ekylibre-cartography 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
 - data/README.md +3 -0
 - data/Rakefile +10 -0
 - data/app/assets/javascripts/cartography.coffee +535 -0
 - data/app/assets/javascripts/cartography/base.coffee +11 -0
 - data/app/assets/javascripts/cartography/controls.coffee +463 -0
 - data/app/assets/javascripts/cartography/events.coffee +36 -0
 - data/app/assets/javascripts/cartography/layers.coffee +127 -0
 - data/app/assets/javascripts/cartography/layers/simple.coffee +37 -0
 - data/app/assets/javascripts/cartography/leaflet/controls.coffee +420 -0
 - data/app/assets/javascripts/cartography/leaflet/handlers.coffee +461 -0
 - data/app/assets/javascripts/cartography/leaflet/i18n.coffee +31 -0
 - data/app/assets/javascripts/cartography/leaflet/layers.coffee +60 -0
 - data/app/assets/javascripts/cartography/leaflet/toolbars.coffee +450 -0
 - data/app/assets/javascripts/cartography/patches.js +8 -0
 - data/app/assets/javascripts/cartography/util.coffee +18 -0
 - data/app/assets/javascripts/main.js +18 -0
 - data/app/assets/stylesheets/cartography.css +86 -0
 - data/app/helpers/cartography_helper.rb +55 -0
 - data/lib/cartography.rb +1 -0
 - data/lib/cartography/engine.rb +11 -0
 - data/lib/cartography/version.rb +3 -0
 - data/vendor/assets/components/d3-array/dist/d3-array.js +590 -0
 - data/vendor/assets/components/d3-array/dist/d3-array.min.js +2 -0
 - data/vendor/assets/components/geojson-equality/dist/geojson-equality.js +295 -0
 - data/vendor/assets/components/geojson-equality/dist/geojson-equality.js.map +21 -0
 - data/vendor/assets/components/geojson-equality/dist/geojson-equality.min.js +1 -0
 - data/vendor/assets/components/leaflet-controlpanel/dist/leaflet.controlpanel.css +29 -0
 - data/vendor/assets/components/leaflet-controlpanel/dist/leaflet.controlpanel.js +269 -0
 - data/vendor/assets/components/leaflet-draw-cut/dist/leaflet.draw.cut.css +1 -0
 - data/vendor/assets/components/leaflet-draw-cut/dist/leaflet.draw.cut.js +8 -0
 - data/vendor/assets/components/leaflet-draw-merge/dist/leaflet.draw.merge.css +0 -0
 - data/vendor/assets/components/leaflet-draw-merge/dist/leaflet.draw.merge.js +48026 -0
 - data/vendor/assets/components/leaflet-draw/dist/leaflet.draw-src.css +326 -0
 - data/vendor/assets/components/leaflet-draw/dist/leaflet.draw-src.js +4653 -0
 - data/vendor/assets/components/leaflet-draw/dist/leaflet.draw-src.map +1 -0
 - data/vendor/assets/components/leaflet-draw/dist/leaflet.draw.css +10 -0
 - data/vendor/assets/components/leaflet-draw/dist/leaflet.draw.js +10 -0
 - data/vendor/assets/components/leaflet-geographicutil/dist/leaflet.geographicutil.js +3220 -0
 - data/vendor/assets/components/leaflet-reactive_measure/dist/reactive_measure.css +30 -0
 - data/vendor/assets/components/leaflet-reactive_measure/dist/reactive_measure.js +3764 -0
 - data/vendor/assets/components/leaflet/dist/leaflet-src.js +13609 -0
 - data/vendor/assets/components/leaflet/dist/leaflet-src.js.map +1 -0
 - data/vendor/assets/components/leaflet/dist/leaflet-src.map +1 -0
 - data/vendor/assets/components/leaflet/dist/leaflet.css +632 -0
 - data/vendor/assets/components/leaflet/dist/leaflet.js +5 -0
 - data/vendor/assets/components/leaflet/dist/leaflet.js.map +1 -0
 - data/vendor/assets/components/martinez-polygon-clipping/dist/martinez.min.js +9 -0
 - data/vendor/assets/components/martinez-polygon-clipping/dist/martinez.umd.js +1716 -0
 - data/vendor/assets/components/martinez-polygon-clipping/dist/martinez.umd.js.map +1 -0
 - data/vendor/assets/components/polygon-clipping/dist/polygon-clipping.js +279 -0
 - data/vendor/assets/components/polygon-clipping/dist/polygon-clipping.min.js +1 -0
 - data/vendor/assets/components/rtree/dist/rtree.js +911 -0
 - data/vendor/assets/components/rtree/dist/rtree.min.js +1 -0
 - data/vendor/assets/components/splaytree/dist/splay.es6.js +765 -0
 - data/vendor/assets/components/splaytree/dist/splay.es6.js.map +1 -0
 - data/vendor/assets/components/splaytree/dist/splay.js +797 -0
 - data/vendor/assets/components/splaytree/dist/splay.js.map +1 -0
 - metadata +156 -0
 
| 
         @@ -0,0 +1,30 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            .leaflet-draw-tooltip-left {
         
     | 
| 
      
 2 
     | 
    
         
            +
              background: #363636;
         
     | 
| 
      
 3 
     | 
    
         
            +
              background: rgba(0, 0, 0, 0.5);
         
     | 
| 
      
 4 
     | 
    
         
            +
              border: 1px solid transparent;
         
     | 
| 
      
 5 
     | 
    
         
            +
              position: absolute;
         
     | 
| 
      
 6 
     | 
    
         
            +
              visibility: hidden;
         
     | 
| 
      
 7 
     | 
    
         
            +
              white-space: nowrap;
         
     | 
| 
      
 8 
     | 
    
         
            +
              z-index: 6; }
         
     | 
| 
      
 9 
     | 
    
         
            +
              .leaflet-draw-tooltip-left:before {
         
     | 
| 
      
 10 
     | 
    
         
            +
                border: none !important; }
         
     | 
| 
      
 11 
     | 
    
         
            +
              .leaflet-draw-tooltip-left:after {
         
     | 
| 
      
 12 
     | 
    
         
            +
                border-left: 6px solid black;
         
     | 
| 
      
 13 
     | 
    
         
            +
                border-left-color: rgba(0, 0, 0, 0.5);
         
     | 
| 
      
 14 
     | 
    
         
            +
                border-top: 6px solid transparent;
         
     | 
| 
      
 15 
     | 
    
         
            +
                border-bottom: 6px solid transparent;
         
     | 
| 
      
 16 
     | 
    
         
            +
                content: "";
         
     | 
| 
      
 17 
     | 
    
         
            +
                position: absolute;
         
     | 
| 
      
 18 
     | 
    
         
            +
                top: 7px;
         
     | 
| 
      
 19 
     | 
    
         
            +
                left: 100%; }
         
     | 
| 
      
 20 
     | 
    
         
            +
              .leaflet-draw-tooltip-left span {
         
     | 
| 
      
 21 
     | 
    
         
            +
                color: inherit; }
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
            .leaflet-draw-tooltip-measure.area {
         
     | 
| 
      
 24 
     | 
    
         
            +
              padding-left: 10px; }
         
     | 
| 
      
 25 
     | 
    
         
            +
             
     | 
| 
      
 26 
     | 
    
         
            +
            .reactive-measure-control {
         
     | 
| 
      
 27 
     | 
    
         
            +
              background: rgba(255, 255, 255, 0.6);
         
     | 
| 
      
 28 
     | 
    
         
            +
              padding: 0 8px; }
         
     | 
| 
      
 29 
     | 
    
         
            +
              .reactive-measure-control.selection {
         
     | 
| 
      
 30 
     | 
    
         
            +
                background: rgba(255, 196, 136, 0.5); }
         
     | 
| 
         @@ -0,0 +1,3764 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            /******/ (function(modules) { // webpackBootstrap
         
     | 
| 
      
 2 
     | 
    
         
            +
            /******/ 	// The module cache
         
     | 
| 
      
 3 
     | 
    
         
            +
            /******/ 	var installedModules = {};
         
     | 
| 
      
 4 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 5 
     | 
    
         
            +
            /******/ 	// The require function
         
     | 
| 
      
 6 
     | 
    
         
            +
            /******/ 	function __webpack_require__(moduleId) {
         
     | 
| 
      
 7 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 8 
     | 
    
         
            +
            /******/ 		// Check if module is in cache
         
     | 
| 
      
 9 
     | 
    
         
            +
            /******/ 		if(installedModules[moduleId]) {
         
     | 
| 
      
 10 
     | 
    
         
            +
            /******/ 			return installedModules[moduleId].exports;
         
     | 
| 
      
 11 
     | 
    
         
            +
            /******/ 		}
         
     | 
| 
      
 12 
     | 
    
         
            +
            /******/ 		// Create a new module (and put it into the cache)
         
     | 
| 
      
 13 
     | 
    
         
            +
            /******/ 		var module = installedModules[moduleId] = {
         
     | 
| 
      
 14 
     | 
    
         
            +
            /******/ 			i: moduleId,
         
     | 
| 
      
 15 
     | 
    
         
            +
            /******/ 			l: false,
         
     | 
| 
      
 16 
     | 
    
         
            +
            /******/ 			exports: {}
         
     | 
| 
      
 17 
     | 
    
         
            +
            /******/ 		};
         
     | 
| 
      
 18 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 19 
     | 
    
         
            +
            /******/ 		// Execute the module function
         
     | 
| 
      
 20 
     | 
    
         
            +
            /******/ 		modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
         
     | 
| 
      
 21 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 22 
     | 
    
         
            +
            /******/ 		// Flag the module as loaded
         
     | 
| 
      
 23 
     | 
    
         
            +
            /******/ 		module.l = true;
         
     | 
| 
      
 24 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 25 
     | 
    
         
            +
            /******/ 		// Return the exports of the module
         
     | 
| 
      
 26 
     | 
    
         
            +
            /******/ 		return module.exports;
         
     | 
| 
      
 27 
     | 
    
         
            +
            /******/ 	}
         
     | 
| 
      
 28 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 29 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 30 
     | 
    
         
            +
            /******/ 	// expose the modules object (__webpack_modules__)
         
     | 
| 
      
 31 
     | 
    
         
            +
            /******/ 	__webpack_require__.m = modules;
         
     | 
| 
      
 32 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 33 
     | 
    
         
            +
            /******/ 	// expose the module cache
         
     | 
| 
      
 34 
     | 
    
         
            +
            /******/ 	__webpack_require__.c = installedModules;
         
     | 
| 
      
 35 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 36 
     | 
    
         
            +
            /******/ 	// define getter function for harmony exports
         
     | 
| 
      
 37 
     | 
    
         
            +
            /******/ 	__webpack_require__.d = function(exports, name, getter) {
         
     | 
| 
      
 38 
     | 
    
         
            +
            /******/ 		if(!__webpack_require__.o(exports, name)) {
         
     | 
| 
      
 39 
     | 
    
         
            +
            /******/ 			Object.defineProperty(exports, name, {
         
     | 
| 
      
 40 
     | 
    
         
            +
            /******/ 				configurable: false,
         
     | 
| 
      
 41 
     | 
    
         
            +
            /******/ 				enumerable: true,
         
     | 
| 
      
 42 
     | 
    
         
            +
            /******/ 				get: getter
         
     | 
| 
      
 43 
     | 
    
         
            +
            /******/ 			});
         
     | 
| 
      
 44 
     | 
    
         
            +
            /******/ 		}
         
     | 
| 
      
 45 
     | 
    
         
            +
            /******/ 	};
         
     | 
| 
      
 46 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 47 
     | 
    
         
            +
            /******/ 	// getDefaultExport function for compatibility with non-harmony modules
         
     | 
| 
      
 48 
     | 
    
         
            +
            /******/ 	__webpack_require__.n = function(module) {
         
     | 
| 
      
 49 
     | 
    
         
            +
            /******/ 		var getter = module && module.__esModule ?
         
     | 
| 
      
 50 
     | 
    
         
            +
            /******/ 			function getDefault() { return module['default']; } :
         
     | 
| 
      
 51 
     | 
    
         
            +
            /******/ 			function getModuleExports() { return module; };
         
     | 
| 
      
 52 
     | 
    
         
            +
            /******/ 		__webpack_require__.d(getter, 'a', getter);
         
     | 
| 
      
 53 
     | 
    
         
            +
            /******/ 		return getter;
         
     | 
| 
      
 54 
     | 
    
         
            +
            /******/ 	};
         
     | 
| 
      
 55 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 56 
     | 
    
         
            +
            /******/ 	// Object.prototype.hasOwnProperty.call
         
     | 
| 
      
 57 
     | 
    
         
            +
            /******/ 	__webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
         
     | 
| 
      
 58 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 59 
     | 
    
         
            +
            /******/ 	// __webpack_public_path__
         
     | 
| 
      
 60 
     | 
    
         
            +
            /******/ 	__webpack_require__.p = "";
         
     | 
| 
      
 61 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 62 
     | 
    
         
            +
            /******/ 	// Load entry module and return exports
         
     | 
| 
      
 63 
     | 
    
         
            +
            /******/ 	return __webpack_require__(__webpack_require__.s = 0);
         
     | 
| 
      
 64 
     | 
    
         
            +
            /******/ })
         
     | 
| 
      
 65 
     | 
    
         
            +
            /************************************************************************/
         
     | 
| 
      
 66 
     | 
    
         
            +
            /******/ ([
         
     | 
| 
      
 67 
     | 
    
         
            +
            /* 0 */
         
     | 
| 
      
 68 
     | 
    
         
            +
            /***/ (function(module, exports, __webpack_require__) {
         
     | 
| 
      
 69 
     | 
    
         
            +
             
     | 
| 
      
 70 
     | 
    
         
            +
            __webpack_require__(1);
         
     | 
| 
      
 71 
     | 
    
         
            +
            module.exports = __webpack_require__(4);
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
             
     | 
| 
      
 74 
     | 
    
         
            +
            /***/ }),
         
     | 
| 
      
 75 
     | 
    
         
            +
            /* 1 */
         
     | 
| 
      
 76 
     | 
    
         
            +
            /***/ (function(module, exports, __webpack_require__) {
         
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
            var L;
         
     | 
| 
      
 79 
     | 
    
         
            +
             
     | 
| 
      
 80 
     | 
    
         
            +
            L = __webpack_require__(2);
         
     | 
| 
      
 81 
     | 
    
         
            +
             
     | 
| 
      
 82 
     | 
    
         
            +
            __webpack_require__(3);
         
     | 
| 
      
 83 
     | 
    
         
            +
             
     | 
| 
      
 84 
     | 
    
         
            +
            L.ReactiveMeasure = {};
         
