experian-data-dictionary 1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (152) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +8 -0
  3. data/.pryrc +3 -0
  4. data/.rspec +2 -0
  5. data/.ruby-gemset +1 -0
  6. data/.ruby-version +1 -0
  7. data/Gemfile +12 -0
  8. data/Gemfile.lock +61 -0
  9. data/README.rdoc +43 -0
  10. data/Rakefile +32 -0
  11. data/docs/BCM_Sample_Experian.csv +1 -0
  12. data/docs/DataDictionary_NonProfit_Experian.pdf +0 -0
  13. data/experian_data_dictionary.gemspec +21 -0
  14. data/lib/element_numbers/en_0000.rb +23 -0
  15. data/lib/element_numbers/en_0100.rb +34 -0
  16. data/lib/element_numbers/en_0103.rb +19 -0
  17. data/lib/element_numbers/en_0107.rb +24 -0
  18. data/lib/element_numbers/en_0108.rb +448 -0
  19. data/lib/element_numbers/en_0110.rb +20 -0
  20. data/lib/element_numbers/en_0112.rb +17 -0
  21. data/lib/element_numbers/en_0113.rb +22 -0
  22. data/lib/element_numbers/en_0118.rb +20 -0
  23. data/lib/element_numbers/en_0119.rb +16 -0
  24. data/lib/element_numbers/en_0130.rb +17 -0
  25. data/lib/element_numbers/en_0131.rb +18 -0
  26. data/lib/element_numbers/en_0132.rb +24 -0
  27. data/lib/element_numbers/en_0133.rb +16 -0
  28. data/lib/element_numbers/en_0134.rb +22 -0
  29. data/lib/element_numbers/en_0135.rb +22 -0
  30. data/lib/element_numbers/en_0136.rb +22 -0
  31. data/lib/element_numbers/en_0137.rb +22 -0
  32. data/lib/element_numbers/en_0138.rb +22 -0
  33. data/lib/element_numbers/en_0139.rb +22 -0
  34. data/lib/element_numbers/en_0140.rb +22 -0
  35. data/lib/element_numbers/en_0141.rb +22 -0
  36. data/lib/element_numbers/en_0155.rb +18 -0
  37. data/lib/element_numbers/en_0156.rb +18 -0
  38. data/lib/element_numbers/en_0160.rb +29 -0
  39. data/lib/element_numbers/en_0162.rb +26 -0
  40. data/lib/element_numbers/en_0164.rb +28 -0
  41. data/lib/element_numbers/en_0174.rb +21 -0
  42. data/lib/element_numbers/en_0711.rb +40 -0
  43. data/lib/element_numbers/en_0715.rb +22 -0
  44. data/lib/element_numbers/en_0716.rb +37 -0
  45. data/lib/element_numbers/en_0717.rb +41 -0
  46. data/lib/element_numbers/en_310M.rb +76 -0
  47. data/lib/element_numbers/en_8502.rb +40 -0
  48. data/lib/element_numbers/en_8503.rb +40 -0
  49. data/lib/element_numbers/en_8504.rb +40 -0
  50. data/lib/element_numbers/en_8505.rb +40 -0
  51. data/lib/element_numbers/en_8519.rb +40 -0
  52. data/lib/element_numbers/en_8525.rb +40 -0
  53. data/lib/element_numbers/en_8526.rb +40 -0
  54. data/lib/element_numbers/en_8528.rb +40 -0
  55. data/lib/element_numbers/en_8531.rb +40 -0
  56. data/lib/element_numbers/en_8532.rb +40 -0
  57. data/lib/element_numbers/en_8533.rb +40 -0
  58. data/lib/element_numbers/en_8538.rb +40 -0
  59. data/lib/element_numbers/en_8574.rb +40 -0
  60. data/lib/element_numbers/en_A107.rb +24 -0
  61. data/lib/element_numbers/en_B000.rb +20 -0
  62. data/lib/element_numbers/en_B2185.rb +17 -0
  63. data/lib/element_numbers/en_B3010.rb +17 -0
  64. data/lib/element_numbers/en_B5011.rb +17 -0
  65. data/lib/element_numbers/en_B5013.rb +17 -0
  66. data/lib/element_numbers/en_B5014.rb +17 -0
  67. data/lib/element_numbers/en_B5016.rb +17 -0
  68. data/lib/element_numbers/en_D105N.rb +29 -0
  69. data/lib/element_numbers/en_D200.rb +19 -0
  70. data/lib/element_numbers/en_F031.rb +29 -0
