ekylibre-cartography 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (59) hide show
  1. checksums.yaml +7 -0
  2. data/README.md +3 -0
  3. data/Rakefile +10 -0
  4. data/app/assets/javascripts/cartography.coffee +535 -0
  5. data/app/assets/javascripts/cartography/base.coffee +11 -0
  6. data/app/assets/javascripts/cartography/controls.coffee +463 -0
  7. data/app/assets/javascripts/cartography/events.coffee +36 -0
  8. data/app/assets/javascripts/cartography/layers.coffee +127 -0
  9. data/app/assets/javascripts/cartography/layers/simple.coffee +37 -0
  10. data/app/assets/javascripts/cartography/leaflet/controls.coffee +420 -0
  11. data/app/assets/javascripts/cartography/leaflet/handlers.coffee +461 -0
  12. data/app/assets/javascripts/cartography/leaflet/i18n.coffee +31 -0
  13. data/app/assets/javascripts/cartography/leaflet/layers.coffee +60 -0
  14. data/app/assets/javascripts/cartography/leaflet/toolbars.coffee +450 -0
  15. data/app/assets/javascripts/cartography/patches.js +8 -0
  16. data/app/assets/javascripts/cartography/util.coffee +18 -0
  17. data/app/assets/javascripts/main.js +18 -0
  18. data/app/assets/stylesheets/cartography.css +86 -0
  19. data/app/helpers/cartography_helper.rb +55 -0
  20. data/lib/cartography.rb +1 -0
  21. data/lib/cartography/engine.rb +11 -0
  22. data/lib/cartography/version.rb +3 -0
  23. data/vendor/assets/components/d3-array/dist/d3-array.js +590 -0
  24. data/vendor/assets/components/d3-array/dist/d3-array.min.js +2 -0
  25. data/vendor/assets/components/geojson-equality/dist/geojson-equality.js +295 -0
  26. data/vendor/assets/components/geojson-equality/dist/geojson-equality.js.map +21 -0
  27. data/vendor/assets/components/geojson-equality/dist/geojson-equality.min.js +1 -0
  28. data/vendor/assets/components/leaflet-controlpanel/dist/leaflet.controlpanel.css +29 -0
  29. data/vendor/assets/components/leaflet-controlpanel/dist/leaflet.controlpanel.js +269 -0
  30. data/vendor/assets/components/leaflet-draw-cut/dist/leaflet.draw.cut.css +1 -0
  31. data/vendor/assets/components/leaflet-draw-cut/dist/leaflet.draw.cut.js +8 -0
  32. data/vendor/assets/components/leaflet-draw-merge/dist/leaflet.draw.merge.css +0 -0
  33. data/vendor/assets/components/leaflet-draw-merge/dist/leaflet.draw.merge.js +48026 -0
  34. data/vendor/assets/components/leaflet-draw/dist/leaflet.draw-src.css +326 -0
  35. data/vendor/assets/components/leaflet-draw/dist/leaflet.draw-src.js +4653 -0
  36. data/vendor/assets/components/leaflet-draw/dist/leaflet.draw-src.map +1 -0
  37. data/vendor/assets/components/leaflet-draw/dist/leaflet.draw.css +10 -0
  38. data/vendor/assets/components/leaflet-draw/dist/leaflet.draw.js +10 -0
  39. data/vendor/assets/components/leaflet-geographicutil/dist/leaflet.geographicutil.js +3220 -0
  40. data/vendor/assets/components/leaflet-reactive_measure/dist/reactive_measure.css +30 -0
  41. data/vendor/assets/components/leaflet-reactive_measure/dist/reactive_measure.js +3764 -0
  42. data/vendor/assets/components/leaflet/dist/leaflet-src.js +13609 -0
  43. data/vendor/assets/components/leaflet/dist/leaflet-src.js.map +1 -0
  44. data/vendor/assets/components/leaflet/dist/leaflet-src.map +1 -0
  45. data/vendor/assets/components/leaflet/dist/leaflet.css +632 -0
  46. data/vendor/assets/components/leaflet/dist/leaflet.js +5 -0
  47. data/vendor/assets/components/leaflet/dist/leaflet.js.map +1 -0
  48. data/vendor/assets/components/martinez-polygon-clipping/dist/martinez.min.js +9 -0
  49. data/vendor/assets/components/martinez-polygon-clipping/dist/martinez.umd.js +1716 -0
  50. data/vendor/assets/components/martinez-polygon-clipping/dist/martinez.umd.js.map +1 -0
  51. data/vendor/assets/components/polygon-clipping/dist/polygon-clipping.js +279 -0
  52. data/vendor/assets/components/polygon-clipping/dist/polygon-clipping.min.js +1 -0
  53. data/vendor/assets/components/rtree/dist/rtree.js +911 -0
  54. data/vendor/assets/components/rtree/dist/rtree.min.js +1 -0
  55. data/vendor/assets/components/splaytree/dist/splay.es6.js +765 -0
  56. data/vendor/assets/components/splaytree/dist/splay.es6.js.map +1 -0
  57. data/vendor/assets/components/splaytree/dist/splay.js +797 -0
  58. data/vendor/assets/components/splaytree/dist/splay.js.map +1 -0
  59. metadata +156 -0
@@ -0,0 +1,30 @@
1
+ .leaflet-draw-tooltip-left {
2
+ background: #363636;
3
+ background: rgba(0, 0, 0, 0.5);
4
+ border: 1px solid transparent;
5
+ position: absolute;
6
+ visibility: hidden;
7
+ white-space: nowrap;
8
+ z-index: 6; }
9
+ .leaflet-draw-tooltip-left:before {
10
+ border: none !important; }
11
+ .leaflet-draw-tooltip-left:after {
12
+ border-left: 6px solid black;
13
+ border-left-color: rgba(0, 0, 0, 0.5);
14
+ border-top: 6px solid transparent;
15
+ border-bottom: 6px solid transparent;
16
+ content: "";
17
+ position: absolute;
18
+ top: 7px;
19
+ left: 100%; }
20
+ .leaflet-draw-tooltip-left span {
21
+ color: inherit; }
22
+
23
+ .leaflet-draw-tooltip-measure.area {
24
+ padding-left: 10px; }
25
+
26
+ .reactive-measure-control {
27
+ background: rgba(255, 255, 255, 0.6);
28
+ padding: 0 8px; }
29
+ .reactive-measure-control.selection {
30
+ background: rgba(255, 196, 136, 0.5); }
@@ -0,0 +1,3764 @@
1
+ /******/ (function(modules) { // webpackBootstrap
2
+ /******/ // The module cache
3
+ /******/ var installedModules = {};
4
+ /******/
5
+ /******/ // The require function
6
+ /******/ function __webpack_require__(moduleId) {
7
+ /******/
8
+ /******/ // Check if module is in cache
9
+ /******/ if(installedModules[moduleId]) {
10
+ /******/ return installedModules[moduleId].exports;
11
+ /******/ }
12
+ /******/ // Create a new module (and put it into the cache)
13
+ /******/ var module = installedModules[moduleId] = {
14
+ /******/ i: moduleId,
15
+ /******/ l: false,
16
+ /******/ exports: {}
17
+ /******/ };
18
+ /******/
19
+ /******/ // Execute the module function
20
+ /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
21
+ /******/
22
+ /******/ // Flag the module as loaded
23
+ /******/ module.l = true;
24
+ /******/
25
+ /******/ // Return the exports of the module
26
+ /******/ return module.exports;
27
+ /******/ }
28
+ /******/
29
+ /******/
30
+ /******/ // expose the modules object (__webpack_modules__)
31
+ /******/ __webpack_require__.m = modules;
32
+ /******/
33
+ /******/ // expose the module cache
34
+ /******/ __webpack_require__.c = installedModules;
35
+ /******/
36
+ /******/ // define getter function for harmony exports
37
+ /******/ __webpack_require__.d = function(exports, name, getter) {
38
+ /******/ if(!__webpack_require__.o(exports, name)) {
39
+ /******/ Object.defineProperty(exports, name, {
40
+ /******/ configurable: false,
41
+ /******/ enumerable: true,
42
+ /******/ get: getter
43
+ /******/ });
44
+ /******/ }
45
+ /******/ };
46
+ /******/
47
+ /******/ // getDefaultExport function for compatibility with non-harmony modules
48
+ /******/ __webpack_require__.n = function(module) {
49
+ /******/ var getter = module && module.__esModule ?
50
+ /******/ function getDefault() { return module['default']; } :
51
+ /******/ function getModuleExports() { return module; };
52
+ /******/ __webpack_require__.d(getter, 'a', getter);
53
+ /******/ return getter;
54
+ /******/ };
55
+ /******/
56
+ /******/ // Object.prototype.hasOwnProperty.call
57
+ /******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
58
+ /******/
59
+ /******/ // __webpack_public_path__
60
+ /******/ __webpack_require__.p = "";
61
+ /******/
62
+ /******/ // Load entry module and return exports
63
+ /******/ return __webpack_require__(__webpack_require__.s = 0);
64
+ /******/ })
65
+ /************************************************************************/
66
+ /******/ ([
67
+ /* 0 */
68
+ /***/ (function(module, exports, __webpack_require__) {
69
+
70
+ __webpack_require__(1);
71
+ module.exports = __webpack_require__(4);
72
+
73
+
74
+ /***/ }),
75
+ /* 1 */
76
+ /***/ (function(module, exports, __webpack_require__) {
77
+
78
+ var L;
79
+
80
+ L = __webpack_require__(2);
81
+
82
+ __webpack_require__(3);
83
+
84
+ L.ReactiveMeasure = {};
85
+
86
+ L.ReactiveMeasure.Draw = {};
87
+
88
+ L.ReactiveMeasure.Edit = {};
89
+
90
+ L.ReactiveMeasure.Draw.Event = {};
91
+
92
+ L.ReactiveMeasure.Edit.Event = {};
93
+
94
+ L.ReactiveMeasure.Draw.Event.MOVE = "reactiveMeasure:draw:move";
95
+
96
+ L.ReactiveMeasure.Edit.Event.MOVE = "reactiveMeasure:edit:move";
97
+
98
+ module.exports = L.ReactiveMeasureControl = L.Control.extend({
99
+ options: {
100
+ position: 'bottomright',
101
+ metric: true,
102
+ feet: false,
103
+ measure: {
104
+ perimeter: 0,
105
+ area: 0
106
+ }
107
+ },
108
+ initialize: function(layers, options) {
109
+ if (options == null) {
110
+ options = {};
111
+ }
112
+ L.Util.setOptions(this, options);
113
+ this.options.measure.perimeter = 0;
114
+ this.options.measure.area = 0;
115
+ if (layers.getLayers().length > 0) {
116
+ return layers.eachLayer((function(_this) {
117
+ return function(layer) {
118
+ var m;
119
+ if (typeof layer.getMeasure === 'function') {
120
+ m = layer.getMeasure();
121
+ _this.options.measure.perimeter += m.perimeter;
122
+ return _this.options.measure.area += m.area;
123
+ }
124
+ };
125
+ })(this));
126
+ }
127
+ },
128
+ onAdd: function(map) {
129
+ this._container = L.DomUtil.create('div', "reactive-measure-control " + map._leaflet_id);
130
+ map.reactiveMeasureControl = this;
131
+ if (map && this._container) {
132
+ this.updateContent(this.options.measure);
133
+ }
134
+ return this._container;
135
+ },
136
+ updateContent: function(measure, options) {
137
+ var text;
138
+ if (measure == null) {
139
+ measure = {};
140
+ }
141
+ if (options == null) {
142
+ options = {};
143
+ }
144
+ text = '';
145
+ if (measure['perimeter']) {
146
+ text += "<span class='leaflet-draw-tooltip-measure perimeter'>" + (L.GeometryUtil.readableDistance(measure.perimeter, !!this.options.metric, !!options.feet)) + "</span>";
147
+ }
148
+ if (measure['area']) {
149
+ text += "<span class='leaflet-draw-tooltip-measure area'>" + (L.GeometryUtil.readableArea(measure.area, !!this.options.metric)) + "</span>";
150
+ }
151
+ if ((options.selection != null) && options.selection === true) {
152
+ L.DomUtil.addClass(this._container, 'selection');
153
+ } else {
154
+ L.DomUtil.removeClass(this._container, 'selection');
155
+ }
156
+ this._container.innerHTML = text;
157
+ }
158
+ });
159
+
160
+ L.FeatureGroup.include({
161
+ getMeasure: function() {
162
+ var measure;
163
+ measure = {
164
+ perimeter: 0,
165
+ area: 0
166
+ };
167
+ this.eachLayer(function(layer) {
168
+ var m;
169
+ m = layer.getMeasure();
170
+ measure.perimeter += m.perimeter;
171
+ return measure.area += m.area;
172
+ });
173
+ return measure;
174
+ }
175
+ });
176
+
177
+ L.Polygon.include({
178
+
179
+ /*
180
+ * Get centroid of the polygon in square meters
181
+ * Portage from leaflet1.0.0-rc1: https://github.com/Leaflet/Leaflet/blob/master/src/layer/vector/Polygon.js
182
+ * @return {number} polygon centroid
183
+ */
184
+ __getCenter: function() {
185
+ var area, center, f, i, j, len, p1, p2, points, x, y;
186
+ this.__project();
187
+ points = this._rings[0];
188
+ len = points.length;
189
+ if (!len) {
190
+ return null;
191
+ }
192
+ area = x = y = 0;
193
+ i = 0;
194
+ j = len - 1;
195
+ while (i < len) {
196
+ p1 = points[i];
197
+ p2 = points[j];
198
+ f = p1.y * p2.x - (p2.y * p1.x);
199
+ x += (p1.x + p2.x) * f;
200
+ y += (p1.y + p2.y) * f;
201
+ area += f * 3;
202
+ j = i++;
203
+ }
204
+ if (area === 0) {
205
+ center = points[0];
206
+ } else {
207
+ center = [x / area, y / area];
208
+ }
209
+ return this._map.layerPointToLatLng(center);
210
+ },
211
+
212
+ /*
213
+ * Return LatLngs as array of [lat, lng] pair.
214
+ * @return {Array} [[lat,lng], [lat,lng]]
215
+ */
216
+ getLatLngsAsArray: function() {
217
+ var arr, k, latlng, len1, ref;
218
+ arr = [];
219
+ ref = this._latlngs[0];
220
+ for (k = 0, len1 = ref.length; k < len1; k++) {
221
+ latlng = ref[k];
222
+ arr.push([latlng.lat, latlng.lng]);
223
+ }
224
+ return arr;
225
+ }
226
+ });
227
+
228
+ L.Polyline.include({
229
+
230
+ /*
231
+ * Return LatLngs as array of [lat, lng] pair.
232
+ * @return {Array} [[lat,lng], [lat,lng]]
233
+ */
234
+ getLatLngsAsArray: function() {
235
+ var arr, k, latlng, len1, ref;
236
+ arr = [];
237
+ ref = this._latlngs;
238
+ for (k = 0, len1 = ref.length; k < len1; k++) {
239
+ latlng = ref[k];
240
+ arr.push([latlng.lat, latlng.lng]);
241
+ }
242
+ return arr;
243
+ },
244
+
245
+ /*
246
+ * Get center of the polyline in meters
247
+ * Portage from leaflet1.0.0-rc1: https://github.com/Leaflet/Leaflet/blob/master/src/layer/vector/Polyline.js
248
+ * @return {number} polyline center
249
+ */
250
+ __getCenter: function() {
251
+ var dist, halfDist, i, len, p1, p2, points, ratio, segDist;
252
+ this.__project();
253
+ i = void 0;
254
+ halfDist = void 0;
255
+ segDist = void 0;
256
+ dist = void 0;
257
+ p1 = void 0;
258
+ p2 = void 0;
259
+ ratio = void 0;
260
+ points = this._rings[0];
261
+ len = points.length;
262
+ if (!len) {
263
+ return null;
264
+ }
265
+ i = 0;
266
+ halfDist = 0;
267
+ while (i < len - 1) {
268
+ halfDist += points[i].distanceTo(points[i + 1]) / 2;
269
+ i++;
270
+ }
271
+ if (halfDist === 0) {
272
+ return this._map.layerPointToLatLng(points[0]);
273
+ }
274
+ i = 0;
275
+ dist = 0;
276
+ while (i < len - 1) {
277
+ p1 = points[i];
278
+ p2 = points[i + 1];
279
+ segDist = p1.distanceTo(p2);
280
+ dist += segDist;
281
+ if (dist > halfDist) {
282
+ ratio = (dist - halfDist) / segDist;
283
+ return this._map.layerPointToLatLng([p2.x - (ratio * (p2.x - p1.x)), p2.y - (ratio * (p2.y - p1.y))]);
284
+ }
285
+ i++;
286
+ }
287
+ },
288
+ __project: function() {
289
+ var pxBounds;
290
+ pxBounds = new L.Bounds;
291
+ this._rings = [];
292
+ this.__projectLatlngs(this._latlngs, this._rings, pxBounds);
293
+ },
294
+ __projectLatlngs: function(latlngs, result, projectedBounds) {
295
+ var flat, i, len, ring;
296
+ flat = latlngs[0] instanceof L.LatLng;
297
+ len = latlngs.length;
298
+ i = void 0;
299
+ ring = void 0;
300
+ if (flat) {
301
+ ring = [];
302
+ i = 0;
303
+ while (i < len) {
304
+ ring[i] = this._map.latLngToLayerPoint(latlngs[i]);
305
+ projectedBounds.extend(ring[i]);
306
+ i++;
307
+ }
308
+ result.push(ring);
309
+ } else {
310
+ i = 0;
311
+ while (i < len) {
312
+ this.__projectLatlngs(latlngs[i], result, projectedBounds);
313
+ i++;
314
+ }
315
+ }
316
+ },
317
+ getMeasure: function() {
318
+ return L.GeographicUtil.Polygon(this.getLatLngsAsArray());
319
+ }
320
+ });
321
+
322
+ L.Draw.Polyline.include({
323
+ __addHooks: L.Draw.Polyline.prototype.addHooks,
324
+ __removeHooks: L.Draw.Polyline.prototype.removeHooks,
325
+ __vertexChanged: L.Draw.Polyline.prototype._vertexChanged,
326
+ _vertexChanged: function(e) {
327
+ this.__vertexChanged.apply(this, arguments);
328
+ if (!this._map.reactiveMeasureControl.options.tooltip && (this._tooltip != null)) {
329
+ L.DomUtil.setOpacity(this._tooltip._container, 0);
330
+ return L.DomUtil.setPosition(this._tooltip._container, L.point(0, 0));
331
+ }
332
+ },
333
+ __onMouseMove: function(e) {
334
+ var center, clone, k, latLng, latLngArray, len1, measure, mouseLatLng, newPos, ref;
335
+ if (!e.target.reactiveMeasureControl.options.tooltip && (this._tooltip != null)) {
336
+ L.DomUtil.setOpacity(this._tooltip._container, 0);
337
+ L.DomUtil.setPosition(this._tooltip._container, L.point(0, 0));
338
+ }
339
+ if (!(this._markers.length > 0)) {
340
+ return;
341
+ }
342
+ newPos = this._map.mouseEventToLayerPoint(e.originalEvent);
343
+ mouseLatLng = this._map.layerPointToLatLng(newPos);
344
+ latLngArray = [];
345
+ ref = this._poly.getLatLngs();
346
+ for (k = 0, len1 = ref.length; k < len1; k++) {
347
+ latLng = ref[k];
348
+ latLngArray.push(latLng);
349
+ }
350
+ latLngArray.push(mouseLatLng);
351
+ if (this._markers.length === 1) {
352
+ clone = L.polyline(latLngArray);
353
+ }
354
+ if (this._markers.length >= 2) {
355
+ clone = L.polygon(latLngArray);
356
+ }
357
+ clone._map = this._map;
358
+ center = clone.__getCenter();
359
+ measure = L.GeographicUtil.Polygon(clone.getLatLngsAsArray());
360
+ e.target.reactiveMeasureControl.updateContent(measure, {
361
+ selection: true
362
+ });
363
+ if (e.target.reactiveMeasureControl.options.tooltip != null) {
364
+ this._tooltip.__updateTooltipMeasure(center, measure, e.target.reactiveMeasureControl.options);
365
+ }
366
+ return this._map.fire(L.ReactiveMeasure.Draw.Event.MOVE, {
367
+ measure: measure
368
+ });
369
+ },
370
+ addHooks: function() {
371
+ this.__addHooks.apply(this, arguments);
372
+ this._map.on('mousemove', this.__onMouseMove, this);
373
+ },
374
+ removeHooks: function() {
375
+ var measure;
376
+ if (this._map.reactiveMeasureControl) {
377
+ measure = L.GeographicUtil.Polygon(this._poly.getLatLngsAsArray());
378
+ if (this._poly._map != null) {
379
+ this._poly._map.reactiveMeasureControl.updateContent(measure, {
380
+ selection: false
381
+ });
382
+ }
383
+ this._map.off('mousemove');
384
+ }
385
+ this.__removeHooks.apply(this, arguments);
386
+ }
387
+ });
388
+
389
+ L.Edit.Poly.include({
390
+ __addHooks: L.Edit.Poly.prototype.addHooks,
391
+ __removeHooks: L.Edit.Poly.prototype.removeHooks,
392
+ __onHandlerDrag: (function(_this) {
393
+ return function(e) {
394
+ var _poly, center, measure;
395
+ _poly = e.target.editing._poly;
396
+ center = _poly.__getCenter();
397
+ measure = L.GeographicUtil.Polygon(_poly.getLatLngsAsArray());
398
+ L.extend(L.Draw.Polyline.prototype.options, {
399
+ target: e.marker.getLatLng()
400
+ });
401
+ if (_poly._map != null) {
402
+ _poly._map.reactiveMeasureControl.updateContent(measure, {
403
+ selection: true
404
+ });
405
+ }
406
+ return _poly._map.fire(L.ReactiveMeasure.Edit.Event.MOVE, {
407
+ measure: measure
408
+ });
409
+ };
410
+ })(this),
411
+ addHooks: function() {
412
+ this.__addHooks.apply(this, arguments);
413
+ return this._poly.on('editdrag', this.__onHandlerDrag, this);
414
+ },
415
+ removeHooks: function() {
416
+ var measure;
417
+ measure = L.GeographicUtil.Polygon(this._poly.getLatLngsAsArray());
418
+ if (this._poly._map != null) {
419
+ this._poly._map.reactiveMeasureControl.updateContent(measure, {
420
+ selection: false
421
+ });
422
+ }
423
+ if (L.EditToolbar.reactiveMeasure) {
424
+ this._poly.off('editdrag');
425
+ }
426
+ return this.__removeHooks.apply(this, arguments);
427
+ }
428
+ });
429
+
430
+ L.Edit.PolyVerticesEdit.include({
431
+ __onTouchMove: L.Edit.PolyVerticesEdit.prototype._onTouchMove,
432
+ __removeMarker: L.Edit.PolyVerticesEdit.prototype._removeMarker,
433
+ _onMarkerDrag: function(e) {
434
+ var marker;
435
+ marker = e.target;
436
+ L.extend(marker._origLatLng, marker._latlng);
437
+ if (marker._middleLeft) {
438
+ marker._middleLeft.setLatLng(this._getMiddleLatLng(marker._prev, marker));
439
+ }
440
+ if (marker._middleRight) {
441
+ marker._middleRight.setLatLng(this._getMiddleLatLng(marker, marker._next));
442
+ }
443
+ this._poly.redraw();
444
+ this._poly.fire('editdrag', {
445
+ marker: e.target
446
+ });
447
+ },
448
+ _onTouchMove: function(e) {
449
+ this.__onTouchMove.apply(this, arguments);
450
+ return this._poly.fire('editdrag');
451
+ },
452
+ _removeMarker: function(marker) {
453
+ this.__removeMarker.apply(this, arguments);
454
+ return this._poly.fire('editdrag', {
455
+ marker: marker
456
+ });
457
+ }
458
+ });
459
+
460
+ L.LatLng.prototype.toArray = function() {
461
+ return [this.lat, this.lng];
462
+ };
463
+
464
+ L.Draw.Tooltip.include({
465
+ __initialize: L.Draw.Tooltip.prototype.initialize,
466
+ __dispose: L.Draw.Tooltip.prototype.dispose,
467
+ initialize: function(map, options) {
468
+ if (options == null) {
469
+ options = {};
470
+ }
471
+ return this.__initialize.apply(this, arguments);
472
+ },
473
+ dispose: function() {
474
+ this._map.off('mouseover');
475
+ return this.__dispose.apply(this, arguments);
476
+ },
477
+ __updateTooltipMeasure: function(latLng, measure, options) {
478
+ var labelText;
479
+ if (measure == null) {
480
+ measure = {};
481
+ }
482
+ if (options == null) {
483
+ options = {};
484
+ }
485
+ labelText = {
486
+ text: ''
487
+ };
488
+ if (measure['perimeter']) {
489
+ labelText['text'] += "<span class='leaflet-draw-tooltip-measure perimeter'>" + (L.GeometryUtil.readableDistance(measure.perimeter, !!options.metric, !!options.feet)) + "</span>";
490
+ }
491
+ if (measure['area']) {
492
+ labelText['text'] += "<span class='leaflet-draw-tooltip-measure area'>" + (L.GeometryUtil.readableArea(measure.area, !!options.metric)) + "</span>";
493
+ }
494
+ if (latLng) {
495
+ this.updateContent(labelText);
496
+ this.__updatePosition(latLng, options);
497
+ }
498
+ },
499
+ __updatePosition: function(latlng, options) {
500
+ var container, container_width, labelWidth, map_width, pos, styles;
501
+ if (options == null) {
502
+ options = {};
503
+ }
504
+ pos = this._map.latLngToLayerPoint(latlng);
505
+ labelWidth = this._container.offsetWidth;
506
+ map_width = this._map._container.offsetWidth;
507
+ L.DomUtil.removeClass(this._container, 'leaflet-draw-tooltip-left');
508
+ if (this._container) {
509
+ this._container.style.visibility = 'inherit';
510
+ container = this._map.layerPointToContainerPoint(pos);
511
+ styles = window.getComputedStyle(this._container);
512
+ container_width = this._container.offsetWidth + parseInt(styles.paddingLeft) + parseInt(styles.paddingRight) + parseInt(styles.marginLeft) + parseInt(styles.marginRight);
513
+ if (container.x < 0 || container.x > (map_width - container_width) || container.y < this._container.offsetHeight) {
514
+ pos = pos.add(L.point(-container_width, 0));
515
+ L.DomUtil.addClass(this._container, 'leaflet-draw-tooltip-left');
516
+ }
517
+ return L.DomUtil.setPosition(this._container, pos);
518
+ }
519
+ },
520
+ hide: function() {
521
+ return this._container.style.visibility = 'hidden';
522
+ }
523
+ });
524
+
525
+
526
+ /***/ }),
527
+ /* 2 */
528
+ /***/ (function(module, exports) {
529
+
530
+ module.exports = L;
531
+
532
+ /***/ }),
533
+ /* 3 */
534
+ /***/ (function(module, exports) {
535
+
536
+ /******/ (function(modules) { // webpackBootstrap
537
+ /******/ // The module cache
538
+ /******/ var installedModules = {};
539
+ /******/
540
+ /******/ // The require function
541
+ /******/ function __webpack_require__(moduleId) {
542
+ /******/
543
+ /******/ // Check if module is in cache
544
+ /******/ if(installedModules[moduleId]) {
545
+ /******/ return installedModules[moduleId].exports;
546
+ /******/ }
547
+ /******/ // Create a new module (and put it into the cache)
548
+ /******/ var module = installedModules[moduleId] = {
549
+ /******/ i: moduleId,
550
+ /******/ l: false,
551
+ /******/ exports: {}
552
+ /******/ };
553
+ /******/
554
+ /******/ // Execute the module function
555
+ /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
556
+ /******/
557
+ /******/ // Flag the module as loaded
558
+ /******/ module.l = true;
559
+ /******/
560
+ /******/ // Return the exports of the module
561
+ /******/ return module.exports;
562
+ /******/ }
563
+ /******/
564
+ /******/
565
+ /******/ // expose the modules object (__webpack_modules__)
566
+ /******/ __webpack_require__.m = modules;
567
+ /******/
568
+ /******/ // expose the module cache
569
+ /******/ __webpack_require__.c = installedModules;
570
+ /******/
571
+ /******/ // define getter function for harmony exports
572
+ /******/ __webpack_require__.d = function(exports, name, getter) {
573
+ /******/ if(!__webpack_require__.o(exports, name)) {
574
+ /******/ Object.defineProperty(exports, name, {
575
+ /******/ configurable: false,
576
+ /******/ enumerable: true,
577
+ /******/ get: getter
578
+ /******/ });
579
+ /******/ }
580
+ /******/ };
581
+ /******/
582
+ /******/ // getDefaultExport function for compatibility with non-harmony modules
583
+ /******/ __webpack_require__.n = function(module) {
584
+ /******/ var getter = module && module.__esModule ?