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
            L.ReactiveMeasure.Draw = {};
         
     | 
| 
      
 87 
     | 
    
         
            +
             
     | 
| 
      
 88 
     | 
    
         
            +
            L.ReactiveMeasure.Edit = {};
         
     | 
| 
      
 89 
     | 
    
         
            +
             
     | 
| 
      
 90 
     | 
    
         
            +
            L.ReactiveMeasure.Draw.Event = {};
         
     | 
| 
      
 91 
     | 
    
         
            +
             
     | 
| 
      
 92 
     | 
    
         
            +
            L.ReactiveMeasure.Edit.Event = {};
         
     | 
| 
      
 93 
     | 
    
         
            +
             
     | 
| 
      
 94 
     | 
    
         
            +
            L.ReactiveMeasure.Draw.Event.MOVE = "reactiveMeasure:draw:move";
         
     | 
| 
      
 95 
     | 
    
         
            +
             
     | 
| 
      
 96 
     | 
    
         
            +
            L.ReactiveMeasure.Edit.Event.MOVE = "reactiveMeasure:edit:move";
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
            module.exports = L.ReactiveMeasureControl = L.Control.extend({
         
     | 
| 
      
 99 
     | 
    
         
            +
              options: {
         
     | 
| 
      
 100 
     | 
    
         
            +
                position: 'bottomright',
         
     | 
| 
      
 101 
     | 
    
         
            +
                metric: true,
         
     | 
| 
      
 102 
     | 
    
         
            +
                feet: false,
         
     | 
| 
      
 103 
     | 
    
         
            +
                measure: {
         
     | 
| 
      
 104 
     | 
    
         
            +
                  perimeter: 0,
         
     | 
| 
      
 105 
     | 
    
         
            +
                  area: 0
         
     | 
| 
      
 106 
     | 
    
         
            +
                }
         
     | 
| 
      
 107 
     | 
    
         
            +
              },
         
     | 
| 
      
 108 
     | 
    
         
            +
              initialize: function(layers, options) {
         
     | 
| 
      
 109 
     | 
    
         
            +
                if (options == null) {
         
     | 
| 
      
 110 
     | 
    
         
            +
                  options = {};
         
     | 
| 
      
 111 
     | 
    
         
            +
                }
         
     | 
| 
      
 112 
     | 
    
         
            +
                L.Util.setOptions(this, options);
         
     | 
| 
      
 113 
     | 
    
         
            +
                this.options.measure.perimeter = 0;
         
     | 
| 
      
 114 
     | 
    
         
            +
                this.options.measure.area = 0;
         
     | 
| 
      
 115 
     | 
    
         
            +
                if (layers.getLayers().length > 0) {
         
     | 
| 
      
 116 
     | 
    
         
            +
                  return layers.eachLayer((function(_this) {
         
     | 
| 
      
 117 
     | 
    
         
            +
                    return function(layer) {
         
     | 
| 
      
 118 
     | 
    
         
            +
                      var m;
         
     | 
| 
      
 119 
     | 
    
         
            +
                      if (typeof layer.getMeasure === 'function') {
         
     | 
| 
      
 120 
     | 
    
         
            +
                        m = layer.getMeasure();
         
     | 
| 
      
 121 
     | 
    
         
            +
                        _this.options.measure.perimeter += m.perimeter;
         
     | 
| 
      
 122 
     | 
    
         
            +
                        return _this.options.measure.area += m.area;
         
     | 
| 
      
 123 
     | 
    
         
            +
                      }
         
     | 
| 
      
 124 
     | 
    
         
            +
                    };
         
     | 
| 
      
 125 
     | 
    
         
            +
                  })(this));
         
     | 
| 
      
 126 
     | 
    
         
            +
                }
         
     | 
| 
      
 127 
     | 
    
         
            +
              },
         
     | 
| 
      
 128 
     | 
    
         
            +
              onAdd: function(map) {
         
     | 
| 
      
 129 
     | 
    
         
            +
                this._container = L.DomUtil.create('div', "reactive-measure-control " + map._leaflet_id);
         
     | 
| 
      
 130 
     | 
    
         
            +
                map.reactiveMeasureControl = this;
         
     | 
| 
      
 131 
     | 
    
         
            +
                if (map && this._container) {
         
     | 
| 
      
 132 
     | 
    
         
            +
                  this.updateContent(this.options.measure);
         
     | 
| 
      
 133 
     | 
    
         
            +
                }
         
     | 
| 
      
 134 
     | 
    
         
            +
                return this._container;
         
     | 
| 
      
 135 
     | 
    
         
            +
              },
         
     | 
| 
      
 136 
     | 
    
         
            +
              updateContent: function(measure, options) {
         
     | 
| 
      
 137 
     | 
    
         
            +
                var text;
         
     | 
| 
      
 138 
     | 
    
         
            +
                if (measure == null) {
         
     | 
| 
      
 139 
     | 
    
         
            +
                  measure = {};
         
     | 
| 
      
 140 
     | 
    
         
            +
                }
         
     | 
| 
      
 141 
     | 
    
         
            +
                if (options == null) {
         
     | 
| 
      
 142 
     | 
    
         
            +
                  options = {};
         
     | 
| 
      
 143 
     | 
    
         
            +
                }
         
     | 
| 
      
 144 
     | 
    
         
            +
                text = '';
         
     | 
| 
      
 145 
     | 
    
         
            +
                if (measure['perimeter']) {
         
     | 
| 
      
 146 
     | 
    
         
            +
                  text += "<span class='leaflet-draw-tooltip-measure perimeter'>" + (L.GeometryUtil.readableDistance(measure.perimeter, !!this.options.metric, !!options.feet)) + "</span>";
         
     | 
| 
      
 147 
     | 
    
         
            +
                }
         
     | 
| 
      
 148 
     | 
    
         
            +
                if (measure['area']) {
         
     | 
| 
      
 149 
     | 
    
         
            +
                  text += "<span class='leaflet-draw-tooltip-measure area'>" + (L.GeometryUtil.readableArea(measure.area, !!this.options.metric)) + "</span>";
         
     | 
| 
      
 150 
     | 
    
         
            +
                }
         
     | 
| 
      
 151 
     | 
    
         
            +
                if ((options.selection != null) && options.selection === true) {
         
     | 
| 
      
 152 
     | 
    
         
            +
                  L.DomUtil.addClass(this._container, 'selection');
         
     | 
| 
      
 153 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 154 
     | 
    
         
            +
                  L.DomUtil.removeClass(this._container, 'selection');
         
     | 
| 
      
 155 
     | 
    
         
            +
                }
         
     | 
| 
      
 156 
     | 
    
         
            +
                this._container.innerHTML = text;
         
     | 
| 
      
 157 
     | 
    
         
            +
              }
         
     | 
| 
      
 158 
     | 
    
         
            +
            });
         
     | 
| 
      
 159 
     | 
    
         
            +
             
     | 
| 
      
 160 
     | 
    
         
            +
            L.FeatureGroup.include({
         
     | 
| 
      
 161 
     | 
    
         
            +
              getMeasure: function() {
         
     | 
| 
      
 162 
     | 
    
         
            +
                var measure;
         
     | 
| 
      
 163 
     | 
    
         
            +
                measure = {
         
     | 
| 
      
 164 
     | 
    
         
            +
                  perimeter: 0,
         
     | 
| 
      
 165 
     | 
    
         
            +
                  area: 0
         
     | 
| 
      
 166 
     | 
    
         
            +
                };
         
     | 
| 
      
 167 
     | 
    
         
            +
                this.eachLayer(function(layer) {
         
     | 
| 
      
 168 
     | 
    
         
            +
                  var m;
         
     | 
| 
      
 169 
     | 
    
         
            +
                  m = layer.getMeasure();
         
     | 
| 
      
 170 
     | 
    
         
            +
                  measure.perimeter += m.perimeter;
         
     | 
| 
      
 171 
     | 
    
         
            +
                  return measure.area += m.area;
         
     | 
| 
      
 172 
     | 
    
         
            +
                });
         
     | 
| 
      
 173 
     | 
    
         
            +
                return measure;
         
     | 
| 
      
 174 
     | 
    
         
            +
              }
         
     | 
| 
      
 175 
     | 
    
         
            +
            });
         
     | 
| 
      
 176 
     | 
    
         
            +
             
     | 
| 
      
 177 
     | 
    
         
            +
            L.Polygon.include({
         
     | 
| 
      
 178 
     | 
    
         
            +
             
     | 
| 
      
 179 
     | 
    
         
            +
              /*
         
     | 
| 
      
 180 
     | 
    
         
            +
               * Get centroid of the polygon in square meters
         
     | 
| 
      
 181 
     | 
    
         
            +
               * Portage from leaflet1.0.0-rc1: https://github.com/Leaflet/Leaflet/blob/master/src/layer/vector/Polygon.js
         
     | 
| 
      
 182 
     | 
    
         
            +
               * @return {number} polygon centroid
         
     | 
| 
      
 183 
     | 
    
         
            +
               */
         
     | 
| 
      
 184 
     | 
    
         
            +
              __getCenter: function() {
         
     | 
| 
      
 185 
     | 
    
         
            +
                var area, center, f, i, j, len, p1, p2, points, x, y;
         
     | 
| 
      
 186 
     | 
    
         
            +
                this.__project();
         
     | 
| 
      
 187 
     | 
    
         
            +
                points = this._rings[0];
         
     | 
| 
      
 188 
     | 
    
         
            +
                len = points.length;
         
     | 
| 
      
 189 
     | 
    
         
            +
                if (!len) {
         
     | 
| 
      
 190 
     | 
    
         
            +
                  return null;
         
     | 
| 
      
 191 
     | 
    
         
            +
                }
         
     | 
| 
      
 192 
     | 
    
         
            +
                area = x = y = 0;
         
     | 
| 
      
 193 
     | 
    
         
            +
                i = 0;
         
     | 
| 
      
 194 
     | 
    
         
            +
                j = len - 1;
         
     | 
| 
      
 195 
     | 
    
         
            +
                while (i < len) {
         
     | 
| 
      
 196 
     | 
    
         
            +
                  p1 = points[i];
         
     | 
| 
      
 197 
     | 
    
         
            +
                  p2 = points[j];
         
     | 
| 
      
 198 
     | 
    
         
            +
                  f = p1.y * p2.x - (p2.y * p1.x);
         
     | 
| 
      
 199 
     | 
    
         
            +
                  x += (p1.x + p2.x) * f;
         
     | 
| 
      
 200 
     | 
    
         
            +
                  y += (p1.y + p2.y) * f;
         
     | 
| 
      
 201 
     | 
    
         
            +
                  area += f * 3;
         
     | 
| 
      
 202 
     | 
    
         
            +
                  j = i++;
         
     | 
| 
      
 203 
     | 
    
         
            +
                }
         
     | 
| 
      
 204 
     | 
    
         
            +
                if (area === 0) {
         
     | 
| 
      
 205 
     | 
    
         
            +
                  center = points[0];
         
     | 
| 
      
 206 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 207 
     | 
    
         
            +
                  center = [x / area, y / area];
         
     | 
| 
      
 208 
     | 
    
         
            +
                }
         
     | 
| 
      
 209 
     | 
    
         
            +
                return this._map.layerPointToLatLng(center);
         
     | 
| 
      
 210 
     | 
    
         
            +
              },
         
     | 
| 
      
 211 
     | 
    
         
            +
             
     | 
| 
      
 212 
     | 
    
         
            +
              /*
         
     | 
| 
      
 213 
     | 
    
         
            +
               * Return LatLngs as array of [lat, lng] pair.
         
     | 
| 
      
 214 
     | 
    
         
            +
               * @return {Array} [[lat,lng], [lat,lng]]
         
     | 
| 
      
 215 
     | 
    
         
            +
               */
         
     | 
| 
      
 216 
     | 
    
         
            +
              getLatLngsAsArray: function() {
         
     | 
| 
      
 217 
     | 
    
         
            +
                var arr, k, latlng, len1, ref;
         
     | 
| 
      
 218 
     | 
    
         
            +
                arr = [];
         
     | 
| 
      
 219 
     | 
    
         
            +
                ref = this._latlngs[0];
         
     | 
| 
      
 220 
     | 
    
         
            +
                for (k = 0, len1 = ref.length; k < len1; k++) {
         
     | 
| 
      
 221 
     | 
    
         
            +
                  latlng = ref[k];
         
     | 
| 
      
 222 
     | 
    
         
            +
                  arr.push([latlng.lat, latlng.lng]);
         
     | 
| 
      
 223 
     | 
    
         
            +
                }
         
     | 
| 
      
 224 
     | 
    
         
            +
                return arr;
         
     | 
| 
      
 225 
     | 
    
         
            +
              }
         
     | 
| 
      
 226 
     | 
    
         
            +
            });
         
     | 
| 
      
 227 
     | 
    
         
            +
             
     | 
| 
      
 228 
     | 
    
         
            +
            L.Polyline.include({
         
     | 
| 
      
 229 
     | 
    
         
            +
             
     | 
| 
      
 230 
     | 
    
         
            +
              /*
         
     | 
| 
      
 231 
     | 
    
         
            +
               * Return LatLngs as array of [lat, lng] pair.
         
     | 
| 
      
 232 
     | 
    
         
            +
               * @return {Array} [[lat,lng], [lat,lng]]
         
     | 
| 
      
 233 
     | 
    
         
            +
               */
         
     | 
| 
      
 234 
     | 
    
         
            +
              getLatLngsAsArray: function() {
         
     | 
| 
      
 235 
     | 
    
         
            +
                var arr, k, latlng, len1, ref;
         
     | 
| 
      
 236 
     | 
    
         
            +
                arr = [];
         
     | 
| 
      
 237 
     | 
    
         
            +
                ref = this._latlngs;
         
     | 
| 
      
 238 
     | 
    
         
            +
                for (k = 0, len1 = ref.length; k < len1; k++) {
         
     | 
| 
      
 239 
     | 
    
         
            +
                  latlng = ref[k];
         
     | 
| 
      
 240 
     | 
    
         
            +
                  arr.push([latlng.lat, latlng.lng]);
         
     | 
| 
      
 241 
     | 
    
         
            +
                }
         
     | 
| 
      
 242 
     | 
    
         
            +
                return arr;
         
     | 
| 
      
 243 
     | 
    
         
            +
              },
         
     | 
| 
      
 244 
     | 
    
         
            +
             
     | 
| 
      
 245 
     | 
    
         
            +
              /*
         
     | 
| 
      
 246 
     | 
    
         
            +
               * Get center of the polyline in meters
         
     | 
| 
      
 247 
     | 
    
         
            +
               * Portage from leaflet1.0.0-rc1: https://github.com/Leaflet/Leaflet/blob/master/src/layer/vector/Polyline.js
         
     | 
| 
      
 248 
     | 
    
         
            +
               * @return {number} polyline center
         
     | 
| 
      
 249 
     | 
    
         
            +
               */
         
     | 
| 
      
 250 
     | 
    
         
            +
              __getCenter: function() {
         
     | 
| 
      
 251 
     | 
    
         
            +
                var dist, halfDist, i, len, p1, p2, points, ratio, segDist;
         
     | 
| 
      
 252 
     | 
    
         
            +
                this.__project();
         
     | 
| 
      
 253 
     | 
    
         
            +
                i = void 0;
         
     | 
| 
      
 254 
     | 
    
         
            +
                halfDist = void 0;
         
     | 
| 
      
 255 
     | 
    
         
            +
                segDist = void 0;
         
     | 
| 
      
 256 
     | 
    
         
            +
                dist = void 0;
         
     | 
| 
      
 257 
     | 
    
         
            +
                p1 = void 0;
         
     | 
| 
      
 258 
     | 
    
         
            +
                p2 = void 0;
         
     | 
| 
      
 259 
     | 
    
         
            +
                ratio = void 0;
         
     | 
| 
      
 260 
     | 
    
         
            +
                points = this._rings[0];
         
     | 
| 
      
 261 
     | 
    
         
            +
                len = points.length;
         
     | 
| 
      
 262 
     | 
    
         
            +
                if (!len) {
         
     | 
| 
      
 263 
     | 
    
         
            +
                  return null;
         
     | 
| 
      
 264 
     | 
    
         
            +
                }
         
     | 
| 
      
 265 
     | 
    
         
            +
                i = 0;
         
     | 
| 
      
 266 
     | 
    
         
            +
                halfDist = 0;
         
     | 
| 
      
 267 
     | 
    
         
            +
                while (i < len - 1) {
         
     | 
| 
      
 268 
     | 
    
         
            +
                  halfDist += points[i].distanceTo(points[i + 1]) / 2;
         
     | 
| 
      
 269 
     | 
    
         
            +
                  i++;
         
     | 
| 
      
 270 
     | 
    
         
            +
                }
         
     | 
| 
      
 271 
     | 
    
         
            +
                if (halfDist === 0) {
         
     | 
| 
      
 272 
     | 
    
         
            +
                  return this._map.layerPointToLatLng(points[0]);
         
     | 
| 
      
 273 
     | 
    
         
            +
                }
         
     | 
| 
      
 274 
     | 
    
         
            +
                i = 0;
         
     | 
| 
      
 275 
     | 
    
         
            +
                dist = 0;
         
     | 
| 
      
 276 
     | 
    
         
            +
                while (i < len - 1) {
         
     | 
| 
      
 277 
     | 
    
         
            +
                  p1 = points[i];
         
     | 
| 
      
 278 
     | 
    
         
            +
                  p2 = points[i + 1];
         
     | 
| 
      
 279 
     | 
    
         
            +
                  segDist = p1.distanceTo(p2);
         
     | 
| 
      
 280 
     | 
    
         
            +
                  dist += segDist;
         
     | 
| 
      
 281 
     | 
    
         
            +
                  if (dist > halfDist) {
         
     | 
| 
      
 282 
     | 
    
         
            +
                    ratio = (dist - halfDist) / segDist;
         
     | 
| 
      
 283 
     | 
    
         
            +
                    return this._map.layerPointToLatLng([p2.x - (ratio * (p2.x - p1.x)), p2.y - (ratio * (p2.y - p1.y))]);
         
     | 
| 
      
 284 
     | 
    
         
            +
                  }
         
     | 
| 
      
 285 
     | 
    
         
            +
                  i++;
         
     | 
| 
      
 286 
     | 
    
         
            +
                }
         
     | 
| 
      
 287 
     | 
    
         
            +
              },
         
     | 
| 
      
 288 
     | 
    
         
            +
              __project: function() {
         
     | 
| 
      
 289 
     | 
    
         
            +
                var pxBounds;
         
     | 
| 
      
 290 
     | 
    
         
            +
                pxBounds = new L.Bounds;
         
     | 
| 
      
 291 
     | 
    
         
            +
                this._rings = [];
         
     | 
| 
      
 292 
     | 
    
         
            +
                this.__projectLatlngs(this._latlngs, this._rings, pxBounds);
         
     | 
| 
      
 293 
     | 
    
         
            +
              },
         
     | 
| 
      
 294 
     | 
    
         
            +
              __projectLatlngs: function(latlngs, result, projectedBounds) {
         
     | 
| 
      
 295 
     | 
    
         
            +
                var flat, i, len, ring;
         
     | 
| 
      
 296 
     | 
    
         
            +
                flat = latlngs[0] instanceof L.LatLng;
         
     | 
| 
      
 297 
     | 
    
         
            +
                len = latlngs.length;
         
     | 
| 
      
 298 
     | 
    
         
            +
                i = void 0;
         
     | 
| 
      
 299 
     | 
    
         
            +
                ring = void 0;
         
     | 
| 
      
 300 
     | 
    
         
            +
                if (flat) {
         
     | 
| 
      
 301 
     | 
    
         
            +
                  ring = [];
         
     | 
| 
      
 302 
     | 
    
         
            +
                  i = 0;
         
