experian-data-dictionary 1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +8 -0
- data/.pryrc +3 -0
- data/.rspec +2 -0
- data/.ruby-gemset +1 -0
- data/.ruby-version +1 -0
- data/Gemfile +12 -0
- data/Gemfile.lock +61 -0
- data/README.rdoc +43 -0
- data/Rakefile +32 -0
- data/docs/BCM_Sample_Experian.csv +1 -0
- data/docs/DataDictionary_NonProfit_Experian.pdf +0 -0
- data/experian_data_dictionary.gemspec +21 -0
- data/lib/element_numbers/en_0000.rb +23 -0
- data/lib/element_numbers/en_0100.rb +34 -0
- data/lib/element_numbers/en_0103.rb +19 -0
- data/lib/element_numbers/en_0107.rb +24 -0
- data/lib/element_numbers/en_0108.rb +448 -0
- data/lib/element_numbers/en_0110.rb +20 -0
- data/lib/element_numbers/en_0112.rb +17 -0
- data/lib/element_numbers/en_0113.rb +22 -0
- data/lib/element_numbers/en_0118.rb +20 -0
- data/lib/element_numbers/en_0119.rb +16 -0
- data/lib/element_numbers/en_0130.rb +17 -0
- data/lib/element_numbers/en_0131.rb +18 -0
- data/lib/element_numbers/en_0132.rb +24 -0
- data/lib/element_numbers/en_0133.rb +16 -0
- data/lib/element_numbers/en_0134.rb +22 -0
- data/lib/element_numbers/en_0135.rb +22 -0
- data/lib/element_numbers/en_0136.rb +22 -0
- data/lib/element_numbers/en_0137.rb +22 -0
- data/lib/element_numbers/en_0138.rb +22 -0
- data/lib/element_numbers/en_0139.rb +22 -0
- data/lib/element_numbers/en_0140.rb +22 -0
- data/lib/element_numbers/en_0141.rb +22 -0
- data/lib/element_numbers/en_0155.rb +18 -0
- data/lib/element_numbers/en_0156.rb +18 -0
- data/lib/element_numbers/en_0160.rb +29 -0
- data/lib/element_numbers/en_0162.rb +26 -0
- data/lib/element_numbers/en_0164.rb +28 -0
- data/lib/element_numbers/en_0174.rb +21 -0
- data/lib/element_numbers/en_0711.rb +40 -0
- data/lib/element_numbers/en_0715.rb +22 -0
- data/lib/element_numbers/en_0716.rb +37 -0
- data/lib/element_numbers/en_0717.rb +41 -0
- data/lib/element_numbers/en_310M.rb +76 -0
- data/lib/element_numbers/en_8502.rb +40 -0
- data/lib/element_numbers/en_8503.rb +40 -0
- data/lib/element_numbers/en_8504.rb +40 -0
- data/lib/element_numbers/en_8505.rb +40 -0
- data/lib/element_numbers/en_8519.rb +40 -0
- data/lib/element_numbers/en_8525.rb +40 -0
- data/lib/element_numbers/en_8526.rb +40 -0
- data/lib/element_numbers/en_8528.rb +40 -0
- data/lib/element_numbers/en_8531.rb +40 -0
- data/lib/element_numbers/en_8532.rb +40 -0
- data/lib/element_numbers/en_8533.rb +40 -0
- data/lib/element_numbers/en_8538.rb +40 -0
- data/lib/element_numbers/en_8574.rb +40 -0
- data/lib/element_numbers/en_A107.rb +24 -0
- data/lib/element_numbers/en_B000.rb +20 -0
- data/lib/element_numbers/en_B2185.rb +17 -0
- data/lib/element_numbers/en_B3010.rb +17 -0
- data/lib/element_numbers/en_B5011.rb +17 -0
- data/lib/element_numbers/en_B5013.rb +17 -0
- data/lib/element_numbers/en_B5014.rb +17 -0
- data/lib/element_numbers/en_B5016.rb +17 -0
- data/lib/element_numbers/en_D105N.rb +29 -0
- data/lib/element_numbers/en_D200.rb +19 -0
- data/lib/element_numbers/en_F031.rb +29 -0
- data/lib/element_numbers/en_G2001.rb +15 -0
- data/lib/element_numbers/en_G2514.rb +26 -0
- data/lib/element_numbers/en_G2516.rb +26 -0