585
+ /******/ function getDefault() { return module['default']; } :
586
+ /******/ function getModuleExports() { return module; };
587
+ /******/ __webpack_require__.d(getter, 'a', getter);
588
+ /******/ return getter;
589
+ /******/ };
590
+ /******/
591
+ /******/ // Object.prototype.hasOwnProperty.call
592
+ /******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
593
+ /******/
594
+ /******/ // __webpack_public_path__
595
+ /******/ __webpack_require__.p = "";
596
+ /******/
597
+ /******/ // Load entry module and return exports
598
+ /******/ return __webpack_require__(__webpack_require__.s = 0);
599
+ /******/ })
600
+ /************************************************************************/
601
+ /******/ ([
602
+ /* 0 */
603
+ /***/ (function(module, exports, __webpack_require__) {
604
+
605
+ module.exports = __webpack_require__(1);
606
+
607
+
608
+ /***/ }),
609
+ /* 1 */
610
+ /***/ (function(module, exports, __webpack_require__) {
611
+
612
+ var GeographicLib, L;
613
+
614
+ L = __webpack_require__(2);
615
+
616
+ GeographicLib = __webpack_require__(3);
617
+
618
+ L.GeographicUtil = (function() {
619
+ function GeographicUtil() {}
620
+
621
+ GeographicUtil.Polygon = function(points, polyline) {
622
+ var geod, i, j, len, len1, point, poly, poly2;
623
+ if (polyline == null) {
624
+ polyline = false;
625
+ }
626
+ geod = GeographicLib.Geodesic.WGS84;
627
+ poly = geod.Polygon(false);
628
+ for (i = 0, len = points.length; i < len; i++) {
629
+ point = points[i];
630
+ poly.AddPoint(point[0], point[1]);
631
+ }
632
+ poly = poly.Compute(false, true);
633
+ poly2 = geod.Polygon(true);
634
+ for (j = 0, len1 = points.length; j < len1; j++) {
635
+ point = points[j];
636
+ poly2.AddPoint(point[0], point[1]);
637
+ }
638
+ poly2 = poly2.Compute(false, true);
639
+ return {
640
+ extrapolatedPerimeter: poly.perimeter,
641
+ extrapolatedArea: Math.abs(poly.area),
642
+ perimeter: poly2.perimeter
643
+ };
644
+ };
645
+
646
+ GeographicUtil.distance = function(a, b) {
647
+ var geod, r;
648
+ geod = GeographicLib.Geodesic.WGS84;
649
+ r = geod.Inverse(a[0], a[1], b[0], b[1]);
650
+ return r.s12.toFixed(3);
651
+ };
652
+
653
+ return GeographicUtil;
654
+
655
+ })();
656
+
657
+
658
+ /***/ }),
659
+ /* 2 */
660
+ /***/ (function(module, exports) {
661
+
662
+ module.exports = L;
663
+
664
+ /***/ }),
665
+ /* 3 */
666
+ /***/ (function(module, exports, __webpack_require__) {
667
+
668
+ var __WEBPACK_AMD_DEFINE_ARRAY__, __WEBPACK_AMD_DEFINE_RESULT__;/*
669
+ * Geodesic routines from GeographicLib translated to JavaScript. See
670
+ * https://geographiclib.sourceforge.io/html/js/
671
+ *
672
+ * The algorithms are derived in
673
+ *
674
+ * Charles F. F. Karney,
675
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013),
676
+ * https://doi.org/10.1007/s00190-012-0578-z
677
+ * Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
678
+ *
679
+ * This file is the concatenation and compression of the JavaScript files in
680
+ * doc/scripts/GeographicLib in the source tree for GeographicLib.
681
+ *
682
+ * Copyright (c) Charles Karney (2011-2015) <charles@karney.com> and licensed
683
+ * under the MIT/X11 License. For more information, see
684
+ * https://geographiclib.sourceforge.io/
685
+ *
686
+ * Version: 1.49
687
+ * File inventory:
688
+ * Math.js Geodesic.js GeodesicLine.js PolygonArea.js DMS.js
689
+ */
690
+
691
+ (function(cb) {
692
+
693
+ /**************** Math.js ****************/
694
+ /*
695
+ * Math.js
696
+ * Transcription of Math.hpp, Constants.hpp, and Accumulator.hpp into
697
+ * JavaScript.
698
+ *
699
+ * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
700
+ * under the MIT/X11 License. For more information, see
701
+ * https://geographiclib.sourceforge.io/
702
+ */
703
+
704
+ /**
705
+ * @namespace GeographicLib
706
+ * @description The parent namespace for the following modules:
707
+ * - {@link module:GeographicLib/Geodesic GeographicLib/Geodesic} The main
708
+ * engine for solving geodesic problems via the
709
+ * {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
710
+ * - {@link module:GeographicLib/GeodesicLine GeographicLib/GeodesicLine}
711
+ * computes points along a single geodesic line via the
712
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
713
+ * class.
714
+ * - {@link module:GeographicLib/PolygonArea GeographicLib/PolygonArea}
715
+ * computes the area of a geodesic polygon via the
716
+ * {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
717
+ * class.
718
+ * - {@link module:GeographicLib/DMS GeographicLib/DMS} handles the decoding
719
+ * and encoding of angles in degree, minutes, and seconds, via static
720
+ * functions in this module.
721
+ * - {@link module:GeographicLib/Constants GeographicLib/Constants} defines
722
+ * constants specifying the version numbers and the parameters for the WGS84
723
+ * ellipsoid.
724
+ *
725
+ * The following modules are used internally by the package:
726
+ * - {@link module:GeographicLib/Math GeographicLib/Math} defines various
727
+ * mathematical functions.
728
+ * - {@link module:GeographicLib/Accumulator GeographicLib/Accumulator}
729
+ * interally used by
730
+ * {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea} (via the
731
+ * {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class)
732
+ * for summing the contributions to the area of a polygon.
733
+ */
734
+ "use strict";
735
+ var GeographicLib = {};
736
+ GeographicLib.Constants = {};
737
+ GeographicLib.Math = {};
738
+ GeographicLib.Accumulator = {};
739
+
740
+ (function(
741
+ /**
742
+ * @exports GeographicLib/Constants
743
+ * @description Define constants defining the version and WGS84 parameters.
744
+ */
745
+ c) {
746
+
747
+ /**
748
+ * @constant
749
+ * @summary WGS84 parameters.
750
+ * @property {number} a the equatorial radius (meters).
751
+ * @property {number} f the flattening.
752
+ */
753
+ c.WGS84 = { a: 6378137, f: 1/298.257223563 };
754
+ /**
755
+ * @constant
756
+ * @summary an array of version numbers.
757
+ * @property {number} major the major version number.
758
+ * @property {number} minor the minor version number.
759
+ * @property {number} patch the patch number.
760
+ */
761
+ c.version = { major: 1, minor: 49, patch: 0 };
762
+ /**
763
+ * @constant
764
+ * @summary version string
765
+ */
766
+ c.version_string = "1.49";
767
+ })(GeographicLib.Constants);
768
+
769
+ (function(
770
+ /**
771
+ * @exports GeographicLib/Math
772
+ * @description Some useful mathematical constants and functions (mainly for
773
+ * internal use).
774
+ */
775
+ m) {
776
+
777
+ /**
778
+ * @summary The number of digits of precision in floating-point numbers.
779
+ * @constant {number}
780
+ */
781
+ m.digits = 53;
782
+ /**
783
+ * @summary The machine epsilon.
784
+ * @constant {number}
785
+ */
786
+ m.epsilon = Math.pow(0.5, m.digits - 1);
787
+ /**
788
+ * @summary The factor to convert degrees to radians.
789
+ * @constant {number}
790
+ */
791
+ m.degree = Math.PI/180;
792
+
793
+ /**
794
+ * @summary Square a number.
795
+ * @param {number} x the number.
796
+ * @returns {number} the square.
797
+ */
798
+ m.sq = function(x) { return x * x; };
799
+
800
+ /**
801
+ * @summary The hypotenuse function.
802
+ * @param {number} x the first side.
803
+ * @param {number} y the second side.
804
+ * @returns {number} the hypotenuse.
805
+ */
806
+ m.hypot = function(x, y) {
807
+ var a, b;
808
+ x = Math.abs(x);
809
+ y = Math.abs(y);
810
+ a = Math.max(x, y); b = Math.min(x, y) / (a ? a : 1);
811
+ return a * Math.sqrt(1 + b * b);
812
+ };
813
+
814
+ /**
815
+ * @summary Cube root function.
816
+ * @param {number} x the argument.
817
+ * @returns {number} the real cube root.
818
+ */
819
+ m.cbrt = function(x) {
820
+ var y = Math.pow(Math.abs(x), 1/3);
821
+ return x < 0 ? -y : y;
822
+ };
823
+
824
+ /**
825
+ * @summary The log1p function.
826
+ * @param {number} x the argument.
827
+ * @returns {number} log(1 + x).
828
+ */
829
+ m.log1p = function(x) {
830
+ var y = 1 + x,
831
+ z = y - 1;
832
+ // Here's the explanation for this magic: y = 1 + z, exactly, and z
833
+ // approx x, thus log(y)/z (which is nearly constant near z = 0) returns
834
+ // a good approximation to the true log(1 + x)/x. The multiplication x *
835
+ // (log(y)/z) introduces little additional error.
836
+ return z === 0 ? x : x * Math.log(y) / z;
837
+ };
838
+
839
+ /**
840
+ * @summary Inverse hyperbolic tangent.
841
+ * @param {number} x the argument.
842
+ * @returns {number} tanh<sup>&minus;1</sup> x.
843
+ */
844
+ m.atanh = function(x) {
845
+ var y = Math.abs(x); // Enforce odd parity
846
+ y = m.log1p(2 * y/(1 - y))/2;
847
+ return x < 0 ? -y : y;
848
+ };
849
+
850
+ /**
851
+ * @summary Copy the sign.
852
+ * @param {number} x gives the magitude of the result.
853
+ * @param {number} y gives the sign of the result.
854
+ * @returns {number} value with the magnitude of x and with the sign of y.
855
+ */
856
+ m.copysign = function(x, y) {
857
+ return Math.abs(x) * (y < 0 || (y === 0 && 1/y < 0) ? -1 : 1);
858
+ };
859
+
860
+ /**
861
+ * @summary An error-free sum.
862
+ * @param {number} u
863
+ * @param {number} v
864
+ * @returns {object} sum with sum.s = round(u + v) and sum.t is u + v &minus;
865
+ * round(u + v)
866
+ */
867
+ m.sum = function(u, v) {
868
+ var s = u + v,
869
+ up = s - v,
870
+ vpp = s - up,
871
+ t;
872
+ up -= u;
873
+ vpp -= v;
874
+ t = -(up + vpp);
875
+ // u + v = s + t
876
+ // = round(u + v) + t
877
+ return {s: s, t: t};
878
+ };
879
+
880
+ /**
881
+ * @summary Evaluate a polynomial.
882
+ * @param {integer} N the order of the polynomial.
883
+ * @param {array} p the coefficient array (of size N + 1) (leading
884
+ * order coefficient first)
885
+ * @param {number} x the variable.
886
+ * @returns {number} the value of the polynomial.
887
+ */
888
+ m.polyval = function(N, p, s, x) {
889
+ var y = N < 0 ? 0 : p[s++];
890
+ while (--N >= 0) y = y * x + p[s++];
891
+ return y;
892
+ };
893
+
894
+ /**
895
+ * @summary Coarsen a value close to zero.
896
+ * @param {number} x
897
+ * @returns {number} the coarsened value.
898
+ */
899
+ m.AngRound = function(x) {
900
+ // The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57 for
901
+ // reals = 0.7 pm on the earth if x is an angle in degrees. (This is about
902
+ // 1000 times more resolution than we get with angles around 90 degrees.)
903
+ // We use this to avoid having to deal with near singular cases when x is
904
+ // non-zero but tiny (e.g., 1.0e-200). This converts -0 to +0; however
905
+ // tiny negative numbers get converted to -0.
906
+ if (x === 0) return x;
907
+ var z = 1/16,
908
+ y = Math.abs(x);
909
+ // The compiler mustn't "simplify" z - (z - y) to y
910
+ y = y < z ? z - (z - y) : y;
911
+ return x < 0 ? -y : y;
912
+ };
913
+
914
+ /**
915
+ * @summary Normalize an angle.
916
+ * @param {number} x the angle in degrees.
917
+ * @returns {number} the angle reduced to the range (&minus;180&deg;,
918
+ * 180&deg;].
919
+ */
920
+ m.AngNormalize = function(x) {
921
+ // Place angle in [-180, 180).
922
+ x = x % 360;
923
+ return x <= -180 ? x + 360 : (x <= 180 ? x : x - 360);
924
+ };
925
+
926
+ /**
927
+ * @summary Normalize a latitude.
928
+ * @param {number} x the angle in degrees.
929
+ * @returns {number} x if it is in the range [&minus;90&deg;, 90&deg;],
930
+ * otherwise return NaN.
931
+ */
932
+ m.LatFix = function(x) {
933
+ // Replace angle with NaN if outside [-90, 90].
934
+ return Math.abs(x) > 90 ? Number.NaN : x;
935
+ };
936
+
937
+ /**
938
+ * @summary The exact difference of two angles reduced to (&minus;180&deg;,
939
+ * 180&deg;]
940
+ * @param {number} x the first angle in degrees.
941
+ * @param {number} y the second angle in degrees.
942
+ * @return {object} diff the exact difference, y &minus; x.
943
+ *
944
+ * This computes z = y &minus; x exactly, reduced to (&minus;180&deg;,
945
+ * 180&deg;]; and then sets diff.s = d = round(z) and diff.t = e = z &minus;
946
+ * round(z). If d = &minus;180, then e &gt; 0; If d = 180, then e &le; 0.
947
+ */
948
+ m.AngDiff = function(x, y) {
949
+ // Compute y - x and reduce to [-180,180] accurately.
950
+ var r = m.sum(m.AngNormalize(-x), m.AngNormalize(y)),
951
+ d = m.AngNormalize(r.s),
952
+ t = r.t;
953
+ return m.sum(d === 180 && t > 0 ? -180 : d, t);
954
+ };
955
+
956
+ /**
957
+ * @summary Evaluate the sine and cosine function with the argument in
958
+ * degrees
959
+ * @param {number} x in degrees.
960
+ * @returns {object} r with r.s = sin(x) and r.c = cos(x).
961
+ */
962
+ m.sincosd = function(x) {
963
+ // In order to minimize round-off errors, this function exactly reduces
964
+ // the argument to the range [-45, 45] before converting it to radians.
965
+ var r, q, s, c, sinx, cosx;
966
+ r = x % 360;
967
+ q = Math.floor(r / 90 + 0.5);
968
+ r -= 90 * q;
969
+ // now abs(r) <= 45
970
+ r *= this.degree;
971
+ // Possibly could call the gnu extension sincos
972
+ s = Math.sin(r); c = Math.cos(r);
973
+ switch (q & 3) {
974
+ case 0: sinx = s; cosx = c; break;
975
+ case 1: sinx = c; cosx = -s; break;
976
+ case 2: sinx = -s; cosx = -c; break;
977
+ default: sinx = -c; cosx = s; break; // case 3
978
+ }
979
+ if (x !== 0) { sinx += 0; cosx += 0; }
980
+ return {s: sinx, c: cosx};
981
+ };
982
+
983
+ /**
984
+ * @summary Evaluate the atan2 function with the result in degrees
985
+ * @param {number} y
986
+ * @param {number} x
987
+ * @returns atan2(y, x) in degrees, in the range (&minus;180&deg;
988
+ * 180&deg;].
989
+ */
990
+ m.atan2d = function(y, x) {
991
+ // In order to minimize round-off errors, this function rearranges the
992
+ // arguments so that result of atan2 is in the range [-pi/4, pi/4] before
993
+ // converting it to degrees and mapping the result to the correct
994
+ // quadrant.
995
+ var q = 0, t, ang;
996
+ if (Math.abs(y) > Math.abs(x)) { t = x; x = y; y = t; q = 2; }
997
+ if (x < 0) { x = -x; ++q; }
998
+ // here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
999
+ ang = Math.atan2(y, x) / this.degree;
1000
+ switch (q) {
1001
+ // Note that atan2d(-0.0, 1.0) will return -0. However, we expect that
1002
+ // atan2d will not be called with y = -0. If need be, include
1003
+ //
1004
+ // case 0: ang = 0 + ang; break;
1005
+ //
1006
+ // and handle mpfr as in AngRound.