  71. data/lib/element_numbers/en_G2001.rb +15 -0
  72. data/lib/element_numbers/en_G2514.rb +26 -0
  73. data/lib/element_numbers/en_G2516.rb +26 -0
  74. data/lib/element_numbers/en_G2601.rb +14 -0
  75. data/lib/element_numbers/en_G2602.rb +19 -0
  76. data/lib/element_numbers/en_G2603.rb +25 -0
  77. data/lib/element_numbers/en_GE06.rb +28 -0
  78. data/lib/element_numbers/en_L000.rb +29 -0
  79. data/lib/element_numbers/en_P213E.rb +36 -0
  80. data/lib/element_numbers/en_P213H.rb +262 -0
  81. data/lib/element_numbers/en_P213W.rb +35 -0
  82. data/lib/element_numbers/en_P400.rb +47 -0
  83. data/lib/element_numbers/en_T200.rb +20 -0
  84. data/lib/element_numbers/en_V000.rb +18 -0
  85. data/lib/element_numbers/en_Y000.rb +20 -0
  86. data/lib/experian.rb +40 -0
  87. data/spec/functional/en_0000_spec.rb +24 -0
  88. data/spec/functional/en_0100_spec.rb +34 -0
  89. data/spec/functional/en_0103_spec.rb +20 -0
  90. data/spec/functional/en_0107_spec.rb +21 -0
  91. data/spec/functional/en_0108_spec.rb +504 -0
  92. data/spec/functional/en_0110_spec.rb +22 -0
  93. data/spec/functional/en_0112_spec.rb +19 -0
  94. data/spec/functional/en_0113_spec.rb +25 -0
  95. data/spec/functional/en_0118_spec.rb +23 -0
  96. data/spec/functional/en_0119_spec.rb +19 -0
  97. data/spec/functional/en_0130_spec.rb +21 -0
  98. data/spec/functional/en_0131_spec.rb +22 -0
  99. data/spec/functional/en_0132_spec.rb +18 -0
  100. data/spec/functional/en_0133_spec.rb +16 -0
  101. data/spec/functional/en_0134_spec.rb +27 -0
  102. data/spec/functional/en_0135_spec.rb +27 -0
  103. data/spec/functional/en_0136_spec.rb +27 -0
  104. data/spec/functional/en_0137_spec.rb +27 -0
  105. data/spec/functional/en_0138_spec.rb +27 -0
  106. data/spec/functional/en_0139_spec.rb +27 -0
  107. data/spec/functional/en_0140_spec.rb +27 -0
  108. data/spec/functional/en_0141_spec.rb +27 -0
  109. data/spec/functional/en_0155_spec.rb +19 -0
  110. data/spec/functional/en_0156_spec.rb +19 -0
  111. data/spec/functional/en_0160_spec.rb +22 -0
  112. data/spec/functional/en_0162_spec.rb +19 -0
  113. data/spec/functional/en_0164_spec.rb +22 -0
  114. data/spec/functional/en_0174_spec.rb +21 -0
  115. data/spec/functional/en_0711_spec.rb +21 -0
  116. data/spec/functional/en_0715_spec.rb +24 -0
  117. data/spec/functional/en_0716_spec.rb +24 -0
  118. data/spec/functional/en_0717_spec.rb +21 -0
  119. data/spec/functional/en_310M_spec.rb +78 -0
  120. data/spec/functional/en_8502_spec.rb +22 -0
  121. data/spec/functional/en_8503_spec.rb +22 -0
  122. data/spec/functional/en_8504_spec.rb +23 -0
  123. data/spec/functional/en_8505_spec.rb +22 -0
  124. data/spec/functional/en_8519_spec.rb +22 -0
  125. data/spec/functional/en_8525_spec.rb +22 -0
  126. data/spec/functional/en_8526_spec.rb +22 -0
  127. data/spec/functional/en_A107_spec.rb +24 -0
  128. data/spec/functional/en_B2185_spec.rb +18 -0
  129. data/spec/functional/en_B3010_spec.rb +18 -0
  130. data/spec/functional/en_B5011_spec.rb +18 -0
  131. data/spec/functional/en_B5013_spec.rb +18 -0
  132. data/spec/functional/en_B5014_spec.rb +18 -0
  133. data/spec/functional/en_B5016_spec.rb +18 -0
  134. data/spec/functional/en_D105N_spec.rb +30 -0
  135. data/spec/functional/en_D200_spec.rb +21 -0
  136. data/spec/functional/en_F031_spec.rb +25 -0
