzy<CMin<uint16_t, int64_t>> (
|
736
|
+
uint16_t *vals, int64_t * ids, size_t n,
|
737
|
+
size_t q_min, size_t q_max, size_t * q_out);
|
738
|
+
|
739
|
+
template uint16_t partition_fuzzy<CMax<uint16_t, int64_t>> (
|
740
|
+
uint16_t *vals, int64_t * ids, size_t n,
|
741
|
+
size_t q_min, size_t q_max, size_t * q_out);
|
742
|
+
|
743
|
+
template uint16_t partition_fuzzy<CMin<uint16_t, int>> (
|
744
|
+
uint16_t *vals, int * ids, size_t n,
|
745
|
+
size_t q_min, size_t q_max, size_t * q_out);
|
746
|
+
|
747
|
+
template uint16_t partition_fuzzy<CMax<uint16_t, int>> (
|
748
|
+
uint16_t *vals, int * ids, size_t n,
|
749
|
+
size_t q_min, size_t q_max, size_t * q_out);
|
750
|
+
|
751
|
+
|
752
|
+
|
753
|
+
/******************************************************************
|
754
|
+
* Histogram subroutines
|
755
|
+
******************************************************************/
|
756
|
+
|
757
|
+
#ifdef __AVX2__
|
758
|
+
/// FIXME when MSB of uint16 is set
|
759
|
+
// this code does not compile properly with GCC 7.4.0
|
760
|
+
|
761
|
+
namespace {
|
762
|
+
|
763
|
+
/************************************************************
|
764
|
+
* 8 bins
|
765
|
+
************************************************************/
|
766
|
+
|
767
|
+
simd32uint8 accu4to8(simd16uint16 a4) {
|
768
|
+
simd16uint16 mask4(0x0f0f);
|
769
|
+
|
770
|
+
simd16uint16 a8_0 = a4 & mask4;
|
771
|
+
simd16uint16 a8_1 = (a4 >> 4) & mask4;
|
772
|
+
|
773
|
+
return simd32uint8(_mm256_hadd_epi16(a8_0.i, a8_1.i));
|
774
|
+
}
|
775
|
+
|
776
|
+
|
777
|
+
simd16uint16 accu8to16(simd32uint8 a8) {
|
778
|
+
simd16uint16 mask8(0x00ff);
|
779
|
+
|
780
|
+
simd16uint16 a8_0 = simd16uint16(a8) & mask8;
|
781
|
+
simd16uint16 a8_1 = (simd16uint16(a8) >> 8) & mask8;
|
782
|
+
|
783
|
+
return simd16uint16(_mm256_hadd_epi16(a8_0.i, a8_1.i));
|
784
|
+
}
|
785
|
+
|
786
|
+
|
787
|
+
static const simd32uint8 shifts(_mm256_setr_epi8(
|
788
|
+
1, 16, 0, 0, 4, 64, 0, 0,
|
789
|
+
0, 0, 1, 16, 0, 0, 4, 64,
|
790
|
+
1, 16, 0, 0, 4, 64, 0, 0,
|
791
|
+
0, 0, 1, 16, 0, 0, 4, 64
|
792
|
+
));
|
793
|
+
|
794
|
+
// 2-bit accumulator: we can add only up to 3 elements
|
795
|
+
// on output we return 2*4-bit results
|
796
|
+
// preproc returns either an index in 0..7 or 0xffff
|
797
|
+
// that yeilds a 0 when used in the table look-up
|
798
|
+
template<int N, class Preproc>
|
799
|
+
void compute_accu2(
|
800
|
+
const uint16_t * & data,
|
801
|
+
Preproc & pp,
|
802
|
+
simd16uint16 & a4lo, simd16uint16 & a4hi
|
803
|
+
) {
|
804
|
+
simd16uint16 mask2(0x3333);