     | 
| 
      
 303 
     | 
    
         
            +
                  while (i < len) {
         
     | 
| 
      
 304 
     | 
    
         
            +
                    ring[i] = this._map.latLngToLayerPoint(latlngs[i]);
         
     | 
| 
      
 305 
     | 
    
         
            +
                    projectedBounds.extend(ring[i]);
         
     | 
| 
      
 306 
     | 
    
         
            +
                    i++;
         
     | 
| 
      
 307 
     | 
    
         
            +
                  }
         
     | 
| 
      
 308 
     | 
    
         
            +
                  result.push(ring);
         
     | 
| 
      
 309 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 310 
     | 
    
         
            +
                  i = 0;
         
     | 
| 
      
 311 
     | 
    
         
            +
                  while (i < len) {
         
     | 
| 
      
 312 
     | 
    
         
            +
                    this.__projectLatlngs(latlngs[i], result, projectedBounds);
         
     | 
| 
      
 313 
     | 
    
         
            +
                    i++;
         
     | 
| 
      
 314 
     | 
    
         
            +
                  }
         
     | 
| 
      
 315 
     | 
    
         
            +
                }
         
     | 
| 
      
 316 
     | 
    
         
            +
              },
         
     | 
| 
      
 317 
     | 
    
         
            +
              getMeasure: function() {
         
     | 
| 
      
 318 
     | 
    
         
            +
                return L.GeographicUtil.Polygon(this.getLatLngsAsArray());
         
     | 
| 
      
 319 
     | 
    
         
            +
              }
         
     | 
| 
      
 320 
     | 
    
         
            +
            });
         
     | 
| 
      
 321 
     | 
    
         
            +
             
     | 
| 
      
 322 
     | 
    
         
            +
            L.Draw.Polyline.include({
         
     | 
| 
      
 323 
     | 
    
         
            +
              __addHooks: L.Draw.Polyline.prototype.addHooks,
         
     | 
| 
      
 324 
     | 
    
         
            +
              __removeHooks: L.Draw.Polyline.prototype.removeHooks,
         
     | 
| 
      
 325 
     | 
    
         
            +
              __vertexChanged: L.Draw.Polyline.prototype._vertexChanged,
         
     | 
| 
      
 326 
     | 
    
         
            +
              _vertexChanged: function(e) {
         
     | 
| 
      
 327 
     | 
    
         
            +
                this.__vertexChanged.apply(this, arguments);
         
     | 
| 
      
 328 
     | 
    
         
            +
                if (!this._map.reactiveMeasureControl.options.tooltip && (this._tooltip != null)) {
         
     | 
| 
      
 329 
     | 
    
         
            +
                  L.DomUtil.setOpacity(this._tooltip._container, 0);
         
     | 
| 
      
 330 
     | 
    
         
            +
                  return L.DomUtil.setPosition(this._tooltip._container, L.point(0, 0));
         
     | 
| 
      
 331 
     | 
    
         
            +
                }
         
     | 
| 
      
 332 
     | 
    
         
            +
              },
         
     | 
| 
      
 333 
     | 
    
         
            +
              __onMouseMove: function(e) {
         
     | 
| 
      
 334 
     | 
    
         
            +
                var center, clone, k, latLng, latLngArray, len1, measure, mouseLatLng, newPos, ref;
         
     | 
| 
      
 335 
     | 
    
         
            +
                if (!e.target.reactiveMeasureControl.options.tooltip && (this._tooltip != null)) {
         
     | 
| 
      
 336 
     | 
    
         
            +
                  L.DomUtil.setOpacity(this._tooltip._container, 0);
         
     | 
| 
      
 337 
     | 
    
         
            +
                  L.DomUtil.setPosition(this._tooltip._container, L.point(0, 0));
         
     | 
| 
      
 338 
     | 
    
         
            +
                }
         
     | 
| 
      
 339 
     | 
    
         
            +
                if (!(this._markers.length > 0)) {
         
     | 
| 
      
 340 
     | 
    
         
            +
                  return;
         
     | 
| 
      
 341 
     | 
    
         
            +
                }
         
     | 
| 
      
 342 
     | 
    
         
            +
                newPos = this._map.mouseEventToLayerPoint(e.originalEvent);
         
     | 
| 
      
 343 
     | 
    
         
            +
                mouseLatLng = this._map.layerPointToLatLng(newPos);
         
     | 
| 
      
 344 
     | 
    
         
            +
                latLngArray = [];
         
     | 
| 
      
 345 
     | 
    
         
            +
                ref = this._poly.getLatLngs();
         
     | 
| 
      
 346 
     | 
    
         
            +
                for (k = 0, len1 = ref.length; k < len1; k++) {
         
     | 
| 
      
 347 
     | 
    
         
            +
                  latLng = ref[k];
         
     | 
| 
      
 348 
     | 
    
         
            +
                  latLngArray.push(latLng);
         
     | 
| 
      
 349 
     | 
    
         
            +
                }
         
     | 
| 
      
 350 
     | 
    
         
            +
                latLngArray.push(mouseLatLng);
         
     | 
| 
      
 351 
     | 
    
         
            +
                if (this._markers.length === 1) {
         
     | 
| 
      
 352 
     | 
    
         
            +
                  clone = L.polyline(latLngArray);
         
     | 
| 
      
 353 
     | 
    
         
            +
                }
         
     | 
| 
      
 354 
     | 
    
         
            +
                if (this._markers.length >= 2) {
         
     | 
| 
      
 355 
     | 
    
         
            +
                  clone = L.polygon(latLngArray);
         
     | 
| 
      
 356 
     | 
    
         
            +
                }
         
     | 
| 
      
 357 
     | 
    
         
            +
                clone._map = this._map;
         
     | 
| 
      
 358 
     | 
    
         
            +
                center = clone.__getCenter();
         
     | 
| 
      
 359 
     | 
    
         
            +
                measure = L.GeographicUtil.Polygon(clone.getLatLngsAsArray());
         
     | 
| 
      
 360 
     | 
    
         
            +
                e.target.reactiveMeasureControl.updateContent(measure, {
         
     | 
| 
      
 361 
     | 
    
         
            +
                  selection: true
         
     | 
| 
      
 362 
     | 
    
         
            +
                });
         
     | 
| 
      
 363 
     | 
    
         
            +
                if (e.target.reactiveMeasureControl.options.tooltip != null) {
         
     | 
| 
      
 364 
     | 
    
         
            +
                  this._tooltip.__updateTooltipMeasure(center, measure, e.target.reactiveMeasureControl.options);
         
     | 
| 
      
 365 
     | 
    
         
            +
                }
         
     | 
| 
      
 366 
     | 
    
         
            +
                return this._map.fire(L.ReactiveMeasure.Draw.Event.MOVE, {
         
     | 
| 
      
 367 
     | 
    
         
            +
                  measure: measure
         
     | 
| 
      
 368 
     | 
    
         
            +
                });
         
     | 
| 
      
 369 
     | 
    
         
            +
              },
         
     | 
| 
      
 370 
     | 
    
         
            +
              addHooks: function() {
         
     | 
| 
      
 371 
     | 
    
         
            +
                this.__addHooks.apply(this, arguments);
         
     | 
| 
      
 372 
     | 
    
         
            +
                this._map.on('mousemove', this.__onMouseMove, this);
         
     | 
| 
      
 373 
     | 
    
         
            +
              },
         
     | 
| 
      
 374 
     | 
    
         
            +
              removeHooks: function() {
         
     | 
| 
      
 375 
     | 
    
         
            +
                var measure;
         
     | 
| 
      
 376 
     | 
    
         
            +
                if (this._map.reactiveMeasureControl) {
         
     | 
| 
      
 377 
     | 
    
         
            +
                  measure = L.GeographicUtil.Polygon(this._poly.getLatLngsAsArray());
         
     | 
| 
      
 378 
     | 
    
         
            +
                  if (this._poly._map != null) {
         
     | 
| 
      
 379 
     | 
    
         
            +
                    this._poly._map.reactiveMeasureControl.updateContent(measure, {
         
     | 
| 
      
 380 
     | 
    
         
            +
                      selection: false
         
     | 
| 
      
 381 
     | 
    
         
            +
                    });
         
     | 
| 
      
 382 
     | 
    
         
            +
                  }
         
     | 
| 
      
 383 
     | 
    
         
            +
                  this._map.off('mousemove');
         
     | 
| 
      
 384 
     | 
    
         
            +
                }
         
     | 
| 
      
 385 
     | 
    
         
            +
                this.__removeHooks.apply(this, arguments);
         
     | 
| 
      
 386 
     | 
    
         
            +
              }
         
     | 
| 
      
 387 
     | 
    
         
            +
            });
         
     | 
| 
      
 388 
     | 
    
         
            +
             
     | 
| 
      
 389 
     | 
    
         
            +
            L.Edit.Poly.include({
         
     | 
| 
      
 390 
     | 
    
         
            +
              __addHooks: L.Edit.Poly.prototype.addHooks,
         
     | 
| 
      
 391 
     | 
    
         
            +
              __removeHooks: L.Edit.Poly.prototype.removeHooks,
         
     | 
| 
      
 392 
     | 
    
         
            +
              __onHandlerDrag: (function(_this) {
         
     | 
| 
      
 393 
     | 
    
         
            +
                return function(e) {
         
     | 
| 
      
 394 
     | 
    
         
            +
                  var _poly, center, measure;
         
     | 
| 
      
 395 
     | 
    
         
            +
                  _poly = e.target.editing._poly;
         
     | 
| 
      
 396 
     | 
    
         
            +
                  center = _poly.__getCenter();
         
     | 
| 
      
 397 
     | 
    
         
            +
                  measure = L.GeographicUtil.Polygon(_poly.getLatLngsAsArray());
         
     | 
| 
      
 398 
     | 
    
         
            +
                  L.extend(L.Draw.Polyline.prototype.options, {
         
     | 
| 
      
 399 
     | 
    
         
            +
                    target: e.marker.getLatLng()
         
     | 
| 
      
 400 
     | 
    
         
            +
                  });
         
     | 
| 
      
 401 
     | 
    
         
            +
                  if (_poly._map != null) {
         
     | 
| 
      
 402 
     | 
    
         
            +
                    _poly._map.reactiveMeasureControl.updateContent(measure, {
         
     | 
| 
      
 403 
     | 
    
         
            +
                      selection: true
         
     | 
| 
      
 404 
     | 
    
         
            +
                    });
         
     | 
| 
      
 405 
     | 
    
         
            +
                  }
         
     | 
| 
      
 406 
     | 
    
         
            +
                  return _poly._map.fire(L.ReactiveMeasure.Edit.Event.MOVE, {
         
     | 
| 
      
 407 
     | 
    
         
            +
                    measure: measure
         
     | 
| 
      
 408 
     | 
    
         
            +
                  });
         
     | 
| 
      
 409 
     | 
    
         
            +
                };
         
     | 
| 
      
 410 
     | 
    
         
            +
              })(this),
         
     | 
| 
      
 411 
     | 
    
         
            +
              addHooks: function() {
         
     | 
| 
      
 412 
     | 
    
         
            +
                this.__addHooks.apply(this, arguments);
         
     | 
| 
      
 413 
     | 
    
         
            +
                return this._poly.on('editdrag', this.__onHandlerDrag, this);
         
     | 
| 
      
 414 
     | 
    
         
            +
              },
         
     | 
| 
      
 415 
     | 
    
         
            +
              removeHooks: function() {
         
     | 
| 
      
 416 
     | 
    
         
            +
                var measure;
         
     | 
| 
      
 417 
     | 
    
         
            +
                measure = L.GeographicUtil.Polygon(this._poly.getLatLngsAsArray());
         
     | 
| 
      
 418 
     | 
    
         
            +
                if (this._poly._map != null) {
         
     | 
| 
      
 419 
     | 
    
         
            +
                  this._poly._map.reactiveMeasureControl.updateContent(measure, {
         
     | 
| 
      
 420 
     | 
    
         
            +
                    selection: false
         
     | 
| 
      
 421 
     | 
    
         
            +
                  });
         
     | 
| 
      
 422 
     | 
    
         
            +
                }
         
     | 
| 
      
 423 
     | 
    
         
            +
                if (L.EditToolbar.reactiveMeasure) {
         
     | 
| 
      
 424 
     | 
    
         
            +
                  this._poly.off('editdrag');
         
     | 
| 
      
 425 
     | 
    
         
            +
                }
         
     | 
| 
      
 426 
     | 
    
         
            +
                return this.__removeHooks.apply(this, arguments);
         
     | 
| 
      
 427 
     | 
    
         
            +
              }
         
     | 
| 
      
 428 
     | 
    
         
            +
            });
         
     | 
| 
      
 429 
     | 
    
         
            +
             
     | 
| 
      
 430 
     | 
    
         
            +
            L.Edit.PolyVerticesEdit.include({
         
     | 
| 
      
 431 
     | 
    
         
            +
              __onTouchMove: L.Edit.PolyVerticesEdit.prototype._onTouchMove,
         
     | 
| 
      
 432 
     | 
    
         
            +
              __removeMarker: L.Edit.PolyVerticesEdit.prototype._removeMarker,
         
     | 
| 
      
 433 
     | 
    
         
            +
              _onMarkerDrag: function(e) {
         
     | 
| 
      
 434 
     | 
    
         
            +
                var marker;
         
     | 
| 
      
 435 
     | 
    
         
            +
                marker = e.target;
         
     | 
| 
      
 436 
     | 
    
         
            +
                L.extend(marker._origLatLng, marker._latlng);
         
     | 
| 
      
 437 
     | 
    
         
            +
                if (marker._middleLeft) {
         
     | 
| 
      
 438 
     | 
    
         
            +
                  marker._middleLeft.setLatLng(this._getMiddleLatLng(marker._prev, marker));
         
     | 
| 
      
 439 
     | 
    
         
            +
                }
         
     | 
| 
      
 440 
     | 
    
         
            +
                if (marker._middleRight) {
         
     | 
| 
      
 441 
     | 
    
         
            +
                  marker._middleRight.setLatLng(this._getMiddleLatLng(marker, marker._next));
         
     | 
| 
      
 442 
     | 
    
         
            +
                }
         
     | 
| 
      
 443 
     | 
    
         
            +
                this._poly.redraw();
         
     | 
| 
      
 444 
     | 
    
         
            +
                this._poly.fire('editdrag', {
         
     | 
| 
      
 445 
     | 
    
         
            +
                  marker: e.target
         
     | 
| 
      
 446 
     | 
    
         
            +
                });
         
     | 
| 
      
 447 
     | 
    
         
            +
              },
         
     | 
| 
      
 448 
     | 
    
         
            +
              _onTouchMove: function(e) {
         
     | 
| 
      
 449 
     | 
    
         
            +
                this.__onTouchMove.apply(this, arguments);
         
     | 
| 
      
 450 
     | 
    
         
            +
                return this._poly.fire('editdrag');
         
     | 
| 
      
 451 
     | 
    
         
            +
              },
         
     | 
| 
      
 452 
     | 
    
         
            +
              _removeMarker: function(marker) {
         
     | 
| 
      
 453 
     | 
    
         
            +
                this.__removeMarker.apply(this, arguments);
         
     | 
| 
      
 454 
     | 
    
         
            +
                return this._poly.fire('editdrag', {
         
     | 
| 
      
 455 
     | 
    
         
            +
                  marker: marker
         
     | 
| 
      
 456 
     | 
    
         
            +
                });
         
     | 
| 
      
 457 
     | 
    
         
            +
              }
         
     | 
| 
      
 458 
     | 
    
         
            +
            });
         
     | 
| 
      
 459 
     | 
    
         
            +
             
     | 
| 
      
 460 
     | 
    
         
            +
            L.LatLng.prototype.toArray = function() {
         
     | 
| 
      
 461 
     | 
    
         
            +
              return [this.lat, this.lng];
         
     | 
| 
      
 462 
     | 
    
         
            +
            };
         
     | 
| 
      
 463 
     | 
    
         
            +
             
     | 
| 
      
 464 
     | 
    
         
            +
            L.Draw.Tooltip.include({
         
     | 
| 
      
 465 
     | 
    
         
            +
              __initialize: L.Draw.Tooltip.prototype.initialize,
         
     | 
| 
      
 466 
     | 
    
         
            +
              __dispose: L.Draw.Tooltip.prototype.dispose,
         
     | 
| 
      
 467 
     | 
    
         
            +
              initialize: function(map, options) {
         
     | 
| 
      
 468 
     | 
    
         
            +
                if (options == null) {
         
     | 
| 
      
 469 
     | 
    
         
            +
                  options = {};
         
     | 
| 
      
 470 
     | 
    
         
            +
                }
         
     | 
| 
      
 471 
     | 
    
         
            +
                return this.__initialize.apply(this, arguments);
         
     | 
| 
      
 472 
     | 
    
         
            +
              },
         
     | 
| 
      
 473 
     | 
    
         
            +
              dispose: function() {
         
     | 
| 
      
 474 
     | 
    
         
            +
                this._map.off('mouseover');
         
     | 
| 
      
 475 
     | 
    
         
            +
                return this.__dispose.apply(this, arguments);
         