  137. data/spec/functional/en_G2001_spec.rb +17 -0
  138. data/spec/functional/en_G2514_spec.rb +21 -0
  139. data/spec/functional/en_G2516_spec.rb +21 -0
  140. data/spec/functional/en_G2602_spec.rb +18 -0
  141. data/spec/functional/en_G2603_spec.rb +21 -0
  142. data/spec/functional/en_L000_spec.rb +16 -0
  143. data/spec/functional/en_P213E_spec.rb +19 -0
  144. data/spec/functional/en_P213H_spec.rb +19 -0
  145. data/spec/functional/en_P213W_spec.rb +19 -0
  146. data/spec/functional/en_P400_spec.rb +17 -0
  147. data/spec/functional/en_T200_spec.rb +23 -0
  148. data/spec/functional/en_V000_spec.rb +18 -0
  149. data/spec/functional/en_Y000_spec.rb +20 -0
  150. data/spec/functional/experian_spec.rb +27 -0
  151. data/spec/spec_helper.rb +23 -0
  152. metadata +259 -0
@@ -0,0 +1,40 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Politics & Politics Propensity, Self reported data
5
+ def self.en_8519_description
6
+ "Z politics & politics propensities indicates a household's self reported interest in politics. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
7
+ end
8
+
9
+ # Politics & Politics Propensity, Quick Predict Code
10
+ def self.en_8519p_description
11
+ "Z politics & politics propensities indicates a household's self reported interest in politics. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
12
+ end
13
+
14
+ def self.en_8519(key)
15
+ charity = {
16
+ 'Y' => 'Living unit has a known interest in politics',
17
+ 'U' => 'Unknown'
18
+ }
19
+ code = {
20
+ '1' => 'Extremely Likely interest in politics',
21
+ '2' => 'Highly Likely interest in politics',
22
+ '3' => 'Very Likely interest in politics',
23
+ '4' => 'Somewhat Likely interest in politics',
24
+ '5' => 'Likely interest in politics',
25
+ '6' => 'Somewhat Unlikely interest in politics',
26
+ '7' => 'Very Unlikely interest in politics',
27
+ '8' => 'Highly Unlikely interest in politics',
28
+ '9' => 'Extremely Unlikely interest in politics',
29
+ '0' => 'Unknown / Not Attempted',
30
+ }
31
+ return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
32
+ [charity[key[0]], code[key[1]]].join(' - ')
33
+ end
34
+
35
+ def self.en_8519p(key)
36
+ Experian::DataDictionary.en_8519(key)
37
+ end
38
+
39
+ end
40
+ end
@@ -0,0 +1,40 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Religion & Religion Propensity, Self reported data
5
+ def self.en_8525_description
6
+ "Z religion & religion propensities indicates a household's self reported interest in religion. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
7
+ end
8
+
9
+ # Religion & Religion Propensity, Quick Predict Code
10
+ def self.en_8525p_description
11
+ "Z religion & religion propensities indicates a household's self reported interest in religion. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
12
+ end
13
+
14
+ def self.en_8525(key)
15
+ charity = {
16
+ 'Y' => 'Living unit has a known interest in religion',
17
+ 'U' => 'Unknown'
18
+ }
19
+ code = {
20
+ '1' => 'Extremely Likely interest in religion',
21
+ '2' => 'Highly Likely interest in religion',
22
+ '3' => 'Very Likely interest in religion',
23
+ '4' => 'Somewhat Likely interest in religion',
24
+ '5' => 'Likely interest in religion',
25
+ '6' => 'Somewhat Unlikely interest in religion',
26
+ '7' => 'Very Unlikely interest in religion',
27