|
805
|
+
simd16uint16 a2((uint16_t)0); // 2-bit accu
|
806
|
+
for (int j = 0; j < N; j ++) {
|
807
|
+
simd16uint16 v(data);
|
808
|
+
data += 16;
|
809
|
+
v = pp(v);
|
810
|
+
// 0x800 -> force second half of table
|
811
|
+
simd16uint16 idx = v | (v << 8) | simd16uint16(0x800);
|
812
|
+
a2 += simd16uint16(shifts.lookup_2_lanes(simd32uint8(idx)));
|
813
|
+
}
|
814
|
+
a4lo += a2 & mask2;
|
815
|
+
a4hi += (a2 >> 2) & mask2;
|
816
|
+
}
|
817
|
+
|
818
|
+
|
819
|
+
template<class Preproc>
|
820
|
+
simd16uint16 histogram_8(
|
821
|
+
const uint16_t * data, Preproc pp,
|
822
|
+
size_t n_in) {
|
823
|
+
|
824
|
+
assert (n_in % 16 == 0);
|
825
|
+
int n = n_in / 16;
|
826
|
+
|
827
|
+
simd32uint8 a8lo(0);
|
828
|
+
simd32uint8 a8hi(0);
|
829
|
+
|
830
|
+
for(int i0 = 0; i0 < n; i0 += 15) {
|
831
|
+
simd16uint16 a4lo(0); // 4-bit accus
|
832
|
+
simd16uint16 a4hi(0);
|
833
|
+
|
834
|
+
int i1 = std::min(i0 + 15, n);
|
835
|
+
int i;
|
836
|
+
for(i = i0; i + 2 < i1; i += 3) {
|
837
|
+
compute_accu2<3>(data, pp, a4lo, a4hi); // adds 3 max
|
838
|
+
}
|
839
|
+
switch (i1 - i) {
|
840
|
+
case 2:
|
841
|
+
compute_accu2<2>(data, pp, a4lo, a4hi);
|
842
|
+
break;
|
843
|
+
case 1:
|
844
|
+
compute_accu2<1>(data, pp, a4lo, a4hi);
|
845
|
+
break;
|
846
|
+
}
|
847
|
+
|
848
|
+
a8lo += accu4to8(a4lo);
|
849
|
+
a8hi += accu4to8(a4hi);
|
850
|
+
}
|
851
|
+
|
852
|
+
// move to 16-bit accu
|
853
|
+
simd16uint16 a16lo = accu8to16(a8lo);
|
854
|
+
simd16uint16 a16hi = accu8to16(a8hi);
|
855
|
+
|
856
|
+
simd16uint16 a16 = simd16uint16(_mm256_hadd_epi16(a16lo.i, a16hi.i));
|
857
|
+
|
858
|
+
// the 2 lanes must still be combined
|
859
|
+
return a16;
|
860
|
+
}
|
861
|
+
|
862
|
+
|
863
|
+
/************************************************************
|
864
|
+
* 16 bins
|
865
|
+
************************************************************/
|
866
|
+
|
867
|
+
|
868
|
+
|
869
|
+
static const simd32uint8 shifts2(_mm256_setr_epi8(
|
870
|
+
1, 2, 4, 8, 16, 32, 64, (char)128,
|
871
|
+
1, 2, 4, 8, 16, 32, 64, (char)128,
|
872
|
+
1, 2, 4, 8, 16, 32, 64, (char)128,
|
873
|
+
1, 2, 4, 8, 16, 32, 64, (char)128
|
874
|
+
));
|
875
|
+
|
876
|
+
|
877
|
+
simd32uint8 shiftr_16(simd32uint8 x, int n)
|
878
|
+
{
|
879
|
+
return simd32uint8(simd16uint16(x) >> n);
|
880
|
+
}
|
881
|
+
|
882
|
+
|
883
|
+
inline simd32uint8 combine_2x2(simd32uint8 a, simd32uint8 b) {
|
884
|
+
|
885
|
+
__m256i a1b0 = _mm256_permute2f128_si256(a.i, b.i, 0x21);
|
886
|
+
__m256i a0b1 = _mm256_blend_epi32(a.i, b.i, 0xF0);
|
887
|