     | 
| 
      
 476 
     | 
    
         
            +
              },
         
     | 
| 
      
 477 
     | 
    
         
            +
              __updateTooltipMeasure: function(latLng, measure, options) {
         
     | 
| 
      
 478 
     | 
    
         
            +
                var labelText;
         
     | 
| 
      
 479 
     | 
    
         
            +
                if (measure == null) {
         
     | 
| 
      
 480 
     | 
    
         
            +
                  measure = {};
         
     | 
| 
      
 481 
     | 
    
         
            +
                }
         
     | 
| 
      
 482 
     | 
    
         
            +
                if (options == null) {
         
     | 
| 
      
 483 
     | 
    
         
            +
                  options = {};
         
     | 
| 
      
 484 
     | 
    
         
            +
                }
         
     | 
| 
      
 485 
     | 
    
         
            +
                labelText = {
         
     | 
| 
      
 486 
     | 
    
         
            +
                  text: ''
         
     | 
| 
      
 487 
     | 
    
         
            +
                };
         
     | 
| 
      
 488 
     | 
    
         
            +
                if (measure['perimeter']) {
         
     | 
| 
      
 489 
     | 
    
         
            +
                  labelText['text'] += "<span class='leaflet-draw-tooltip-measure perimeter'>" + (L.GeometryUtil.readableDistance(measure.perimeter, !!options.metric, !!options.feet)) + "</span>";
         
     | 
| 
      
 490 
     | 
    
         
            +
                }
         
     | 
| 
      
 491 
     | 
    
         
            +
                if (measure['area']) {
         
     | 
| 
      
 492 
     | 
    
         
            +
                  labelText['text'] += "<span class='leaflet-draw-tooltip-measure area'>" + (L.GeometryUtil.readableArea(measure.area, !!options.metric)) + "</span>";
         
     | 
| 
      
 493 
     | 
    
         
            +
                }
         
     | 
| 
      
 494 
     | 
    
         
            +
                if (latLng) {
         
     | 
| 
      
 495 
     | 
    
         
            +
                  this.updateContent(labelText);
         
     | 
| 
      
 496 
     | 
    
         
            +
                  this.__updatePosition(latLng, options);
         
     | 
| 
      
 497 
     | 
    
         
            +
                }
         
     | 
| 
      
 498 
     | 
    
         
            +
              },
         
     | 
| 
      
 499 
     | 
    
         
            +
              __updatePosition: function(latlng, options) {
         
     | 
| 
      
 500 
     | 
    
         
            +
                var container, container_width, labelWidth, map_width, pos, styles;
         
     | 
| 
      
 501 
     | 
    
         
            +
                if (options == null) {
         
     | 
| 
      
 502 
     | 
    
         
            +
                  options = {};
         
     | 
| 
      
 503 
     | 
    
         
            +
                }
         
     | 
| 
      
 504 
     | 
    
         
            +
                pos = this._map.latLngToLayerPoint(latlng);
         
     | 
| 
      
 505 
     | 
    
         
            +
                labelWidth = this._container.offsetWidth;
         
     | 
| 
      
 506 
     | 
    
         
            +
                map_width = this._map._container.offsetWidth;
         
     | 
| 
      
 507 
     | 
    
         
            +
                L.DomUtil.removeClass(this._container, 'leaflet-draw-tooltip-left');
         
     | 
| 
      
 508 
     | 
    
         
            +
                if (this._container) {
         
     | 
| 
      
 509 
     | 
    
         
            +
                  this._container.style.visibility = 'inherit';
         
     | 
| 
      
 510 
     | 
    
         
            +
                  container = this._map.layerPointToContainerPoint(pos);
         
     | 
| 
      
 511 
     | 
    
         
            +
                  styles = window.getComputedStyle(this._container);
         
     | 
| 
      
 512 
     | 
    
         
            +
                  container_width = this._container.offsetWidth + parseInt(styles.paddingLeft) + parseInt(styles.paddingRight) + parseInt(styles.marginLeft) + parseInt(styles.marginRight);
         
     | 
| 
      
 513 
     | 
    
         
            +
                  if (container.x < 0 || container.x > (map_width - container_width) || container.y < this._container.offsetHeight) {
         
     | 
| 
      
 514 
     | 
    
         
            +
                    pos = pos.add(L.point(-container_width, 0));
         
     | 
| 
      
 515 
     | 
    
         
            +
                    L.DomUtil.addClass(this._container, 'leaflet-draw-tooltip-left');
         
     | 
| 
      
 516 
     | 
    
         
            +
                  }
         
     | 
| 
      
 517 
     | 
    
         
            +
                  return L.DomUtil.setPosition(this._container, pos);
         
     | 
| 
      
 518 
     | 
    
         
            +
                }
         
     | 
| 
      
 519 
     | 
    
         
            +
              },
         
     | 
| 
      
 520 
     | 
    
         
            +
              hide: function() {
         
     | 
| 
      
 521 
     | 
    
         
            +
                return this._container.style.visibility = 'hidden';
         
     | 
| 
      
 522 
     | 
    
         
            +
              }
         
     | 
| 
      
 523 
     | 
    
         
            +
            });
         
     | 
| 
      
 524 
     | 
    
         
            +
             
     | 
| 
      
 525 
     | 
    
         
            +
             
     | 
| 
      
 526 
     | 
    
         
            +
            /***/ }),
         
     | 
| 
      
 527 
     | 
    
         
            +
            /* 2 */
         
     | 
| 
      
 528 
     | 
    
         
            +
            /***/ (function(module, exports) {
         
     | 
| 
      
 529 
     | 
    
         
            +
             
     | 
| 
      
 530 
     | 
    
         
            +
            module.exports = L;
         
     | 
| 
      
 531 
     | 
    
         
            +
             
     | 
| 
      
 532 
     | 
    
         
            +
            /***/ }),
         
     | 
| 
      
 533 
     | 
    
         
            +
            /* 3 */
         
     | 
| 
      
 534 
     | 
    
         
            +
            /***/ (function(module, exports) {
         
     | 
| 
      
 535 
     | 
    
         
            +
             
     | 
| 
      
 536 
     | 
    
         
            +
            /******/ (function(modules) { // webpackBootstrap
         
     | 
| 
      
 537 
     | 
    
         
            +
            /******/ 	// The module cache
         
     | 
| 
      
 538 
     | 
    
         
            +
            /******/ 	var installedModules = {};
         
     | 
| 
      
 539 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 540 
     | 
    
         
            +
            /******/ 	// The require function
         
     | 
| 
      
 541 
     | 
    
         
            +
            /******/ 	function __webpack_require__(moduleId) {
         
     | 
| 
      
 542 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 543 
     | 
    
         
            +
            /******/ 		// Check if module is in cache
         
     | 
| 
      
 544 
     | 
    
         
            +
            /******/ 		if(installedModules[moduleId]) {
         
     | 
| 
      
 545 
     | 
    
         
            +
            /******/ 			return installedModules[moduleId].exports;
         
     | 
| 
      
 546 
     | 
    
         
            +
            /******/ 		}
         
     | 
| 
      
 547 
     | 
    
         
            +
            /******/ 		// Create a new module (and put it into the cache)
         
     | 
| 
      
 548 
     | 
    
         
            +
            /******/ 		var module = installedModules[moduleId] = {
         
     | 
| 
      
 549 
     | 
    
         
            +
            /******/ 			i: moduleId,
         
     | 
| 
      
 550 
     | 
    
         
            +
            /******/ 			l: false,
         
     | 
| 
      
 551 
     | 
    
         
            +
            /******/ 			exports: {}
         
     | 
| 
      
 552 
     | 
    
         
            +
            /******/ 		};
         
     | 
| 
      
 553 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 554 
     | 
    
         
            +
            /******/ 		// Execute the module function
         
     | 
| 
      
 555 
     | 
    
         
            +
            /******/ 		modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
         
     | 
| 
      
 556 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 557 
     | 
    
         
            +
            /******/ 		// Flag the module as loaded
         
     | 
| 
      
 558 
     | 
    
         
            +
            /******/ 		module.l = true;
         
     | 
| 
      
 559 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 560 
     | 
    
         
            +
            /******/ 		// Return the exports of the module
         
     | 
| 
      
 561 
     | 
    
         
            +
            /******/ 		return module.exports;
         
     | 
| 
      
 562 
     | 
    
         
            +
            /******/ 	}
         
     | 
| 
      
 563 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 564 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 565 
     | 
    
         
            +
            /******/ 	// expose the modules object (__webpack_modules__)
         
     | 
| 
      
 566 
     | 
    
         
            +
            /******/ 	__webpack_require__.m = modules;
         
     | 
| 
      
 567 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 568 
     | 
    
         
            +
            /******/ 	// expose the module cache
         
     | 
| 
      
 569 
     | 
    
         
            +
            /******/ 	__webpack_require__.c = installedModules;
         
     | 
| 
      
 570 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 571 
     | 
    
         
            +
            /******/ 	// define getter function for harmony exports
         
     | 
| 
      
 572 
     | 
    
         
            +
            /******/ 	__webpack_require__.d = function(exports, name, getter) {
         
     | 
| 
      
 573 
     | 
    
         
            +
            /******/ 		if(!__webpack_require__.o(exports, name)) {
         
     | 
| 
      
 574 
     | 
    
         
            +
            /******/ 			Object.defineProperty(exports, name, {
         
     | 
| 
      
 575 
     | 
    
         
            +
            /******/ 				configurable: false,
         
     | 
| 
      
 576 
     | 
    
         
            +
            /******/ 				enumerable: true,
         
     | 
| 
      
 577 
     | 
    
         
            +
            /******/ 				get: getter
         
     | 
| 
      
 578 
     | 
    
         
            +
            /******/ 			});
         
     | 
| 
      
 579 
     | 
    
         
            +
            /******/ 		}
         
     | 
| 
      
 580 
     | 
    
         
            +
            /******/ 	};
         
     | 
| 
      
 581 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 582 
     | 
    
         
            +
            /******/ 	// getDefaultExport function for compatibility with non-harmony modules
         
     | 
| 
      
 583 
     | 
    
         
            +
            /******/ 	__webpack_require__.n = function(module) {
         
     | 
| 
      
 584 
     | 
    
         
            +
            /******/ 		var getter = module && module.__esModule ?
         
     | 
| 
      
 585 
     | 
    
         
            +
            /******/ 			function getDefault() { return module['default']; } :
         
     | 
| 
      
 586 
     | 
    
         
            +
            /******/ 			function getModuleExports() { return module; };
         
     | 
| 
      
 587 
     | 
    
         
            +
            /******/ 		__webpack_require__.d(getter, 'a', getter);
         
     | 
| 
      
 588 
     | 
    
         
            +
            /******/ 		return getter;
         
     | 
| 
      
 589 
     | 
    
         
            +
            /******/ 	};
         
     | 
| 
      
 590 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 591 
     | 
    
         
            +
            /******/ 	// Object.prototype.hasOwnProperty.call
         
     | 
| 
      
 592 
     | 
    
         
            +
            /******/ 	__webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
         
     | 
| 
      
 593 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 594 
     | 
    
         
            +
            /******/ 	// __webpack_public_path__
         
     | 
| 
      
 595 
     | 
    
         
            +
            /******/ 	__webpack_require__.p = "";
         
     | 
| 
      
 596 
     | 
    
         
            +
            /******/
         
     | 
| 
      
 597 
     | 
    
         
            +
            /******/ 	// Load entry module and return exports
         
     | 
| 
      
 598 
     | 
    
         
            +
            /******/ 	return __webpack_require__(__webpack_require__.s = 0);
         
     | 
| 
      
 599 
     | 
    
         
            +
            /******/ })
         
     | 
| 
      
 600 
     | 
    
         
            +
            /************************************************************************/
         
     | 
| 
      
 601 
     | 
    
         
            +
            /******/ ([
         
     | 
| 
      
 602 
     | 
    
         
            +
            /* 0 */
         
     | 
| 
      
 603 
     | 
    
         
            +
            /***/ (function(module, exports, __webpack_require__) {
         
     | 
| 
      
 604 
     | 
    
         
            +
             
     | 
| 
      
 605 
     | 
    
         
            +
            module.exports = __webpack_require__(1);
         
     | 
| 
      
 606 
     | 
    
         
            +
             
     | 
| 
      
 607 
     | 
    
         
            +
             
     | 
| 
      
 608 
     | 
    
         
            +
            /***/ }),
         
     | 
| 
      
 609 
     | 
    
         
            +
            /* 1 */
         
     | 
| 
      
 610 
     | 
    
         
            +
            /***/ (function(module, exports, __webpack_require__) {
         
     | 
| 
      
 611 
     | 
    
         
            +
             
     | 
| 
      
 612 
     | 
    
         
            +
            var GeographicLib, L;
         
     | 
| 
      
 613 
     | 
    
         
            +
             
     | 
| 
      
 614 
     | 
    
         
            +
            L = __webpack_require__(2);
         
     | 
| 
      
 615 
     | 
    
         
            +
             
     | 
| 
      
 616 
     | 
    
         
            +
            GeographicLib = __webpack_require__(3);
         
     | 
| 
      
 617 
     | 
    
         
            +
             
     | 
| 
      
 618 
     | 
    
         
            +
            L.GeographicUtil = (function() {
         
     | 
| 
      
 619 
     | 
    
         
            +
              function GeographicUtil() {}
         
     | 
| 
      
 620 
     | 
    
         
            +
             
     | 
| 
      
 621 
     | 
    
         
            +
              GeographicUtil.Polygon = function(points, polyline) {
         
     | 
| 
      
 622 
     | 
    
         
            +
                var geod, i, j, len, len1, point, poly, poly2;
         
     | 
| 
      
 623 
     | 
    
         
            +
                if (polyline == null) {
         
     | 
| 
      
 624 
     | 
    
         
            +
                  polyline = false;
         
     | 
| 
      
 625 
     | 
    
         
            +
                }
         
     | 
| 
      
 626 
     | 
    
         
            +
                geod = GeographicLib.Geodesic.WGS84;
         
     | 
| 
      
 627 
     | 
    
         
            +
                poly = geod.Polygon(false);
         
     | 
| 
      
 628 
     | 
    
         
            +
                for (i = 0, len = points.length; i < len; i++) {
         
     | 
| 
      
 629 
     | 
    
         
            +
                  point = points[i];
         
     | 
| 
      
 630 
     | 
    
         
            +
                  poly.AddPoint(point[0], point[1]);
         
     | 
| 
      
 631 
     | 
    
         
            +
                }
         
     | 
| 
      
 632 
     | 
    
         
            +
                poly = poly.Compute(false, true);
         
     | 
| 
      
 633 
     | 
    
         
            +
                poly2 = geod.Polygon(true);
         
     | 
| 
      
 634 
     | 
    
         
            +
                for (j = 0, len1 = points.length; j < len1; j++) {
         
     | 
| 
      
 635 
     | 
    
         
            +
                  point = points[j];
         
     | 
| 
      
 636 
     | 
    
         
            +
                  poly2.AddPoint(point[0], point[1]);
         
     | 
| 
      
 637 
     | 
    
         
            +
                }
         
     | 
| 
      
 638 
     | 
    
         
            +
                poly2 = poly2.Compute(false, true);
         
     | 
| 
      
 639 
     | 
    
         
            +
                return {
         
     | 
| 
      
 640 
     | 
    
         
            +
                  extrapolatedPerimeter: poly.perimeter,
         
     | 
| 
      
 641 
     | 
    
         
            +
                  extrapolatedArea: Math.abs(poly.area),
         
     | 
| 
      
 642 
     | 
    
         
            +
                  perimeter: poly2.perimeter
         
     | 
| 
      
 643 
     | 
    
         
            +
                };
         
     | 
| 
      
 644 
     | 
    
         
            +
              };
         
     | 
| 
      
 645 
     | 
    
         
            +
             
     | 
| 
      
 646 
     | 
    
         
            +
              GeographicUtil.distance = function(a, b) {
         
     | 
| 
      
 647 
     | 
    
         
            +
                var geod, r;
         
     | 
| 
      
 648 
     | 
    
         
            +
                geod = GeographicLib.Geodesic.WGS84;
         
     | 
| 
      
 649 
     | 
    
         
            +
                r = geod.Inverse(a[0], a[1], b[0], b[1]);
         
     | 
| 
      
 650 
     | 
    
         
            +
                return r.s12.toFixed(3);
         
     | 
| 
      
 651 
     | 
    
         
            +
              };
         
     | 
| 
      
 652 
     | 
    
         
            +
             
     | 
| 
      
 653 
     | 
    
         
            +
              return GeographicUtil;
         
     | 
| 
      
 654 
     | 
    
         
            +
             
     | 
| 
      
 655 
     | 
    
         
            +
            })();
         
     | 
| 
      
 656 
     | 
    
         
            +
             
     | 
| 
      
 657 
     | 
    
         
            +
             
     | 
| 
      
 658 
     | 
    
         
            +
            /***/ }),
         
     | 
| 
      
 659 
     | 
    
         
            +
            /* 2 */
         
     | 
| 
      
 660 
     | 
    
         
            +
            /***/ (function(module, exports) {
         
     | 
| 
      
 661 
     | 
    
         
            +
             
     | 
| 
      
 662 
     | 
    
         
            +
            module.exports = L;
         
     | 
| 
      
 663 
     | 
    
         
            +
             
     | 
| 
      
 664 
     | 
    
         
            +
            /***/ }),
         
     | 
| 
      
 665 
     | 
    
         
            +
            /* 3 */
         
     | 
| 
      
 666 
     | 
    
         
            +
            /***/ (function(module, exports, __webpack_require__) {
         
     | 
| 
      
 667 
     | 
    
         
            +
             
     | 
| 
      
 668 
     | 
    
         
            +
            var __WEBPACK_AMD_DEFINE_ARRAY__, __WEBPACK_AMD_DEFINE_RESULT__;/*
         
     | 
| 
      
 669 
     | 
    
         
            +
             * Geodesic routines from GeographicLib translated to JavaScript.  See
         
     | 
| 
      
 670 
     | 
    
         
            +
             * https://geographiclib.sourceforge.io/html/js/
         
     | 
| 
      
 671 
     | 
    
         
            +
             *
         
     | 
| 
      
 672 
     | 
    
         
            +
             * The algorithms are derived in
         
     | 
| 
      
 673 
     | 
    
         
            +
             *
         
     | 
| 
      
 674 
     | 
    
         
            +
             *    Charles F. F. Karney,
         
     | 
| 
      
 675 
     | 
    
         
            +
             *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013),
         
     | 
| 
      
 676 
     | 
    
         
            +
             *    https://doi.org/10.1007/s00190-012-0578-z
         
     | 
| 
      
 677 
     | 
    
         
            +
             *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
         
     | 
| 
      
 678 
     | 
    
         
            +
             *
         
     | 
| 
      
 679 
     | 
    
         
            +
             * This file is the concatenation and compression of the JavaScript files in
         
     | 
| 
      
 680 
     | 
    
         
            +
             * doc/scripts/GeographicLib in the source tree for GeographicLib.
         