- data/lib/element_numbers/en_G2601.rb +14 -0
- data/lib/element_numbers/en_G2602.rb +19 -0
- data/lib/element_numbers/en_G2603.rb +25 -0
- data/lib/element_numbers/en_GE06.rb +28 -0
- data/lib/element_numbers/en_L000.rb +29 -0
- data/lib/element_numbers/en_P213E.rb +36 -0
- data/lib/element_numbers/en_P213H.rb +262 -0
- data/lib/element_numbers/en_P213W.rb +35 -0
- data/lib/element_numbers/en_P400.rb +47 -0
- data/lib/element_numbers/en_T200.rb +20 -0
- data/lib/element_numbers/en_V000.rb +18 -0
- data/lib/element_numbers/en_Y000.rb +20 -0
- data/lib/experian.rb +40 -0
- data/spec/functional/en_0000_spec.rb +24 -0
- data/spec/functional/en_0100_spec.rb +34 -0
- data/spec/functional/en_0103_spec.rb +20 -0
- data/spec/functional/en_0107_spec.rb +21 -0
- data/spec/functional/en_0108_spec.rb +504 -0
- data/spec/functional/en_0110_spec.rb +22 -0
- data/spec/functional/en_0112_spec.rb +19 -0
- data/spec/functional/en_0113_spec.rb +25 -0
- data/spec/functional/en_0118_spec.rb +23 -0
- data/spec/functional/en_0119_spec.rb +19 -0
- data/spec/functional/en_0130_spec.rb +21 -0
- data/spec/functional/en_0131_spec.rb +22 -0
- data/spec/functional/en_0132_spec.rb +18 -0
- data/spec/functional/en_0133_spec.rb +16 -0
- data/spec/functional/en_0134_spec.rb +27 -0
- data/spec/functional/en_0135_spec.rb +27 -0
- data/spec/functional/en_0136_spec.rb +27 -0
- data/spec/functional/en_0137_spec.rb +27 -0
- data/spec/functional/en_0138_spec.rb +27 -0
- data/spec/functional/en_0139_spec.rb +27 -0
- data/spec/functional/en_0140_spec.rb +27 -0
- data/spec/functional/en_0141_spec.rb +27 -0
- data/spec/functional/en_0155_spec.rb +19 -0
- data/spec/functional/en_0156_spec.rb +19 -0
- data/spec/functional/en_0160_spec.rb +22 -0
- data/spec/functional/en_0162_spec.rb +19 -0
- data/spec/functional/en_0164_spec.rb +22 -0
- data/spec/functional/en_0174_spec.rb +21 -0
- data/spec/functional/en_0711_spec.rb +21 -0
- data/spec/functional/en_0715_spec.rb +24 -0
- data/spec/functional/en_0716_spec.rb +24 -0
- data/spec/functional/en_0717_spec.rb +21 -0
- data/spec/functional/en_310M_spec.rb +78 -0
- data/spec/functional/en_8502_spec.rb +22 -0
- data/spec/functional/en_8503_spec.rb +22 -0
- data/spec/functional/en_8504_spec.rb +23 -0
- data/spec/functional/en_8505_spec.rb +22 -0
- data/spec/functional/en_8519_spec.rb +22 -0
- data/spec/functional/en_8525_spec.rb +22 -0
- data/spec/functional/en_8526_spec.rb +22 -0
- data/spec/functional/en_A107_spec.rb +24 -0
- data/spec/functional/en_B2185_spec.rb +18 -0
- data/spec/functional/en_B3010_spec.rb +18 -0
- data/spec/functional/en_B5011_spec.rb +18 -0
- data/spec/functional/en_B5013_spec.rb +18 -0
- data/spec/functional/en_B5014_spec.rb +18 -0
- data/spec/functional/en_B5016_spec.rb +18 -0
- data/spec/functional/en_D105N_spec.rb +30 -0
- data/spec/functional/en_D200_spec.rb +21 -0
- data/spec/functional/en_F031_spec.rb +25 -0
- data/spec/functional/en_G2001_spec.rb +17 -0
- data/spec/functional/en_G2514_spec.rb +21 -0
- data/spec/functional/en_G2516_spec.rb +21 -0
- data/spec/functional/en_G2602_spec.rb +18 -0
- data/spec/functional/en_G2603_spec.rb +21 -0