+
|
888
|
+
return simd32uint8(a1b0) + simd32uint8(a0b1);
|
889
|
+
}
|
890
|
+
|
891
|
+
|
892
|
+
// 2-bit accumulator: we can add only up to 3 elements
|
893
|
+
// on output we return 2*4-bit results
|
894
|
+
template<int N, class Preproc>
|
895
|
+
void compute_accu2_16(
|
896
|
+
const uint16_t * & data, Preproc pp,
|
897
|
+
simd32uint8 & a4_0, simd32uint8 & a4_1,
|
898
|
+
simd32uint8 & a4_2, simd32uint8 & a4_3
|
899
|
+
) {
|
900
|
+
simd32uint8 mask1(0x55);
|
901
|
+
simd32uint8 a2_0; // 2-bit accu
|
902
|
+
simd32uint8 a2_1; // 2-bit accu
|
903
|
+
a2_0.clear(); a2_1.clear();
|
904
|
+
|
905
|
+
for (int j = 0; j < N; j ++) {
|
906
|
+
simd16uint16 v(data);
|
907
|
+
data += 16;
|
908
|
+
v = pp(v);
|
909
|
+
|
910
|
+
simd16uint16 idx = v | (v << 8);
|
911
|
+
simd32uint8 a1 = shifts2.lookup_2_lanes(simd32uint8(idx));
|
912
|
+
// contains 0s for out-of-bounds elements
|
913
|
+
|
914
|
+
simd16uint16 lt8 = (v >> 3) == simd16uint16(0);
|
915
|
+
lt8.i = _mm256_xor_si256(lt8.i, _mm256_set1_epi16(0xff00));
|
916
|
+
|
917
|
+
a1 = a1 & lt8;
|
918
|
+
|
919
|
+
a2_0 += a1 & mask1;
|
920
|
+
a2_1 += shiftr_16(a1, 1) & mask1;
|
921
|
+
}
|
922
|
+
simd32uint8 mask2(0x33);
|
923
|
+
|
924
|
+
a4_0 += a2_0 & mask2;
|
925
|
+
a4_1 += a2_1 & mask2;
|
926
|
+
a4_2 += shiftr_16(a2_0, 2) & mask2;
|
927
|
+
a4_3 += shiftr_16(a2_1, 2) & mask2;
|
928
|
+
|
929
|
+
}
|
930
|
+
|
931
|
+
|
932
|
+
simd32uint8 accu4to8_2(simd32uint8 a4_0, simd32uint8 a4_1) {
|
933
|
+
simd32uint8 mask4(0x0f);
|
934
|
+
|
935
|
+
simd32uint8 a8_0 = combine_2x2(
|
936
|
+
a4_0 & mask4,
|
937
|
+
shiftr_16(a4_0, 4) & mask4
|
938
|
+
);
|
939
|
+
|
940
|
+
simd32uint8 a8_1 = combine_2x2(
|
941
|
+
a4_1 & mask4,
|
942
|
+
shiftr_16(a4_1, 4) & mask4
|
943
|
+
);
|
944
|
+
|
945
|
+
return simd32uint8(_mm256_hadd_epi16(a8_0.i, a8_1.i));
|
946
|
+
}
|
947
|
+
|
948
|
+
|
949
|
+
|
950
|
+
template<class Preproc>
|
951
|
+
simd16uint16 histogram_16(const uint16_t * data, Preproc pp, size_t n_in) {
|
952
|
+
|
953
|
+
assert (n_in % 16 == 0);
|
954
|
+
int n = n_in / 16;
|
955
|
+
|
956
|
+
simd32uint8 a8lo((uint8_t)0);
|
957
|
+
simd32uint8 a8hi((uint8_t)0);
|
958
|
+
|
959
|
+
for(int i0 = 0; i0 < n; i0 += 7) {
|
960
|
+
simd32uint8 a4_0(0); // 0, 4, 8, 12
|
961
|
+
simd32uint8 a4_1(0); // 1, 5, 9, 13
|
962
|
+
simd32uint8 a4_2(0); // 2, 6, 10, 14
|
963
|
+
simd32uint8 a4_3(0); // 3, 7, 11, 15
|
964
|
+
|
965
|
+
int i1 = std::min(i0 + 7, n);
|
966
|
+
int i;
|
967
|
+
for(i = i0; i + 2 < i1; i += 3) {
|
968
|
+
compute_accu2_16<3>(data, pp, a4_0, a4_1, a4_2, a4_3);