     | 
| 
      
 681 
     | 
    
         
            +
             *
         
     | 
| 
      
 682 
     | 
    
         
            +
             * Copyright (c) Charles Karney (2011-2015) <charles@karney.com> and licensed
         
     | 
| 
      
 683 
     | 
    
         
            +
             * under the MIT/X11 License.  For more information, see
         
     | 
| 
      
 684 
     | 
    
         
            +
             * https://geographiclib.sourceforge.io/
         
     | 
| 
      
 685 
     | 
    
         
            +
             *
         
     | 
| 
      
 686 
     | 
    
         
            +
             * Version: 1.49
         
     | 
| 
      
 687 
     | 
    
         
            +
             * File inventory:
         
     | 
| 
      
 688 
     | 
    
         
            +
             *   Math.js Geodesic.js GeodesicLine.js PolygonArea.js DMS.js
         
     | 
| 
      
 689 
     | 
    
         
            +
             */
         
     | 
| 
      
 690 
     | 
    
         
            +
             
     | 
| 
      
 691 
     | 
    
         
            +
            (function(cb) {
         
     | 
| 
      
 692 
     | 
    
         
            +
             
     | 
| 
      
 693 
     | 
    
         
            +
            /**************** Math.js ****************/
         
     | 
| 
      
 694 
     | 
    
         
            +
            /*
         
     | 
| 
      
 695 
     | 
    
         
            +
             * Math.js
         
     | 
| 
      
 696 
     | 
    
         
            +
             * Transcription of Math.hpp, Constants.hpp, and Accumulator.hpp into
         
     | 
| 
      
 697 
     | 
    
         
            +
             * JavaScript.
         
     | 
| 
      
 698 
     | 
    
         
            +
             *
         
     | 
| 
      
 699 
     | 
    
         
            +
             * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
         
     | 
| 
      
 700 
     | 
    
         
            +
             * under the MIT/X11 License.  For more information, see
         
     | 
| 
      
 701 
     | 
    
         
            +
             * https://geographiclib.sourceforge.io/
         
     | 
| 
      
 702 
     | 
    
         
            +
             */
         
     | 
| 
      
 703 
     | 
    
         
            +
             
     | 
| 
      
 704 
     | 
    
         
            +
            /**
         
     | 
| 
      
 705 
     | 
    
         
            +
             * @namespace GeographicLib
         
     | 
| 
      
 706 
     | 
    
         
            +
             * @description The parent namespace for the following modules:
         
     | 
| 
      
 707 
     | 
    
         
            +
             * - {@link module:GeographicLib/Geodesic GeographicLib/Geodesic} The main
         
     | 
| 
      
 708 
     | 
    
         
            +
             *   engine for solving geodesic problems via the
         
     | 
| 
      
 709 
     | 
    
         
            +
             *   {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
         
     | 
| 
      
 710 
     | 
    
         
            +
             * - {@link module:GeographicLib/GeodesicLine GeographicLib/GeodesicLine}
         
     | 
| 
      
 711 
     | 
    
         
            +
             *   computes points along a single geodesic line via the
         
     | 
| 
      
 712 
     | 
    
         
            +
             *   {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
         
     | 
| 
      
 713 
     | 
    
         
            +
             *   class.
         
     | 
| 
      
 714 
     | 
    
         
            +
             * - {@link module:GeographicLib/PolygonArea GeographicLib/PolygonArea}
         
     | 
| 
      
 715 
     | 
    
         
            +
             *   computes the area of a geodesic polygon via the
         
     | 
| 
      
 716 
     | 
    
         
            +
             *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
         
     | 
| 
      
 717 
     | 
    
         
            +
             *   class.
         
     | 
| 
      
 718 
     | 
    
         
            +
             * - {@link module:GeographicLib/DMS GeographicLib/DMS} handles the decoding
         
     | 
| 
      
 719 
     | 
    
         
            +
             *   and encoding of angles in degree, minutes, and seconds, via static
         
     | 
| 
      
 720 
     | 
    
         
            +
             *   functions in this module.
         
     | 
| 
      
 721 
     | 
    
         
            +
             * - {@link module:GeographicLib/Constants GeographicLib/Constants} defines
         
     | 
| 
      
 722 
     | 
    
         
            +
             *   constants specifying the version numbers and the parameters for the WGS84
         
     | 
| 
      
 723 
     | 
    
         
            +
             *   ellipsoid.
         
     | 
| 
      
 724 
     | 
    
         
            +
             *
         
     | 
| 
      
 725 
     | 
    
         
            +
             * The following modules are used internally by the package:
         
     | 
| 
      
 726 
     | 
    
         
            +
             * - {@link module:GeographicLib/Math GeographicLib/Math} defines various
         
     | 
| 
      
 727 
     | 
    
         
            +
             *   mathematical functions.
         
     | 
| 
      
 728 
     | 
    
         
            +
             * - {@link module:GeographicLib/Accumulator GeographicLib/Accumulator}
         
     | 
| 
      
 729 
     | 
    
         
            +
             *   interally used by
         
     | 
| 
      
 730 
     | 
    
         
            +
             *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea} (via the
         
     | 
| 
      
 731 
     | 
    
         
            +
             *   {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class)
         
     | 
| 
      
 732 
     | 
    
         
            +
             *   for summing the contributions to the area of a polygon.
         
     | 
| 
      
 733 
     | 
    
         
            +
             */
         
     | 
| 
      
 734 
     | 
    
         
            +
            "use strict";
         
     | 
| 
      
 735 
     | 
    
         
            +
            var GeographicLib = {};
         
     | 
| 
      
 736 
     | 
    
         
            +
            GeographicLib.Constants = {};
         
     | 
| 
      
 737 
     | 
    
         
            +
            GeographicLib.Math = {};
         
     | 
| 
      
 738 
     | 
    
         
            +
            GeographicLib.Accumulator = {};
         
     | 
| 
      
 739 
     | 
    
         
            +
             
     | 
| 
      
 740 
     | 
    
         
            +
            (function(
         
     | 
| 
      
 741 
     | 
    
         
            +
              /**
         
     | 
| 
      
 742 
     | 
    
         
            +
               * @exports GeographicLib/Constants
         
     | 
| 
      
 743 
     | 
    
         
            +
               * @description Define constants defining the version and WGS84 parameters.
         
     | 
| 
      
 744 
     | 
    
         
            +
               */
         
     | 
| 
      
 745 
     | 
    
         
            +
              c) {
         
     | 
| 
      
 746 
     | 
    
         
            +
             
     | 
| 
      
 747 
     | 
    
         
            +
              /**
         
     | 
| 
      
 748 
     | 
    
         
            +
               * @constant
         
     | 
| 
      
 749 
     | 
    
         
            +
               * @summary WGS84 parameters.
         
     | 
| 
      
 750 
     | 
    
         
            +
               * @property {number} a the equatorial radius (meters).
         
     | 
| 
      
 751 
     | 
    
         
            +
               * @property {number} f the flattening.
         
     | 
| 
      
 752 
     | 
    
         
            +
               */
         
     | 
| 
      
 753 
     | 
    
         
            +
              c.WGS84 = { a: 6378137, f: 1/298.257223563 };
         
     | 
| 
      
 754 
     | 
    
         
            +
              /**
         
     | 
| 
      
 755 
     | 
    
         
            +
               * @constant
         
     | 
| 
      
 756 
     | 
    
         
            +
               * @summary an array of version numbers.
         
     | 
| 
      
 757 
     | 
    
         
            +
               * @property {number} major the major version number.
         
     | 
| 
      
 758 
     | 
    
         
            +
               * @property {number} minor the minor version number.
         
     | 
| 
      
 759 
     | 
    
         
            +
               * @property {number} patch the patch number.
         
     | 
| 
      
 760 
     | 
    
         
            +
               */
         
     | 
| 
      
 761 
     | 
    
         
            +
              c.version = { major: 1, minor: 49, patch: 0 };
         
     | 
| 
      
 762 
     | 
    
         
            +
              /**
         
     | 
| 
      
 763 
     | 
    
         
            +
               * @constant
         
     | 
| 
      
 764 
     | 
    
         
            +
               * @summary version string
         
     | 
| 
      
 765 
     | 
    
         
            +
               */
         
     | 
| 
      
 766 
     | 
    
         
            +
              c.version_string = "1.49";
         
     | 
| 
      
 767 
     | 
    
         
            +
            })(GeographicLib.Constants);
         
     | 
| 
      
 768 
     | 
    
         
            +
             
     | 
| 
      
 769 
     | 
    
         
            +
            (function(
         
     | 
| 
      
 770 
     | 
    
         
            +
              /**
         
     | 
| 
      
 771 
     | 
    
         
            +
               * @exports GeographicLib/Math
         
     | 
| 
      
 772 
     | 
    
         
            +
               * @description Some useful mathematical constants and functions (mainly for
         
     | 
| 
      
 773 
     | 
    
         
            +
               *   internal use).
         
     | 
| 
      
 774 
     | 
    
         
            +
               */
         
     | 
| 
      
 775 
     | 
    
         
            +
              m) {
         
     | 
| 
      
 776 
     | 
    
         
            +
             
     | 
| 
      
 777 
     | 
    
         
            +
              /**
         
     | 
| 
      
 778 
     | 
    
         
            +
               * @summary The number of digits of precision in floating-point numbers.
         
     | 
| 
      
 779 
     | 
    
         
            +
               * @constant {number}
         
     | 
| 
      
 780 
     | 
    
         
            +
               */
         
     | 
| 
      
 781 
     | 
    
         
            +
              m.digits = 53;
         
     | 
| 
      
 782 
     | 
    
         
            +
              /**
         
     | 
| 
      
 783 
     | 
    
         
            +
               * @summary The machine epsilon.
         
     | 
| 
      
 784 
     | 
    
         
            +
               * @constant {number}
         
     | 
| 
      
 785 
     | 
    
         
            +
               */
         
     | 
| 
      
 786 
     | 
    
         
            +
              m.epsilon = Math.pow(0.5, m.digits - 1);
         
     | 
| 
      
 787 
     | 
    
         
            +
              /**
         
     | 
| 
      
 788 
     | 
    
         
            +
               * @summary The factor to convert degrees to radians.
         
     | 
| 
      
 789 
     | 
    
         
            +
               * @constant {number}
         
     | 
| 
      
 790 
     | 
    
         
            +
               */
         
     | 
| 
      
 791 
     | 
    
         
            +
              m.degree = Math.PI/180;
         
     | 
| 
      
 792 
     | 
    
         
            +
             
     | 
| 
      
 793 
     | 
    
         
            +
              /**
         
     | 
| 
      
 794 
     | 
    
         
            +
               * @summary Square a number.
         
     | 
| 
      
 795 
     | 
    
         
            +
               * @param {number} x the number.
         
     | 
| 
      
 796 
     | 
    
         
            +
               * @returns {number} the square.
         
     | 
| 
      
 797 
     | 
    
         
            +
               */
         
     | 
| 
      
 798 
     | 
    
         
            +
              m.sq = function(x) { return x * x; };
         
     | 
| 
      
 799 
     | 
    
         
            +
             
     | 
| 
      
 800 
     | 
    
         
            +
              /**
         
     | 
| 
      
 801 
     | 
    
         
            +
               * @summary The hypotenuse function.
         
     | 
| 
      
 802 
     | 
    
         
            +
               * @param {number} x the first side.
         
     | 
| 
      
 803 
     | 
    
         
            +
               * @param {number} y the second side.
         
     | 
| 
      
 804 
     | 
    
         
            +
               * @returns {number} the hypotenuse.
         
     | 
| 
      
 805 
     | 
    
         
            +
               */
         
     | 
| 
      
 806 
     | 
    
         
            +
              m.hypot = function(x, y) {
         
     | 
| 
      
 807 
     | 
    
         
            +
                var a, b;
         
     | 
| 
      
 808 
     | 
    
         
            +
                x = Math.abs(x);
         
     | 
| 
      
 809 
     | 
    
         
            +
                y = Math.abs(y);
         
     | 
| 
      
 810 
     | 
    
         
            +
                a = Math.max(x, y); b = Math.min(x, y) / (a ? a : 1);
         
     | 
| 
      
 811 
     | 
    
         
            +
                return a * Math.sqrt(1 + b * b);
         
     | 
| 
      
 812 
     | 
    
         
            +
              };
         
     | 
| 
      
 813 
     | 
    
         
            +
             
     | 
| 
      
 814 
     | 
    
         
            +
              /**
         
     | 
| 
      
 815 
     | 
    
         
            +
               * @summary Cube root function.
         
     | 
| 
      
 816 
     | 
    
         
            +
               * @param {number} x the argument.
         
     | 
| 
      
 817 
     | 
    
         
            +
               * @returns {number} the real cube root.
         
     | 
| 
      
 818 
     | 
    
         
            +
               */
         
     | 
| 
      
 819 
     | 
    
         
            +
              m.cbrt = function(x) {
         
     | 
| 
      
 820 
     | 
    
         
            +
                var y = Math.pow(Math.abs(x), 1/3);
         
     | 
| 
      
 821 
     | 
    
         
            +
                return x < 0 ? -y : y;
         
     | 
| 
      
 822 
     | 
    
         
            +
              };
         
     | 
| 
      
 823 
     | 
    
         
            +
             
     | 
| 
      
 824 
     | 
    
         
            +
              /**
         
     | 
| 
      
 825 
     | 
    
         
            +
               * @summary The log1p function.
         
     | 
| 
      
 826 
     | 
    
         
            +
               * @param {number} x the argument.
         
     | 
| 
      
 827 
     | 
    
         
            +
               * @returns {number} log(1 + x).
         
     | 
| 
      
 828 
     | 
    
         
            +
               */
         
     | 
| 
      
 829 
     | 
    
         
            +
              m.log1p = function(x) {
         
     | 
| 
      
 830 
     | 
    
         
            +
                var y = 1 + x,
         
     | 
| 
      
 831 
     | 
    
         
            +
                    z = y - 1;
         
     | 
| 
      
 832 
     | 
    
         
            +
                // Here's the explanation for this magic: y = 1 + z, exactly, and z
         
     | 
| 
      
 833 
     | 
    
         
            +
                // approx x, thus log(y)/z (which is nearly constant near z = 0) returns
         
     | 
| 
      
 834 
     | 
    
         
            +
                // a good approximation to the true log(1 + x)/x.  The multiplication x *
         
     | 
| 
      
 835 
     | 
    
         
            +
                // (log(y)/z) introduces little additional error.
         
     | 
| 
      
 836 
     | 
    
         
            +
                return z === 0 ? x : x * Math.log(y) / z;
         
     | 
| 
      
 837 
     | 
    
         
            +
              };
         
     | 
| 
      
 838 
     | 
    
         
            +
             
     | 
| 
      
 839 
     | 
    
         
            +
              /**
         
     | 
| 
      
 840 
     | 
    
         
            +
               * @summary Inverse hyperbolic tangent.
         
     | 
| 
      
 841 
     | 
    
         
            +
               * @param {number} x the argument.
         
     | 
| 
      
 842 
     | 
    
         
            +
               * @returns {number} tanh<sup>−1</sup> x.
         