- data/spec/functional/en_L000_spec.rb +16 -0
- data/spec/functional/en_P213E_spec.rb +19 -0
- data/spec/functional/en_P213H_spec.rb +19 -0
- data/spec/functional/en_P213W_spec.rb +19 -0
- data/spec/functional/en_P400_spec.rb +17 -0
- data/spec/functional/en_T200_spec.rb +23 -0
- data/spec/functional/en_V000_spec.rb +18 -0
- data/spec/functional/en_Y000_spec.rb +20 -0
- data/spec/functional/experian_spec.rb +27 -0
- data/spec/spec_helper.rb +23 -0
- metadata +259 -0
@@ -0,0 +1,26 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Enhancement Mandatory Append
|
5
|
+
def self.en_0162_description
|
6
|
+
'Information is compiled from self-reported surveys, derived based on occupational information, or calculated through the application of predictive models.'
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.en_0162(key)
|
10
|
+
likely = {
|
11
|
+
'1' => 'Likely',
|
12
|
+
'5' => 'Extremely Likely'
|
13
|
+
}
|
14
|
+
education = {
|
15
|
+
'1' => 'High School Diploma',
|
16
|
+
'2' => 'Some College',
|
17
|
+
'3' => 'Bachelor Degree',
|
18
|
+
'4' => 'Graduate Degree',
|
19
|
+
'5' => 'Less Than High School Diploma'
|
20
|
+
}
|
21
|
+
return 'Unknown' if key.size != 2 or education[key[1]].nil? or likely[key[0]].nil?
|
22
|
+
[education[key[1]], likely[key[0]]].join(' - ')
|
23
|
+
end
|
24
|
+
|
25
|
+
end
|
26
|
+
end
|
@@ -0,0 +1,28 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Enhancement Mandatory Append
|
5
|
+
def self.en_0164_description
|
6
|
+
'Political Persona'
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.en_0164(key)
|
10
|
+
political = [
|
11
|
+
'Unknown',
|
12
|
+
'Unconnected & Unregistered',
|
13
|
+
'Informed But Unregistered',
|
14
|
+
'Super Democrats',
|
15
|
+
'Left Out Democrats',
|
16
|
+
'Conservative Democrats',
|
17
|
+
'On-the-Fence Liberals',
|
18
|
+
'Green Traditionalists',
|
19
|
+
'Mild Republicans',
|
20
|
+
'Uninvolved Conservatives',
|
21
|
+
'Ultra Conservatives'
|
22
|
+
]
|
23
|
+
return 'Unknown' unless (0..10) === key.to_i
|
24
|
+
political[key.to_i]
|
25
|
+
end
|
26
|
+
|
27
|
+
end
|
28
|
+
end
|
@@ -0,0 +1,21 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Presence of Children Age Ranges
|
5
|
+
def self.en_0174_description
|
6
|
+
"Known & Inferred Children's Age Ranges are a combination of known children's age ranges, and where not available, an Experian model which predicts the likelihood that a child within the age group is present in the living unit. When there is insufficient data to match a customer record to our Enrichment master for Inferred Children's Age Range, a median Inferred Children's Age Range based on the Known & Inferred Children's Age Ranges assigned to other living units in the same ZIP+4 area is used. In the rare case that the ZIP+4 is not on the record, median Children's Age Range is based on the Known & Inferred children's age ranges assigned to other records in that ZIP region. The median level data applied to records for this element can be identified through the Enrichment Mandatory Append - Total Enrichment Match Type indicator (G)."