1007
+ case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
1008
+ case 2: ang = 90 - ang; break;
1009
+ case 3: ang = -90 + ang; break;
1010
+ }
1011
+ return ang;
1012
+ };
1013
+ })(GeographicLib.Math);
1014
+
1015
+ (function(
1016
+ /**
1017
+ * @exports GeographicLib/Accumulator
1018
+ * @description Accurate summation via the
1019
+ * {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class
1020
+ * (mainly for internal use).
1021
+ */
1022
+ a, m) {
1023
+
1024
+ /**
1025
+ * @class
1026
+ * @summary Accurate summation of many numbers.
1027
+ * @classdesc This allows many numbers to be added together with twice the
1028
+ * normal precision. In the documentation of the member functions, sum
1029
+ * stands for the value currently held in the accumulator.
1030
+ * @param {number | Accumulator} [y = 0] set sum = y.
1031
+ */
1032
+ a.Accumulator = function(y) {
1033
+ this.Set(y);
1034
+ };
1035
+
1036
+ /**
1037
+ * @summary Set the accumulator to a number.
1038
+ * @param {number | Accumulator} [y = 0] set sum = y.
1039
+ */
1040
+ a.Accumulator.prototype.Set = function(y) {
1041
+ if (!y) y = 0;
1042
+ if (y.constructor === a.Accumulator) {
1043
+ this._s = y._s;
1044
+ this._t = y._t;
1045
+ } else {
1046
+ this._s = y;
1047
+ this._t = 0;
1048
+ }
1049
+ };
1050
+
1051
+ /**
1052
+ * @summary Add a number to the accumulator.
1053
+ * @param {number} [y = 0] set sum += y.
1054
+ */
1055
+ a.Accumulator.prototype.Add = function(y) {
1056
+ // Here's Shewchuk's solution...
1057
+ // Accumulate starting at least significant end
1058
+ var u = m.sum(y, this._t),
1059
+ v = m.sum(u.s, this._s);
1060
+ u = u.t;
1061
+ this._s = v.s;
1062
+ this._t = v.t;
1063
+ // Start is _s, _t decreasing and non-adjacent. Sum is now (s + t + u)
1064
+ // exactly with s, t, u non-adjacent and in decreasing order (except
1065
+ // for possible zeros). The following code tries to normalize the
1066
+ // result. Ideally, we want _s = round(s+t+u) and _u = round(s+t+u -
1067
+ // _s). The follow does an approximate job (and maintains the
1068
+ // decreasing non-adjacent property). Here are two "failures" using
1069
+ // 3-bit floats:
1070
+ //
1071
+ // Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp
1072
+ // [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3
1073
+ //
1074
+ // Case 2: _s+_t is not as close to s+t+u as it shold be
1075
+ // [64, 5] + 4 -> [64, 8, 1] -> [64, 8] = 72 (off by 1)
1076
+ // should be [80, -7] = 73 (exact)
1077
+ //
1078
+ // "Fixing" these problems is probably not worth the expense. The
1079
+ // representation inevitably leads to small errors in the accumulated
1080
+ // values. The additional errors illustrated here amount to 1 ulp of
1081
+ // the less significant word during each addition to the Accumulator
1082
+ // and an additional possible error of 1 ulp in the reported sum.
1083
+ //
1084
+ // Incidentally, the "ideal" representation described above is not
1085
+ // canonical, because _s = round(_s + _t) may not be true. For
1086
+ // example, with 3-bit floats:
1087
+ //
1088
+ // [128, 16] + 1 -> [160, -16] -- 160 = round(145).
1089
+ // But [160, 0] - 16 -> [128, 16] -- 128 = round(144).
1090
+ //
1091
+ if (this._s === 0) // This implies t == 0,
1092
+ this._s = u; // so result is u
1093
+ else
1094
+ this._t += u; // otherwise just accumulate u to t.
1095
+ };
1096
+
1097
+ /**
1098
+ * @summary Return the result of adding a number to sum (but
1099
+ * don't change sum).
1100
+ * @param {number} [y = 0] the number to be added to the sum.
1101
+ * @return sum + y.
1102
+ */
1103
+ a.Accumulator.prototype.Sum = function(y) {
1104
+ var b;
1105
+ if (!y)
1106
+ return this._s;
1107
+ else {
1108
+ b = new a.Accumulator(this);
1109
+ b.Add(y);
1110
+ return b._s;
1111
+ }
1112
+ };
1113
+
1114
+ /**
1115
+ * @summary Set sum = &minus;sum.
1116
+ */
1117
+ a.Accumulator.prototype.Negate = function() {
1118
+ this._s *= -1;
1119
+ this._t *= -1;
1120
+ };
1121
+ })(GeographicLib.Accumulator, GeographicLib.Math);
1122
+
1123
+ /**************** Geodesic.js ****************/
1124
+ /*
1125
+ * Geodesic.js
1126
+ * Transcription of Geodesic.[ch]pp into JavaScript.
1127
+ *
1128
+ * See the documentation for the C++ class. The conversion is a literal
1129
+ * conversion from C++.
1130
+ *
1131
+ * The algorithms are derived in
1132
+ *
1133
+ * Charles F. F. Karney,
1134
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
1135
+ * https://doi.org/10.1007/s00190-012-0578-z
1136
+ * Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
1137
+ *
1138
+ * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
1139
+ * under the MIT/X11 License. For more information, see
1140
+ * https://geographiclib.sourceforge.io/
1141
+ */
1142
+
1143
+ // Load AFTER Math.js
1144
+
1145
+ GeographicLib.Geodesic = {};
1146
+ GeographicLib.GeodesicLine = {};
1147
+ GeographicLib.PolygonArea = {};
1148
+
1149
+ (function(
1150
+ /**
1151
+ * @exports GeographicLib/Geodesic
1152
+ * @description Solve geodesic problems via the
1153
+ * {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
1154
+ */
1155
+ g, l, p, m, c) {
1156
+
1157
+ var GEOGRAPHICLIB_GEODESIC_ORDER = 6,
1158
+ nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER,
1159
+ nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER,
1160
+ nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER,
1161
+ nA3x_ = nA3_,
1162
+ nC3x_, nC4x_,
1163
+ maxit1_ = 20,
1164
+ maxit2_ = maxit1_ + m.digits + 10,
1165
+ tol0_ = m.epsilon,
1166
+ tol1_ = 200 * tol0_,
1167
+ tol2_ = Math.sqrt(tol0_),
1168
+ tolb_ = tol0_ * tol1_,
1169
+ xthresh_ = 1000 * tol2_,
1170
+ CAP_NONE = 0,
1171
+ CAP_ALL = 0x1F,
1172
+ CAP_MASK = CAP_ALL,
1173
+ OUT_ALL = 0x7F80,
1174
+ astroid,
1175
+ A1m1f_coeff, C1f_coeff, C1pf_coeff,
1176
+ A2m1f_coeff, C2f_coeff,
1177
+ A3_coeff, C3_coeff, C4_coeff;
1178
+
1179
+ g.tiny_ = Math.sqrt(Number.MIN_VALUE);
1180
+ g.nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
1181
+ g.nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER;
1182
+ g.nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
1183
+ g.nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
1184
+ g.nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER;
1185
+ nC3x_ = (g.nC3_ * (g.nC3_ - 1)) / 2;
1186
+ nC4x_ = (g.nC4_ * (g.nC4_ + 1)) / 2;
1187
+ g.CAP_C1 = 1<<0;
1188
+ g.CAP_C1p = 1<<1;
1189
+ g.CAP_C2 = 1<<2;
1190
+ g.CAP_C3 = 1<<3;
1191
+ g.CAP_C4 = 1<<4;
1192
+
1193
+ g.NONE = 0;
1194
+ g.ARC = 1<<6;
1195
+ g.LATITUDE = 1<<7 | CAP_NONE;
1196
+ g.LONGITUDE = 1<<8 | g.CAP_C3;
1197
+ g.AZIMUTH = 1<<9 | CAP_NONE;
1198
+ g.DISTANCE = 1<<10 | g.CAP_C1;
1199
+ g.STANDARD = g.LATITUDE | g.LONGITUDE | g.AZIMUTH | g.DISTANCE;
1200
+ g.DISTANCE_IN = 1<<11 | g.CAP_C1 | g.CAP_C1p;
1201
+ g.REDUCEDLENGTH = 1<<12 | g.CAP_C1 | g.CAP_C2;
1202
+ g.GEODESICSCALE = 1<<13 | g.CAP_C1 | g.CAP_C2;
1203
+ g.AREA = 1<<14 | g.CAP_C4;
1204
+ g.ALL = OUT_ALL| CAP_ALL;
1205
+ g.LONG_UNROLL = 1<<15;
1206
+ g.OUT_MASK = OUT_ALL| g.LONG_UNROLL;
1207
+
1208
+ g.SinCosSeries = function(sinp, sinx, cosx, c) {
1209
+ // Evaluate
1210
+ // y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) :
1211
+ // sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
1212
+ // using Clenshaw summation. N.B. c[0] is unused for sin series
1213
+ // Approx operation count = (n + 5) mult and (2 * n + 2) add
1214
+ var k = c.length, // Point to one beyond last element
1215
+ n = k - (sinp ? 1 : 0),
1216
+ ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
1217
+ y0 = n & 1 ? c[--k] : 0, y1 = 0; // accumulators for sum
1218
+ // Now n is even
1219
+ n = Math.floor(n/2);
1220
+ while (n--) {
1221
+ // Unroll loop x 2, so accumulators return to their original role
1222
+ y1 = ar * y0 - y1 + c[--k];
1223
+ y0 = ar * y1 - y0 + c[--k];
1224
+ }
1225
+ return (sinp ? 2 * sinx * cosx * y0 : // sin(2 * x) * y0
1226
+ cosx * (y0 - y1)); // cos(x) * (y0 - y1)
1227
+ };
1228
+
1229
+ astroid = function(x, y) {
1230
+ // Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive
1231
+ // root k. This solution is adapted from Geocentric::Reverse.
1232
+ var k,
1233
+ p = m.sq(x),
1234
+ q = m.sq(y),
1235
+ r = (p + q - 1) / 6,
1236
+ S, r2, r3, disc, u, T3, T, ang, v, uv, w;
1237
+ if ( !(q === 0 && r <= 0) ) {
1238
+ // Avoid possible division by zero when r = 0 by multiplying
1239
+ // equations for s and t by r^3 and r, resp.
1240
+ S = p * q / 4; // S = r^3 * s
1241
+ r2 = m.sq(r);
1242
+ r3 = r * r2;
1243
+ // The discriminant of the quadratic equation for T3. This is
1244
+ // zero on the evolute curve p^(1/3)+q^(1/3) = 1
1245
+ disc = S * (S + 2 * r3);
1246
+ u = r;
1247
+ if (disc >= 0) {
1248
+ T3 = S + r3;
1249
+ // Pick the sign on the sqrt to maximize abs(T3). This
1250
+ // minimizes loss of precision due to cancellation. The
1251
+ // result is unchanged because of the way the T is used
1252
+ // in definition of u.
1253
+ T3 += T3 < 0 ? -Math.sqrt(disc) : Math.sqrt(disc); // T3 = (r * t)^3
1254
+ // N.B. cbrt always returns the real root. cbrt(-8) = -2.
1255
+ T = m.cbrt(T3); // T = r * t
1256
+ // T can be zero; but then r2 / T -> 0.
1257
+ u += T + (T !== 0 ? r2 / T : 0);
1258
+ } else {
1259
+ // T is complex, but the way u is defined the result is real.
1260
+ ang = Math.atan2(Math.sqrt(-disc), -(S + r3));
1261
+ // There are three possible cube roots. We choose the
1262
+ // root which avoids cancellation. Note that disc < 0
1263
+ // implies that r < 0.
1264
+ u += 2 * r * Math.cos(ang / 3);
1265
+ }
1266
+ v = Math.sqrt(m.sq(u) + q); // guaranteed positive
1267
+ // Avoid loss of accuracy when u < 0.
1268
+ uv = u < 0 ? q / (v - u) : u + v; // u+v, guaranteed positive
1269
+ w = (uv - q) / (2 * v); // positive?
1270
+ // Rearrange expression for k to avoid loss of accuracy due to
1271
+ // subtraction. Division by 0 not possible because uv > 0, w >= 0.
1272
+ k = uv / (Math.sqrt(uv + m.sq(w)) + w); // guaranteed positive
1273
+ } else { // q == 0 && r <= 0
1274
+ // y = 0 with |x| <= 1. Handle this case directly.
1275
+ // for y small, positive root is k = abs(y)/sqrt(1-x^2)
1276
+ k = 0;
1277
+ }
1278
+ return k;
1279
+ };
1280
+
1281
+ A1m1f_coeff = [
1282
+ // (1-eps)*A1-1, polynomial in eps2 of order 3
1283
+ +1, 4, 64, 0, 256
1284
+ ];
1285
+
1286
+ // The scale factor A1-1 = mean value of (d/dsigma)I1 - 1
1287
+ g.A1m1f = function(eps) {
1288
+ var p = Math.floor(nA1_/2),
1289
+ t = m.polyval(p, A1m1f_coeff, 0, m.sq(eps)) / A1m1f_coeff[p + 1];
1290
+ return (t + eps) / (1 - eps);
1291
+ };
1292
+
1293
+ C1f_coeff = [
1294
+ // C1[1]/eps^1, polynomial in eps2 of order 2
1295
+ -1, 6, -16, 32,
1296
+ // C1[2]/eps^2, polynomial in eps2 of order 2
1297
+ -9, 64, -128, 2048,
1298
+ // C1[3]/eps^3, polynomial in eps2 of order 1
1299
+ +9, -16, 768,
1300
+ // C1[4]/eps^4, polynomial in eps2 of order 1
1301
+ +3, -5, 512,
1302
+ // C1[5]/eps^5, polynomial in eps2 of order 0
1303
+ -7, 1280,
1304
+ // C1[6]/eps^6, polynomial in eps2 of order 0
1305
+ -7, 2048
1306
+ ];
1307
+
1308
+ // The coefficients C1[l] in the Fourier expansion of B1
1309
+ g.C1f = function(eps, c) {
1310
+ var eps2 = m.sq(eps),
1311
+ d = eps,
1312
+ o = 0,
1313
+ l, p;
1314
+ for (l = 1; l <= g.nC1_; ++l) { // l is index of C1p[l]
1315
+ p = Math.floor((g.nC1_ - l) / 2); // order of polynomial in eps^2
1316
+ c[l] = d * m.polyval(p, C1f_coeff, o, eps2) / C1f_coeff[o + p + 1];
1317
+ o += p + 2;
1318
+ d *= eps;
1319
+ }
1320
+ };
1321
+
1322
+ C1pf_coeff = [
1323
+ // C1p[1]/eps^1, polynomial in eps2 of order 2
1324
+ +205, -432, 768, 1536,
1325
+ // C1p[2]/eps^2, polynomial in eps2 of order 2
1326
+ +4005, -4736, 3840, 12288,
1327
+ // C1p[3]/eps^3, polynomial in eps2 of order 1
1328
+ -225, 116, 384,
1329
+ // C1p[4]/eps^4, polynomial in eps2 of order 1
1330
+ -7173, 2695, 7680,
1331
+ // C1p[5]/eps^5, polynomial in eps2 of order 0
1332
+ +3467, 7680,
1333
+ // C1p[6]/eps^6, polynomial in eps2 of order 0
1334
+ +38081, 61440
1335
+ ];
1336
+
1337
+ // The coefficients C1p[l] in the Fourier expansion of B1p
1338
+ g.C1pf = function(eps, c) {
1339
+ var eps2 = m.sq(eps),
1340
+ d = eps,
1341
+ o = 0,
1342
+ l, p;
1343
+ for (l = 1; l <= g.nC1p_; ++l) { // l is index of C1p[l]
1344
+ p = Math.floor((g.nC1p_ - l) / 2); // order of polynomial in eps^2
1345
+ c[l] = d * m.polyval(p, C1pf_coeff, o, eps2) / C1pf_coeff[o + p + 1];
1346
+ o += p + 2;
1347
+ d *= eps;
1348
+ }
1349
+ };
1350
+
1351
+ A2m1f_coeff = [
1352
+ // (eps+1)*A2-1, polynomial in eps2 of order 3
1353
+ -11, -28, -192, 0, 256
1354
+ ];
1355
+
1356
+ // The scale factor A2-1 = mean value of (d/dsigma)I2 - 1
1357
+ g.A2m1f = function(eps) {
1358
+ var p = Math.floor(nA2_/2),
1359
+ t = m.polyval(p, A2m1f_coeff, 0, m.sq(eps)) / A2m1f_coeff[p + 1];
1360
+ return (t - eps) / (1 + eps);
1361
+ };
1362
+
1363
+ C2f_coeff = [
1364
+ // C2[1]/eps^1, polynomial in eps2 of order 2
1365
+ +1, 2, 16, 32,
1366
+ // C2[2]/eps^2, polynomial in eps2 of order 2
1367
+ +35, 64, 384, 2048,
1368
+ // C2[3]/eps^3, polynomial in eps2 of order 1
1369
+ +15, 80, 768,
1370
+ // C2[4]/eps^4, polynomial in eps2 of order 1
1371
+ +7, 35, 512,
1372
+ // C2[5]/eps^5, polynomial in eps2 of order 0
1373
+ +63, 1280,
1374
+ // C2[6]/eps^6, polynomial in eps2 of order 0
1375
+ +77, 2048
1376
+ ];
1377
+
1378
+ // The coefficients C2[l] in the Fourier expansion of B2
1379
+ g.C2f = function(eps, c) {
1380
+ var eps2 = m.sq(eps),
1381
+ d = eps,
1382
+ o = 0,
1383
+ l, p;
1384
+ for (l = 1; l <= g.nC2_; ++l) { // l is index of C2[l]
1385
+ p = Math.floor((g.nC2_ - l) / 2); // order of polynomial in eps^2
1386
+ c[l] = d * m.polyval(p, C2f_coeff, o, eps2) / C2f_coeff[o + p + 1];
1387
+ o += p + 2;
1388
+ d *= eps;
1389
+ }
1390
+ };
1391
+
1392
+ /**
1393
+ * @class
1394
+ * @property {number} a the equatorial radius (meters).
1395
+ * @property {number} f the flattening.
1396
+ * @summary Initialize a Geodesic object for a specific ellipsoid.
1397
+ * @classdesc Performs geodesic calculations on an ellipsoid of revolution.
1398
+ * The routines for solving the direct and inverse problems return an
1399
+ * object with some of the following fields set: lat1, lon1, azi1, lat2,
1400
+ * lon2, azi2, s12, a12, m12, M12, M21, S12. See {@tutorial 2-interface},
1401
+ * "The results".
1402
+ * @example
1403
+ * var GeographicLib = require("geographiclib"),
1404
+ * geod = GeographicLib.Geodesic.WGS84;
1405
+ * var inv = geod.Inverse(1,2,3,4);
1406
+ * console.log("lat1 = " + inv.lat1 + ", lon1 = " + inv.lon1 +
1407
+ * ", lat2 = " + inv.lat2 + ", lon2 = " + inv.lon2 +
1408
+ * ",\nazi1 = " + inv.azi1 + ", azi2 = " + inv.azi2 +
1409
+ * ", s12 = " + inv.s12);
1410
+ * @param {number} a the equatorial radius of the ellipsoid (meters).
1411
+ * @param {number} f the flattening of the ellipsoid. Setting f = 0 gives
1412
+ * a sphere (on which geodesics are great circles). Negative f gives a
1413
+ * prolate ellipsoid.
1414
+ * @throws an error if the parameters are illegal.
1415
+ */
1416
+ g.Geodesic = function(a, f) {
1417
+ this.a = a;
1418
+ this.f = f;
1419
+ this._f1 = 1 - this.f;
1420
+ this._e2 = this.f * (2 - this.f);
1421
+ this._ep2 = this._e2 / m.sq(this._f1); // e2 / (1 - e2)
1422
+ this._n = this.f / ( 2 - this.f);
1423
+ this._b = this.a * this._f1;
1424
+ // authalic radius squared
1425
+ this._c2 = (m.sq(this.a) + m.sq(this._b) *
1426
+ (this._e2 === 0 ? 1 :
1427
+ (this._e2 > 0 ? m.atanh(Math.sqrt(this._e2)) :
1428
+ Math.atan(Math.sqrt(-this._e2))) /
1429
+ Math.sqrt(Math.abs(this._e2))))/2;
1430
+ // The sig12 threshold for "really short". Using the auxiliary sphere
1431
+ // solution with dnm computed at (bet1 + bet2) / 2, the relative error in
1432
+ // the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
1433
+ // (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a given
1434
+ // f and sig12, the max error occurs for lines near the pole. If the old
1435
+ // rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
1436
+ // by a factor of 2.) Setting this equal to epsilon gives sig12 = etol2.
1437
+ // Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
1438
+ // abs(f)) stops etol2 getting too large in the nearly spherical case.