|
969
|
+
}
|
970
|
+
switch (i1 - i) {
|
971
|
+
case 2:
|
972
|
+
compute_accu2_16<2>(data, pp, a4_0, a4_1, a4_2, a4_3);
|
973
|
+
break;
|
974
|
+
case 1:
|
975
|
+
compute_accu2_16<1>(data, pp, a4_0, a4_1, a4_2, a4_3);
|
976
|
+
break;
|
977
|
+
}
|
978
|
+
|
979
|
+
a8lo += accu4to8_2(a4_0, a4_1);
|
980
|
+
a8hi += accu4to8_2(a4_2, a4_3);
|
981
|
+
}
|
982
|
+
|
983
|
+
// move to 16-bit accu
|
984
|
+
simd16uint16 a16lo = accu8to16(a8lo);
|
985
|
+
simd16uint16 a16hi = accu8to16(a8hi);
|
986
|
+
|
987
|
+
simd16uint16 a16 = simd16uint16(_mm256_hadd_epi16(a16lo.i, a16hi.i));
|
988
|
+
|
989
|
+
__m256i perm32 = _mm256_setr_epi32(
|
990
|
+
0, 2, 4, 6, 1, 3, 5, 7
|
991
|
+
);
|
992
|
+
a16.i = _mm256_permutevar8x32_epi32(a16.i, perm32);
|
993
|
+
|
994
|
+
return a16;
|
995
|
+
}
|
996
|
+
|
997
|
+
struct PreprocNOP {
|
998
|
+
simd16uint16 operator () (simd16uint16 x) {
|
999
|
+
return x;
|
1000
|
+
}
|
1001
|
+
|
1002
|
+
};
|
1003
|
+
|
1004
|
+
|
1005
|
+
template<int shift, int nbin>
|
1006
|
+
struct PreprocMinShift {
|
1007
|
+
simd16uint16 min16;
|
1008
|
+
simd16uint16 max16;
|
1009
|
+
|
1010
|
+
explicit PreprocMinShift(uint16_t min) {
|
1011
|
+
min16.set1(min);
|
1012
|
+
int vmax0 = std::min((nbin << shift) + min, 65536);
|
1013
|
+
uint16_t vmax = uint16_t(vmax0 - 1 - min);
|
1014
|
+
max16.set1(vmax); // vmax inclusive
|
1015
|
+
}
|
1016
|
+
|
1017
|
+
simd16uint16 operator () (simd16uint16 x) {
|
1018
|
+
x = x - min16;
|
1019
|
+
simd16uint16 mask = (x == max(x, max16)) - (x == max16);
|
1020
|
+
return (x >> shift) | mask;
|
1021
|
+
}
|
1022
|
+
|
1023
|
+
};
|
1024
|
+
|
1025
|
+
/* unbounded versions of the functions */
|
1026
|
+
|
1027
|
+
void simd_histogram_8_unbounded(
|
1028
|
+
const uint16_t *data, int n,
|
1029
|
+
int *hist)
|
1030
|
+
{
|
1031
|
+
PreprocNOP pp;
|
1032
|
+
simd16uint16 a16 = histogram_8(data, pp, (n & ~15));
|
1033
|
+
|
1034
|
+
ALIGNED(32) uint16_t a16_tab[16];
|
1035
|
+
a16.store(a16_tab);
|
1036
|
+
|
1037
|
+
for(int i = 0; i < 8; i++) {
|
1038
|
+
hist[i] = a16_tab[i] + a16_tab[i + 8];
|
1039
|
+
}
|
1040
|
+
|
1041
|
+
for(int i = (n & ~15); i < n; i++) {
|
1042
|
+
hist[data[i]]++;
|
1043
|
+
}
|
1044
|
+
|
1045
|
+
}
|
1046
|
+
|
1047
|
+
|
1048
|
+
void simd_histogram_16_unbounded(
|
1049
|
+
const uint16_t *data, int n,
|
1050
|
+
int *hist)
|
1051
|
+
{
|
1052
|
+
|
1053
|
+
simd16uint16 a16 = histogram_16(data, PreprocNOP(), (n & ~15));
|
1054
|
+
|
1055
|
+
ALIGNED(32) uint16_t a16_tab[16];
|
1056
|
+
a16.store(a16_tab);
|
1057
|
+
|