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.en_0174(key)
|
10
|
+
values = {
|
11
|
+
'1Y' => 'Confirmed Presence of Children',
|
12
|
+
'5Y' => 'Inferred Presence of Children',
|
13
|
+
'5N' => 'Inferred No Children Present',
|
14
|
+
'5U' => 'Unknown',
|
15
|
+
'00' => 'Deceased and Child Only - primary decision maker is coded as deceased or no adult (18+) in household.'
|
16
|
+
}
|
17
|
+
key.empty? ? 'Unknown' : values[key]
|
18
|
+
end
|
19
|
+
|
20
|
+
end
|
21
|
+
end
|
@@ -0,0 +1,40 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Estimated Available Equity Ranges
|
5
|
+
def self.en_0711_description
|
6
|
+
"The Estimated Available Equity model is Experian's proprietary model designed to accurately predict equity in the home for Homeowner records. The value of equity equals the estimated current home value minus the remaining principal of the mortgage loan. The model inputs, such as sale price, sale date and mortgage amount of the property were acquired from realty deed records from the county court house."
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.en_0711(key)
|
10
|
+
confidence = {
|
11
|
+
'1' => 'Extremely Likely',
|
12
|
+
'2' => 'Highly Likely',
|
13
|
+
'3' => 'Likely'
|
14
|
+
}
|
15
|
+
|
16
|
+
values = {
|
17
|
+
'A' => '1,000 - 9,999',
|
18
|
+
'B' => '10,000 - 24,999',
|
19
|
+
'C' => '25,000 - 39,999',
|
20
|
+
'D' => '40,000 - 59,999',
|
21
|
+
'E' => '60,000 - 79,999',
|
22
|
+
'F' => '80,000 - 99,999',
|
23
|
+
'G' => '100,000 - 119,999',
|
24
|
+
'H' => '120,000 - 139,999',
|
25
|
+
'I' => '140,000 - 159,999',
|
26
|
+
'J' => '160,000 - 199,999',
|
27
|
+
'K' => '200,000 - 249,999',
|
28
|
+
'L' => '250,000 - 249,999',
|
29
|
+
'M' => '350,000 - 449,999',
|
30
|
+
'N' => '450,000 - 749,999',
|
31
|
+
'O' => '750,000 - 999,999',
|
32
|
+
'P' => '1,000,000 - +',
|
33
|
+
'U' => 'Unknown'
|
34
|
+
}
|
35
|
+
return 'Unknown' if key.size != 2 or confidence[key[0]].nil? or values[key[1]].nil?
|
36
|
+
[values[key[1]], confidence[key[0]]].join(' - ')
|
37
|
+
end
|
38
|
+
|
39
|
+
end
|
40
|
+
end
|
@@ -0,0 +1,22 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Estimated Current Loan-to-Value Ratio Ranges
|
5
|
+
def self.en_0715_description
|
6
|
+
"Estimated Current Loan to Value Ratio is a percentage of the current estimated mortgage amount divided by the estimated current market value of the home. The higher the ratio, the less equity the homeowner has on the house. This ratio is available on wherever the loan amount and estimated current home value are available."
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.en_0715(key)
|
10
|
+
confidence = {
|
11
|
+
'1' => 'Extremely Likely',
|
12
|
+
'2' => 'Highly Likely',
|
13
|
+
'3' => 'Likely'
|
14
|
+
}
|
15
|
+
|
16
|
+
|
17
|
+
return 'Unknown' if key.size != 4 or confidence[key[0]].nil? or key[1...4].to_i.nil? or key[1...4].to_i > 125
|
18
|
+
[key[1...4].to_i, confidence[key[0]]].join(' - ')
|
19
|
+
end
|
20
|
+
|
21
|
+
end
|
22
|
+
end
|
@@ -0,0 +1,37 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Estimated Current Monthly Mortgage Payment Ranges
|
5
|
+
def self.en_0716_description
|
6
|
+
"The Estimated Current Monthly Mortgage Payment model is a subset of the Experian Equity model and predicts the monthly home payment. Input variables; such as Sale Date, Mortgage Amount and Interest Rate acquired from realty deed records from the county court house are utilized."