1439
+ this._etol2 = 0.1 * tol2_ /
1440
+ Math.sqrt( Math.max(0.001, Math.abs(this.f)) *
1441
+ Math.min(1.0, 1 - this.f/2) / 2 );
1442
+ if (!(isFinite(this.a) && this.a > 0))
1443
+ throw new Error("Equatorial radius is not positive");
1444
+ if (!(isFinite(this._b) && this._b > 0))
1445
+ throw new Error("Polar semi-axis is not positive");
1446
+ this._A3x = new Array(nA3x_);
1447
+ this._C3x = new Array(nC3x_);
1448
+ this._C4x = new Array(nC4x_);
1449
+ this.A3coeff();
1450
+ this.C3coeff();
1451
+ this.C4coeff();
1452
+ };
1453
+
1454
+ A3_coeff = [
1455
+ // A3, coeff of eps^5, polynomial in n of order 0
1456
+ -3, 128,
1457
+ // A3, coeff of eps^4, polynomial in n of order 1
1458
+ -2, -3, 64,
1459
+ // A3, coeff of eps^3, polynomial in n of order 2
1460
+ -1, -3, -1, 16,
1461
+ // A3, coeff of eps^2, polynomial in n of order 2
1462
+ +3, -1, -2, 8,
1463
+ // A3, coeff of eps^1, polynomial in n of order 1
1464
+ +1, -1, 2,
1465
+ // A3, coeff of eps^0, polynomial in n of order 0
1466
+ +1, 1
1467
+ ];
1468
+
1469
+ // The scale factor A3 = mean value of (d/dsigma)I3
1470
+ g.Geodesic.prototype.A3coeff = function() {
1471
+ var o = 0, k = 0,
1472
+ j, p;
1473
+ for (j = nA3_ - 1; j >= 0; --j) { // coeff of eps^j
1474
+ p = Math.min(nA3_ - j - 1, j); // order of polynomial in n
1475
+ this._A3x[k++] = m.polyval(p, A3_coeff, o, this._n) /
1476
+ A3_coeff[o + p + 1];
1477
+ o += p + 2;
1478
+ }
1479
+ };
1480
+
1481
+ C3_coeff = [
1482
+ // C3[1], coeff of eps^5, polynomial in n of order 0
1483
+ +3, 128,
1484
+ // C3[1], coeff of eps^4, polynomial in n of order 1
1485
+ +2, 5, 128,
1486
+ // C3[1], coeff of eps^3, polynomial in n of order 2
1487
+ -1, 3, 3, 64,
1488
+ // C3[1], coeff of eps^2, polynomial in n of order 2
1489
+ -1, 0, 1, 8,
1490
+ // C3[1], coeff of eps^1, polynomial in n of order 1
1491
+ -1, 1, 4,
1492
+ // C3[2], coeff of eps^5, polynomial in n of order 0
1493
+ +5, 256,
1494
+ // C3[2], coeff of eps^4, polynomial in n of order 1
1495
+ +1, 3, 128,
1496
+ // C3[2], coeff of eps^3, polynomial in n of order 2
1497
+ -3, -2, 3, 64,
1498
+ // C3[2], coeff of eps^2, polynomial in n of order 2
1499
+ +1, -3, 2, 32,
1500
+ // C3[3], coeff of eps^5, polynomial in n of order 0
1501
+ +7, 512,
1502
+ // C3[3], coeff of eps^4, polynomial in n of order 1
1503
+ -10, 9, 384,
1504
+ // C3[3], coeff of eps^3, polynomial in n of order 2
1505
+ +5, -9, 5, 192,
1506
+ // C3[4], coeff of eps^5, polynomial in n of order 0
1507
+ +7, 512,
1508
+ // C3[4], coeff of eps^4, polynomial in n of order 1
1509
+ -14, 7, 512,
1510
+ // C3[5], coeff of eps^5, polynomial in n of order 0
1511
+ +21, 2560
1512
+ ];
1513
+
1514
+ // The coefficients C3[l] in the Fourier expansion of B3
1515
+ g.Geodesic.prototype.C3coeff = function() {
1516
+ var o = 0, k = 0,
1517
+ l, j, p;
1518
+ for (l = 1; l < g.nC3_; ++l) { // l is index of C3[l]
1519
+ for (j = g.nC3_ - 1; j >= l; --j) { // coeff of eps^j
1520
+ p = Math.min(g.nC3_ - j - 1, j); // order of polynomial in n
1521
+ this._C3x[k++] = m.polyval(p, C3_coeff, o, this._n) /
1522
+ C3_coeff[o + p + 1];
1523
+ o += p + 2;
1524
+ }
1525
+ }
1526
+ };
1527
+
1528
+ C4_coeff = [
1529
+ // C4[0], coeff of eps^5, polynomial in n of order 0
1530
+ +97, 15015,
1531
+ // C4[0], coeff of eps^4, polynomial in n of order 1
1532
+ +1088, 156, 45045,
1533
+ // C4[0], coeff of eps^3, polynomial in n of order 2
1534
+ -224, -4784, 1573, 45045,
1535
+ // C4[0], coeff of eps^2, polynomial in n of order 3
1536
+ -10656, 14144, -4576, -858, 45045,
1537
+ // C4[0], coeff of eps^1, polynomial in n of order 4
1538
+ +64, 624, -4576, 6864, -3003, 15015,
1539
+ // C4[0], coeff of eps^0, polynomial in n of order 5
1540
+ +100, 208, 572, 3432, -12012, 30030, 45045,
1541
+ // C4[1], coeff of eps^5, polynomial in n of order 0
1542
+ +1, 9009,
1543
+ // C4[1], coeff of eps^4, polynomial in n of order 1
1544
+ -2944, 468, 135135,
1545
+ // C4[1], coeff of eps^3, polynomial in n of order 2
1546
+ +5792, 1040, -1287, 135135,
1547
+ // C4[1], coeff of eps^2, polynomial in n of order 3
1548
+ +5952, -11648, 9152, -2574, 135135,
1549
+ // C4[1], coeff of eps^1, polynomial in n of order 4
1550
+ -64, -624, 4576, -6864, 3003, 135135,
1551
+ // C4[2], coeff of eps^5, polynomial in n of order 0
1552
+ +8, 10725,
1553
+ // C4[2], coeff of eps^4, polynomial in n of order 1
1554
+ +1856, -936, 225225,
1555
+ // C4[2], coeff of eps^3, polynomial in n of order 2
1556
+ -8448, 4992, -1144, 225225,
1557
+ // C4[2], coeff of eps^2, polynomial in n of order 3
1558
+ -1440, 4160, -4576, 1716, 225225,
1559
+ // C4[3], coeff of eps^5, polynomial in n of order 0
1560
+ -136, 63063,
1561
+ // C4[3], coeff of eps^4, polynomial in n of order 1
1562
+ +1024, -208, 105105,
1563
+ // C4[3], coeff of eps^3, polynomial in n of order 2
1564
+ +3584, -3328, 1144, 315315,
1565
+ // C4[4], coeff of eps^5, polynomial in n of order 0
1566
+ -128, 135135,
1567
+ // C4[4], coeff of eps^4, polynomial in n of order 1
1568
+ -2560, 832, 405405,
1569
+ // C4[5], coeff of eps^5, polynomial in n of order 0
1570
+ +128, 99099
1571
+ ];
1572
+
1573
+ g.Geodesic.prototype.C4coeff = function() {
1574
+ var o = 0, k = 0,
1575
+ l, j, p;
1576
+ for (l = 0; l < g.nC4_; ++l) { // l is index of C4[l]
1577
+ for (j = g.nC4_ - 1; j >= l; --j) { // coeff of eps^j
1578
+ p = g.nC4_ - j - 1; // order of polynomial in n
1579
+ this._C4x[k++] = m.polyval(p, C4_coeff, o, this._n) /
1580
+ C4_coeff[o + p + 1];
1581
+ o += p + 2;
1582
+ }
1583
+ }
1584
+ };
1585
+
1586
+ g.Geodesic.prototype.A3f = function(eps) {
1587
+ // Evaluate A3
1588
+ return m.polyval(nA3x_ - 1, this._A3x, 0, eps);
1589
+ };
1590
+
1591
+ g.Geodesic.prototype.C3f = function(eps, c) {
1592
+ // Evaluate C3 coeffs
1593
+ // Elements c[1] thru c[nC3_ - 1] are set
1594
+ var mult = 1,
1595
+ o = 0,
1596
+ l, p;
1597
+ for (l = 1; l < g.nC3_; ++l) { // l is index of C3[l]
1598
+ p = g.nC3_ - l - 1; // order of polynomial in eps
1599
+ mult *= eps;
1600
+ c[l] = mult * m.polyval(p, this._C3x, o, eps);
1601
+ o += p + 1;
1602
+ }
1603
+ };
1604
+
1605
+ g.Geodesic.prototype.C4f = function(eps, c) {
1606
+ // Evaluate C4 coeffs
1607
+ // Elements c[0] thru c[g.nC4_ - 1] are set
1608
+ var mult = 1,
1609
+ o = 0,
1610
+ l, p;
1611
+ for (l = 0; l < g.nC4_; ++l) { // l is index of C4[l]
1612
+ p = g.nC4_ - l - 1; // order of polynomial in eps
1613
+ c[l] = mult * m.polyval(p, this._C4x, o, eps);
1614
+ o += p + 1;
1615
+ mult *= eps;
1616
+ }
1617
+ };
1618
+
1619
+ // return s12b, m12b, m0, M12, M21
1620
+ g.Geodesic.prototype.Lengths = function(eps, sig12,
1621
+ ssig1, csig1, dn1, ssig2, csig2, dn2,
1622
+ cbet1, cbet2, outmask,
1623
+ C1a, C2a) {
1624
+ // Return m12b = (reduced length)/_b; also calculate s12b =
1625
+ // distance/_b, and m0 = coefficient of secular term in
1626
+ // expression for reduced length.
1627
+ outmask &= g.OUT_MASK;
1628
+ var vals = {},
1629
+ m0x = 0, J12 = 0, A1 = 0, A2 = 0,
1630
+ B1, B2, l, csig12, t;
1631
+ if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
1632
+ A1 = g.A1m1f(eps);
1633
+ g.C1f(eps, C1a);
1634
+ if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
1635
+ A2 = g.A2m1f(eps);
1636
+ g.C2f(eps, C2a);
1637
+ m0x = A1 - A2;
1638
+ A2 = 1 + A2;
1639
+ }
1640
+ A1 = 1 + A1;
1641
+ }
1642
+ if (outmask & g.DISTANCE) {
1643
+ B1 = g.SinCosSeries(true, ssig2, csig2, C1a) -
1644
+ g.SinCosSeries(true, ssig1, csig1, C1a);
1645
+ // Missing a factor of _b
1646
+ vals.s12b = A1 * (sig12 + B1);
1647
+ if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
1648
+ B2 = g.SinCosSeries(true, ssig2, csig2, C2a) -
1649
+ g.SinCosSeries(true, ssig1, csig1, C2a);
1650
+ J12 = m0x * sig12 + (A1 * B1 - A2 * B2);
1651
+ }
1652
+ } else if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
1653
+ // Assume here that nC1_ >= nC2_
1654
+ for (l = 1; l <= g.nC2_; ++l)
1655
+ C2a[l] = A1 * C1a[l] - A2 * C2a[l];
1656
+ J12 = m0x * sig12 + (g.SinCosSeries(true, ssig2, csig2, C2a) -
1657
+ g.SinCosSeries(true, ssig1, csig1, C2a));
1658
+ }
1659
+ if (outmask & g.REDUCEDLENGTH) {
1660
+ vals.m0 = m0x;
1661
+ // Missing a factor of _b.
1662
+ // Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
1663
+ // accurate cancellation in the case of coincident points.
1664
+ vals.m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
1665
+ csig1 * csig2 * J12;
1666
+ }
1667
+ if (outmask & g.GEODESICSCALE) {
1668
+ csig12 = csig1 * csig2 + ssig1 * ssig2;
1669
+ t = this._ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
1670
+ vals.M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
1671
+ vals.M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
1672
+ }
1673
+ return vals;
1674
+ };
1675
+
1676
+ // return sig12, salp1, calp1, salp2, calp2, dnm
1677
+ g.Geodesic.prototype.InverseStart = function(sbet1, cbet1, dn1,
1678
+ sbet2, cbet2, dn2,
1679
+ lam12, slam12, clam12,
1680
+ C1a, C2a) {
1681
+ // Return a starting point for Newton's method in salp1 and calp1
1682
+ // (function value is -1). If Newton's method doesn't need to be
1683
+ // used, return also salp2 and calp2 and function value is sig12.
1684
+ // salp2, calp2 only updated if return val >= 0.
1685
+ var vals = {},
1686
+ // bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
1687
+ sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
1688
+ cbet12 = cbet2 * cbet1 + sbet2 * sbet1,
1689
+ sbet12a, shortline, omg12, sbetm2, somg12, comg12, t, ssig12, csig12,
1690
+ x, y, lamscale, betscale, k2, eps, cbet12a, bet12a, m12b, m0, nvals,
1691
+ k, omg12a, lam12x;
1692
+ vals.sig12 = -1; // Return value
1693
+ // Volatile declaration needed to fix inverse cases
1694
+ // 88.202499451857 0 -88.202499451857 179.981022032992859592
1695
+ // 89.262080389218 0 -89.262080389218 179.992207982775375662
1696
+ // 89.333123580033 0 -89.333123580032997687 179.99295812360148422
1697
+ // which otherwise fail with g++ 4.4.4 x86 -O3
1698
+ sbet12a = sbet2 * cbet1;
1699
+ sbet12a += cbet2 * sbet1;
1700
+
1701
+ shortline = cbet12 >= 0 && sbet12 < 0.5 && cbet2 * lam12 < 0.5;
1702
+ if (shortline) {
1703
+ sbetm2 = m.sq(sbet1 + sbet2);
1704
+ // sin((bet1+bet2)/2)^2
1705
+ // = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
1706
+ sbetm2 /= sbetm2 + m.sq(cbet1 + cbet2);
1707
+ vals.dnm = Math.sqrt(1 + this._ep2 * sbetm2);
1708
+ omg12 = lam12 / (this._f1 * vals.dnm);
1709
+ somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
1710
+ } else {
1711
+ somg12 = slam12; comg12 = clam12;
1712
+ }
1713
+
1714
+ vals.salp1 = cbet2 * somg12;
1715
+ vals.calp1 = comg12 >= 0 ?
1716
+ sbet12 + cbet2 * sbet1 * m.sq(somg12) / (1 + comg12) :
1717
+ sbet12a - cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
1718
+
1719
+ ssig12 = m.hypot(vals.salp1, vals.calp1);
1720
+ csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
1721
+ if (shortline && ssig12 < this._etol2) {
1722
+ // really short lines
1723
+ vals.salp2 = cbet1 * somg12;
1724
+ vals.calp2 = sbet12 - cbet1 * sbet2 *
1725
+ (comg12 >= 0 ? m.sq(somg12) / (1 + comg12) : 1 - comg12);
1726
+ // norm(vals.salp2, vals.calp2);
1727
+ t = m.hypot(vals.salp2, vals.calp2); vals.salp2 /= t; vals.calp2 /= t;
1728
+ // Set return value
1729
+ vals.sig12 = Math.atan2(ssig12, csig12);
1730
+ } else if (Math.abs(this._n) > 0.1 || // Skip astroid calc if too eccentric
1731
+ csig12 >= 0 ||
1732
+ ssig12 >= 6 * Math.abs(this._n) * Math.PI * m.sq(cbet1)) {
1733
+ // Nothing to do, zeroth order spherical approximation is OK
1734
+ } else {
1735
+ // Scale lam12 and bet2 to x, y coordinate system where antipodal
1736
+ // point is at origin and singular point is at y = 0, x = -1.
1737
+ lam12x = Math.atan2(-slam12, -clam12); // lam12 - pi
1738
+ if (this.f >= 0) { // In fact f == 0 does not get here
1739
+ // x = dlong, y = dlat
1740
+ k2 = m.sq(sbet1) * this._ep2;
1741
+ eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
1742
+ lamscale = this.f * cbet1 * this.A3f(eps) * Math.PI;
1743
+ betscale = lamscale * cbet1;
1744
+
1745
+ x = lam12x / lamscale;
1746
+ y = sbet12a / betscale;
1747
+ } else { // f < 0
1748
+ // x = dlat, y = dlong
1749
+ cbet12a = cbet2 * cbet1 - sbet2 * sbet1;
1750
+ bet12a = Math.atan2(sbet12a, cbet12a);
1751
+ // In the case of lon12 = 180, this repeats a calculation made
1752
+ // in Inverse.
1753
+ nvals = this.Lengths(this._n, Math.PI + bet12a,
1754
+ sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
1755
+ cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
1756
+ m12b = nvals.m12b; m0 = nvals.m0;
1757
+ x = -1 + m12b / (cbet1 * cbet2 * m0 * Math.PI);
1758
+ betscale = x < -0.01 ? sbet12a / x :
1759
+ -this.f * m.sq(cbet1) * Math.PI;
1760
+ lamscale = betscale / cbet1;
1761
+ y = lam12 / lamscale;
1762
+ }
1763
+
1764
+ if (y > -tol1_ && x > -1 - xthresh_) {
1765
+ // strip near cut
1766
+ if (this.f >= 0) {
1767
+ vals.salp1 = Math.min(1, -x);
1768
+ vals.calp1 = -Math.sqrt(1 - m.sq(vals.salp1));
1769
+ } else {
1770
+ vals.calp1 = Math.max(x > -tol1_ ? 0 : -1, x);
1771
+ vals.salp1 = Math.sqrt(1 - m.sq(vals.calp1));
1772
+ }
1773
+ } else {
1774
+ // Estimate alp1, by solving the astroid problem.
1775
+ //
1776
+ // Could estimate alpha1 = theta + pi/2, directly, i.e.,
1777
+ // calp1 = y/k; salp1 = -x/(1+k); for f >= 0
1778
+ // calp1 = x/(1+k); salp1 = -y/k; for f < 0 (need to check)
1779
+ //
1780
+ // However, it's better to estimate omg12 from astroid and use
1781
+ // spherical formula to compute alp1. This reduces the mean number of
1782
+ // Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
1783
+ // (min 0 max 5). The changes in the number of iterations are as
1784
+ // follows:
1785
+ //
1786
+ // change percent
1787
+ // 1 5
1788
+ // 0 78
1789
+ // -1 16
1790
+ // -2 0.6
1791
+ // -3 0.04
1792
+ // -4 0.002
1793
+ //
1794
+ // The histogram of iterations is (m = number of iterations estimating
1795
+ // alp1 directly, n = number of iterations estimating via omg12, total
1796
+ // number of trials = 148605):
1797
+ //
1798
+ // iter m n
1799
+ // 0 148 186
1800
+ // 1 13046 13845
1801
+ // 2 93315 102225
1802
+ // 3 36189 32341
1803
+ // 4 5396 7
1804
+ // 5 455 1
1805
+ // 6 56 0
1806
+ //
1807
+ // Because omg12 is near pi, estimate work with omg12a = pi - omg12
1808
+ k = astroid(x, y);
1809
+ omg12a = lamscale * ( this.f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
1810
+ somg12 = Math.sin(omg12a); comg12 = -Math.cos(omg12a);
1811
+ // Update spherical estimate of alp1 using omg12 instead of
1812
+ // lam12
1813
+ vals.salp1 = cbet2 * somg12;
1814
+ vals.calp1 = sbet12a -
1815
+ cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
1816
+ }
1817
+ }
1818
+ // Sanity check on starting guess. Backwards check allows NaN through.
1819
+ if (!(vals.salp1 <= 0.0)) {
1820
+ // norm(vals.salp1, vals.calp1);
1821
+ t = m.hypot(vals.salp1, vals.calp1); vals.salp1 /= t; vals.calp1 /= t;
1822
+ } else {
1823
+ vals.salp1 = 1; vals.calp1 = 0;
1824
+ }
1825
+ return vals;
1826
+ };
1827
+
1828
+ // return lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
1829
+ // domg12, dlam12,
1830
+ g.Geodesic.prototype.Lambda12 = function(sbet1, cbet1, dn1,
1831
+ sbet2, cbet2, dn2,
1832
+ salp1, calp1, slam120, clam120,
1833
+ diffp, C1a, C2a, C3a) {
1834
+ var vals = {},
1835
+ t, salp0, calp0,
1836
+ somg1, comg1, somg2, comg2, somg12, comg12, B312, eta, k2, nvals;
1837
+ if (sbet1 === 0 && calp1 === 0)
1838
+ // Break degeneracy of equatorial line. This case has already been
1839
+ // handled.
1840
+ calp1 = -g.tiny_;
1841
+
1842
+ // sin(alp1) * cos(bet1) = sin(alp0)
1843
+ salp0 = salp1 * cbet1;
1844
+ calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
1845
+
1846
+ // tan(bet1) = tan(sig1) * cos(alp1)
1847
+ // tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
1848
+ vals.ssig1 = sbet1; somg1 = salp0 * sbet1;
1849
+ vals.csig1 = comg1 = calp1 * cbet1;
1850
+ // norm(vals.ssig1, vals.csig1);
1851
+ t = m.hypot(vals.ssig1, vals.csig1); vals.ssig1 /= t; vals.csig1 /= t;
1852
+ // norm(somg1, comg1); -- don't need to normalize!
1853
+
1854
+ // Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
1855
+ // about this case, since this can yield singularities in the Newton
1856
+ // iteration.
1857
+ // sin(alp2) * cos(bet2) = sin(alp0)
1858
+ vals.salp2 = cbet2 !== cbet1 ? salp0 / cbet2 : salp1;
1859
+ // calp2 = sqrt(1 - sq(salp2))
1860
+ // = sqrt(sq(calp0) - sq(sbet2)) / cbet2
1861
+ // and subst for calp0 and rearrange to give (choose positive sqrt
1862
+ // to give alp2 in [0, pi/2]).
1863
+ vals.calp2 = cbet2 !== cbet1 || Math.abs(sbet2) !== -sbet1 ?
1864
+ Math.sqrt(m.sq(calp1 * cbet1) + (cbet1 < -sbet1 ?
1865
+ (cbet2 - cbet1) * (cbet1 + cbet2) :
1866
+ (sbet1 - sbet2) * (sbet1 + sbet2))) /
1867
+ cbet2 : Math.abs(calp1);
1868
+ // tan(bet2) = tan(sig2) * cos(alp2)
1869
+ // tan(omg2) = sin(alp0) * tan(sig2).
1870
+ vals.ssig2 = sbet2; somg2 = salp0 * sbet2;
1871
+ vals.csig2 = comg2 = vals.calp2 * cbet2;
1872
+ // norm(vals.ssig2, vals.csig2);
1873
+ t = m.hypot(vals.ssig2, vals.csig2); vals.ssig2 /= t; vals.csig2 /= t;
1874
+ // norm(somg2, comg2); -- don't need to normalize!
1875
+
1876
+ // sig12 = sig2 - sig1, limit to [0, pi]
1877
+ vals.sig12 = Math.atan2(Math.max(0, vals.csig1 * vals.ssig2 -
1878
+ vals.ssig1 * vals.csig2),
1879
+ vals.csig1 * vals.csig2 +
1880
+ vals.ssig1 * vals.ssig2);
1881
+
1882
+ // omg12 = omg2 - omg1, limit to [0, pi]
1883
+ somg12 = Math.max(0, comg1 * somg2 - somg1 * comg2);
1884
+ comg12 = comg1 * comg2 + somg1 * somg2;
1885
+ // eta = omg12 - lam120
1886
+ eta = Math.atan2(somg12 * clam120 - comg12 * slam120,
1887
+ comg12 * clam120 + somg12 * slam120);
1888
+ k2 = m.sq(calp0) * this._ep2;
1889
+ vals.eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
1890
+ this.C3f(vals.eps, C3a);
1891
+ B312 = (g.SinCosSeries(true, vals.ssig2, vals.csig2, C3a) -
1892
+ g.SinCosSeries(true, vals.ssig1, vals.csig1, C3a));
1893
+ vals.domg12 = -this.f * this.A3f(vals.eps) * salp0 * (vals.sig12 + B312);
1894
+ vals.lam12 = eta + vals.domg12;
1895
+ if (diffp) {
1896
+ if (vals.calp2 === 0)
1897
+ vals.dlam12 = -2 * this._f1 * dn1 / sbet1;
1898
+ else {
1899
+ nvals = this.Lengths(vals.eps, vals.sig12,
1900
+ vals.ssig1, vals.csig1, dn1,
1901
+ vals.ssig2, vals.csig2, dn2,
1902
+ cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
1903
+ vals.dlam12 = nvals.m12b;
1904
+ vals.dlam12 *= this._f1 / (vals.calp2 * cbet2);
1905
+ }
1906
+ }
1907
+ return vals;
1908
+ };
1909
+
1910
+ /**
1911
+ * @summary Solve the inverse geodesic problem.