     | 
| 
      
 843 
     | 
    
         
            +
               */
         
     | 
| 
      
 844 
     | 
    
         
            +
              m.atanh = function(x) {
         
     | 
| 
      
 845 
     | 
    
         
            +
                var y = Math.abs(x);          // Enforce odd parity
         
     | 
| 
      
 846 
     | 
    
         
            +
                y = m.log1p(2 * y/(1 - y))/2;
         
     | 
| 
      
 847 
     | 
    
         
            +
                return x < 0 ? -y : y;
         
     | 
| 
      
 848 
     | 
    
         
            +
              };
         
     | 
| 
      
 849 
     | 
    
         
            +
             
     | 
| 
      
 850 
     | 
    
         
            +
              /**
         
     | 
| 
      
 851 
     | 
    
         
            +
               * @summary Copy the sign.
         
     | 
| 
      
 852 
     | 
    
         
            +
               * @param {number} x gives the magitude of the result.
         
     | 
| 
      
 853 
     | 
    
         
            +
               * @param {number} y gives the sign of the result.
         
     | 
| 
      
 854 
     | 
    
         
            +
               * @returns {number} value with the magnitude of x and with the sign of y.
         
     | 
| 
      
 855 
     | 
    
         
            +
               */
         
     | 
| 
      
 856 
     | 
    
         
            +
              m.copysign = function(x, y) {
         
     | 
| 
      
 857 
     | 
    
         
            +
                return Math.abs(x) * (y < 0 || (y === 0 && 1/y < 0) ? -1 : 1);
         
     | 
| 
      
 858 
     | 
    
         
            +
              };
         
     | 
| 
      
 859 
     | 
    
         
            +
             
     | 
| 
      
 860 
     | 
    
         
            +
              /**
         
     | 
| 
      
 861 
     | 
    
         
            +
               * @summary An error-free sum.
         
     | 
| 
      
 862 
     | 
    
         
            +
               * @param {number} u
         
     | 
| 
      
 863 
     | 
    
         
            +
               * @param {number} v
         
     | 
| 
      
 864 
     | 
    
         
            +
               * @returns {object} sum with sum.s = round(u + v) and sum.t is u + v −
         
     | 
| 
      
 865 
     | 
    
         
            +
               *   round(u + v)
         
     | 
| 
      
 866 
     | 
    
         
            +
               */
         
     | 
| 
      
 867 
     | 
    
         
            +
              m.sum = function(u, v) {
         
     | 
| 
      
 868 
     | 
    
         
            +
                var s = u + v,
         
     | 
| 
      
 869 
     | 
    
         
            +
                    up = s - v,
         
     | 
| 
      
 870 
     | 
    
         
            +
                    vpp = s - up,
         
     | 
| 
      
 871 
     | 
    
         
            +
                    t;
         
     | 
| 
      
 872 
     | 
    
         
            +
                up -= u;
         
     | 
| 
      
 873 
     | 
    
         
            +
                vpp -= v;
         
     | 
| 
      
 874 
     | 
    
         
            +
                t = -(up + vpp);
         
     | 
| 
      
 875 
     | 
    
         
            +
                // u + v =       s      + t
         
     | 
| 
      
 876 
     | 
    
         
            +
                //       = round(u + v) + t
         
     | 
| 
      
 877 
     | 
    
         
            +
                return {s: s, t: t};
         
     | 
| 
      
 878 
     | 
    
         
            +
              };
         
     | 
| 
      
 879 
     | 
    
         
            +
             
     | 
| 
      
 880 
     | 
    
         
            +
              /**
         
     | 
| 
      
 881 
     | 
    
         
            +
               * @summary Evaluate a polynomial.
         
     | 
| 
      
 882 
     | 
    
         
            +
               * @param {integer} N the order of the polynomial.
         
     | 
| 
      
 883 
     | 
    
         
            +
               * @param {array} p the coefficient array (of size N + 1) (leading
         
     | 
| 
      
 884 
     | 
    
         
            +
               *   order coefficient first)
         
     | 
| 
      
 885 
     | 
    
         
            +
               * @param {number} x the variable.
         
     | 
| 
      
 886 
     | 
    
         
            +
               * @returns {number} the value of the polynomial.
         
     | 
| 
      
 887 
     | 
    
         
            +
               */
         
     | 
| 
      
 888 
     | 
    
         
            +
              m.polyval = function(N, p, s, x) {
         
     | 
| 
      
 889 
     | 
    
         
            +
                var y = N < 0 ? 0 : p[s++];
         
     | 
| 
      
 890 
     | 
    
         
            +
                while (--N >= 0) y = y * x + p[s++];
         
     | 
| 
      
 891 
     | 
    
         
            +
                return y;
         
     | 
| 
      
 892 
     | 
    
         
            +
              };
         
     | 
| 
      
 893 
     | 
    
         
            +
             
     | 
| 
      
 894 
     | 
    
         
            +
              /**
         
     | 
| 
      
 895 
     | 
    
         
            +
               * @summary Coarsen a value close to zero.
         
     | 
| 
      
 896 
     | 
    
         
            +
               * @param {number} x
         
     | 
| 
      
 897 
     | 
    
         
            +
               * @returns {number} the coarsened value.
         
     | 
| 
      
 898 
     | 
    
         
            +
               */
         
     | 
| 
      
 899 
     | 
    
         
            +
              m.AngRound = function(x) {
         
     | 
| 
      
 900 
     | 
    
         
            +
                // The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57 for
         
     | 
| 
      
 901 
     | 
    
         
            +
                // reals = 0.7 pm on the earth if x is an angle in degrees.  (This is about
         
     | 
| 
      
 902 
     | 
    
         
            +
                // 1000 times more resolution than we get with angles around 90 degrees.)
         
     | 
| 
      
 903 
     | 
    
         
            +
                // We use this to avoid having to deal with near singular cases when x is
         
     | 
| 
      
 904 
     | 
    
         
            +
                // non-zero but tiny (e.g., 1.0e-200).  This converts -0 to +0; however
         
     | 
| 
      
 905 
     | 
    
         
            +
                // tiny negative numbers get converted to -0.
         
     | 
| 
      
 906 
     | 
    
         
            +
                if (x === 0) return x;
         
     | 
| 
      
 907 
     | 
    
         
            +
                var z = 1/16,
         
     | 
| 
      
 908 
     | 
    
         
            +
                    y = Math.abs(x);
         
     | 
| 
      
 909 
     | 
    
         
            +
                // The compiler mustn't "simplify" z - (z - y) to y
         
     | 
| 
      
 910 
     | 
    
         
            +
                y = y < z ? z - (z - y) : y;
         
     | 
| 
      
 911 
     | 
    
         
            +
                return x < 0 ? -y : y;
         
     | 
| 
      
 912 
     | 
    
         
            +
              };
         
     | 
| 
      
 913 
     | 
    
         
            +
             
     | 
| 
      
 914 
     | 
    
         
            +
              /**
         
     | 
| 
      
 915 
     | 
    
         
            +
               * @summary Normalize an angle.
         
     | 
| 
      
 916 
     | 
    
         
            +
               * @param {number} x the angle in degrees.
         
     | 
| 
      
 917 
     | 
    
         
            +
               * @returns {number} the angle reduced to the range (−180°,
         
     | 
| 
      
 918 
     | 
    
         
            +
               *   180°].
         
     | 
| 
      
 919 
     | 
    
         
            +
               */
         
     | 
| 
      
 920 
     | 
    
         
            +
              m.AngNormalize = function(x) {
         
     | 
| 
      
 921 
     | 
    
         
            +
                // Place angle in [-180, 180).
         
     | 
| 
      
 922 
     | 
    
         
            +
                x = x % 360;
         
     | 
| 
      
 923 
     | 
    
         
            +
                return x <= -180 ? x + 360 : (x <= 180 ? x : x - 360);
         
     | 
| 
      
 924 
     | 
    
         
            +
              };
         
     | 
| 
      
 925 
     | 
    
         
            +
             
     | 
| 
      
 926 
     | 
    
         
            +
              /**
         
     | 
| 
      
 927 
     | 
    
         
            +
               * @summary Normalize a latitude.
         
     | 
| 
      
 928 
     | 
    
         
            +
               * @param {number} x the angle in degrees.
         
     | 
| 
      
 929 
     | 
    
         
            +
               * @returns {number} x if it is in the range [−90°, 90°],
         
     | 
| 
      
 930 
     | 
    
         
            +
               *   otherwise return NaN.
         
     | 
| 
      
 931 
     | 
    
         
            +
               */
         
     | 
| 
      
 932 
     | 
    
         
            +
              m.LatFix = function(x) {
         
     | 
| 
      
 933 
     | 
    
         
            +
                // Replace angle with NaN if outside [-90, 90].
         
     | 
| 
      
 934 
     | 
    
         
            +
                return Math.abs(x) > 90 ? Number.NaN : x;
         
     | 
| 
      
 935 
     | 
    
         
            +
              };
         
     | 
| 
      
 936 
     | 
    
         
            +
             
     | 
| 
      
 937 
     | 
    
         
            +
              /**
         
     | 
| 
      
 938 
     | 
    
         
            +
               * @summary The exact difference of two angles reduced to (−180°,
         
     | 
| 
      
 939 
     | 
    
         
            +
               *   180°]
         
     | 
| 
      
 940 
     | 
    
         
            +
               * @param {number} x the first angle in degrees.
         
     | 
| 
      
 941 
     | 
    
         
            +
               * @param {number} y the second angle in degrees.
         
     | 
| 
      
 942 
     | 
    
         
            +
               * @return {object} diff the exact difference, y − x.
         
     | 
| 
      
 943 
     | 
    
         
            +
               *
         
     | 
| 
      
 944 
     | 
    
         
            +
               * This computes z = y − x exactly, reduced to (−180°,
         
     | 
| 
      
 945 
     | 
    
         
            +
               * 180°]; and then sets diff.s = d = round(z) and diff.t = e = z −
         
     | 
| 
      
 946 
     | 
    
         
            +
               * round(z).  If d = −180, then e > 0; If d = 180, then e ≤ 0.
         
     | 
| 
      
 947 
     | 
    
         
            +
               */
         
     | 
| 
      
 948 
     | 
    
         
            +
              m.AngDiff = function(x, y) {
         
     | 
| 
      
 949 
     | 
    
         
            +
                // Compute y - x and reduce to [-180,180] accurately.
         
     | 
| 
      
 950 
     | 
    
         
            +
                var r = m.sum(m.AngNormalize(-x), m.AngNormalize(y)),
         
     | 
| 
      
 951 
     | 
    
         
            +
                    d = m.AngNormalize(r.s),
         
     | 
| 
      
 952 
     | 
    
         
            +
                    t = r.t;
         
     | 
| 
      
 953 
     | 
    
         
            +
                return m.sum(d === 180 && t > 0 ? -180 : d, t);
         
     | 
| 
      
 954 
     | 
    
         
            +
              };
         
     | 
| 
      
 955 
     | 
    
         
            +
             
     | 
| 
      
 956 
     | 
    
         
            +
              /**
         
     | 
| 
      
 957 
     | 
    
         
            +
               * @summary Evaluate the sine and cosine function with the argument in
         
     | 
| 
      
 958 
     | 
    
         
            +
               *   degrees
         
     | 
| 
      
 959 
     | 
    
         
            +
               * @param {number} x in degrees.
         
     | 
| 
      
 960 
     | 
    
         
            +
               * @returns {object} r with r.s = sin(x) and r.c = cos(x).
         
     | 
| 
      
 961 
     | 
    
         
            +
               */
         
     | 
| 
      
 962 
     | 
    
         
            +
              m.sincosd = function(x) {
         
     | 
| 
      
 963 
     | 
    
         
            +
                // In order to minimize round-off errors, this function exactly reduces
         
     | 
| 
      
 964 
     | 
    
         
            +
                // the argument to the range [-45, 45] before converting it to radians.
         
     | 
| 
      
 965 
     | 
    
         
            +
                var r, q, s, c, sinx, cosx;
         
     | 
| 
      
 966 
     | 
    
         
            +
                r = x % 360;
         
     | 
| 
      
 967 
     | 
    
         
            +
                q = Math.floor(r / 90 + 0.5);
         
     | 
| 
      
 968 
     | 
    
         
            +
                r -= 90 * q;
         
     | 
| 
      
 969 
     | 
    
         
            +
                // now abs(r) <= 45
         
     | 
| 
      
 970 
     | 
    
         
            +
                r *= this.degree;
         
     | 
| 
      
 971 
     | 
    
         
            +
                // Possibly could call the gnu extension sincos
         
     | 
| 
      
 972 
     | 
    
         
            +
                s = Math.sin(r); c = Math.cos(r);
         
     | 
| 
      
 973 
     | 
    
         
            +
                switch (q & 3) {
         
     | 
| 
      
 974 
     | 
    
         
            +
                  case 0:  sinx =  s; cosx =  c; break;
         
     | 
| 
      
 975 
     | 
    
         
            +
                  case 1:  sinx =  c; cosx = -s; break;
         
     | 
| 
      
 976 
     | 
    
         
            +
                  case 2:  sinx = -s; cosx = -c; break;
         
     | 
| 
      
 977 
     | 
    
         
            +
                  default: sinx = -c; cosx =  s; break; // case 3
         
     | 
| 
      
 978 
     | 
    
         
            +
                }
         
     | 
| 
      
 979 
     | 
    
         
            +
                if (x !== 0) { sinx += 0; cosx += 0; }
         
     | 
| 
      
 980 
     | 
    
         
            +
                return {s: sinx, c: cosx};
         
     | 
| 
      
 981 
     | 
    
         
            +
              };
         
     | 
| 
      
 982 
     | 
    
         
            +
             
     | 
| 
      
 983 
     | 
    
         
            +
              /**
         
     | 
| 
      
 984 
     | 
    
         
            +
               * @summary Evaluate the atan2 function with the result in degrees
         
     | 
| 
      
 985 
     | 
    
         
            +
               * @param {number} y
         
     | 
| 
      
 986 
     | 
    
         
            +
               * @param {number} x
         
     | 
| 
      
 987 
     | 
    
         
            +
               * @returns atan2(y, x) in degrees, in the range (−180°
         
     | 
| 
      
 988 
     | 
    
         
            +
               *   180°].
         
     | 
| 
      
 989 
     | 
    
         
            +
               */
         
     | 
| 
      
 990 
     | 
    
         
            +
              m.atan2d = function(y, x) {
         
     | 
| 
      
 991 
     | 
    
         
            +
                // In order to minimize round-off errors, this function rearranges the
         
     | 
| 
      
 992 
     | 
    
         
            +
                // arguments so that result of atan2 is in the range [-pi/4, pi/4] before
         
     | 
| 
      
 993 
     | 
    
         
            +
                // converting it to degrees and mapping the result to the correct
         
     | 
| 
      
 994 
     | 
    
         
            +
                // quadrant.
         
     | 
| 
      
 995 
     | 
    
         
            +
                var q = 0, t, ang;
         
     | 
| 
      
 996 
     | 
    
         
            +
                if (Math.abs(y) > Math.abs(x)) { t = x; x = y; y = t; q = 2; }
         
     | 
| 
      
 997 
     | 
    
         
            +
                if (x < 0) { x = -x; ++q; }
         
     | 
| 
      
 998 
     | 
    
         
            +
                // here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
         
     | 
| 
      
 999 
     | 
    
         
            +
                ang = Math.atan2(y, x) / this.degree;
         
     | 
| 
      
 1000 
     | 
    
         
            +
                switch (q) {
         
     | 
| 
      
 1001 
     | 
    
         
            +
                  // Note that atan2d(-0.0, 1.0) will return -0.  However, we expect that
         
     | 
| 
      
 1002 
     | 
    
         
            +
                  // atan2d will not be called with y = -0.  If need be, include
         
     | 
| 
      
 1003 
     | 
    
         
            +
                  //
         
     | 
| 
      
 1004 
     | 
    
         
            +
                  //   case 0: ang = 0 + ang; break;
         
     | 
| 
      
 1005 
     | 
    
         
            +
                  //
         
     | 
| 
      
 1006 
     | 
    
         
            +
                  // and handle mpfr as in AngRound.
         
     | 
| 
      
 1007 
     | 
    
         
            +
                  case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
         
     | 
| 
      
 1008 
     | 
    
         
            +
                  case 2: ang =  90 - ang; break;
         
     | 
| 
      
 1009 
     | 
    
         
            +
                  case 3: ang = -90 + ang; break;
         
     | 
| 
      
 1010 
     | 
    
         
            +
                }
         
     | 
| 
      
 1011 
     | 
    
         
            +
                return ang;
         
     | 
| 
      
 1012 
     | 
    
         
            +
              };
         
     | 
| 
      
 1013 
     | 
    
         
            +
            })(GeographicLib.Math);
         
     | 
| 
      
 1014 
     | 
    
         
            +
             
     | 
| 
      
 1015 
     | 
    
         
            +
            (function(
         
     | 
| 
      
 1016 
     | 
    
         
            +
              /**
         
     | 
| 
      
 1017 
     | 
    
         
            +
               * @exports GeographicLib/Accumulator
         
     | 
| 
      
 1018 
     | 
    
         
            +
               * @description Accurate summation via the
         
     | 
| 
      
 1019 
     | 
    
         
            +
               *   {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class
         
     | 
| 
      
 1020 
     | 
    
         
            +
               *   (mainly for internal use).
         