+ '8' => 'Highly Unlikely interest in religion',
28
+ '9' => 'Extremely Unlikely interest in religion',
29
+ '0' => 'Unknown / Not Attempted',
30
+ }
31
+ return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
32
+ [charity[key[0]], code[key[1]]].join(' - ')
33
+ end
34
+
35
+ def self.en_8525p(key)
36
+ Experian::DataDictionary.en_8525(key)
37
+ end
38
+
39
+ end
40
+ end
@@ -0,0 +1,40 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Grandparent & Grandparent Propensity, Self reported data
5
+ def self.en_8526_description
6
+ "Z grandparent & grandparent propensities indicates a household's self reported grandparent. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
7
+ end
8
+
9
+ # Grandparent & Grandparent Propensity, Quick Predict Code
10
+ def self.en_8526p_description
11
+ "Z grandparent & grandparent propensities indicates a household's self reported grandparent. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response.The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
12
+ end
13
+
14
+ def self.en_8526(key)
15
+ charity = {
16
+ 'Y' => 'Living unit has a known grandparent',
17
+ 'U' => 'Unknown'
18
+ }
19
+ code = {
20
+ '1' => 'Extremely Likely grandparent',
21
+ '2' => 'Highly Likely grandparent',
22
+ '3' => 'Very Likely grandparent',
23
+ '4' => 'Somewhat Likely grandparent',
24
+ '5' => 'Likely grandparent',
25
+ '6' => 'Somewhat Unlikely grandparent',
26
+ '7' => 'Very Unlikely grandparent',
27
+ '8' => 'Highly Unlikely grandparent',
28
+ '9' => 'Extremely Unlikely grandparent',
29
+ '0' => 'Unknown / Not Attempted',
30
+ }
31
+ return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
32
+ [charity[key[0]], code[key[1]]].join(' - ')
33
+ end
34
+
35
+ def self.en_8526p(key)
36
+ Experian::DataDictionary.en_8526(key)
37
+ end
38
+
39
+ end
40
+ end
@@ -0,0 +1,40 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Environmental Donor & Envir Donor Prop, Self reported data
5
+ def self.en_8528_description
6
+ "Z environmental donor & environmental donor propensities indicates a household's self reported as donating to environmental causes. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
7
+ end
8
+
9
+ # Environmental Donor & Environ Donor Prop, Quick Predict Code
10
+ def self.en_8528p_description
11
+ "Z environmental donor & environmental donor propensities indicates a household's self reported as donating to environmental causes. Valid Values :BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
12
+ end
13
+
14
+ def self.en_8528(key)
15
+ charity = {
16
+ 'Y' => 'Living unit has known to donate to environmental causes',
17
+ 'U' => 'Unknown'
18
+ }
19
+ code = {
20
+ '1' => 'Extremely Likely donates to environmental causes',
21
+ '2' => 'Highly Likely donates to environmental causes',
22
+ '3' => 'Very Likely donates to environmental causes',
23
+ '4' => 'Somewhat Likely donates to environmental causes',
24
+ '5' => 'Likely donates to environmental causes',
25
+ '6' => 'Somewhat Unlikely donates to environmental causes',
26
+ '7' => 'Very Unlikely donates to environmental causes',
27
+ '8' => 'Highly Unlikely donates to environmental causes',
28
+ '9' => 'Extremely Unlikely donates to environmental causes',
29
+ '0' => 'Unknown / Not Attempted',
30
+ }
31
+ return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