1912
+ * @param {number} lat1 the latitude of the first point in degrees.
1913
+ * @param {number} lon1 the longitude of the first point in degrees.
1914
+ * @param {number} lat2 the latitude of the second point in degrees.
1915
+ * @param {number} lon2 the longitude of the second point in degrees.
1916
+ * @param {bitmask} [outmask = STANDARD] which results to include.
1917
+ * @returns {object} the requested results
1918
+ * @description The lat1, lon1, lat2, lon2, and a12 fields of the result are
1919
+ * always set. For details on the outmask parameter, see {@tutorial
1920
+ * 2-interface}, "The outmask and caps parameters".
1921
+ */
1922
+ g.Geodesic.prototype.Inverse = function(lat1, lon1, lat2, lon2, outmask) {
1923
+ var r, vals;
1924
+ if (!outmask) outmask = g.STANDARD;
1925
+ if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
1926
+ outmask &= g.OUT_MASK;
1927
+ r = this.InverseInt(lat1, lon1, lat2, lon2, outmask);
1928
+ vals = r.vals;
1929
+ if (outmask & g.AZIMUTH) {
1930
+ vals.azi1 = m.atan2d(r.salp1, r.calp1);
1931
+ vals.azi2 = m.atan2d(r.salp2, r.calp2);
1932
+ }
1933
+ return vals;
1934
+ };
1935
+
1936
+ g.Geodesic.prototype.InverseInt = function(lat1, lon1, lat2, lon2, outmask) {
1937
+ var vals = {},
1938
+ lon12, lon12s, lonsign, t, swapp, latsign,
1939
+ sbet1, cbet1, sbet2, cbet2, s12x, m12x,
1940
+ dn1, dn2, lam12, slam12, clam12,
1941
+ sig12, calp1, salp1, calp2, salp2, C1a, C2a, C3a, meridian, nvals,
1942
+ ssig1, csig1, ssig2, csig2, eps, omg12, dnm,
1943
+ numit, salp1a, calp1a, salp1b, calp1b,
1944
+ tripn, tripb, v, dv, dalp1, sdalp1, cdalp1, nsalp1,
1945
+ lengthmask, salp0, calp0, alp12, k2, A4, C4a, B41, B42,
1946
+ somg12, comg12, domg12, dbet1, dbet2, salp12, calp12, sdomg12, cdomg12;
1947
+ // Compute longitude difference (AngDiff does this carefully). Result is
1948
+ // in [-180, 180] but -180 is only for west-going geodesics. 180 is for
1949
+ // east-going and meridional geodesics.
1950
+ vals.lat1 = lat1 = m.LatFix(lat1); vals.lat2 = lat2 = m.LatFix(lat2);
1951
+ // If really close to the equator, treat as on equator.
1952
+ lat1 = m.AngRound(lat1);
1953
+ lat2 = m.AngRound(lat2);
1954
+ lon12 = m.AngDiff(lon1, lon2); lon12s = lon12.t; lon12 = lon12.s;
1955
+ if (outmask & g.LONG_UNROLL) {
1956
+ vals.lon1 = lon1; vals.lon2 = (lon1 + lon12) + lon12s;
1957
+ } else {
1958
+ vals.lon1 = m.AngNormalize(lon1); vals.lon2 = m.AngNormalize(lon2);
1959
+ }
1960
+ // Make longitude difference positive.
1961
+ lonsign = lon12 >= 0 ? 1 : -1;
1962
+ // If very close to being on the same half-meridian, then make it so.
1963
+ lon12 = lonsign * m.AngRound(lon12);
1964
+ lon12s = m.AngRound((180 - lon12) - lonsign * lon12s);
1965
+ lam12 = lon12 * m.degree;
1966
+ t = m.sincosd(lon12 > 90 ? lon12s : lon12);
1967
+ slam12 = t.s; clam12 = (lon12 > 90 ? -1 : 1) * t.c;
1968
+
1969
+ // Swap points so that point with higher (abs) latitude is point 1
1970
+ // If one latitude is a nan, then it becomes lat1.
1971
+ swapp = Math.abs(lat1) < Math.abs(lat2) ? -1 : 1;
1972
+ if (swapp < 0) {
1973
+ lonsign *= -1;
1974
+ t = lat1;
1975
+ lat1 = lat2;
1976
+ lat2 = t;
1977
+ // swap(lat1, lat2);
1978
+ }
1979
+ // Make lat1 <= 0
1980
+ latsign = lat1 < 0 ? 1 : -1;
1981
+ lat1 *= latsign;
1982
+ lat2 *= latsign;
1983
+ // Now we have
1984
+ //
1985
+ // 0 <= lon12 <= 180
1986
+ // -90 <= lat1 <= 0
1987
+ // lat1 <= lat2 <= -lat1
1988
+ //
1989
+ // longsign, swapp, latsign register the transformation to bring the
1990
+ // coordinates to this canonical form. In all cases, 1 means no change was
1991
+ // made. We make these transformations so that there are few cases to
1992
+ // check, e.g., on verifying quadrants in atan2. In addition, this
1993
+ // enforces some symmetries in the results returned.
1994
+
1995
+ t = m.sincosd(lat1); sbet1 = this._f1 * t.s; cbet1 = t.c;
1996
+ // norm(sbet1, cbet1);
1997
+ t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
1998
+ // Ensure cbet1 = +epsilon at poles
1999
+ cbet1 = Math.max(g.tiny_, cbet1);
2000
+
2001
+ t = m.sincosd(lat2); sbet2 = this._f1 * t.s; cbet2 = t.c;
2002
+ // norm(sbet2, cbet2);
2003
+ t = m.hypot(sbet2, cbet2); sbet2 /= t; cbet2 /= t;
2004
+ // Ensure cbet2 = +epsilon at poles
2005
+ cbet2 = Math.max(g.tiny_, cbet2);
2006
+
2007
+ // If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
2008
+ // |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
2009
+ // a better measure. This logic is used in assigning calp2 in Lambda12.
2010
+ // Sometimes these quantities vanish and in that case we force bet2 = +/-
2011
+ // bet1 exactly. An example where is is necessary is the inverse problem
2012
+ // 48.522876735459 0 -48.52287673545898293 179.599720456223079643
2013
+ // which failed with Visual Studio 10 (Release and Debug)
2014
+
2015
+ if (cbet1 < -sbet1) {
2016
+ if (cbet2 === cbet1)
2017
+ sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
2018
+ } else {
2019
+ if (Math.abs(sbet2) === -sbet1)
2020
+ cbet2 = cbet1;
2021
+ }
2022
+
2023
+ dn1 = Math.sqrt(1 + this._ep2 * m.sq(sbet1));
2024
+ dn2 = Math.sqrt(1 + this._ep2 * m.sq(sbet2));
2025
+
2026
+ // index zero elements of these arrays are unused
2027
+ C1a = new Array(g.nC1_ + 1);
2028
+ C2a = new Array(g.nC2_ + 1);
2029
+ C3a = new Array(g.nC3_);
2030
+
2031
+ meridian = lat1 === -90 || slam12 === 0;
2032
+ if (meridian) {
2033
+
2034
+ // Endpoints are on a single full meridian, so the geodesic might
2035
+ // lie on a meridian.
2036
+
2037
+ calp1 = clam12; salp1 = slam12; // Head to the target longitude
2038
+ calp2 = 1; salp2 = 0; // At the target we're heading north
2039
+
2040
+ // tan(bet) = tan(sig) * cos(alp)
2041
+ ssig1 = sbet1; csig1 = calp1 * cbet1;
2042
+ ssig2 = sbet2; csig2 = calp2 * cbet2;
2043
+
2044
+ // sig12 = sig2 - sig1
2045
+ sig12 = Math.atan2(Math.max(0, csig1 * ssig2 - ssig1 * csig2),
2046
+ csig1 * csig2 + ssig1 * ssig2);
2047
+ nvals = this.Lengths(this._n, sig12,
2048
+ ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
2049
+ outmask | g.DISTANCE | g.REDUCEDLENGTH,
2050
+ C1a, C2a);
2051
+ s12x = nvals.s12b;
2052
+ m12x = nvals.m12b;
2053
+ // Ignore m0
2054
+ if (outmask & g.GEODESICSCALE) {
2055
+ vals.M12 = nvals.M12;
2056
+ vals.M21 = nvals.M21;
2057
+ }
2058
+ // Add the check for sig12 since zero length geodesics might yield
2059
+ // m12 < 0. Test case was
2060
+ //
2061
+ // echo 20.001 0 20.001 0 | GeodSolve -i
2062
+ //
2063
+ // In fact, we will have sig12 > pi/2 for meridional geodesic
2064
+ // which is not a shortest path.
2065
+ if (sig12 < 1 || m12x >= 0) {
2066
+ // Need at least 2, to handle 90 0 90 180
2067
+ if (sig12 < 3 * g.tiny_)
2068
+ sig12 = m12x = s12x = 0;
2069
+ m12x *= this._b;
2070
+ s12x *= this._b;
2071
+ vals.a12 = sig12 / m.degree;
2072
+ } else
2073
+ // m12 < 0, i.e., prolate and too close to anti-podal
2074
+ meridian = false;
2075
+ }
2076
+
2077
+ somg12 = 2;
2078
+ if (!meridian &&
2079
+ sbet1 === 0 && // and sbet2 == 0
2080
+ (this.f <= 0 || lon12s >= this.f * 180)) {
2081
+
2082
+ // Geodesic runs along equator
2083
+ calp1 = calp2 = 0; salp1 = salp2 = 1;
2084
+ s12x = this.a * lam12;
2085
+ sig12 = omg12 = lam12 / this._f1;
2086
+ m12x = this._b * Math.sin(sig12);
2087
+ if (outmask & g.GEODESICSCALE)
2088
+ vals.M12 = vals.M21 = Math.cos(sig12);
2089
+ vals.a12 = lon12 / this._f1;
2090
+
2091
+ } else if (!meridian) {
2092
+
2093
+ // Now point1 and point2 belong within a hemisphere bounded by a
2094
+ // meridian and geodesic is neither meridional or equatorial.
2095
+
2096
+ // Figure a starting point for Newton's method
2097
+ nvals = this.InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
2098
+ lam12, slam12, clam12, C1a, C2a);
2099
+ sig12 = nvals.sig12;
2100
+ salp1 = nvals.salp1;
2101
+ calp1 = nvals.calp1;
2102
+
2103
+ if (sig12 >= 0) {
2104
+ salp2 = nvals.salp2;
2105
+ calp2 = nvals.calp2;
2106
+ // Short lines (InverseStart sets salp2, calp2, dnm)
2107
+
2108
+ dnm = nvals.dnm;
2109
+ s12x = sig12 * this._b * dnm;
2110
+ m12x = m.sq(dnm) * this._b * Math.sin(sig12 / dnm);
2111
+ if (outmask & g.GEODESICSCALE)
2112
+ vals.M12 = vals.M21 = Math.cos(sig12 / dnm);
2113
+ vals.a12 = sig12 / m.degree;
2114
+ omg12 = lam12 / (this._f1 * dnm);
2115
+ } else {
2116
+
2117
+ // Newton's method. This is a straightforward solution of f(alp1) =
2118
+ // lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
2119
+ // root in the interval (0, pi) and its derivative is positive at the
2120
+ // root. Thus f(alp) is positive for alp > alp1 and negative for alp <
2121
+ // alp1. During the course of the iteration, a range (alp1a, alp1b) is
2122
+ // maintained which brackets the root and with each evaluation of
2123
+ // f(alp) the range is shrunk if possible. Newton's method is
2124
+ // restarted whenever the derivative of f is negative (because the new
2125
+ // value of alp1 is then further from the solution) or if the new
2126
+ // estimate of alp1 lies outside (0,pi); in this case, the new starting
2127
+ // guess is taken to be (alp1a + alp1b) / 2.
2128
+ numit = 0;
2129
+ // Bracketing range
2130
+ salp1a = g.tiny_; calp1a = 1; salp1b = g.tiny_; calp1b = -1;
2131
+ for (tripn = false, tripb = false; numit < maxit2_; ++numit) {
2132
+ // the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
2133
+ // WGS84 and random input: mean = 2.85, sd = 0.60
2134
+ nvals = this.Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
2135
+ salp1, calp1, slam12, clam12, numit < maxit1_,
2136
+ C1a, C2a, C3a);
2137
+ v = nvals.lam12;
2138
+ salp2 = nvals.salp2;
2139
+ calp2 = nvals.calp2;
2140
+ sig12 = nvals.sig12;
2141
+ ssig1 = nvals.ssig1;
2142
+ csig1 = nvals.csig1;
2143
+ ssig2 = nvals.ssig2;
2144
+ csig2 = nvals.csig2;
2145
+ eps = nvals.eps;
2146
+ domg12 = nvals.domg12;
2147
+ dv = nvals.dlam12;
2148
+
2149
+ // 2 * tol0 is approximately 1 ulp for a number in [0, pi].
2150
+ // Reversed test to allow escape with NaNs
2151
+ if (tripb || !(Math.abs(v) >= (tripn ? 8 : 1) * tol0_))
2152
+ break;
2153
+ // Update bracketing values
2154
+ if (v > 0 && (numit < maxit1_ || calp1/salp1 > calp1b/salp1b)) {
2155
+ salp1b = salp1; calp1b = calp1;
2156
+ } else if (v < 0 &&
2157
+ (numit < maxit1_ || calp1/salp1 < calp1a/salp1a)) {
2158
+ salp1a = salp1; calp1a = calp1;
2159
+ }
2160
+ if (numit < maxit1_ && dv > 0) {
2161
+ dalp1 = -v/dv;
2162
+ sdalp1 = Math.sin(dalp1); cdalp1 = Math.cos(dalp1);
2163
+ nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
2164
+ if (nsalp1 > 0 && Math.abs(dalp1) < Math.PI) {
2165
+ calp1 = calp1 * cdalp1 - salp1 * sdalp1;
2166
+ salp1 = nsalp1;
2167
+ // norm(salp1, calp1);
2168
+ t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
2169
+ // In some regimes we don't get quadratic convergence because
2170
+ // slope -> 0. So use convergence conditions based on epsilon
2171
+ // instead of sqrt(epsilon).
2172
+ tripn = Math.abs(v) <= 16 * tol0_;
2173
+ continue;
2174
+ }
2175
+ }
2176
+ // Either dv was not positive or updated value was outside legal
2177
+ // range. Use the midpoint of the bracket as the next estimate.
2178
+ // This mechanism is not needed for the WGS84 ellipsoid, but it does
2179
+ // catch problems with more eccentric ellipsoids. Its efficacy is
2180
+ // such for the WGS84 test set with the starting guess set to alp1 =
2181
+ // 90deg:
2182
+ // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
2183
+ // WGS84 and random input: mean = 4.74, sd = 0.99
2184
+ salp1 = (salp1a + salp1b)/2;
2185
+ calp1 = (calp1a + calp1b)/2;
2186
+ // norm(salp1, calp1);
2187
+ t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
2188
+ tripn = false;
2189
+ tripb = (Math.abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
2190
+ Math.abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
2191
+ }
2192
+ lengthmask = outmask |
2193
+ (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE) ?
2194
+ g.DISTANCE : g.NONE);
2195
+ nvals = this.Lengths(eps, sig12,
2196
+ ssig1, csig1, dn1, ssig2, csig2, dn2,
2197
+ cbet1, cbet2,
2198
+ lengthmask, C1a, C2a);
2199
+ s12x = nvals.s12b;
2200
+ m12x = nvals.m12b;
2201
+ // Ignore m0
2202
+ if (outmask & g.GEODESICSCALE) {
2203
+ vals.M12 = nvals.M12;
2204
+ vals.M21 = nvals.M21;
2205
+ }
2206
+ m12x *= this._b;
2207
+ s12x *= this._b;
2208
+ vals.a12 = sig12 / m.degree;
2209
+ if (outmask & g.AREA) {
2210
+ // omg12 = lam12 - domg12
2211
+ sdomg12 = Math.sin(domg12); cdomg12 = Math.cos(domg12);
2212
+ somg12 = slam12 * cdomg12 - clam12 * sdomg12;
2213
+ comg12 = clam12 * cdomg12 + slam12 * sdomg12;
2214
+ }
2215
+ }
2216
+ }
2217
+
2218
+ if (outmask & g.DISTANCE)
2219
+ vals.s12 = 0 + s12x; // Convert -0 to 0
2220
+
2221
+ if (outmask & g.REDUCEDLENGTH)
2222
+ vals.m12 = 0 + m12x; // Convert -0 to 0
2223
+
2224
+ if (outmask & g.AREA) {
2225
+ // From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
2226
+ salp0 = salp1 * cbet1;
2227
+ calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
2228
+ if (calp0 !== 0 && salp0 !== 0) {
2229
+ // From Lambda12: tan(bet) = tan(sig) * cos(alp)
2230
+ ssig1 = sbet1; csig1 = calp1 * cbet1;
2231
+ ssig2 = sbet2; csig2 = calp2 * cbet2;
2232
+ k2 = m.sq(calp0) * this._ep2;
2233
+ eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
2234
+ // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
2235
+ A4 = m.sq(this.a) * calp0 * salp0 * this._e2;
2236
+ // norm(ssig1, csig1);
2237
+ t = m.hypot(ssig1, csig1); ssig1 /= t; csig1 /= t;
2238
+ // norm(ssig2, csig2);
2239
+ t = m.hypot(ssig2, csig2); ssig2 /= t; csig2 /= t;
2240
+ C4a = new Array(g.nC4_);
2241
+ this.C4f(eps, C4a);
2242
+ B41 = g.SinCosSeries(false, ssig1, csig1, C4a);
2243
+ B42 = g.SinCosSeries(false, ssig2, csig2, C4a);
2244
+ vals.S12 = A4 * (B42 - B41);
2245
+ } else
2246
+ // Avoid problems with indeterminate sig1, sig2 on equator
2247
+ vals.S12 = 0;
2248
+ if (!meridian && somg12 > 1) {
2249
+ somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
2250
+ }
2251
+ if (!meridian &&
2252
+ comg12 > -0.7071 && // Long difference not too big
2253
+ sbet2 - sbet1 < 1.75) { // Lat difference not too big
2254
+ // Use tan(Gamma/2) = tan(omg12/2)
2255
+ // * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
2256
+ // with tan(x/2) = sin(x)/(1+cos(x))
2257
+ domg12 = 1 + comg12; dbet1 = 1 + cbet1; dbet2 = 1 + cbet2;
2258
+ alp12 = 2 * Math.atan2( somg12 * (sbet1*dbet2 + sbet2*dbet1),
2259
+ domg12 * (sbet1*sbet2 + dbet1*dbet2) );
2260
+ } else {
2261
+ // alp12 = alp2 - alp1, used in atan2 so no need to normalize
2262
+ salp12 = salp2 * calp1 - calp2 * salp1;
2263
+ calp12 = calp2 * calp1 + salp2 * salp1;
2264
+ // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
2265
+ // salp12 = -0 and alp12 = -180. However this depends on the sign
2266
+ // being attached to 0 correctly. The following ensures the correct
2267
+ // behavior.
2268
+ if (salp12 === 0 && calp12 < 0) {
2269
+ salp12 = g.tiny_ * calp1;
2270
+ calp12 = -1;
2271
+ }
2272
+ alp12 = Math.atan2(salp12, calp12);
2273
+ }
2274
+ vals.S12 += this._c2 * alp12;
2275
+ vals.S12 *= swapp * lonsign * latsign;
2276
+ // Convert -0 to 0
2277
+ vals.S12 += 0;
2278
+ }
2279
+
2280
+ // Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
2281
+ if (swapp < 0) {
2282
+ t = salp1;
2283
+ salp1 = salp2;
2284
+ salp2 = t;
2285
+ // swap(salp1, salp2);
2286
+ t = calp1;
2287
+ calp1 = calp2;
2288
+ calp2 = t;
2289
+ // swap(calp1, calp2);
2290
+ if (outmask & g.GEODESICSCALE) {
2291
+ t = vals.M12;
2292
+ vals.M12 = vals.M21;
2293
+ vals.M21 = t;
2294
+ // swap(vals.M12, vals.M21);
2295
+ }
2296
+ }
2297
+
2298
+ salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
2299
+ salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
2300
+
2301
+ return {vals: vals,
2302
+ salp1: salp1, calp1: calp1,
2303
+ salp2: salp2, calp2: calp2};
2304
+ };
2305
+
2306
+ /**
2307
+ * @summary Solve the general direct geodesic problem.
2308
+ * @param {number} lat1 the latitude of the first point in degrees.
2309
+ * @param {number} lon1 the longitude of the first point in degrees.
2310
+ * @param {number} azi1 the azimuth at the first point in degrees.
2311
+ * @param {bool} arcmode is the next parameter an arc length?
2312
+ * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
2313
+ * first point to the second in (arcmode ? degrees : meters).
2314
+ * @param {bitmask} [outmask = STANDARD] which results to include.
2315
+ * @returns {object} the requested results.
2316
+ * @description The lat1, lon1, azi1, and a12 fields of the result are always
2317
+ * set; s12 is included if arcmode is false. For details on the outmask
2318
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2319
+ * parameters".
2320
+ */
2321
+ g.Geodesic.prototype.GenDirect = function(lat1, lon1, azi1,
2322
+ arcmode, s12_a12, outmask) {
2323
+ var line;
2324
+ if (!outmask) outmask = g.STANDARD;
2325
+ else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
2326
+ // Automatically supply DISTANCE_IN if necessary
2327
+ if (!arcmode) outmask |= g.DISTANCE_IN;
2328
+ line = new l.GeodesicLine(this, lat1, lon1, azi1, outmask);
2329
+ return line.GenPosition(arcmode, s12_a12, outmask);
2330
+ };
2331
+
2332
+ /**
2333
+ * @summary Solve the direct geodesic problem.
2334
+ * @param {number} lat1 the latitude of the first point in degrees.