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.en_0716(key)
|
10
|
+
confidence = {
|
11
|
+
'1' => 'Extremely Likely',
|
12
|
+
'2' => 'Highly Likely',
|
13
|
+
'3' => 'Likely'
|
14
|
+
}
|
15
|
+
values = {
|
16
|
+
'A' => '1 - 199',
|
17
|
+
'B' => '200 - 299',
|
18
|
+
'C' => '300 - 399',
|
19
|
+
'D' => '400 - 499',
|
20
|
+
'E' => '500 - 599',
|
21
|
+
'F' => '600 - 699',
|
22
|
+
'G' => '700 - 799',
|
23
|
+
'H' => '800 - 899',
|
24
|
+
'I' => '900 - 999',
|
25
|
+
'J' => '1000 - 1199',
|
26
|
+
'K' => '1200 - 1399',
|
27
|
+
'L' => '1400 - 1699',
|
28
|
+
'M' => '1700 - 1999',
|
29
|
+
'N' => '2000+',
|
30
|
+
'U' => 'Unknown'
|
31
|
+
}
|
32
|
+
return 'Unknown' if key.size != 2 or confidence[key[0]].nil? or key[1].nil? or values[key[1]] == 'Unknown'
|
33
|
+
[values[key[1]], confidence[key[0]]].join(' - ')
|
34
|
+
end
|
35
|
+
|
36
|
+
end
|
37
|
+
end
|
@@ -0,0 +1,41 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Estimated Current Mortgage Amount Ranges
|
5
|
+
def self.en_0717_description
|
6
|
+
"Estimated Current Mortgage Amount model predicts the amount currently remaining on the primary mortgage. It projects the amount owed on the mortgage by using the original mortgage amount or refinance amount; even where known mortgage data is not available. When data is not available from deed records, ECMA is calculated based on a combination of real estate data including estimated current home value and other ConsumerView variables such as demographics, summarized credit and auto data, and census. A confidence level of Likely is applied when the known data is not available."
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.en_0717(key)
|
10
|
+
confidence = {
|
11
|
+
'1' => 'Extremely Likely',
|
12
|
+
'2' => 'Highly Likely',
|
13
|
+
'3' => 'Likely'
|
14
|
+
}
|
15
|
+
|
16
|
+
values = {
|
17
|
+
'A' => '1,000 - 9,999',
|
18
|
+
'B' => '10,000 - 24,999',
|
19
|
+
'C' => '25,000 - 39,999',
|
20
|
+
'D' => '40,000 - 59,999',
|
21
|
+
'E' => '60,000 - 79,999',
|
22
|
+
'F' => '80,000 - 99,999',
|
23
|
+
'G' => '100,000 - 119,999',
|
24
|
+
'H' => '120,000 - 139,999',
|
25
|
+
'I' => '140,000 - 159,999',
|
26
|
+
'J' => '160,000 - 199,999',
|
27
|
+
'K' => '200,000 - 249,999',
|
28
|
+
'L' => '250,000 - 249,999',
|
29
|
+
'M' => '350,000 - 449,999',
|
30
|
+
'N' => '450,000 - 749,999',
|
31
|
+
'O' => '750,000 - 999,999',
|
32
|
+
'P' => '1,000,000 - +',
|
33
|
+
'U' => 'Unknown'
|
34
|
+
}
|
35
|
+
|
36
|
+
return 'Unknown' if key.size != 2 or confidence[key[0]].nil? or values[key[1]].nil?
|
37
|
+
[values[key[1]], confidence[key[0]]].join(' - ')
|
38
|
+
end
|
39
|
+
|
40
|
+
end
|
41
|
+
end
|
@@ -0,0 +1,76 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# MOSAIC Z4
|
5
|
+
def self.en_310m_description
|
6
|
+
"Mosaic Z4 is a geodemographic level classification system developed by Experian. Mosaic Types identify 60 Types and 12 Groups based on consumer behaviors, lifestyles and attitudes. Detailed definitions available upon request."