32
+ [code[key[1]], charity[key[0]]].join(' - ')
33
+ end
34
+
35
+ def self.en_8528p(key)
36
+ Experian::DataDictionary.en_8528(key)
37
+ end
38
+
39
+ end
40
+ end
@@ -0,0 +1,40 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Buys By Phone & Buys By Phone Propensity, Self reported data
5
+ def self.en_8531_description
6
+ "Z buys by phone & buys by phone propensities indicates a household has self reported to purchase via phone. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
7
+ end
8
+
9
+ # Buys By Phone & Buys By Phone Propensity, Quick Predict Code
10
+ def self.en_8531p_description
11
+ "Z buys by phone & buys by phone propensities indicates a household has self reported to purchase via phone. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
12
+ end
13
+
14
+ def self.en_8531(key)
15
+ charity = {
16
+ 'Y' => 'Living unit has known to purchase via phone',
17
+ 'U' => 'Unknown'
18
+ }
19
+ code = {
20
+ '1' => 'Extremely Likely to purchase via phone',
21
+ '2' => 'Highly Likely to purchase via phone',
22
+ '3' => 'Very Likely to purchase via phone',
23
+ '4' => 'Somewhat Likely to purchase via phone',
24
+ '5' => 'Likely to purchase via phone',
25
+ '6' => 'Somewhat Unlikely to purchase via phone',
26
+ '7' => 'Very Unlikely to purchase via phone',
27
+ '8' => 'Highly Unlikely to purchase via phone',
28
+ '9' => 'Extremely Unlikely to purchase via phone',
29
+ '0' => 'Unknown / Not Attempted',
30
+ }
31
+ return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
32
+ [code[key[1]], charity[key[0]]].join(' - ')
33
+ end
34
+
35
+ def self.en_8531p(key)
36
+ Experian::DataDictionary.en_8531(key)
37
+ end
38
+
39
+ end
40
+ end
@@ -0,0 +1,40 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Buys By TV & Buys By TV Propensity, Self reported data
5
+ def self.en_8532_description
6
+ "Z buys by TV & buys by TV propensities indicates a household has self reported to purchase via television. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
7
+ end
8
+
9
+ # Buys By TV & Buys By TV Propensity, Quick Predict Code
10
+ def self.en_8532p_description
11
+ "Z buys by TV & buys by TV propensities indicates a household has self reported to purchase via television. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
12
+ end
13
+
14
+ def self.en_8532(key)
15
+ charity = {
16
+ 'Y' => 'Living unit has known to purchase via television',
17
+ 'U' => 'Unknown'
18
+ }
19
+ code = {
20
+ '1' => 'Extremely Likely to purchase via television',
21
+ '2' => 'Highly Likely to purchase via television',
22
+ '3' => 'Very Likely to purchase via television',
23
+ '4' => 'Somewhat Likely to purchase via television',
24
+ '5' => 'Likely to purchase via television',
25
+ '6' => 'Somewhat Unlikely to purchase via television',
26
+ '7' => 'Very Unlikely to purchase via television',
27
+ '8' => 'Highly Unlikely to purchase via television',
28
+ '9' => 'Extremely Unlikely to purchase via television',
29
+ '0' => 'Unknown / Not Attempted',
30
+ }
31
+ return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
32
+ [code[key[1]], charity[key[0]]].join(' - ')
33
+ end
34
+
35
+ def self.en_8532p(key)
36
+ Experian::DataDictionary.en_8532(key)
37
+ end
38
+
39
+ end
40
+ end
@@ -0,0 +1,40 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Date of Birth/Combined Adult Age