2335
+ * @param {number} lon1 the longitude of the first point in degrees.
2336
+ * @param {number} azi1 the azimuth at the first point in degrees.
2337
+ * @param {number} s12 the distance from the first point to the second in
2338
+ * meters.
2339
+ * @param {bitmask} [outmask = STANDARD] which results to include.
2340
+ * @returns {object} the requested results.
2341
+ * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
2342
+ * always set. For details on the outmask parameter, see {@tutorial
2343
+ * 2-interface}, "The outmask and caps parameters".
2344
+ */
2345
+ g.Geodesic.prototype.Direct = function(lat1, lon1, azi1, s12, outmask) {
2346
+ return this.GenDirect(lat1, lon1, azi1, false, s12, outmask);
2347
+ };
2348
+
2349
+ /**
2350
+ * @summary Solve the direct geodesic problem with arc length.
2351
+ * @param {number} lat1 the latitude of the first point in degrees.
2352
+ * @param {number} lon1 the longitude of the first point in degrees.
2353
+ * @param {number} azi1 the azimuth at the first point in degrees.
2354
+ * @param {number} a12 the arc length from the first point to the second in
2355
+ * degrees.
2356
+ * @param {bitmask} [outmask = STANDARD] which results to include.
2357
+ * @returns {object} the requested results.
2358
+ * @description The lat1, lon1, azi1, and a12 fields of the result are
2359
+ * always set. For details on the outmask parameter, see {@tutorial
2360
+ * 2-interface}, "The outmask and caps parameters".
2361
+ */
2362
+ g.Geodesic.prototype.ArcDirect = function(lat1, lon1, azi1, a12, outmask) {
2363
+ return this.GenDirect(lat1, lon1, azi1, true, a12, outmask);
2364
+ };
2365
+
2366
+ /**
2367
+ * @summary Create a {@link module:GeographicLib/GeodesicLine.GeodesicLine
2368
+ * GeodesicLine} object.
2369
+ * @param {number} lat1 the latitude of the first point in degrees.
2370
+ * @param {number} lon1 the longitude of the first point in degrees.
2371
+ * @param {number} azi1 the azimuth at the first point in degrees.
2372
+ * degrees.
2373
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2374
+ * include.
2375
+ * @returns {object} the
2376
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
2377
+ * GeodesicLine} object
2378
+ * @description For details on the caps parameter, see {@tutorial
2379
+ * 2-interface}, "The outmask and caps parameters".
2380
+ */
2381
+ g.Geodesic.prototype.Line = function(lat1, lon1, azi1, caps) {
2382
+ return new l.GeodesicLine(this, lat1, lon1, azi1, caps);
2383
+ };
2384
+
2385
+ /**
2386
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
2387
+ * GeodesicLine} in terms of the direct geodesic problem specified in terms
2388
+ * of distance.
2389
+ * @param {number} lat1 the latitude of the first point in degrees.
2390
+ * @param {number} lon1 the longitude of the first point in degrees.
2391
+ * @param {number} azi1 the azimuth at the first point in degrees.
2392
+ * degrees.
2393
+ * @param {number} s12 the distance between point 1 and point 2 (meters); it
2394
+ * can be negative.
2395
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2396
+ * include.
2397
+ * @returns {object} the
2398
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
2399
+ * GeodesicLine} object
2400
+ * @description This function sets point 3 of the GeodesicLine to correspond
2401
+ * to point 2 of the direct geodesic problem. For details on the caps
2402
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2403
+ * parameters".
2404
+ */
2405
+ g.Geodesic.prototype.DirectLine = function(lat1, lon1, azi1, s12, caps) {
2406
+ return this.GenDirectLine(lat1, lon1, azi1, false, s12, caps);
2407
+ };
2408
+
2409
+ /**
2410
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
2411
+ * GeodesicLine} in terms of the direct geodesic problem specified in terms
2412
+ * of arc length.
2413
+ * @param {number} lat1 the latitude of the first point in degrees.
2414
+ * @param {number} lon1 the longitude of the first point in degrees.
2415
+ * @param {number} azi1 the azimuth at the first point in degrees.
2416
+ * degrees.
2417
+ * @param {number} a12 the arc length between point 1 and point 2 (degrees);
2418
+ * it can be negative.
2419
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2420
+ * include.
2421
+ * @returns {object} the
2422
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
2423
+ * GeodesicLine} object
2424
+ * @description This function sets point 3 of the GeodesicLine to correspond
2425
+ * to point 2 of the direct geodesic problem. For details on the caps
2426
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2427
+ * parameters".
2428
+ */
2429
+ g.Geodesic.prototype.ArcDirectLine = function(lat1, lon1, azi1, a12, caps) {
2430
+ return this.GenDirectLine(lat1, lon1, azi1, true, a12, caps);
2431
+ };
2432
+
2433
+ /**
2434
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
2435
+ * GeodesicLine} in terms of the direct geodesic problem specified in terms
2436
+ * of either distance or arc length.
2437
+ * @param {number} lat1 the latitude of the first point in degrees.
2438
+ * @param {number} lon1 the longitude of the first point in degrees.
2439
+ * @param {number} azi1 the azimuth at the first point in degrees.
2440
+ * degrees.
2441
+ * @param {bool} arcmode boolean flag determining the meaning of the
2442
+ * s12_a12.
2443
+ * @param {number} s12_a12 if arcmode is false, this is the distance between
2444
+ * point 1 and point 2 (meters); otherwise it is the arc length between
2445
+ * point 1 and point 2 (degrees); it can be negative.
2446
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2447
+ * include.
2448
+ * @returns {object} the
2449
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
2450
+ * GeodesicLine} object
2451
+ * @description This function sets point 3 of the GeodesicLine to correspond
2452
+ * to point 2 of the direct geodesic problem. For details on the caps
2453
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2454
+ * parameters".
2455
+ */
2456
+ g.Geodesic.prototype.GenDirectLine = function(lat1, lon1, azi1,
2457
+ arcmode, s12_a12, caps) {
2458
+ var t;
2459
+ if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
2460
+ // Automatically supply DISTANCE_IN if necessary
2461
+ if (!arcmode) caps |= g.DISTANCE_IN;
2462
+ t = new l.GeodesicLine(this, lat1, lon1, azi1, caps);
2463
+ t.GenSetDistance(arcmode, s12_a12);
2464
+ return t;
2465
+ };
2466
+
2467
+ /**
2468
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
2469
+ * GeodesicLine} in terms of the inverse geodesic problem.
2470
+ * @param {number} lat1 the latitude of the first point in degrees.
2471
+ * @param {number} lon1 the longitude of the first point in degrees.
2472
+ * @param {number} lat2 the latitude of the second point in degrees.
2473
+ * @param {number} lon2 the longitude of the second point in degrees.
2474
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2475
+ * include.
2476
+ * @returns {object} the
2477
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
2478
+ * GeodesicLine} object
2479
+ * @description This function sets point 3 of the GeodesicLine to correspond
2480
+ * to point 2 of the inverse geodesic problem. For details on the caps
2481
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2482
+ * parameters".
2483
+ */
2484
+ g.Geodesic.prototype.InverseLine = function(lat1, lon1, lat2, lon2, caps) {
2485
+ var r, t, azi1;
2486
+ if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
2487
+ r = this.InverseInt(lat1, lon1, lat2, lon2, g.ARC);
2488
+ azi1 = m.atan2d(r.salp1, r.calp1);
2489
+ // Ensure that a12 can be converted to a distance
2490
+ if (caps & (g.OUT_MASK & g.DISTANCE_IN)) caps |= g.DISTANCE;
2491
+ t = new l.GeodesicLine(this, lat1, lon1, azi1, caps, r.salp1, r.calp1);
2492
+ t.SetArc(r.vals.a12);
2493
+ return t;
2494
+ };
2495
+
2496
+ /**
2497
+ * @summary Create a {@link module:GeographicLib/PolygonArea.PolygonArea
2498
+ * PolygonArea} object.
2499
+ * @param {bool} [polyline = false] if true the new PolygonArea object
2500
+ * describes a polyline instead of a polygon.
2501
+ * @returns {object} the
2502
+ * {@link module:GeographicLib/PolygonArea.PolygonArea
2503
+ * PolygonArea} object
2504
+ */
2505
+ g.Geodesic.prototype.Polygon = function(polyline) {
2506
+ return new p.PolygonArea(this, polyline);
2507
+ };
2508
+
2509
+ /**
2510
+ * @summary a {@link module:GeographicLib/Geodesic.Geodesic Geodesic} object
2511
+ * initialized for the WGS84 ellipsoid.
2512
+ * @constant {object}
2513
+ */
2514
+ g.WGS84 = new g.Geodesic(c.WGS84.a, c.WGS84.f);
2515
+ })(GeographicLib.Geodesic, GeographicLib.GeodesicLine,
2516
+ GeographicLib.PolygonArea, GeographicLib.Math, GeographicLib.Constants);
2517
+
2518
+ /**************** GeodesicLine.js ****************/
2519
+ /*
2520
+ * GeodesicLine.js
2521
+ * Transcription of GeodesicLine.[ch]pp into JavaScript.
2522
+ *
2523
+ * See the documentation for the C++ class. The conversion is a literal
2524
+ * conversion from C++.
2525
+ *
2526
+ * The algorithms are derived in
2527
+ *
2528
+ * Charles F. F. Karney,
2529
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
2530
+ * https://doi.org/10.1007/s00190-012-0578-z
2531
+ * Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
2532
+ *
2533
+ * Copyright (c) Charles Karney (2011-2016) <charles@karney.com> and licensed
2534
+ * under the MIT/X11 License. For more information, see
2535
+ * https://geographiclib.sourceforge.io/
2536
+ */
2537
+
2538
+ // Load AFTER GeographicLib/Math.js, GeographicLib/Geodesic.js
2539
+
2540
+ (function(
2541
+ g,
2542
+ /**
2543
+ * @exports GeographicLib/GeodesicLine
2544
+ * @description Solve geodesic problems on a single geodesic line via the
2545
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
2546
+ * class.
2547
+ */
2548
+ l, m) {
2549
+
2550
+ /**
2551
+ * @class
2552
+ * @property {number} a the equatorial radius (meters).
2553
+ * @property {number} f the flattening.
2554
+ * @property {number} lat1 the initial latitude (degrees).
2555
+ * @property {number} lon1 the initial longitude (degrees).
2556
+ * @property {number} azi1 the initial azimuth (degrees).
2557
+ * @property {number} salp1 the sine of the azimuth at the first point.
2558
+ * @property {number} calp1 the cosine the azimuth at the first point.
2559
+ * @property {number} s13 the distance to point 3 (meters).
2560
+ * @property {number} a13 the arc length to point 3 (degrees).
2561
+ * @property {bitmask} caps the capabilities of the object.
2562
+ * @summary Initialize a GeodesicLine object. For details on the caps
2563
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2564
+ * parameters".
2565
+ * @classdesc Performs geodesic calculations along a given geodesic line.
2566
+ * This object is usually instantiated by
2567
+ * {@link module:GeographicLib/Geodesic.Geodesic#Line Geodesic.Line}.
2568
+ * The methods
2569
+ * {@link module:GeographicLib/Geodesic.Geodesic#DirectLine
2570
+ * Geodesic.DirectLine} and
2571
+ * {@link module:GeographicLib/Geodesic.Geodesic#InverseLine
2572
+ * Geodesic.InverseLine} set in addition the position of a reference point
2573
+ * 3.
2574
+ * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
2575
+ * Geodesic} object.
2576
+ * @param {number} lat1 the latitude of the first point in degrees.
2577
+ * @param {number} lon1 the longitude of the first point in degrees.
2578
+ * @param {number} azi1 the azimuth at the first point in degrees.
2579
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2580
+ * include; LATITUDE | AZIMUTH are always included.
2581
+ */
2582
+ l.GeodesicLine = function(geod, lat1, lon1, azi1, caps, salp1, calp1) {
2583
+ var t, cbet1, sbet1, eps, s, c;
2584
+ if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
2585
+
2586
+ this.a = geod.a;
2587
+ this.f = geod.f;
2588
+ this._b = geod._b;
2589
+ this._c2 = geod._c2;
2590
+ this._f1 = geod._f1;
2591
+ this.caps = caps | g.LATITUDE | g.AZIMUTH | g.LONG_UNROLL;
2592
+
2593
+ this.lat1 = m.LatFix(lat1);
2594
+ this.lon1 = lon1;
2595
+ if (typeof salp1 === 'undefined' || typeof calp1 === 'undefined') {
2596
+ this.azi1 = m.AngNormalize(azi1);
2597
+ t = m.sincosd(m.AngRound(this.azi1)); this.salp1 = t.s; this.calp1 = t.c;
2598
+ } else {
2599
+ this.azi1 = azi1; this.salp1 = salp1; this.calp1 = calp1;
2600
+ }
2601
+ t = m.sincosd(m.AngRound(this.lat1)); sbet1 = this._f1 * t.s; cbet1 = t.c;
2602
+ // norm(sbet1, cbet1);
2603
+ t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
2604
+ // Ensure cbet1 = +epsilon at poles
2605
+ cbet1 = Math.max(g.tiny_, cbet1);
2606
+ this._dn1 = Math.sqrt(1 + geod._ep2 * m.sq(sbet1));
2607
+
2608
+ // Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
2609
+ this._salp0 = this.salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
2610
+ // Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following
2611
+ // is slightly better (consider the case salp1 = 0).
2612
+ this._calp0 = m.hypot(this.calp1, this.salp1 * sbet1);
2613
+ // Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
2614
+ // sig = 0 is nearest northward crossing of equator.
2615
+ // With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
2616
+ // With bet1 = pi/2, alp1 = -pi, sig1 = pi/2
2617
+ // With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2
2618
+ // Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
2619
+ // With alp0 in (0, pi/2], quadrants for sig and omg coincide.
2620
+ // No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
2621
+ // With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
2622
+ this._ssig1 = sbet1; this._somg1 = this._salp0 * sbet1;
2623
+ this._csig1 = this._comg1 =
2624
+ sbet1 !== 0 || this.calp1 !== 0 ? cbet1 * this.calp1 : 1;
2625
+ // norm(this._ssig1, this._csig1); // sig1 in (-pi, pi]
2626
+ t = m.hypot(this._ssig1, this._csig1);
2627
+ this._ssig1 /= t; this._csig1 /= t;
2628
+ // norm(this._somg1, this._comg1); -- don't need to normalize!
2629
+
2630
+ this._k2 = m.sq(this._calp0) * geod._ep2;
2631
+ eps = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2);
2632
+
2633
+ if (this.caps & g.CAP_C1) {
2634
+ this._A1m1 = g.A1m1f(eps);
2635
+ this._C1a = new Array(g.nC1_ + 1);
2636
+ g.C1f(eps, this._C1a);
2637
+ this._B11 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C1a);
2638
+ s = Math.sin(this._B11); c = Math.cos(this._B11);
2639
+ // tau1 = sig1 + B11
2640
+ this._stau1 = this._ssig1 * c + this._csig1 * s;
2641
+ this._ctau1 = this._csig1 * c - this._ssig1 * s;
2642
+ // Not necessary because C1pa reverts C1a
2643
+ // _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa);
2644
+ }
2645
+
2646
+ if (this.caps & g.CAP_C1p) {
2647
+ this._C1pa = new Array(g.nC1p_ + 1);
2648
+ g.C1pf(eps, this._C1pa);
2649
+ }
2650
+
2651
+ if (this.caps & g.CAP_C2) {
2652
+ this._A2m1 = g.A2m1f(eps);
2653
+ this._C2a = new Array(g.nC2_ + 1);
2654
+ g.C2f(eps, this._C2a);
2655
+ this._B21 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C2a);
2656
+ }
2657
+
2658
+ if (this.caps & g.CAP_C3) {
2659
+ this._C3a = new Array(g.nC3_);
2660
+ geod.C3f(eps, this._C3a);
2661
+ this._A3c = -this.f * this._salp0 * geod.A3f(eps);
2662
+ this._B31 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C3a);
2663
+ }
2664
+
2665
+ if (this.caps & g.CAP_C4) {
2666
+ this._C4a = new Array(g.nC4_); // all the elements of _C4a are used
2667
+ geod.C4f(eps, this._C4a);
2668
+ // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
2669
+ this._A4 = m.sq(this.a) * this._calp0 * this._salp0 * geod._e2;
2670
+ this._B41 = g.SinCosSeries(false, this._ssig1, this._csig1, this._C4a);
2671
+ }
2672
+
2673
+ this.a13 = this.s13 = Number.NaN;
2674
+ };
2675
+
2676
+ /**
2677
+ * @summary Find the position on the line (general case).
2678
+ * @param {bool} arcmode is the next parameter an arc length?
2679
+ * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
2680
+ * first point to the second in (arcmode ? degrees : meters).
2681
+ * @param {bitmask} [outmask = STANDARD] which results to include; this is
2682
+ * subject to the capabilities of the object.
2683
+ * @returns {object} the requested results.
2684
+ * @description The lat1, lon1, azi1, and a12 fields of the result are
2685
+ * always set; s12 is included if arcmode is false. For details on the
2686
+ * outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
2687
+ * parameters".
2688
+ */
2689
+ l.GeodesicLine.prototype.GenPosition = function(arcmode, s12_a12,
2690
+ outmask) {
2691
+ var vals = {},
2692
+ sig12, ssig12, csig12, B12, AB1, ssig2, csig2, tau12, s, c, serr,
2693
+ omg12, lam12, lon12, E, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2,
2694
+ B22, AB2, J12, t, B42, salp12, calp12;
2695
+ if (!outmask) outmask = g.STANDARD;
2696
+ else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
2697
+ outmask &= this.caps & g.OUT_MASK;
2698
+ vals.lat1 = this.lat1; vals.azi1 = this.azi1;
2699
+ vals.lon1 = outmask & g.LONG_UNROLL ?
2700
+ this.lon1 : m.AngNormalize(this.lon1);
2701
+ if (arcmode)
2702
+ vals.a12 = s12_a12;
2703
+ else
2704
+ vals.s12 = s12_a12;
2705
+ if (!( arcmode || (this.caps & g.DISTANCE_IN & g.OUT_MASK) )) {
2706
+ // Uninitialized or impossible distance calculation requested
2707
+ vals.a12 = Number.NaN;
2708
+ return vals;
2709
+ }
2710
+
2711
+ // Avoid warning about uninitialized B12.
2712
+ B12 = 0; AB1 = 0;
2713
+ if (arcmode) {
2714
+ // Interpret s12_a12 as spherical arc length
2715
+ sig12 = s12_a12 * m.degree;
2716
+ t = m.sincosd(s12_a12); ssig12 = t.s; csig12 = t.c;
2717
+ } else {
2718
+ // Interpret s12_a12 as distance
2719
+ tau12 = s12_a12 / (this._b * (1 + this._A1m1));
2720
+ s = Math.sin(tau12);
2721
+ c = Math.cos(tau12);
2722
+ // tau2 = tau1 + tau12
2723
+ B12 = -g.SinCosSeries(true,
2724
+ this._stau1 * c + this._ctau1 * s,
2725
+ this._ctau1 * c - this._stau1 * s,
2726
+ this._C1pa);
2727
+ sig12 = tau12 - (B12 - this._B11);
2728
+ ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
2729
+ if (Math.abs(this.f) > 0.01) {
2730
+ // Reverted distance series is inaccurate for |f| > 1/100, so correct
2731
+ // sig12 with 1 Newton iteration. The following table shows the
2732
+ // approximate maximum error for a = WGS_a() and various f relative to
2733
+ // GeodesicExact.
2734
+ // erri = the error in the inverse solution (nm)
2735
+ // errd = the error in the direct solution (series only) (nm)
2736
+ // errda = the error in the direct solution
2737
+ // (series + 1 Newton) (nm)
2738
+ //
2739
+ // f erri errd errda
2740
+ // -1/5 12e6 1.2e9 69e6
2741
+ // -1/10 123e3 12e6 765e3
2742
+ // -1/20 1110 108e3 7155
2743
+ // -1/50 18.63 200.9 27.12
2744
+ // -1/100 18.63 23.78 23.37
2745
+ // -1/150 18.63 21.05 20.26
2746
+ // 1/150 22.35 24.73 25.83
2747
+ // 1/100 22.35 25.03 25.31
2748
+ // 1/50 29.80 231.9 30.44
2749
+ // 1/20 5376 146e3 10e3
2750
+ // 1/10 829e3 22e6 1.5e6
2751
+ // 1/5 157e6 3.8e9 280e6
2752
+ ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
2753
+ csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
2754
+ B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
2755
+ serr = (1 + this._A1m1) * (sig12 + (B12 - this._B11)) -
2756
+ s12_a12 / this._b;
2757
+ sig12 = sig12 - serr / Math.sqrt(1 + this._k2 * m.sq(ssig2));
2758
+ ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
2759
+ // Update B12 below
2760
+ }
2761
+ }
2762
+
2763
+ // sig2 = sig1 + sig12
2764
+ ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
2765
+ csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
2766
+ dn2 = Math.sqrt(1 + this._k2 * m.sq(ssig2));
2767
+ if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
2768
+ if (arcmode || Math.abs(this.f) > 0.01)
2769
+ B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
2770
+ AB1 = (1 + this._A1m1) * (B12 - this._B11);
2771
+ }
2772
+ // sin(bet2) = cos(alp0) * sin(sig2)
2773
+ sbet2 = this._calp0 * ssig2;
2774
+ // Alt: cbet2 = hypot(csig2, salp0 * ssig2);
2775
+ cbet2 = m.hypot(this._salp0, this._calp0 * csig2);
2776
+ if (cbet2 === 0)
2777
+ // I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case
2778
+ cbet2 = csig2 = g.tiny_;
2779
+ // tan(alp0) = cos(sig2)*tan(alp2)
2780
+ salp2 = this._salp0; calp2 = this._calp0 * csig2; // No need to normalize
2781
+
2782
+ if (arcmode && (outmask & g.DISTANCE))
2783
+ vals.s12 = this._b * ((1 + this._A1m1) * sig12 + AB1);
2784
+
2785
+ if (outmask & g.LONGITUDE) {
2786
+ // tan(omg2) = sin(alp0) * tan(sig2)
2787
+ somg2 = this._salp0 * ssig2; comg2 = csig2; // No need to normalize
2788
+ E = m.copysign(1, this._salp0);
2789
+ // omg12 = omg2 - omg1
2790
+ omg12 = outmask & g.LONG_UNROLL ?