1058
|
+
for(int i = 0; i < 16; i++) {
|
1059
|
+
hist[i] = a16_tab[i];
|
1060
|
+
}
|
1061
|
+
|
1062
|
+
for(int i = (n & ~15); i < n; i++) {
|
1063
|
+
hist[data[i]]++;
|
1064
|
+
}
|
1065
|
+
|
1066
|
+
}
|
1067
|
+
|
1068
|
+
|
1069
|
+
|
1070
|
+
} // anonymous namespace
|
1071
|
+
|
1072
|
+
/************************************************************
|
1073
|
+
* Driver routines
|
1074
|
+
************************************************************/
|
1075
|
+
|
1076
|
+
void simd_histogram_8(
|
1077
|
+
const uint16_t *data, int n,
|
1078
|
+
uint16_t min, int shift,
|
1079
|
+
int *hist)
|
1080
|
+
{
|
1081
|
+
if (shift < 0) {
|
1082
|
+
simd_histogram_8_unbounded(data, n, hist);
|
1083
|
+
return;
|
1084
|
+
}
|
1085
|
+
|
1086
|
+
simd16uint16 a16;
|
1087
|
+
|
1088
|
+
#define DISPATCH(s) \
|
1089
|
+
case s: \
|
1090
|
+
a16 = histogram_8(data, PreprocMinShift<s, 8>(min), (n & ~15)); \
|
1091
|
+
break
|
1092
|
+
|
1093
|
+
switch(shift) {
|
1094
|
+
DISPATCH(0);
|
1095
|
+
DISPATCH(1);
|
1096
|
+
DISPATCH(2);
|
1097
|
+
DISPATCH(3);
|
1098
|
+
DISPATCH(4);
|
1099
|
+
DISPATCH(5);
|
1100
|
+
DISPATCH(6);
|
1101
|
+
DISPATCH(7);
|
1102
|
+
DISPATCH(8);
|
1103
|
+
DISPATCH(9);
|
1104
|
+
DISPATCH(10);
|
1105
|
+
DISPATCH(11);
|
1106
|
+
DISPATCH(12);
|
1107
|
+
DISPATCH(13);
|
1108
|
+
default:
|
1109
|
+
FAISS_THROW_FMT("dispatch for shift=%d not instantiated", shift);
|
1110
|
+
}
|
1111
|
+
#undef DISPATCH
|
1112
|
+
|
1113
|
+
ALIGNED(32) uint16_t a16_tab[16];
|
1114
|
+
a16.store(a16_tab);
|
1115
|
+
|
1116
|
+
for(int i = 0; i < 8; i++) {
|
1117
|
+
hist[i] = a16_tab[i] + a16_tab[i + 8];
|
1118
|
+
}
|
1119
|
+
|
1120
|
+
// complete with remaining bins
|
1121
|
+
for(int i = (n & ~15); i < n; i++) {
|
1122
|
+
if (data[i] < min) continue;
|
1123
|
+
uint16_t v = data[i] - min;
|
1124
|
+
v >>= shift;
|
1125
|
+
if (v < 8) hist[v]++;
|
1126
|
+
}
|
1127
|
+
|
1128
|
+
}
|
1129
|
+
|
1130
|
+
|
1131
|
+
|
1132
|
+
void simd_histogram_16(
|
1133
|
+
const uint16_t *data, int n,
|
1134
|
+
uint16_t min, int shift,
|
1135
|
+
int *hist)
|
1136
|
+
{
|
1137
|
+
if (shift < 0) {
|
1138
|
+
simd_histogram_16_unbounded(data, n, hist);
|
1139
|
+
return;
|
1140
|
+
}
|
1141
|
+
|
1142
|
+
simd16uint16 a16;
|
1143
|
+
|
1144
|
+
#define DISPATCH(s) \
|
1145
|
+
case s: \
|
1146
|
+
a16 = histogram_16(data, PreprocMinShift<s, 16>(min), (n & ~15)); \
|
1147
|
+
break
|
1148
|
+
|
1149
|
+
switch(shift) {
|
1150
|
+
DISPATCH(0);
|
1151
|
+
DISPATCH(1);
|
1152
|
+
DISPATCH(2);
|
1153
|
+
DISPATCH(3);
|
1154
|
+