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.en_310m(key)
|
10
|
+
values = {
|
11
|
+
'A01' => 'Americas Wealthiest',
|
12
|
+
'A02' => 'Dream Weavers',
|
13
|
+
'A03' => 'White-collar Suburbia',
|
14
|
+
'A04' => 'Upscale Suburbanites',
|
15
|
+
'A05' => 'Enterprising Couples',
|
16
|
+
'A06' => 'Small-town Success',
|
17
|
+
'A07' => 'New Suburbia Families',
|
18
|
+
'B01' => 'Status-conscious Consumers',
|
19
|
+
'B02' => 'Affluent Urban Professionals',
|
20
|
+
'B03' => 'Urban Commuter Families',
|
21
|
+
'B04' => 'Solid Suburban Life',
|
22
|
+
'B05' => 'Second-generation Success',
|
23
|
+
'B06' => 'Successful Suburbia',
|
24
|
+
'C01' => 'Second City Homebodies',
|
25
|
+
'C02' => 'Prime Middle America',
|
26
|
+
'C03' => 'Suburban Optimists',
|
27
|
+
'C04' => 'Family Convenience',
|
28
|
+
'C05' => 'Mid-market Enterprise',
|
29
|
+
'D01' => 'Nuevo Hispanic Families',
|
30
|
+
'D02' => 'Working Rural Communities',
|
31
|
+
'D03' => 'Lower-income Essentials',
|
32
|
+
'D04' => 'Small-city Endeavors',
|
33
|
+
'E01' => 'Ethnic Urban Mix',
|
34
|
+
'E02' => 'Urban Blues',
|
35
|
+
'E03' => 'Professional Urbanites',
|
36
|
+
'E04' => 'Suburban Advantage',
|
37
|
+
'E05' => 'American Great Outdoors',
|
38
|
+
'E06' => 'Mature America',
|
39
|
+
'F01' => 'Steadfast Conservative',
|
40
|
+
'F02' => 'Moderate Conventionalists',
|
41
|
+
'F03' => 'Southern Blues',
|
42
|
+
'F04' => 'Urban Grit',
|
43
|
+
'F05' => 'Grass-roots Living',
|
44
|
+
'G01' => 'Hardy Rural Families',
|
45
|
+
'G02' => 'Rural Southern Living',
|
46
|
+
'G03' => 'Coal and Crops',
|
47
|
+
'G04' => 'Native Americana',
|
48
|
+
'H01' => 'Young Cosmopolitans',
|
49
|
+
'H02' => 'Minority Metro Communities',
|
50
|
+
'H03' => 'Stable Careers',
|
51
|
+
'H04' => 'Aspiring Hispania',
|
52
|
+
'I01' => 'Industrious Country Living',
|
53
|
+
'I02' => 'Americas Farmlands',
|
54
|
+
'I03' => 'Comfy Country Living',
|
55
|
+
'I04' => 'Small-town Connections',
|
56
|
+
'I05' => 'Hinterland Families',
|
57
|
+
'J01' => 'Rugged Rural Style',
|
58
|
+
'J02' => 'Latino Nuevo',
|
59
|
+
'J03' => 'Struggling City Centers',
|
60
|
+
'J04' => 'College Town Communities',
|
61
|
+
'J05' => 'Metro Beginnings',
|
62
|
+
'K01' => 'Unattached Multi-cultures',
|
63
|
+
'K02' => 'Academic Influences',
|
64
|
+
'K03' => 'African-American Neighborhoods',
|
65
|
+
'K04' => 'Urban Diversity',
|
66
|
+
'K05' => 'New Generation Activists',
|
67
|
+
'K06' => 'Getting By',
|
68
|
+
'L01' => 'Military Family Life',
|
69
|
+
'L02' => 'Major University Towns',
|
70
|
+
'L03' => 'Gray Perspectives'
|
71
|
+
}
|
72
|
+
key.empty? ? 'Unknown' : values[key]
|
73
|
+
end
|
74
|
+
|
75
|
+
end
|
76
|
+
end
|
@@ -0,0 +1,40 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Donor & Donor Propensity, Self reported data
|
5
|
+
def self.en_8502_description
|
6
|
+
"Z donor & donor propensities indicates a household's self reported to contribute to charities. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability"
|
7
|
+
end
|
8
|
+
|
9
|
+
# Donor & Donor Propensity, Quick Predict Code
|
10
|
+
def self.en_8502p_description