2791
+ E * (sig12 -
2792
+ (Math.atan2(ssig2, csig2) -
2793
+ Math.atan2(this._ssig1, this._csig1)) +
2794
+ (Math.atan2(E * somg2, comg2) -
2795
+ Math.atan2(E * this._somg1, this._comg1))) :
2796
+ Math.atan2(somg2 * this._comg1 - comg2 * this._somg1,
2797
+ comg2 * this._comg1 + somg2 * this._somg1);
2798
+ lam12 = omg12 + this._A3c *
2799
+ ( sig12 + (g.SinCosSeries(true, ssig2, csig2, this._C3a) -
2800
+ this._B31));
2801
+ lon12 = lam12 / m.degree;
2802
+ vals.lon2 = outmask & g.LONG_UNROLL ? this.lon1 + lon12 :
2803
+ m.AngNormalize(m.AngNormalize(this.lon1) + m.AngNormalize(lon12));
2804
+ }
2805
+
2806
+ if (outmask & g.LATITUDE)
2807
+ vals.lat2 = m.atan2d(sbet2, this._f1 * cbet2);
2808
+
2809
+ if (outmask & g.AZIMUTH)
2810
+ vals.azi2 = m.atan2d(salp2, calp2);
2811
+
2812
+ if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
2813
+ B22 = g.SinCosSeries(true, ssig2, csig2, this._C2a);
2814
+ AB2 = (1 + this._A2m1) * (B22 - this._B21);
2815
+ J12 = (this._A1m1 - this._A2m1) * sig12 + (AB1 - AB2);
2816
+ if (outmask & g.REDUCEDLENGTH)
2817
+ // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
2818
+ // accurate cancellation in the case of coincident points.
2819
+ vals.m12 = this._b * (( dn2 * (this._csig1 * ssig2) -
2820
+ this._dn1 * (this._ssig1 * csig2)) -
2821
+ this._csig1 * csig2 * J12);
2822
+ if (outmask & g.GEODESICSCALE) {
2823
+ t = this._k2 * (ssig2 - this._ssig1) * (ssig2 + this._ssig1) /
2824
+ (this._dn1 + dn2);
2825
+ vals.M12 = csig12 +
2826
+ (t * ssig2 - csig2 * J12) * this._ssig1 / this._dn1;
2827
+ vals.M21 = csig12 -
2828
+ (t * this._ssig1 - this._csig1 * J12) * ssig2 / dn2;
2829
+ }
2830
+ }
2831
+
2832
+ if (outmask & g.AREA) {
2833
+ B42 = g.SinCosSeries(false, ssig2, csig2, this._C4a);
2834
+ if (this._calp0 === 0 || this._salp0 === 0) {
2835
+ // alp12 = alp2 - alp1, used in atan2 so no need to normalize
2836
+ salp12 = salp2 * this.calp1 - calp2 * this.salp1;
2837
+ calp12 = calp2 * this.calp1 + salp2 * this.salp1;
2838
+ } else {
2839
+ // tan(alp) = tan(alp0) * sec(sig)
2840
+ // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
2841
+ // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
2842
+ // If csig12 > 0, write
2843
+ // csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
2844
+ // else
2845
+ // csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
2846
+ // No need to normalize
2847
+ salp12 = this._calp0 * this._salp0 *
2848
+ (csig12 <= 0 ? this._csig1 * (1 - csig12) + ssig12 * this._ssig1 :
2849
+ ssig12 * (this._csig1 * ssig12 / (1 + csig12) + this._ssig1));
2850
+ calp12 = m.sq(this._salp0) + m.sq(this._calp0) * this._csig1 * csig2;
2851
+ }
2852
+ vals.S12 = this._c2 * Math.atan2(salp12, calp12) +
2853
+ this._A4 * (B42 - this._B41);
2854
+ }
2855
+
2856
+ if (!arcmode)
2857
+ vals.a12 = sig12 / m.degree;
2858
+ return vals;
2859
+ };
2860
+
2861
+ /**
2862
+ * @summary Find the position on the line given s12.
2863
+ * @param {number} s12 the distance from the first point to the second in
2864
+ * meters.
2865
+ * @param {bitmask} [outmask = STANDARD] which results to include; this is
2866
+ * subject to the capabilities of the object.
2867
+ * @returns {object} the requested results.
2868
+ * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
2869
+ * always set; s12 is included if arcmode is false. For details on the
2870
+ * outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
2871
+ * parameters".
2872
+ */
2873
+ l.GeodesicLine.prototype.Position = function(s12, outmask) {
2874
+ return this.GenPosition(false, s12, outmask);
2875
+ };
2876
+
2877
+ /**
2878
+ * @summary Find the position on the line given a12.
2879
+ * @param {number} a12 the arc length from the first point to the second in
2880
+ * degrees.
2881
+ * @param {bitmask} [outmask = STANDARD] which results to include; this is
2882
+ * subject to the capabilities of the object.
2883
+ * @returns {object} the requested results.
2884
+ * @description The lat1, lon1, azi1, and a12 fields of the result are
2885
+ * always set. For details on the outmask parameter, see {@tutorial
2886
+ * 2-interface}, "The outmask and caps parameters".
2887
+ */
2888
+ l.GeodesicLine.prototype.ArcPosition = function(a12, outmask) {
2889
+ return this.GenPosition(true, a12, outmask);
2890
+ };
2891
+
2892
+ /**
2893
+ * @summary Specify position of point 3 in terms of either distance or arc
2894
+ * length.
2895
+ * @param {bool} arcmode boolean flag determining the meaning of the second
2896
+ * parameter; if arcmode is false, then the GeodesicLine object must have
2897
+ * been constructed with caps |= DISTANCE_IN.
2898
+ * @param {number} s13_a13 if arcmode is false, this is the distance from
2899
+ * point 1 to point 3 (meters); otherwise it is the arc length from
2900
+ * point 1 to point 3 (degrees); it can be negative.
2901
+ **********************************************************************/
2902
+ l.GeodesicLine.prototype.GenSetDistance = function(arcmode, s13_a13) {
2903
+ if (arcmode)
2904
+ this.SetArc(s13_a13);
2905
+ else
2906
+ this.SetDistance(s13_a13);
2907
+ };
2908
+
2909
+ /**
2910
+ * @summary Specify position of point 3 in terms distance.
2911
+ * @param {number} s13 the distance from point 1 to point 3 (meters); it
2912
+ * can be negative.
2913
+ **********************************************************************/
2914
+ l.GeodesicLine.prototype.SetDistance = function(s13) {
2915
+ var r;
2916
+ this.s13 = s13;
2917
+ r = this.GenPosition(false, this.s13, g.ARC);
2918
+ this.a13 = 0 + r.a12; // the 0+ converts undefined into NaN
2919
+ };
2920
+
2921
+ /**
2922
+ * @summary Specify position of point 3 in terms of arc length.
2923
+ * @param {number} a13 the arc length from point 1 to point 3 (degrees);
2924
+ * it can be negative.
2925
+ **********************************************************************/
2926
+ l.GeodesicLine.prototype.SetArc = function(a13) {
2927
+ var r;
2928
+ this.a13 = a13;
2929
+ r = this.GenPosition(true, this.a13, g.DISTANCE);
2930
+ this.s13 = 0 + r.s12; // the 0+ converts undefined into NaN
2931
+ };
2932
+
2933
+ })(GeographicLib.Geodesic, GeographicLib.GeodesicLine, GeographicLib.Math);
2934
+
2935
+ /**************** PolygonArea.js ****************/
2936
+ /*
2937
+ * PolygonArea.js
2938
+ * Transcription of PolygonArea.[ch]pp into JavaScript.
2939
+ *
2940
+ * See the documentation for the C++ class. The conversion is a literal
2941
+ * conversion from C++.
2942
+ *
2943
+ * The algorithms are derived in
2944
+ *
2945
+ * Charles F. F. Karney,
2946
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
2947
+ * https://doi.org/10.1007/s00190-012-0578-z
2948
+ * Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
2949
+ *
2950
+ * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
2951
+ * under the MIT/X11 License. For more information, see
2952
+ * https://geographiclib.sourceforge.io/
2953
+ */
2954
+
2955
+ // Load AFTER GeographicLib/Math.js and GeographicLib/Geodesic.js
2956
+
2957
+ (function(
2958
+ /**
2959
+ * @exports GeographicLib/PolygonArea
2960
+ * @description Compute the area of geodesic polygons via the
2961
+ * {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
2962
+ * class.
2963
+ */
2964
+ p, g, m, a) {
2965
+
2966
+ var transit, transitdirect;
2967
+ transit = function(lon1, lon2) {
2968
+ // Return 1 or -1 if crossing prime meridian in east or west direction.
2969
+ // Otherwise return zero.
2970
+ var lon12, cross;
2971
+ // Compute lon12 the same way as Geodesic::Inverse.
2972
+ lon1 = m.AngNormalize(lon1);
2973
+ lon2 = m.AngNormalize(lon2);
2974
+ lon12 = m.AngDiff(lon1, lon2).s;
2975
+ cross = lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
2976
+ (lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
2977
+ return cross;
2978
+ };
2979
+
2980
+ // an alternate version of transit to deal with longitudes in the direct
2981
+ // problem.
2982
+ transitdirect = function(lon1, lon2) {
2983
+ // We want to compute exactly
2984
+ // int(floor(lon2 / 360)) - int(floor(lon1 / 360))
2985
+ // Since we only need the parity of the result we can use std::remquo but
2986
+ // this is buggy with g++ 4.8.3 and requires C++11. So instead we do
2987
+ lon1 = lon1 % 720.0; lon2 = lon2 % 720.0;
2988
+ return ( ((lon2 >= 0 && lon2 < 360) || lon2 < -360 ? 0 : 1) -
2989
+ ((lon1 >= 0 && lon1 < 360) || lon1 < -360 ? 0 : 1) );
2990
+ };
2991
+
2992
+ /**
2993
+ * @class
2994
+ * @property {number} a the equatorial radius (meters).
2995
+ * @property {number} f the flattening.
2996
+ * @property {bool} polyline whether the PolygonArea object describes a
2997
+ * polyline or a polygon.
2998
+ * @property {number} num the number of vertices so far.
2999
+ * @property {number} lat the current latitude (degrees).
3000
+ * @property {number} lon the current longitude (degrees).
3001
+ * @summary Initialize a PolygonArea object.
3002
+ * @classdesc Computes the area and perimeter of a geodesic polygon.
3003
+ * This object is usually instantiated by
3004
+ * {@link module:GeographicLib/Geodesic.Geodesic#Polygon Geodesic.Polygon}.
3005
+ * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
3006
+ * Geodesic} object.
3007
+ * @param {bool} [polyline = false] if true the new PolygonArea object
3008
+ * describes a polyline instead of a polygon.
3009
+ */
3010
+ p.PolygonArea = function(geod, polyline) {
3011
+ this._geod = geod;
3012
+ this.a = this._geod.a;
3013
+ this.f = this._geod.f;
3014
+ this._area0 = 4 * Math.PI * geod._c2;
3015
+ this.polyline = !polyline ? false : polyline;
3016
+ this._mask = g.LATITUDE | g.LONGITUDE | g.DISTANCE |
3017
+ (this.polyline ? g.NONE : g.AREA | g.LONG_UNROLL);
3018
+ if (!this.polyline)
3019
+ this._areasum = new a.Accumulator(0);
3020
+ this._perimetersum = new a.Accumulator(0);
3021
+ this.Clear();
3022
+ };
3023
+
3024
+ /**
3025
+ * @summary Clear the PolygonArea object, setting the number of vertices to
3026
+ * 0.
3027
+ */
3028
+ p.PolygonArea.prototype.Clear = function() {
3029
+ this.num = 0;
3030
+ this._crossings = 0;
3031
+ if (!this.polyline)
3032
+ this._areasum.Set(0);
3033
+ this._perimetersum.Set(0);
3034
+ this._lat0 = this._lon0 = this.lat = this.lon = Number.NaN;
3035
+ };
3036
+
3037
+ /**
3038
+ * @summary Add the next vertex to the polygon.
3039
+ * @param {number} lat the latitude of the point (degrees).
3040
+ * @param {number} lon the longitude of the point (degrees).
3041
+ * @description This adds an edge from the current vertex to the new vertex.
3042
+ */
3043
+ p.PolygonArea.prototype.AddPoint = function(lat, lon) {
3044
+ var t;
3045
+ if (this.num === 0) {
3046
+ this._lat0 = this.lat = lat;
3047
+ this._lon0 = this.lon = lon;
3048
+ } else {
3049
+ t = this._geod.Inverse(this.lat, this.lon, lat, lon, this._mask);
3050
+ this._perimetersum.Add(t.s12);
3051
+ if (!this.polyline) {
3052
+ this._areasum.Add(t.S12);
3053
+ this._crossings += transit(this.lon, lon);
3054
+ }
3055
+ this.lat = lat;
3056
+ this.lon = lon;
3057
+ }
3058
+ ++this.num;
3059
+ };
3060
+
3061
+ /**
3062
+ * @summary Add the next edge to the polygon.
3063
+ * @param {number} azi the azimuth at the current the point (degrees).
3064
+ * @param {number} s the length of the edge (meters).
3065
+ * @description This specifies the new vertex in terms of the edge from the
3066
+ * current vertex.
3067
+ */
3068
+ p.PolygonArea.prototype.AddEdge = function(azi, s) {
3069
+ var t;
3070
+ if (this.num) {
3071
+ t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
3072
+ this._perimetersum.Add(s);
3073
+ if (!this.polyline) {
3074
+ this._areasum.Add(t.S12);
3075
+ this._crossings += transitdirect(this.lon, t.lon2);
3076
+ }
3077
+ this.lat = t.lat2;
3078
+ this.lon = t.lon2;
3079
+ }
3080
+ ++this.num;
3081
+ };
3082
+
3083
+ /**
3084
+ * @summary Compute the perimeter and area of the polygon.
3085
+ * @param {bool} reverse if true then clockwise (instead of
3086
+ * counter-clockwise) traversal counts as a positive area.
3087
+ * @param {bool} sign if true then return a signed result for the area if the
3088
+ * polygon is traversed in the "wrong" direction instead of returning the
3089
+ * area for the rest of the earth.
3090
+ * @returns {object} r where r.number is the number of vertices, r.perimeter
3091
+ * is the perimeter (meters), and r.area (only returned if polyline is
3092
+ * false) is the area (meters<sup>2</sup>).
3093
+ * @description If the object is a polygon (and not a polygon), the perimeter
3094
+ * includes the length of a final edge connecting the current point to the
3095
+ * initial point. If the object is a polyline, then area is nan. More
3096
+ * points can be added to the polygon after this call.
3097
+ */
3098
+ p.PolygonArea.prototype.Compute = function(reverse, sign) {
3099
+ var vals = {number: this.num}, t, tempsum, crossings;
3100
+ if (this.num < 2) {
3101
+ vals.perimeter = 0;
3102
+ if (!this.polyline)
3103
+ vals.area = 0;
3104
+ return vals;
3105
+ }
3106
+ if (this.polyline) {
3107
+ vals.perimeter = this._perimetersum.Sum();
3108
+ return vals;
3109
+ }
3110
+ t = this._geod.Inverse(this.lat, this.lon, this._lat0, this._lon0,
3111
+ this._mask);
3112
+ vals.perimeter = this._perimetersum.Sum(t.s12);
3113
+ tempsum = new a.Accumulator(this._areasum);
3114
+ tempsum.Add(t.S12);
3115
+ crossings = this._crossings + transit(this.lon, this._lon0);
3116
+ if (crossings & 1)
3117
+ tempsum.Add( (tempsum.Sum() < 0 ? 1 : -1) * this._area0/2 );
3118
+ // area is with the clockwise sense. If !reverse convert to
3119
+ // counter-clockwise convention.
3120
+ if (!reverse)
3121
+ tempsum.Negate();
3122
+ // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
3123
+ if (sign) {
3124
+ if (tempsum.Sum() > this._area0/2)
3125
+ tempsum.Add( -this._area0 );
3126
+ else if (tempsum.Sum() <= -this._area0/2)
3127
+ tempsum.Add( +this._area0 );
3128
+ } else {
3129
+ if (tempsum.Sum() >= this._area0)
3130
+ tempsum.Add( -this._area0 );
3131
+ else if (tempsum < 0)
3132
+ tempsum.Add( -this._area0 );
3133
+ }
3134
+ vals.area = tempsum.Sum();
3135
+ return vals;
3136
+ };
3137
+
3138
+ /**
3139
+ * @summary Compute the perimeter and area of the polygon with a tentative
3140
+ * new vertex.
3141
+ * @param {number} lat the latitude of the point (degrees).
3142
+ * @param {number} lon the longitude of the point (degrees).
3143
+ * @param {bool} reverse if true then clockwise (instead of
3144
+ * counter-clockwise) traversal counts as a positive area.
3145
+ * @param {bool} sign if true then return a signed result for the area if the
3146
+ * polygon is traversed in the "wrong" direction instead of returning the
3147
+ * @returns {object} r where r.number is the number of vertices, r.perimeter
3148
+ * is the perimeter (meters), and r.area (only returned if polyline is
3149
+ * false) is the area (meters<sup>2</sup>).
3150
+ * @description A new vertex is *not* added to the polygon.
3151
+ */
3152
+ p.PolygonArea.prototype.TestPoint = function(lat, lon, reverse, sign) {
3153
+ var vals = {number: this.num + 1}, t, tempsum, crossings, i;
3154
+ if (this.num === 0) {
3155
+ vals.perimeter = 0;
3156
+ if (!this.polyline)
3157
+ vals.area = 0;
3158
+ return vals;
3159
+ }
3160
+ vals.perimeter = this._perimetersum.Sum();
3161
+ tempsum = this.polyline ? 0 : this._areasum.Sum();
3162
+ crossings = this._crossings;
3163
+ for (i = 0; i < (this.polyline ? 1 : 2); ++i) {
3164
+ t = this._geod.Inverse(
3165
+ i === 0 ? this.lat : lat, i === 0 ? this.lon : lon,
3166
+ i !== 0 ? this._lat0 : lat, i !== 0 ? this._lon0 : lon,
3167
+ this._mask);
3168
+ vals.perimeter += t.s12;
3169
+ if (!this.polyline) {
3170
+ tempsum += t.S12;
3171
+ crossings += transit(i === 0 ? this.lon : lon,
3172
+ i !== 0 ? this._lon0 : lon);
3173
+ }
3174
+ }
3175
+
3176
+ if (this.polyline)
3177
+ return vals;
3178
+
3179
+ if (crossings & 1)
3180
+ tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
3181
+ // area is with the clockwise sense. If !reverse convert to
3182
+ // counter-clockwise convention.
3183
+ if (!reverse)
3184
+ tempsum *= -1;
3185
+ // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
3186
+ if (sign) {
3187
+ if (tempsum > this._area0/2)
3188
+ tempsum -= this._area0;
3189
+ else if (tempsum <= -this._area0/2)
3190
+ tempsum += this._area0;
3191
+ } else {
3192
+ if (tempsum >= this._area0)
3193
+ tempsum -= this._area0;
3194
+ else if (tempsum < 0)
3195
+ tempsum += this._area0;
3196
+ }
3197
+ vals.area = tempsum;
3198
+ return vals;
3199
+ };
3200
+
3201
+ /**
3202
+ * @summary Compute the perimeter and area of the polygon with a tentative
3203
+ * new edge.
3204
+ * @param {number} azi the azimuth of the edge (degrees).
3205
+ * @param {number} s the length of the edge (meters).
3206
+ * @param {bool} reverse if true then clockwise (instead of
3207
+ * counter-clockwise) traversal counts as a positive area.
3208
+ * @param {bool} sign if true then return a signed result for the area if the
3209
+ * polygon is traversed in the "wrong" direction instead of returning the
3210
+ * @returns {object} r where r.number is the number of vertices, r.perimeter
3211
+ * is the perimeter (meters), and r.area (only returned if polyline is
3212
+ * false) is the area (meters<sup>2</sup>).
3213
+ * @description A new vertex is *not* added to the polygon.
3214
+ */
3215
+ p.PolygonArea.prototype.TestEdge = function(azi, s, reverse, sign) {
3216
+ var vals = {number: this.num ? this.num + 1 : 0}, t, tempsum, crossings;
3217
+ if (this.num === 0)
3218
+ return vals;
3219
+ vals.perimeter = this._perimetersum.Sum() + s;
3220
+ if (this.polyline)
3221
+ return vals;
3222
+
3223
+ tempsum = this._areasum.Sum();
3224
+ crossings = this._crossings;
3225
+ t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
3226
+ tempsum += t.S12;
3227
+ crossings += transitdirect(this.lon, t.lon2);
3228
+ t = this._geod.Inverse(t.lat2, t.lon2, this._lat0, this._lon0, this._mask);
3229
+ vals.perimeter += t.s12;
3230
+ tempsum += t.S12;
3231
+ crossings += transit(t.lon2, this._lon0);
3232
+
3233
+ if (crossings & 1)
3234
+ tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
3235
+ // area is with the clockwise sense. If !reverse convert to
3236
+ // counter-clockwise convention.
3237
+ if (!reverse)
3238
+ tempsum *= -1;
3239
+ // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
3240
+ if (sign) {
3241
+ if (tempsum > this._area0/2)
3242
+ tempsum -= this._area0;
3243
+ else if (tempsum <= -this._area0/2)
3244
+ tempsum += this._area0;
3245
+ } else {
3246
+ if (tempsum >= this._area0)
3247
+ tempsum -= this._area0;
3248
+ else if (tempsum < 0)
3249
+ tempsum += this._area0;
3250
+ }
3251
+ vals.area = tempsum;
3252
+ return vals;
3253
+ };
3254
+
3255
+ })(GeographicLib.PolygonArea, GeographicLib.Geodesic,
3256
+ GeographicLib.Math, GeographicLib.Accumulator);
3257
+
3258
+ /**************** DMS.js ****************/
3259
+ /*
3260
+ * DMS.js
3261
+ * Transcription of DMS.[ch]pp into JavaScript.
3262
+ *
3263
+ * See the documentation for the C++ class. The conversion is a literal
3264
+ * conversion from C++.
3265
+ *
3266
+ * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
3267
+ * under the MIT/X11 License. For more information, see
3268
+ * https://geographiclib.sourceforge.io/
3269
+ */
3270
+
3271
+ GeographicLib.DMS = {};
3272
+
3273
+ (function(
3274
+ /**
3275
+ * @exports GeographicLib/DMS
3276
+ * @description Decode/Encode angles expressed as degrees, minutes, and
3277
+ * seconds. This module defines several constants:
3278
+ * - hemisphere indicator (returned by
3279
+ * {@link module:GeographicLib/DMS.Decode Decode}) and a formatting
3280
+ * indicator (used by
3281
+ * {@link module:GeographicLib/DMS.Encode Encode})
3282
+ * - NONE = 0, no designator and format as plain angle;
3283
+ * - LATITUDE = 1, a N/S designator and format as latitude;
3284
+ * - LONGITUDE = 2, an E/W designator and format as longitude;
3285
+ * - AZIMUTH = 3, format as azimuth;
3286
+ * - the specification of the trailing component in
3287
+ * {@link module:GeographicLib/DMS.Encode Encode}
3288
+ * - DEGREE;
3289
+ * - MINUTE;
3290
+ * - SECOND.