DISPATCH(4);
|
1155
|
+
DISPATCH(5);
|
1156
|
+
DISPATCH(6);
|
1157
|
+
DISPATCH(7);
|
1158
|
+
DISPATCH(8);
|
1159
|
+
DISPATCH(9);
|
1160
|
+
DISPATCH(10);
|
1161
|
+
DISPATCH(11);
|
1162
|
+
DISPATCH(12);
|
1163
|
+
default:
|
1164
|
+
FAISS_THROW_FMT("dispatch for shift=%d not instantiated", shift);
|
1165
|
+
}
|
1166
|
+
#undef DISPATCH
|
1167
|
+
|
1168
|
+
ALIGNED(32) uint16_t a16_tab[16];
|
1169
|
+
a16.store(a16_tab);
|
1170
|
+
|
1171
|
+
for(int i = 0; i < 16; i++) {
|
1172
|
+
hist[i] = a16_tab[i];
|
1173
|
+
}
|
1174
|
+
|
1175
|
+
for(int i = (n & ~15); i < n; i++) {
|
1176
|
+
if (data[i] < min) continue;
|
1177
|
+
uint16_t v = data[i] - min;
|
1178
|
+
v >>= shift;
|
1179
|
+
if (v < 16) hist[v]++;
|
1180
|
+
}
|
1181
|
+
|
1182
|
+
}
|
1183
|
+
|
1184
|
+
|
1185
|
+
// no AVX2
|
1186
|
+
#else
|
1187
|
+
|
1188
|
+
|
1189
|
+
|
1190
|
+
void simd_histogram_16(
|
1191
|
+
const uint16_t *data, int n,
|
1192
|
+
uint16_t min, int shift,
|
1193
|
+
int *hist)
|
1194
|
+
{
|
1195
|
+
memset(hist, 0, sizeof(*hist) * 16);
|
1196
|
+
if (shift < 0) {
|
1197
|
+
for(size_t i = 0; i < n; i++) {
|
1198
|
+
hist[data[i]]++;
|
1199
|
+
}
|
1200
|
+
} else {
|
1201
|
+
int vmax0 = std::min((16 << shift) + min, 65536);
|
1202
|
+
uint16_t vmax = uint16_t(vmax0 - 1 - min);
|
1203
|
+
|
1204
|
+
for(size_t i = 0; i < n; i++) {
|
1205
|
+
uint16_t v = data[i];
|
1206
|
+
v -= min;
|
1207
|
+
if (!(v <= vmax))
|
1208
|
+
continue;
|
1209
|
+
v >>= shift;
|
1210
|
+
hist[v]++;
|
1211
|
+
|
1212
|
+
/*
|
1213
|
+
if (data[i] < min) continue;
|
1214
|
+
uint16_t v = data[i] - min;
|
1215
|
+
v >>= shift;
|
1216
|
+
if (v < 16) hist[v]++;
|
1217
|
+
*/
|
1218
|
+
}
|
1219
|
+
}
|
1220
|
+
|
1221
|
+
}
|
1222
|
+
|
1223
|
+
void simd_histogram_8(
|
1224
|
+
const uint16_t *data, int n,
|
1225
|
+
uint16_t min, int shift,
|
1226
|
+
int *hist)
|
1227
|
+
{
|
1228
|
+
memset(hist, 0, sizeof(*hist) * 8);
|
1229
|
+
if (shift < 0) {
|
1230
|
+
for(size_t i = 0; i < n; i++) {
|
1231
|
+
hist[data[i]]++;
|
1232
|
+
}
|
1233
|
+
} else {
|
1234
|
+
for(size_t i = 0; i < n; i++) {
|
1235
|
+
if (data[i] < min) continue;
|
1236
|
+
uint16_t v = data[i] - min;
|
1237
|
+
v >>= shift;
|
1238
|
+
if (v < 8) hist[v]++;
|
1239
|
+
}
|
1240
|
+
}
|
1241
|
+
|
1242
|
+
}
|
1243
|
+
|
1244
|
+
|
1245
|
+
#endif
|
1246
|
+
|
1247
|
+
|
1248
|
+
void PartitionStats::reset() {
|
1249
|
+
memset(this, 0, sizeof(*this));
|
1250
|
+
}
|
1251
|
+
|
1252
|
+
PartitionStats partition_stats;
|
1253
|
+
|
1254
|
+
|
1255
|
+
|
1256
|
+
} // namespace faiss
|