|
11
|
+
"Z donor & donor propensities indicates a household's self reported to contribute to charities. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
|
12
|
+
end
|
13
|
+
|
14
|
+
def self.en_8502(key)
|
15
|
+
charity = {
|
16
|
+
'Y' => 'Living unit has a known to contribute to charities',
|
17
|
+
'U' => 'Unknown'
|
18
|
+
}
|
19
|
+
code = {
|
20
|
+
'1' => 'Extremely Likely to contribute to charities',
|
21
|
+
'2' => 'Highly Likely to contribute to charities',
|
22
|
+
'3' => 'Very Likely to contribute to charities',
|
23
|
+
'4' => 'Somewhat Likely to contribute to charities',
|
24
|
+
'5' => 'Likely to contribute to charitie',
|
25
|
+
'6' => 'Somewhat Unlikely to contribute to charities',
|
26
|
+
'7' => 'Very Unlikely to contribute to charities',
|
27
|
+
'8' => 'Highly Unlikely to contribute to charities',
|
28
|
+
'9' => 'Extremely Unlikely to contribute to charities',
|
29
|
+
'0' => 'Unknown / Not Attempted',
|
30
|
+
}
|
31
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
|
+
[charity[key[0]], code[key[1]]].join(' - ')
|
33
|
+
end
|
34
|
+
|
35
|
+
def self.en_8502p(key)
|
36
|
+
Experian::DataDictionary.en_8502(key)
|
37
|
+
end
|
38
|
+
|
39
|
+
end
|
40
|
+
end
|
@@ -0,0 +1,40 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Pets & Pets Propensity, Self reported data
|
5
|
+
def self.en_8503_description
|
6
|
+
"Z pets & pets propensities indicates a household's self reported pet enthusiast. BehaviorBank Household Indicators groups similar self-reported elements inslightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
|
7
|
+
end
|
8
|
+
|
9
|
+
# Pets & Pets Propensity, Quick Predict Code
|
10
|
+
def self.en_8503p_description
|
11
|
+
"Z pets & pets propensities indicates a household's self reported pet enthusiast. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
|
12
|
+
end
|
13
|
+
|
14
|
+
def self.en_8503(key)
|
15
|
+
charity = {
|
16
|
+
'Y' => 'Living unit has a known pet enthusiast',
|
17
|
+
'U' => 'Unknown'
|
18
|
+
}
|
19
|
+
code = {
|
20
|
+
'1' => 'Extremely Likely pet enthusiast',
|
21
|
+
'2' => 'Highly Likely pet enthusiast',
|
22
|
+
'3' => 'Very Likely pet enthusiast',
|
23
|
+
'4' => 'Somewhat Likely pet enthusiast',
|
24
|
+
'5' => 'Likely pet enthusiast',
|
25
|
+
'6' => 'Somewhat Unlikely pet enthusiast',
|
26
|
+
'7' => 'Very Unlikely pet enthusiast',
|
27
|
+
'8' => 'Highly Unlikely pet enthusiast',
|
28
|
+
'9' => 'Extremely Unlikely pet enthusiast',
|
29
|
+
'0' => 'Unknown / Not Attempted',
|
30
|
+
}
|
31
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
|
+
[charity[key[0]], code[key[1]]].join(' - ')
|
33
|
+
end
|
34
|
+
|
35
|
+
def self.en_8503p(key)
|
36
|
+
Experian::DataDictionary.en_8503(key)
|
37
|
+
end
|
38
|
+
|
39
|
+
end
|
40
|
+
end
|
@@ -0,0 +1,40 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Arts & Arts Propensity, Self reported data
|
5
|
+
def self.en_8504_description
|
6
|
+
"Z arts & arts propensities indicates a household's self reported interest in cultural arts. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response.The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