5
+ def self.en_8533_description
6
+ 'Mailorder Multibuyer & MO Multi Prop, Self reported data'
7
+ end
8
+
9
+ def self.en_8533p_description
10
+ self.en_8533_description
11
+ end
12
+
13
+ # CCYYMM
14
+ def self.en_8533(key)
15
+ values = {
16
+ 'Y' => 'Living unit has a known mail order multibuyer',
17
+ 'U' => 'Unknown',
18
+ '1' => 'Extremely Likely mail order multibuyer',
19
+ '2' => 'Highly Likely mail order multibuyer',
20
+ '3' => 'Very Likely mail order multibuyer',
21
+ '4' => 'Somewhat Likely mail order multibuyer',
22
+ '5' => 'Likely mail order multibuyer',
23
+ '6' => 'Somewhat Unlikely mail order multibuyer',
24
+ '7' => 'Very Unlikely mail order multibuyer',
25
+ '8' => 'Highly Unlikely mail order multibuyer',
26
+ '9' => 'Extremely Unlikely mail order multibuyer',
27
+ '0' => 'Unknown / Not Attempted',
28
+ }
29
+ return nil if key.empty? or key.length != 2
30
+ key.split('').collect { |k| values[k] }.compact.join(' - ')
31
+ end
32
+
33
+
34
+ def self.en_8533p(key)
35
+ return nil unless %w(E I U M F).include?(key[0]) # I noticed another 0100c column that uses M and F which is probably for Male and Female
36
+ return key[1..key.length-1]
37
+ end
38
+
39
+ end
40
+ end
@@ -0,0 +1,40 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Health & Health Propensity, Self reported data
5
+ def self.en_8538_description
6
+ "Z health & health propensities indicates a household's self reported interest in healthy living. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
7
+ end
8
+
9
+ # Health & Health Propensity, Quick Predict Code
10
+ def self.en_8538p_description
11
+ "Z health & health propensities indicates a household's self reported interest in healthy living. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
12
+ end
13
+
14
+ def self.en_8538(key)
15
+ charity = {
16
+ 'Y' => 'Living unit has known interest in healthy living',
17
+ 'U' => 'Unknown'
18
+ }
19
+ code = {
20
+ '1' => 'Extremely Likely interest in healthy living',
21
+ '2' => 'Highly Likely interest in healthy living',
22
+ '3' => 'Very Likely interest in healthy living',
23
+ '4' => 'Somewhat Likely interest in healthy living',
24
+ '5' => 'Likely interest in healthy living',
25
+ '6' => 'Somewhat Unlikely interest in healthy living',
26
+ '7' => 'Very Unlikely interest in healthy living',
27
+ '8' => 'Highly Unlikely interest in healthy living',
28
+ '9' => 'Extremely Unlikely interest in healthy living',
29
+ '0' => 'Unknown / Not Attempted',
30
+ }
31
+ return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
32
+ [code[key[1]], charity[key[0]]].join(' - ')
33
+ end
34
+
35
+ def self.en_8538p(key)
36
+ Experian::DataDictionary.en_8538(key)
37
+ end
38
+
39
+ end
40
+ end
@@ -0,0 +1,40 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Volunteer & Volunteer Propensity, Self reported data
5
+ def self.en_8574_description
6
+ "Z Volunteer & Volunteer Propensity indicates a household's self-reported behavior to be a Volunteer. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
7
+ end
8
+
9
+ # Volunteer & Volunteer Propensity, Quick Predict Code
10
+ def self.en_8574p_description
11
+ "Z Volunteer & Volunteer Propensity indicates a household's self-reported behavior to be a Volunteer. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
12
+ end