     | 
| 
      
 1021 
     | 
    
         
            +
               */
         
     | 
| 
      
 1022 
     | 
    
         
            +
              a, m) {
         
     | 
| 
      
 1023 
     | 
    
         
            +
             
     | 
| 
      
 1024 
     | 
    
         
            +
              /**
         
     | 
| 
      
 1025 
     | 
    
         
            +
               * @class
         
     | 
| 
      
 1026 
     | 
    
         
            +
               * @summary Accurate summation of many numbers.
         
     | 
| 
      
 1027 
     | 
    
         
            +
               * @classdesc This allows many numbers to be added together with twice the
         
     | 
| 
      
 1028 
     | 
    
         
            +
               *   normal precision.  In the documentation of the member functions, sum
         
     | 
| 
      
 1029 
     | 
    
         
            +
               *   stands for the value currently held in the accumulator.
         
     | 
| 
      
 1030 
     | 
    
         
            +
               * @param {number | Accumulator} [y = 0]  set sum = y.
         
     | 
| 
      
 1031 
     | 
    
         
            +
               */
         
     | 
| 
      
 1032 
     | 
    
         
            +
              a.Accumulator = function(y) {
         
     | 
| 
      
 1033 
     | 
    
         
            +
                this.Set(y);
         
     | 
| 
      
 1034 
     | 
    
         
            +
              };
         
     | 
| 
      
 1035 
     | 
    
         
            +
             
     | 
| 
      
 1036 
     | 
    
         
            +
              /**
         
     | 
| 
      
 1037 
     | 
    
         
            +
               * @summary Set the accumulator to a number.
         
     | 
| 
      
 1038 
     | 
    
         
            +
               * @param {number | Accumulator} [y = 0] set sum = y.
         
     | 
| 
      
 1039 
     | 
    
         
            +
               */
         
     | 
| 
      
 1040 
     | 
    
         
            +
              a.Accumulator.prototype.Set = function(y) {
         
     | 
| 
      
 1041 
     | 
    
         
            +
                if (!y) y = 0;
         
     | 
| 
      
 1042 
     | 
    
         
            +
                if (y.constructor === a.Accumulator) {
         
     | 
| 
      
 1043 
     | 
    
         
            +
                  this._s = y._s;
         
     | 
| 
      
 1044 
     | 
    
         
            +
                  this._t = y._t;
         
     | 
| 
      
 1045 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 1046 
     | 
    
         
            +
                  this._s = y;
         
     | 
| 
      
 1047 
     | 
    
         
            +
                  this._t = 0;
         
     | 
| 
      
 1048 
     | 
    
         
            +
                }
         
     | 
| 
      
 1049 
     | 
    
         
            +
              };
         
     | 
| 
      
 1050 
     | 
    
         
            +
             
     | 
| 
      
 1051 
     | 
    
         
            +
              /**
         
     | 
| 
      
 1052 
     | 
    
         
            +
               * @summary Add a number to the accumulator.
         
     | 
| 
      
 1053 
     | 
    
         
            +
               * @param {number} [y = 0] set sum += y.
         
     | 
| 
      
 1054 
     | 
    
         
            +
               */
         
     | 
| 
      
 1055 
     | 
    
         
            +
              a.Accumulator.prototype.Add = function(y) {
         
     | 
| 
      
 1056 
     | 
    
         
            +
                // Here's Shewchuk's solution...
         
     | 
| 
      
 1057 
     | 
    
         
            +
                // Accumulate starting at least significant end
         
     | 
| 
      
 1058 
     | 
    
         
            +
                var u = m.sum(y, this._t),
         
     | 
| 
      
 1059 
     | 
    
         
            +
                    v = m.sum(u.s, this._s);
         
     | 
| 
      
 1060 
     | 
    
         
            +
                u = u.t;
         
     | 
| 
      
 1061 
     | 
    
         
            +
                this._s = v.s;
         
     | 
| 
      
 1062 
     | 
    
         
            +
                this._t = v.t;
         
     | 
| 
      
 1063 
     | 
    
         
            +
                // Start is _s, _t decreasing and non-adjacent.  Sum is now (s + t + u)
         
     | 
| 
      
 1064 
     | 
    
         
            +
                // exactly with s, t, u non-adjacent and in decreasing order (except
         
     | 
| 
      
 1065 
     | 
    
         
            +
                // for possible zeros).  The following code tries to normalize the
         
     | 
| 
      
 1066 
     | 
    
         
            +
                // result.  Ideally, we want _s = round(s+t+u) and _u = round(s+t+u -
         
     | 
| 
      
 1067 
     | 
    
         
            +
                // _s).  The follow does an approximate job (and maintains the
         
     | 
| 
      
 1068 
     | 
    
         
            +
                // decreasing non-adjacent property).  Here are two "failures" using
         
     | 
| 
      
 1069 
     | 
    
         
            +
                // 3-bit floats:
         
     | 
| 
      
 1070 
     | 
    
         
            +
                //
         
     | 
| 
      
 1071 
     | 
    
         
            +
                // Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp
         
     | 
| 
      
 1072 
     | 
    
         
            +
                // [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3
         
     | 
| 
      
 1073 
     | 
    
         
            +
                //
         
     | 
| 
      
 1074 
     | 
    
         
            +
                // Case 2: _s+_t is not as close to s+t+u as it shold be
         
     | 
| 
      
 1075 
     | 
    
         
            +
                // [64, 5] + 4 -> [64, 8, 1] -> [64,  8] = 72 (off by 1)
         
     | 
| 
      
 1076 
     | 
    
         
            +
                //                    should be [80, -7] = 73 (exact)
         
     | 
| 
      
 1077 
     | 
    
         
            +
                //
         
     | 
| 
      
 1078 
     | 
    
         
            +
                // "Fixing" these problems is probably not worth the expense.  The
         
     | 
| 
      
 1079 
     | 
    
         
            +
                // representation inevitably leads to small errors in the accumulated
         
     | 
| 
      
 1080 
     | 
    
         
            +
                // values.  The additional errors illustrated here amount to 1 ulp of
         
     | 
| 
      
 1081 
     | 
    
         
            +
                // the less significant word during each addition to the Accumulator
         
     | 
| 
      
 1082 
     | 
    
         
            +
                // and an additional possible error of 1 ulp in the reported sum.
         
     | 
| 
      
 1083 
     | 
    
         
            +
                //
         
     | 
| 
      
 1084 
     | 
    
         
            +
                // Incidentally, the "ideal" representation described above is not
         
     | 
| 
      
 1085 
     | 
    
         
            +
                // canonical, because _s = round(_s + _t) may not be true.  For
         
     | 
| 
      
 1086 
     | 
    
         
            +
                // example, with 3-bit floats:
         
     | 
| 
      
 1087 
     | 
    
         
            +
                //
         
     | 
| 
      
 1088 
     | 
    
         
            +
                // [128, 16] + 1 -> [160, -16] -- 160 = round(145).
         
     | 
| 
      
 1089 
     | 
    
         
            +
                // But [160, 0] - 16 -> [128, 16] -- 128 = round(144).
         
     | 
| 
      
 1090 
     | 
    
         
            +
                //
         
     | 
| 
      
 1091 
     | 
    
         
            +
                if (this._s === 0)          // This implies t == 0,
         
     | 
| 
      
 1092 
     | 
    
         
            +
                  this._s = u;              // so result is u
         
     | 
| 
      
 1093 
     | 
    
         
            +
                else
         
     | 
| 
      
 1094 
     | 
    
         
            +
                  this._t += u;             // otherwise just accumulate u to t.
         
     | 
| 
      
 1095 
     | 
    
         
            +
              };
         
     | 
| 
      
 1096 
     | 
    
         
            +
             
     | 
| 
      
 1097 
     | 
    
         
            +
              /**
         
     | 
| 
      
 1098 
     | 
    
         
            +
               * @summary Return the result of adding a number to sum (but
         
     | 
| 
      
 1099 
     | 
    
         
            +
               *   don't change sum).
         
     | 
| 
      
 1100 
     | 
    
         
            +
               * @param {number} [y = 0] the number to be added to the sum.
         
     | 
| 
      
 1101 
     | 
    
         
            +
               * @return sum + y.
         
     | 
| 
      
 1102 
     | 
    
         
            +
               */
         
     | 
| 
      
 1103 
     | 
    
         
            +
              a.Accumulator.prototype.Sum = function(y) {
         
     | 
| 
      
 1104 
     | 
    
         
            +
                var b;
         
     | 
| 
      
 1105 
     | 
    
         
            +
                if (!y)
         
     | 
| 
      
 1106 
     | 
    
         
            +
                  return this._s;
         
     | 
| 
      
 1107 
     | 
    
         
            +
                else {
         
     | 
| 
      
 1108 
     | 
    
         
            +
                  b = new a.Accumulator(this);
         
     | 
| 
      
 1109 
     | 
    
         
            +
                  b.Add(y);
         
     | 
| 
      
 1110 
     | 
    
         
            +
                  return b._s;
         
     | 
| 
      
 1111 
     | 
    
         
            +
                }
         
     | 
| 
      
 1112 
     | 
    
         
            +
              };
         
     | 
| 
      
 1113 
     | 
    
         
            +
             
     | 
| 
      
 1114 
     | 
    
         
            +
              /**
         
     | 
| 
      
 1115 
     | 
    
         
            +
               * @summary Set sum = −sum.
         
     | 
| 
      
 1116 
     | 
    
         
            +
               */
         
     | 
| 
      
 1117 
     | 
    
         
            +
              a.Accumulator.prototype.Negate = function() {
         
     | 
| 
      
 1118 
     | 
    
         
            +
                this._s *= -1;
         
     | 
| 
      
 1119 
     | 
    
         
            +
                this._t *= -1;
         
     | 
| 
      
 1120 
     | 
    
         
            +
              };
         
     | 
| 
      
 1121 
     | 
    
         
            +
            })(GeographicLib.Accumulator, GeographicLib.Math);
         
     | 
| 
      
 1122 
     | 
    
         
            +
             
     | 
| 
      
 1123 
     | 
    
         
            +
            /**************** Geodesic.js ****************/
         
     | 
| 
      
 1124 
     | 
    
         
            +
            /*
         
     | 
| 
      
 1125 
     | 
    
         
            +
             * Geodesic.js
         
     | 
| 
      
 1126 
     | 
    
         
            +
             * Transcription of Geodesic.[ch]pp into JavaScript.
         
     | 
| 
      
 1127 
     | 
    
         
            +
             *
         
     | 
| 
      
 1128 
     | 
    
         
            +
             * See the documentation for the C++ class.  The conversion is a literal
         
     | 
| 
      
 1129 
     | 
    
         
            +
             * conversion from C++.
         
     | 
| 
      
 1130 
     | 
    
         
            +
             *
         
     | 
| 
      
 1131 
     | 
    
         
            +
             * The algorithms are derived in
         
     | 
| 
      
 1132 
     | 
    
         
            +
             *
         
     | 
| 
      
 1133 
     | 
    
         
            +
             *    Charles F. F. Karney,
         
     | 
| 
      
 1134 
     | 
    
         
            +
             *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
         
     | 
| 
      
 1135 
     | 
    
         
            +
             *    https://doi.org/10.1007/s00190-012-0578-z
         
     | 
| 
      
 1136 
     | 
    
         
            +
             *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
         
     | 
| 
      
 1137 
     | 
    
         
            +
             *
         
     | 
| 
      
 1138 
     | 
    
         
            +
             * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
         
     | 
| 
      
 1139 
     | 
    
         
            +
             * under the MIT/X11 License.  For more information, see
         
     | 
| 
      
 1140 
     | 
    
         
            +
             * https://geographiclib.sourceforge.io/
         
     | 
| 
      
 1141 
     | 
    
         
            +
             */
         
     | 
| 
      
 1142 
     | 
    
         
            +
             
     | 
| 
      
 1143 
     | 
    
         
            +
            // Load AFTER Math.js
         
     | 
| 
      
 1144 
     | 
    
         
            +
             
     | 
| 
      
 1145 
     | 
    
         
            +
            GeographicLib.Geodesic = {};
         
     | 
| 
      
 1146 
     | 
    
         
            +
            GeographicLib.GeodesicLine = {};
         
     | 
| 
      
 1147 
     | 
    
         
            +
            GeographicLib.PolygonArea = {};
         
     | 
| 
      
 1148 
     | 
    
         
            +
             
     | 
| 
      
 1149 
     | 
    
         
            +
            (function(
         
     | 
| 
      
 1150 
     | 
    
         
            +
              /**
         
     | 
| 
      
 1151 
     | 
    
         
            +
               * @exports GeographicLib/Geodesic
         
     | 
| 
      
 1152 
     | 
    
         
            +
               * @description Solve geodesic problems via the
         
     | 
| 
      
 1153 
     | 
    
         
            +
               *   {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
         
     | 
| 
      
 1154 
     | 
    
         
            +
               */
         
     | 
| 
      
 1155 
     | 
    
         
            +
              g, l, p, m, c) {
         
     | 
| 
      
 1156 
     | 
    
         
            +
             
     | 
| 
      
 1157 
     | 
    
         
            +
              var GEOGRAPHICLIB_GEODESIC_ORDER = 6,
         
     | 
| 
      
 1158 
     | 
    
         
            +
                  nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER,
         
     | 
| 
      
 1159 
     | 
    
         
            +
                  nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER,
         
     | 
| 
      
 1160 
     | 
    
         
            +
                  nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER,
         
     | 
| 
      
 1161 
     | 
    
         
            +
                  nA3x_ = nA3_,
         
     | 
| 
      
 1162 
     | 
    
         
            +
                  nC3x_, nC4x_,
         
     | 
| 
      
 1163 
     | 
    
         
            +
                  maxit1_ = 20,
         
     | 
| 
      
 1164 
     | 
    
         
            +
                  maxit2_ = maxit1_ + m.digits + 10,
         
     | 
| 
      
 1165 
     | 
    
         
            +
                  tol0_ = m.epsilon,
         
     | 
| 
      
 1166 
     | 
    
         
            +
                  tol1_ = 200 * tol0_,
         
     | 
| 
      
 1167 
     | 
    
         
            +
                  tol2_ = Math.sqrt(tol0_),
         
     | 
| 
      
 1168 
     | 
    
         
            +
                  tolb_ = tol0_ * tol1_,
         
     | 
| 
      
 1169 
     | 
    
         
            +
                  xthresh_ = 1000 * tol2_,
         
     | 
| 
      
 1170 
     | 
    
         
            +
                  CAP_NONE = 0,
         
     | 
| 
      
 1171 
     | 
    
         
            +
                  CAP_ALL  = 0x1F,
         
     | 
| 
      
 1172 
     | 
    
         
            +
                  CAP_MASK = CAP_ALL,
         
     | 
| 
      
 1173 
     | 
    
         
            +
                  OUT_ALL  = 0x7F80,
         
     | 
| 
      
 1174 
     | 
    
         
            +
                  astroid,
         
     | 
| 
      
 1175 
     | 
    
         
            +
                  A1m1f_coeff, C1f_coeff, C1pf_coeff,
         
     | 
| 
      
 1176 
     | 
    
         
            +
                  A2m1f_coeff, C2f_coeff,
         
     | 
| 
      
 1177 
     | 
    
         
            +
                  A3_coeff, C3_coeff, C4_coeff;
         
     | 
| 
      
 1178 
     | 
    
         
            +
             
     | 
| 
      
 1179 
     | 
    
         
            +
              g.tiny_ = Math.sqrt(Number.MIN_VALUE);
         
     | 
| 
      
 1180 
     | 
    
         
            +
              g.nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
         
     | 
| 
      
 1181 
     | 
    
         
            +
              g.nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER;
         
     | 
| 
      
 1182 
     | 
    
         
            +
              g.nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
         
     | 
| 
      
 1183 
     | 
    
         
            +
              g.nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
         
     | 
| 
      
 1184 
     | 
    
         
            +
              g.nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER;
         
     | 
| 
      
 1185 
     | 
    
         
            +
              nC3x_ = (g.nC3_ * (g.nC3_ - 1)) / 2;
         
     | 
| 
      
 1186 
     | 
    
         
            +
              nC4x_ = (g.nC4_ * (g.nC4_ + 1)) / 2;
         
     | 
| 
      
 1187 
     | 
    
         
            +
              g.CAP_C1   = 1<<0;
         
     | 
| 
      
 1188 
     | 
    
         
            +
              g.CAP_C1p  = 1<<1;
         
     | 
| 
      
 1189 
     | 
    
         
            +
              g.CAP_C2   = 1<<2;
         
     | 
| 
      
 1190 
     | 
    
         
            +
              g.CAP_C3   = 1<<3;
         
     | 
| 
      
 1191 
     | 
    
         
            +
              g.CAP_C4   = 1<<4;
         
     | 
| 
      
 1192 
     | 
    
         
            +
             
     | 
| 
      
 1193 
     | 
    
         
            +
              g.NONE          = 0;
         
     | 
| 
      
 1194 
     | 
    
         
            +
              g.ARC           = 1<<6;
         
     | 
| 
      
 1195 
     | 
    
         
            +
              g.LATITUDE      = 1<<7  | CAP_NONE;
         
     | 
| 
      
 1196 
     | 
    
         
            +
              g.LONGITUDE     = 1<<8  | g.CAP_C3;
         