|
7
|
+
end
|
8
|
+
|
9
|
+
# Arts & Arts Propensity, Quick Predict Code
|
10
|
+
def self.en_8504p_description
|
11
|
+
"Z arts & arts propensities indicates a household's self reported interest in cultural arts. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
|
12
|
+
end
|
13
|
+
|
14
|
+
def self.en_8504(key)
|
15
|
+
charity = {
|
16
|
+
'Y' => 'Living unit has a known interest in cultural arts',
|
17
|
+
'U' => 'Unknown'
|
18
|
+
}
|
19
|
+
code = {
|
20
|
+
'1' => 'Extremely Likely interest in cultural arts',
|
21
|
+
'2' => 'Highly Likely interest in cultural arts',
|
22
|
+
'3' => 'Very Likely interest in cultural arts',
|
23
|
+
'4' => 'Somewhat Likely interest in cultural arts',
|
24
|
+
'5' => 'Likely interest in cultural arts',
|
25
|
+
'6' => 'Somewhat Unlikely interest in cultural arts',
|
26
|
+
'7' => 'Very Unlikely interest in cultural arts',
|
27
|
+
'8' => 'Highly Unlikely interest in cultural arts',
|
28
|
+
'9' => 'Extremely Unlikely interest in cultural arts',
|
29
|
+
'0' => 'Unknown / Not Attempted',
|
30
|
+
}
|
31
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
|
+
[charity[key[0]], code[key[1]]].join(' - ')
|
33
|
+
end
|
34
|
+
|
35
|
+
def self.en_8504p(key)
|
36
|
+
Experian::DataDictionary.en_8504(key)
|
37
|
+
end
|
38
|
+
|
39
|
+
end
|
40
|
+
end
|
@@ -0,0 +1,40 @@
|
|
1
|
+
module Experian
|
2
|
+
class DataDictionary
|
3
|
+
|
4
|
+
# Mailorder Buyer & Mailorder Buyer Prop, Self Reported data
|
5
|
+
def self.en_8505_description
|
6
|
+
"Z mailorder buyer & mailorder buyer propensities indicates a household's self reported purchased through the mail. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
|
7
|
+
end
|
8
|
+
|
9
|
+
# Mailorder Buyer & Mailorder Buyer Prop, Quick Predict Code
|
10
|
+
def self.en_8505p_description
|
11
|
+
"Z mailorder buyer & mailorder buyer propensities indicates a household's self reported purchased through the mail. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability."
|
12
|
+
end
|
13
|
+
|
14
|
+
def self.en_8505(key)
|
15
|
+
charity = {
|
16
|
+
'Y' => 'Living unit has purchased through the mail',
|
17
|
+
'U' => 'Unknown'
|
18
|
+
}
|
19
|
+
code = {
|
20
|
+
'1' => 'Extremely Likely purchased through the mail',
|
21
|
+
'2' => 'Highly Likely purchased through the mail',
|
22
|
+
'3' => 'Very Likely purchased through the mail',
|
23
|
+
'4' => 'Somewhat Likely purchased through the mail',
|
24
|
+
'5' => 'Likely purchased through the mail',
|
25
|
+
'6' => 'Somewhat Unlikely purchased through the mail',
|
26
|
+
'7' => 'Very Unlikely purchased through the mail',
|
27
|
+
'8' => 'Highly Unlikely purchased through the mail',
|
28
|
+
'9' => 'Extremely Unlikely purchased through the mail',
|
29
|
+
'0' => 'Unknown / Not Attempted',
|
30
|
+
}
|
31
|
+
return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
|
32
|
+
[charity[key[0]], code[key[1]]].join(' - ')
|
33
|
+
end
|
34
|
+
|
35
|
+
def self.en_8505p(key)
|
36
|
+
Experian::DataDictionary.en_8505(key)
|
37
|
+
end
|
38
|
+
|
39
|
+
end
|
40
|
+
end
|