13
+
14
+ def self.en_8574(key)
15
+ charity = {
16
+ 'Y' => 'Living unit has known to be a Volunteer',
17
+ 'U' => 'Unknown'
18
+ }
19
+ code = {
20
+ '1' => 'Extremely Likely to be a Volunteer',
21
+ '2' => 'Highly Likely to be a Volunteer',
22
+ '3' => 'Very Likely to be a Volunteer',
23
+ '4' => 'Somewhat Likely to be a Volunteer',
24
+ '5' => 'Likely to be a Volunteer',
25
+ '6' => 'Somewhat Unlikely to be a Volunteer',
26
+ '7' => 'Very Unlikely to be a Volunteer',
27
+ '8' => 'Highly Unlikely to be a Volunteer',
28
+ '9' => 'Extremely Unlikely to be a Volunteer',
29
+ '0' => 'Unknown / Not Attempted',
30
+ }
31
+ return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
32
+ [code[key[1]], charity[key[0]]].join(' - ')
33
+ end
34
+
35
+ def self.en_8574p(key)
36
+ Experian::DataDictionary.en_8574(key)
37
+ end
38
+
39
+ end
40
+ end
@@ -0,0 +1,24 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Luxury Car - Domestic
5
+ def self.en_a107_description
6
+ 'Auto Purchase Model Luxury Car Domestic Auto Purchase Model Luxury Car Domestic is an Experian model which predicts the likelihood that a living unit will purchase this type of vehicle in the next 6 months. Auto Purchase Models rank living units from 1 to 9 for each auto category using living unit and area level demographics. Field values beginning with 1 indicate the strongest probability. Vehicles examples in the Luxury Car Domestic category include: Cadillac CTS, Cadillac DeVille, Cadillac DTS, Cadillac STS, Lincoln MKS, Lincoln MKZ, and Lincoln Town Car'
7
+ end
8
+
9
+ def self.en_a107(key)
10
+ values = {
11
+ '1' => 'Extremely Likely',
12
+ '2' => 'Highly Likely',
13
+ '3' => 'Very Likely',
14
+ '4' => 'More than Likely',
15
+ '5' => 'Likely',
16
+ '6' => 'Somewhat Unlikely',
17
+ '7' => 'Very Unlikely',
18
+ '8' => 'Highly Unlikely',
19
+ '9' => 'Extremely Unlikely'
20
+ }
21
+ key.empty? ? 'Unknown' : values[key]
22
+ end
23
+ end
24
+ end
@@ -0,0 +1,20 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Behavior Bank Mandatory Append
5
+ def self.en_B000_description
6
+ 'The Behavior Bank mandatory append is required when any data from the Behavior Bank master file is appended. It consists of a match code.'
7
+ end
8
+
9
+ def self.en_B000(key)
10
+ if key.size != 4
11
+ return 'Non-match'
12
+ elsif (key.eql?("H") or key.eql?("F"))
13
+ return 'Household Match'
14
+ elsif (key.eql?("P") or key.eql?("I"))
15
+ return 'Person Match'
16
+ end
17
+ end
18
+
19
+ end
20
+ end
@@ -0,0 +1,17 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Crafts: Crafts
5
+ def self.en_b2185_description
6
+ "Activities and Interests/Crafts. Direct reported survey data that represents a household's interest in Crafts."
7
+ end
8
+
9
+ def self.en_b2185(key)
10
+ values = {
11
+ 'Y' => 'Yes',
12
+ 'U' => 'Unknown'
13
+ }
14
+ key.empty? ? 'Unknown' : values[key]
15
+ end
16
+ end
17
+ end
@@ -0,0 +1,17 @@
1
+ module Experian
2
+ class DataDictionary
3
+
4
+ # Lifestyle: Enjoys Smoking Cigars
5
+ def self.en_b3010_description
6
+ "Lifestyles/Cigar Smoking. Direct reported survey data that represents household's that Enjoys Smoking Cigars."
7
+ end
8
+
9
+ def self.en_b3010(key)
10
+ values = {
11
+ 'Y' => 'Yes',
12
+ 'U' => 'Unknown'
13
+ }
14
+ key.empty? ? 'Unknown' : values[key]
15
+ end
16
+ end
17
+ end