3291
+ */
3292
+ d) {
3293
+
3294
+ var lookup, zerofill, internalDecode, numMatch,
3295
+ hemispheres_ = "SNWE",
3296
+ signs_ = "-+",
3297
+ digits_ = "0123456789",
3298
+ dmsindicators_ = "D'\":",
3299
+ // dmsindicatorsu_ = "\u00b0\u2032\u2033"; // Unicode variants
3300
+ dmsindicatorsu_ = "\u00b0'\"", // Use degree symbol
3301
+ components_ = ["degrees", "minutes", "seconds"];
3302
+ lookup = function(s, c) {
3303
+ return s.indexOf(c.toUpperCase());
3304
+ };
3305
+ zerofill = function(s, n) {
3306
+ return String("0000").substr(0, Math.max(0, Math.min(4, n-s.length))) +
3307
+ s;
3308
+ };
3309
+ d.NONE = 0;
3310
+ d.LATITUDE = 1;
3311
+ d.LONGITUDE = 2;
3312
+ d.AZIMUTH = 3;
3313
+ d.DEGREE = 0;
3314
+ d.MINUTE = 1;
3315
+ d.SECOND = 2;
3316
+
3317
+ /**
3318
+ * @summary Decode a DMS string.
3319
+ * @description The interpretation of the string is given in the
3320
+ * documentation of the corresponding function, Decode(string&, flag&)
3321
+ * in the {@link
3322
+ * https://geographiclib.sourceforge.io/html/classGeographicLib_1_1DMS.html
3323
+ * C++ DMS class}
3324
+ * @param {string} dms the string.
3325
+ * @returns {object} r where r.val is the decoded value (degrees) and r.ind
3326
+ * is a hemisphere designator, one of NONE, LATITUDE, LONGITUDE.
3327
+ * @throws an error if the string is illegal.
3328
+ */
3329
+ d.Decode = function(dms) {
3330
+ var dmsa = dms, end,
3331
+ v = 0, i = 0, mi, pi, vals,
3332
+ ind1 = d.NONE, ind2, p, pa, pb;
3333
+ dmsa = dmsa.replace(/\u00b0/g, 'd')
3334
+ .replace(/\u00ba/g, 'd')
3335
+ .replace(/\u2070/g, 'd')
3336
+ .replace(/\u02da/g, 'd')
3337
+ .replace(/\u2032/g, '\'')
3338
+ .replace(/\u00b4/g, '\'')
3339
+ .replace(/\u2019/g, '\'')
3340
+ .replace(/\u2033/g, '"')
3341
+ .replace(/\u201d/g, '"')
3342
+ .replace(/\u2212/g, '-')
3343
+ .replace(/''/g, '"')
3344
+ .trim();
3345
+ end = dmsa.length;
3346
+ // p is pointer to the next piece that needs decoding
3347
+ for (p = 0; p < end; p = pb, ++i) {
3348
+ pa = p;
3349
+ // Skip over initial hemisphere letter (for i == 0)
3350
+ if (i === 0 && lookup(hemispheres_, dmsa.charAt(pa)) >= 0)
3351
+ ++pa;
3352
+ // Skip over initial sign (checking for it if i == 0)
3353
+ if (i > 0 || (pa < end && lookup(signs_, dmsa.charAt(pa)) >= 0))
3354
+ ++pa;
3355
+ // Find next sign
3356
+ mi = dmsa.substr(pa, end - pa).indexOf('-');
3357
+ pi = dmsa.substr(pa, end - pa).indexOf('+');
3358
+ if (mi < 0) mi = end; else mi += pa;
3359
+ if (pi < 0) pi = end; else pi += pa;
3360
+ pb = Math.min(mi, pi);
3361
+ vals = internalDecode(dmsa.substr(p, pb - p));
3362
+ v += vals.val; ind2 = vals.ind;
3363
+ if (ind1 === d.NONE)
3364
+ ind1 = ind2;
3365
+ else if (!(ind2 === d.NONE || ind1 === ind2))
3366
+ throw new Error("Incompatible hemisphere specifies in " +
3367
+ dmsa.substr(0, pb));
3368
+ }
3369
+ if (i === 0)
3370
+ throw new Error("Empty or incomplete DMS string " + dmsa);
3371
+ return {val: v, ind: ind1};
3372
+ };
3373
+
3374
+ internalDecode = function(dmsa) {
3375
+ var vals = {}, errormsg = "",
3376
+ sign, beg, end, ind1, k,
3377
+ ipieces, fpieces, npiece,
3378
+ icurrent, fcurrent, ncurrent, p,
3379
+ pointseen,
3380
+ digcount, intcount,
3381
+ x;
3382
+ do { // Executed once (provides the ability to break)
3383
+ sign = 1;
3384
+ beg = 0; end = dmsa.length;
3385
+ ind1 = d.NONE;
3386
+ k = -1;
3387
+ if (end > beg && (k = lookup(hemispheres_, dmsa.charAt(beg))) >= 0) {
3388
+ ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
3389
+ sign = (k & 1) ? 1 : -1;
3390
+ ++beg;
3391
+ }
3392
+ if (end > beg &&
3393
+ (k = lookup(hemispheres_, dmsa.charAt(end-1))) >= 0) {
3394
+ if (k >= 0) {
3395
+ if (ind1 !== d.NONE) {
3396
+ if (dmsa.charAt(beg - 1).toUpperCase() ===
3397
+ dmsa.charAt(end - 1).toUpperCase())
3398
+ errormsg = "Repeated hemisphere indicators " +
3399
+ dmsa.charAt(beg - 1) + " in " +
3400
+ dmsa.substr(beg - 1, end - beg + 1);
3401
+ else
3402
+ errormsg = "Contradictory hemisphere indicators " +
3403
+ dmsa.charAt(beg - 1) + " and " + dmsa.charAt(end - 1) + " in " +
3404
+ dmsa.substr(beg - 1, end - beg + 1);
3405
+ break;
3406
+ }
3407
+ ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
3408
+ sign = (k & 1) ? 1 : -1;
3409
+ --end;
3410
+ }
3411
+ }
3412
+ if (end > beg && (k = lookup(signs_, dmsa.charAt(beg))) >= 0) {
3413
+ if (k >= 0) {
3414
+ sign *= k ? 1 : -1;
3415
+ ++beg;
3416
+ }
3417
+ }
3418
+ if (end === beg) {
3419
+ errormsg = "Empty or incomplete DMS string " + dmsa;
3420
+ break;
3421
+ }
3422
+ ipieces = [0, 0, 0];
3423
+ fpieces = [0, 0, 0];
3424
+ npiece = 0;
3425
+ icurrent = 0;
3426
+ fcurrent = 0;
3427
+ ncurrent = 0;
3428
+ p = beg;
3429
+ pointseen = false;
3430
+ digcount = 0;
3431
+ intcount = 0;
3432
+ while (p < end) {
3433
+ x = dmsa.charAt(p++);
3434
+ if ((k = lookup(digits_, x)) >= 0) {
3435
+ ++ncurrent;
3436
+ if (digcount > 0) {
3437
+ ++digcount; // Count of decimal digits
3438
+ } else {
3439
+ icurrent = 10 * icurrent + k;
3440
+ ++intcount;
3441
+ }
3442
+ } else if (x === '.') {
3443
+ if (pointseen) {
3444
+ errormsg = "Multiple decimal points in " +
3445
+ dmsa.substr(beg, end - beg);
3446
+ break;
3447
+ }
3448
+ pointseen = true;
3449
+ digcount = 1;
3450
+ } else if ((k = lookup(dmsindicators_, x)) >= 0) {
3451
+ if (k >= 3) {
3452
+ if (p === end) {
3453
+ errormsg = "Illegal for colon to appear at the end of " +
3454
+ dmsa.substr(beg, end - beg);
3455
+ break;
3456
+ }
3457
+ k = npiece;
3458
+ }
3459
+ if (k === npiece - 1) {
3460
+ errormsg = "Repeated " + components_[k] +
3461
+ " component in " + dmsa.substr(beg, end - beg);
3462
+ break;
3463
+ } else if (k < npiece) {
3464
+ errormsg = components_[k] + " component follows " +
3465
+ components_[npiece - 1] + " component in " +
3466
+ dmsa.substr(beg, end - beg);
3467
+ break;
3468
+ }
3469
+ if (ncurrent === 0) {
3470
+ errormsg = "Missing numbers in " + components_[k] +
3471
+ " component of " + dmsa.substr(beg, end - beg);
3472
+ break;
3473
+ }
3474
+ if (digcount > 0) {
3475
+ fcurrent = parseFloat(dmsa.substr(p - intcount - digcount - 1,
3476
+ intcount + digcount));
3477
+ icurrent = 0;
3478
+ }
3479
+ ipieces[k] = icurrent;
3480
+ fpieces[k] = icurrent + fcurrent;
3481
+ if (p < end) {
3482
+ npiece = k + 1;
3483
+ icurrent = fcurrent = 0;
3484
+ ncurrent = digcount = intcount = 0;
3485
+ }
3486
+ } else if (lookup(signs_, x) >= 0) {
3487
+ errormsg = "Internal sign in DMS string " +
3488
+ dmsa.substr(beg, end - beg);
3489
+ break;
3490
+ } else {
3491
+ errormsg = "Illegal character " + x + " in DMS string " +
3492
+ dmsa.substr(beg, end - beg);
3493
+ break;
3494
+ }
3495
+ }
3496
+ if (errormsg.length)
3497
+ break;
3498
+ if (lookup(dmsindicators_, dmsa.charAt(p - 1)) < 0) {
3499
+ if (npiece >= 3) {
3500
+ errormsg = "Extra text following seconds in DMS string " +
3501
+ dmsa.substr(beg, end - beg);
3502
+ break;
3503
+ }
3504
+ if (ncurrent === 0) {
3505
+ errormsg = "Missing numbers in trailing component of " +
3506
+ dmsa.substr(beg, end - beg);
3507
+ break;
3508
+ }
3509
+ if (digcount > 0) {
3510
+ fcurrent = parseFloat(dmsa.substr(p - intcount - digcount,
3511
+ intcount + digcount));
3512
+ icurrent = 0;
3513
+ }
3514
+ ipieces[npiece] = icurrent;
3515
+ fpieces[npiece] = icurrent + fcurrent;
3516
+ }
3517
+ if (pointseen && digcount === 0) {
3518
+ errormsg = "Decimal point in non-terminal component of " +
3519
+ dmsa.substr(beg, end - beg);
3520
+ break;
3521
+ }
3522
+ // Note that we accept 59.999999... even though it rounds to 60.
3523
+ if (ipieces[1] >= 60 || fpieces[1] > 60) {
3524
+ errormsg = "Minutes " + fpieces[1] + " not in range [0,60)";
3525
+ break;
3526
+ }
3527
+ if (ipieces[2] >= 60 || fpieces[2] > 60) {
3528
+ errormsg = "Seconds " + fpieces[2] + " not in range [0,60)";
3529
+ break;
3530
+ }
3531
+ vals.ind = ind1;
3532
+ // Assume check on range of result is made by calling routine (which
3533
+ // might be able to offer a better diagnostic).
3534
+ vals.val = sign *
3535
+ ( fpieces[2] ? (60*(60*fpieces[0] + fpieces[1]) + fpieces[2]) / 3600 :
3536
+ ( fpieces[1] ? (60*fpieces[0] + fpieces[1]) / 60 : fpieces[0] ) );
3537
+ return vals;
3538
+ } while (false);
3539
+ vals.val = numMatch(dmsa);
3540
+ if (vals.val === 0)
3541
+ throw new Error(errormsg);
3542
+ else
3543
+ vals.ind = d.NONE;
3544
+ return vals;
3545
+ };
3546
+
3547
+ numMatch = function(s) {
3548
+ var t, sign, p0, p1;
3549
+ if (s.length < 3)
3550
+ return 0;
3551
+ t = s.toUpperCase().replace(/0+$/, "");
3552
+ sign = t.charAt(0) === '-' ? -1 : 1;
3553
+ p0 = t.charAt(0) === '-' || t.charAt(0) === '+' ? 1 : 0;
3554
+ p1 = t.length - 1;
3555
+ if (p1 + 1 < p0 + 3)
3556
+ return 0;
3557
+ // Strip off sign and trailing 0s
3558
+ t = t.substr(p0, p1 + 1 - p0); // Length at least 3
3559
+ if (t === "NAN" || t === "1.#QNAN" || t === "1.#SNAN" || t === "1.#IND" ||
3560
+ t === "1.#R")
3561
+ return Number.NaN;
3562
+ else if (t === "INF" || t === "1.#INF")
3563
+ return sign * Number.POSITIVE_INFINITY;
3564
+ return 0;
3565
+ };
3566
+
3567
+ /**
3568
+ * @summary Decode two DMS strings interpreting them as a latitude/longitude
3569
+ * pair.
3570
+ * @param {string} stra the first string.
3571
+ * @param {string} strb the first string.
3572
+ * @param {bool} [longfirst = false] if true assume then longitude is given
3573
+ * first (in the absense of any hemisphere indicators).
3574
+ * @returns {object} r where r.lat is the decoded latitude and r.lon is the
3575
+ * decoded longitude (both in degrees).
3576
+ * @throws an error if the strings are illegal.
3577
+ */
3578
+ d.DecodeLatLon = function(stra, strb, longfirst) {
3579
+ var vals = {},
3580
+ valsa = d.Decode(stra),
3581
+ valsb = d.Decode(strb),
3582
+ a = valsa.val, ia = valsa.ind,
3583
+ b = valsb.val, ib = valsb.ind,
3584
+ lat, lon;
3585
+ if (!longfirst) longfirst = false;
3586
+ if (ia === d.NONE && ib === d.NONE) {
3587
+ // Default to lat, long unless longfirst
3588
+ ia = longfirst ? d.LONGITUDE : d.LATITUDE;
3589
+ ib = longfirst ? d.LATITUDE : d.LONGITUDE;
3590
+ } else if (ia === d.NONE)
3591
+ ia = d.LATITUDE + d.LONGITUDE - ib;
3592
+ else if (ib === d.NONE)
3593
+ ib = d.LATITUDE + d.LONGITUDE - ia;
3594
+ if (ia === ib)
3595
+ throw new Error("Both " + stra + " and " + strb + " interpreted as " +
3596
+ (ia === d.LATITUDE ? "latitudes" : "longitudes"));
3597
+ lat = ia === d.LATITUDE ? a : b;
3598
+ lon = ia === d.LATITUDE ? b : a;
3599
+ if (Math.abs(lat) > 90)
3600
+ throw new Error("Latitude " + lat + " not in [-90,90]");
3601
+ vals.lat = lat;
3602
+ vals.lon = lon;
3603
+ return vals;
3604
+ };
3605
+
3606
+ /**
3607
+ * @summary Decode a DMS string interpreting it as an arc length.
3608
+ * @param {string} angstr the string (this must not include a hemisphere
3609
+ * indicator).
3610
+ * @returns {number} the arc length (degrees).
3611
+ * @throws an error if the string is illegal.
3612
+ */
3613
+ d.DecodeAngle = function(angstr) {
3614
+ var vals = d.Decode(angstr),
3615
+ ang = vals.val, ind = vals.ind;
3616
+ if (ind !== d.NONE)
3617
+ throw new Error("Arc angle " + angstr +
3618
+ " includes a hemisphere N/E/W/S");
3619
+ return ang;
3620
+ };
3621
+
3622
+ /**
3623
+ * @summary Decode a DMS string interpreting it as an azimuth.
3624
+ * @param {string} azistr the string (this may include an E/W hemisphere
3625
+ * indicator).
3626
+ * @returns {number} the azimuth (degrees).
3627
+ * @throws an error if the string is illegal.
3628
+ */
3629
+ d.DecodeAzimuth = function(azistr) {
3630
+ var vals = d.Decode(azistr),
3631
+ azi = vals.val, ind = vals.ind;
3632
+ if (ind === d.LATITUDE)
3633
+ throw new Error("Azimuth " + azistr + " has a latitude hemisphere N/S");
3634
+ return azi;
3635
+ };
3636
+
3637
+ /**
3638
+ * @summary Convert angle (in degrees) into a DMS string (using &deg;, ',
3639
+ * and &quot;).
3640
+ * @param {number} angle input angle (degrees).
3641
+ * @param {number} trailing one of DEGREE, MINUTE, or SECOND to indicate
3642
+ * the trailing component of the string (this component is given as a
3643
+ * decimal number if necessary).
3644
+ * @param {number} prec the number of digits after the decimal point for
3645
+ * the trailing component.
3646
+ * @param {number} [ind = NONE] a formatting indicator, one of NONE,
3647
+ * LATITUDE, LONGITUDE, AZIMUTH.
3648
+ * @returns {string} the resulting string formatted as follows:
3649
+ * * NONE, signed result no leading zeros on degrees except in the units
3650
+ * place, e.g., -8&deg;03'.
3651
+ * * LATITUDE, trailing N or S hemisphere designator, no sign, pad
3652
+ * degrees to 2 digits, e.g., 08&deg;03'S.
3653
+ * * LONGITUDE, trailing E or W hemisphere designator, no sign, pad
3654
+ * degrees to 3 digits, e.g., 008&deg;03'W.
3655
+ * * AZIMUTH, convert to the range [0, 360&deg;), no sign, pad degrees to
3656
+ * 3 digits, e.g., 351&deg;57'.
3657
+ */
3658
+ d.Encode = function(angle, trailing, prec, ind) {
3659
+ // Assume check on range of input angle has been made by calling
3660
+ // routine (which might be able to offer a better diagnostic).
3661
+ var scale = 1, i, sign,
3662
+ idegree, fdegree, f, pieces, ip, fp, s;
3663
+ if (!ind) ind = d.NONE;
3664
+ if (!isFinite(angle))
3665
+ return angle < 0 ? String("-inf") :
3666
+ (angle > 0 ? String("inf") : String("nan"));
3667
+
3668
+ // 15 - 2 * trailing = ceiling(log10(2^53/90/60^trailing)).
3669
+ // This suffices to give full real precision for numbers in [-90,90]
3670
+ prec = Math.min(15 - 2 * trailing, prec);
3671
+ for (i = 0; i < trailing; ++i)
3672
+ scale *= 60;
3673
+ for (i = 0; i < prec; ++i)
3674
+ scale *= 10;
3675
+ if (ind === d.AZIMUTH)
3676
+ angle -= Math.floor(angle/360) * 360;
3677
+ sign = angle < 0 ? -1 : 1;
3678
+ angle *= sign;
3679
+
3680
+ // Break off integer part to preserve precision in manipulation of
3681
+ // fractional part.
3682
+ idegree = Math.floor(angle);
3683
+ fdegree = (angle - idegree) * scale + 0.5;
3684
+ f = Math.floor(fdegree);
3685
+ // Implement the "round ties to even" rule
3686
+ fdegree = (f === fdegree && (f & 1) === 1) ? f - 1 : f;
3687
+ fdegree /= scale;
3688
+
3689
+ fdegree = Math.floor((angle - idegree) * scale + 0.5) / scale;
3690
+ if (fdegree >= 1) {
3691
+ idegree += 1;
3692
+ fdegree -= 1;
3693
+ }
3694
+ pieces = [fdegree, 0, 0];
3695
+ for (i = 1; i <= trailing; ++i) {
3696
+ ip = Math.floor(pieces[i - 1]);
3697
+ fp = pieces[i - 1] - ip;
3698
+ pieces[i] = fp * 60;
3699
+ pieces[i - 1] = ip;
3700
+ }
3701
+ pieces[0] += idegree;
3702
+ s = "";
3703
+ if (ind === d.NONE && sign < 0)
3704
+ s += '-';
3705
+ switch (trailing) {
3706
+ case d.DEGREE:
3707
+ s += zerofill(pieces[0].toFixed(prec),
3708
+ ind === d.NONE ? 0 :
3709
+ 1 + Math.min(ind, 2) + prec + (prec ? 1 : 0)) +
3710
+ dmsindicatorsu_.charAt(0);
3711
+ break;
3712
+ default:
3713
+ s += zerofill(pieces[0].toFixed(0),
3714
+ ind === d.NONE ? 0 : 1 + Math.min(ind, 2)) +
3715
+ dmsindicatorsu_.charAt(0);
3716
+ switch (trailing) {
3717
+ case d.MINUTE:
3718
+ s += zerofill(pieces[1].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
3719
+ dmsindicatorsu_.charAt(1);
3720
+ break;
3721
+ case d.SECOND:
3722
+ s += zerofill(pieces[1].toFixed(0), 2) + dmsindicatorsu_.charAt(1);
3723
+ s += zerofill(pieces[2].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
3724
+ dmsindicatorsu_.charAt(2);
3725
+ break;
3726
+ default:
3727
+ break;
3728
+ }
3729
+ }
3730
+ if (ind !== d.NONE && ind !== d.AZIMUTH)
3731
+ s += hemispheres_.charAt((ind === d.LATITUDE ? 0 : 2) +
3732
+ (sign < 0 ? 0 : 1));
3733
+ return s;
3734
+ };
3735
+ })(GeographicLib.DMS);
3736
+
3737
+ cb(GeographicLib);
3738
+
3739
+ })(function(geo) {
3740
+ if (typeof module === 'object' && module.exports) {
3741
+ /******** support loading with node's require ********/
3742
+ module.exports = geo;
3743
+ } else if (true) {
3744
+ /******** support loading with AMD ********/
3745
+ !(__WEBPACK_AMD_DEFINE_ARRAY__ = [], __WEBPACK_AMD_DEFINE_RESULT__ = function() { return geo; }.apply(exports, __WEBPACK_AMD_DEFINE_ARRAY__),
3746
+ __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
3747
+ } else {
3748
+ /******** otherwise just pollute our global namespace ********/
3749
+ window.GeographicLib = geo;
3750
+ }
3751
+ });
3752
+
3753
+
3754
+ /***/ })
3755
+ /******/ ]);
3756
+
3757
+ /***/ }),
3758
+ /* 4 */
3759
+ /***/ (function(module, exports) {
3760
+
3761
+ // removed by extract-text-webpack-plugin
3762
+
3763
+ /***/ })
3764
+ /******/ ]);