     | 
| 
      
 1197 
     | 
    
         
            +
              g.AZIMUTH       = 1<<9  | CAP_NONE;
         
     | 
| 
      
 1198 
     | 
    
         
            +
              g.DISTANCE      = 1<<10 | g.CAP_C1;
         
     | 
| 
      
 1199 
     | 
    
         
            +
              g.STANDARD      = g.LATITUDE | g.LONGITUDE | g.AZIMUTH | g.DISTANCE;
         
     | 
| 
      
 1200 
     | 
    
         
            +
              g.DISTANCE_IN   = 1<<11 | g.CAP_C1 | g.CAP_C1p;
         
     | 
| 
      
 1201 
     | 
    
         
            +
              g.REDUCEDLENGTH = 1<<12 | g.CAP_C1 | g.CAP_C2;
         
     | 
| 
      
 1202 
     | 
    
         
            +
              g.GEODESICSCALE = 1<<13 | g.CAP_C1 | g.CAP_C2;
         
     | 
| 
      
 1203 
     | 
    
         
            +
              g.AREA          = 1<<14 | g.CAP_C4;
         
     | 
| 
      
 1204 
     | 
    
         
            +
              g.ALL           = OUT_ALL| CAP_ALL;
         
     | 
| 
      
 1205 
     | 
    
         
            +
              g.LONG_UNROLL   = 1<<15;
         
     | 
| 
      
 1206 
     | 
    
         
            +
              g.OUT_MASK      = OUT_ALL| g.LONG_UNROLL;
         
     | 
| 
      
 1207 
     | 
    
         
            +
             
     | 
| 
      
 1208 
     | 
    
         
            +
              g.SinCosSeries = function(sinp, sinx, cosx, c) {
         
     | 
| 
      
 1209 
     | 
    
         
            +
                // Evaluate
         
     | 
| 
      
 1210 
     | 
    
         
            +
                // y = sinp ? sum(c[i] * sin( 2*i    * x), i, 1, n) :
         
     | 
| 
      
 1211 
     | 
    
         
            +
                //            sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
         
     | 
| 
      
 1212 
     | 
    
         
            +
                // using Clenshaw summation.  N.B. c[0] is unused for sin series
         
     | 
| 
      
 1213 
     | 
    
         
            +
                // Approx operation count = (n + 5) mult and (2 * n + 2) add
         
     | 
| 
      
 1214 
     | 
    
         
            +
                var k = c.length,           // Point to one beyond last element
         
     | 
| 
      
 1215 
     | 
    
         
            +
                    n = k - (sinp ? 1 : 0),
         
     | 
| 
      
 1216 
     | 
    
         
            +
                    ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
         
     | 
| 
      
 1217 
     | 
    
         
            +
                    y0 = n & 1 ? c[--k] : 0, y1 = 0;        // accumulators for sum
         
     | 
| 
      
 1218 
     | 
    
         
            +
                // Now n is even
         
     | 
| 
      
 1219 
     | 
    
         
            +
                n = Math.floor(n/2);
         
     | 
| 
      
 1220 
     | 
    
         
            +
                while (n--) {
         
     | 
| 
      
 1221 
     | 
    
         
            +
                  // Unroll loop x 2, so accumulators return to their original role
         
     | 
| 
      
 1222 
     | 
    
         
            +
                  y1 = ar * y0 - y1 + c[--k];
         
     | 
| 
      
 1223 
     | 
    
         
            +
                  y0 = ar * y1 - y0 + c[--k];
         
     | 
| 
      
 1224 
     | 
    
         
            +
                }
         
     | 
| 
      
 1225 
     | 
    
         
            +
                return (sinp ? 2 * sinx * cosx * y0 : // sin(2 * x) * y0
         
     | 
| 
      
 1226 
     | 
    
         
            +
                        cosx * (y0 - y1));            // cos(x) * (y0 - y1)
         
     | 
| 
      
 1227 
     | 
    
         
            +
              };
         
     | 
| 
      
 1228 
     | 
    
         
            +
             
     | 
| 
      
 1229 
     | 
    
         
            +
              astroid = function(x, y) {
         
     | 
| 
      
 1230 
     | 
    
         
            +
                // Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive
         
     | 
| 
      
 1231 
     | 
    
         
            +
                // root k.  This solution is adapted from Geocentric::Reverse.
         
     | 
| 
      
 1232 
     | 
    
         
            +
                var k,
         
     | 
| 
      
 1233 
     | 
    
         
            +
                    p = m.sq(x),
         
     | 
| 
      
 1234 
     | 
    
         
            +
                    q = m.sq(y),
         
     | 
| 
      
 1235 
     | 
    
         
            +
                    r = (p + q - 1) / 6,
         
     | 
| 
      
 1236 
     | 
    
         
            +
                    S, r2, r3, disc, u, T3, T, ang, v, uv, w;
         
     | 
| 
      
 1237 
     | 
    
         
            +
                if ( !(q === 0 && r <= 0) ) {
         
     | 
| 
      
 1238 
     | 
    
         
            +
                  // Avoid possible division by zero when r = 0 by multiplying
         
     | 
| 
      
 1239 
     | 
    
         
            +
                  // equations for s and t by r^3 and r, resp.
         
     | 
| 
      
 1240 
     | 
    
         
            +
                  S = p * q / 4;            // S = r^3 * s
         
     | 
| 
      
 1241 
     | 
    
         
            +
                  r2 = m.sq(r);
         
     | 
| 
      
 1242 
     | 
    
         
            +
                  r3 = r * r2;
         
     | 
| 
      
 1243 
     | 
    
         
            +
                  // The discriminant of the quadratic equation for T3.  This is
         
     | 
| 
      
 1244 
     | 
    
         
            +
                  // zero on the evolute curve p^(1/3)+q^(1/3) = 1
         
     | 
| 
      
 1245 
     | 
    
         
            +
                  disc = S * (S + 2 * r3);
         
     | 
| 
      
 1246 
     | 
    
         
            +
                  u = r;
         
     | 
| 
      
 1247 
     | 
    
         
            +
                  if (disc >= 0) {
         
     | 
| 
      
 1248 
     | 
    
         
            +
                    T3 = S + r3;
         
     | 
| 
      
 1249 
     | 
    
         
            +
                    // Pick the sign on the sqrt to maximize abs(T3).  This
         
     | 
| 
      
 1250 
     | 
    
         
            +
                    // minimizes loss of precision due to cancellation.  The
         
     | 
| 
      
 1251 
     | 
    
         
            +
                    // result is unchanged because of the way the T is used
         
     | 
| 
      
 1252 
     | 
    
         
            +
                    // in definition of u.
         
     | 
| 
      
 1253 
     | 
    
         
            +
                    T3 += T3 < 0 ? -Math.sqrt(disc) : Math.sqrt(disc);    // T3 = (r * t)^3
         
     | 
| 
      
 1254 
     | 
    
         
            +
                    // N.B. cbrt always returns the real root.  cbrt(-8) = -2.
         
     | 
| 
      
 1255 
     | 
    
         
            +
                    T = m.cbrt(T3);     // T = r * t
         
     | 
| 
      
 1256 
     | 
    
         
            +
                    // T can be zero; but then r2 / T -> 0.
         
     | 
| 
      
 1257 
     | 
    
         
            +
                    u += T + (T !== 0 ? r2 / T : 0);
         
     | 
| 
      
 1258 
     | 
    
         
            +
                  } else {
         
     | 
| 
      
 1259 
     | 
    
         
            +
                    // T is complex, but the way u is defined the result is real.
         
     | 
| 
      
 1260 
     | 
    
         
            +
                    ang = Math.atan2(Math.sqrt(-disc), -(S + r3));
         
     | 
| 
      
 1261 
     | 
    
         
            +
                    // There are three possible cube roots.  We choose the
         
     | 
| 
      
 1262 
     | 
    
         
            +
                    // root which avoids cancellation.  Note that disc < 0
         
     | 
| 
      
 1263 
     | 
    
         
            +
                    // implies that r < 0.
         
     | 
| 
      
 1264 
     | 
    
         
            +
                    u += 2 * r * Math.cos(ang / 3);
         
     | 
| 
      
 1265 
     | 
    
         
            +
                  }
         
     | 
| 
      
 1266 
     | 
    
         
            +
                  v = Math.sqrt(m.sq(u) + q);       // guaranteed positive
         
     | 
| 
      
 1267 
     | 
    
         
            +
                  // Avoid loss of accuracy when u < 0.
         
     | 
| 
      
 1268 
     | 
    
         
            +
                  uv = u < 0 ? q / (v - u) : u + v; // u+v, guaranteed positive
         
     | 
| 
      
 1269 
     | 
    
         
            +
                  w = (uv - q) / (2 * v);           // positive?
         
     | 
| 
      
 1270 
     | 
    
         
            +
                  // Rearrange expression for k to avoid loss of accuracy due to
         
     | 
| 
      
 1271 
     | 
    
         
            +
                  // subtraction.  Division by 0 not possible because uv > 0, w >= 0.
         
     | 
| 
      
 1272 
     | 
    
         
            +
                  k = uv / (Math.sqrt(uv + m.sq(w)) + w); // guaranteed positive
         
     | 
| 
      
 1273 
     | 
    
         
            +
                } else {                                  // q == 0 && r <= 0
         
     | 
| 
      
 1274 
     | 
    
         
            +
                  // y = 0 with |x| <= 1.  Handle this case directly.
         
     | 
| 
      
 1275 
     | 
    
         
            +
                  // for y small, positive root is k = abs(y)/sqrt(1-x^2)
         
     | 
| 
      
 1276 
     | 
    
         
            +
                  k = 0;
         
     | 
| 
      
 1277 
     | 
    
         
            +
                }
         
     | 
| 
      
 1278 
     | 
    
         
            +
                return k;
         
     | 
| 
      
 1279 
     | 
    
         
            +
              };
         
     | 
| 
      
 1280 
     | 
    
         
            +
             
     | 
| 
      
 1281 
     | 
    
         
            +
              A1m1f_coeff = [
         
     | 
| 
      
 1282 
     | 
    
         
            +
                // (1-eps)*A1-1, polynomial in eps2 of order 3
         
     | 
| 
      
 1283 
     | 
    
         
            +
                  +1, 4, 64, 0, 256
         
     | 
| 
      
 1284 
     | 
    
         
            +
              ];
         
     | 
| 
      
 1285 
     | 
    
         
            +
             
     | 
| 
      
 1286 
     | 
    
         
            +
              // The scale factor A1-1 = mean value of (d/dsigma)I1 - 1
         
     | 
| 
      
 1287 
     | 
    
         
            +
              g.A1m1f = function(eps) {
         
     | 
| 
      
 1288 
     | 
    
         
            +
                var p = Math.floor(nA1_/2),
         
     | 
| 
      
 1289 
     | 
    
         
            +
                    t = m.polyval(p, A1m1f_coeff, 0, m.sq(eps)) / A1m1f_coeff[p + 1];
         
     | 
| 
      
 1290 
     | 
    
         
            +
                return (t + eps) / (1 - eps);
         
     | 
| 
      
 1291 
     | 
    
         
            +
              };
         
     | 
| 
      
 1292 
     | 
    
         
            +
             
     | 
| 
      
 1293 
     | 
    
         
            +
              C1f_coeff = [
         
     | 
| 
      
 1294 
     | 
    
         
            +
                // C1[1]/eps^1, polynomial in eps2 of order 2
         
     | 
| 
      
 1295 
     | 
    
         
            +
                  -1, 6, -16, 32,
         
     | 
| 
      
 1296 
     | 
    
         
            +
                // C1[2]/eps^2, polynomial in eps2 of order 2
         
     | 
| 
      
 1297 
     | 
    
         
            +
                  -9, 64, -128, 2048,
         
     | 
| 
      
 1298 
     | 
    
         
            +
                // C1[3]/eps^3, polynomial in eps2 of order 1
         
     | 
| 
      
 1299 
     | 
    
         
            +
                  +9, -16, 768,
         
     | 
| 
      
 1300 
     | 
    
         
            +
                // C1[4]/eps^4, polynomial in eps2 of order 1
         
     | 
| 
      
 1301 
     | 
    
         
            +
                  +3, -5, 512,
         
     | 
| 
      
 1302 
     | 
    
         
            +
                // C1[5]/eps^5, polynomial in eps2 of order 0
         
     | 
| 
      
 1303 
     | 
    
         
            +
                  -7, 1280,
         
     | 
| 
      
 1304 
     | 
    
         
            +
                // C1[6]/eps^6, polynomial in eps2 of order 0
         
     | 
| 
      
 1305 
     | 
    
         
            +
                  -7, 2048
         
     | 
| 
      
 1306 
     | 
    
         
            +
              ];
         
     | 
| 
      
 1307 
     | 
    
         
            +
             
     | 
| 
      
 1308 
     | 
    
         
            +
              // The coefficients C1[l] in the Fourier expansion of B1
         
     | 
| 
      
 1309 
     | 
    
         
            +
              g.C1f = function(eps, c) {
         
     | 
| 
      
 1310 
     | 
    
         
            +
                var eps2 = m.sq(eps),
         
     | 
| 
      
 1311 
     | 
    
         
            +
                    d = eps,
         
     | 
| 
      
 1312 
     | 
    
         
            +
                    o = 0,
         
     | 
| 
      
 1313 
     | 
    
         
            +
                    l, p;
         
     | 
| 
      
 1314 
     | 
    
         
            +
                for (l = 1; l <= g.nC1_; ++l) {     // l is index of C1p[l]
         
     | 
| 
      
 1315 
     | 
    
         
            +
                  p = Math.floor((g.nC1_ - l) / 2); // order of polynomial in eps^2
         
     | 
| 
      
 1316 
     | 
    
         
            +
                  c[l] = d * m.polyval(p, C1f_coeff, o, eps2) / C1f_coeff[o + p + 1];
         
     | 
| 
      
 1317 
     | 
    
         
            +
                  o += p + 2;
         
     | 
| 
      
 1318 
     | 
    
         
            +
                  d *= eps;
         
     | 
| 
      
 1319 
     | 
    
         
            +
                }
         
     | 
| 
      
 1320 
     | 
    
         
            +
              };
         
     | 
| 
      
 1321 
     | 
    
         
            +
             
     | 
| 
      
 1322 
     | 
    
         
            +
              C1pf_coeff = [
         
     | 
| 
      
 1323 
     | 
    
         
            +
                // C1p[1]/eps^1, polynomial in eps2 of order 2
         
     | 
| 
      
 1324 
     | 
    
         
            +
                  +205, -432, 768, 1536,
         
     | 
| 
      
 1325 
     | 
    
         
            +
                // C1p[2]/eps^2, polynomial in eps2 of order 2
         
     | 
| 
      
 1326 
     | 
    
         
            +
                  +4005, -4736, 3840, 12288,
         
     | 
| 
      
 1327 
     | 
    
         
            +
                // C1p[3]/eps^3, polynomial in eps2 of order 1
         
     | 
| 
      
 1328 
     | 
    
         
            +
                  -225, 116, 384,
         
     | 
| 
      
 1329 
     | 
    
         
            +
                // C1p[4]/eps^4, polynomial in eps2 of order 1
         
     | 
| 
      
 1330 
     | 
    
         
            +
                  -7173, 2695, 7680,
         
     | 
| 
      
 1331 
     | 
    
         
            +
                // C1p[5]/eps^5, polynomial in eps2 of order 0
         
     | 
| 
      
 1332 
     | 
    
         
            +
                  +3467, 7680,
         
     | 
| 
      
 1333 
     | 
    
         
            +
                // C1p[6]/eps^6, polynomial in eps2 of order 0
         
     | 
| 
      
 1334 
     | 
    
         
            +
                  +38081, 61440
         
     | 
| 
      
 1335 
     | 
    
         
            +
              ];
         
     | 
| 
      
 1336 
     | 
    
         
            +
             
     | 
| 
      
 1337 
     | 
    
         
            +
              // The coefficients C1p[l] in the Fourier expansion of B1p
         
     | 
| 
      
 1338 
     | 
    
         
            +
              g.C1pf = function(eps, c) {
         
     | 
| 
      
 1339 
     | 
    
         
            +
                var eps2 = m.sq(eps),
         
     | 
| 
      
 1340 
     | 
    
         
            +
                    d = eps,
         
     | 
| 
      
 1341 
     | 
    
         
            +
                    o = 0,
         
     | 
| 
      
 1342 
     | 
    
         
            +
                    l, p;
         
     | 
| 
      
 1343 
     | 
    
         
            +
                for (l = 1; l <= g.nC1p_; ++l) {     // l is index of C1p[l]
         
     | 
| 
      
 1344 
     | 
    
         
            +
                  p = Math.floor((g.nC1p_ - l) / 2); // order of polynomial in eps^2
         
     | 
| 
      
 1345 
     | 
    
         
            +
                  c[l] = d * m.polyval(p, C1pf_coeff, o, eps2) / C1pf_coeff[o + p + 1];
         
     | 
| 
      
 1346 
     | 
    
         
            +
                  o += p + 2;
         
     | 
| 
      
 1347 
     | 
    
         
            +
                  d *= eps;
         
     | 
| 
      
 1348 
     | 
    
         
            +
                }
         
     | 
| 
      
 1349 
     | 
    
         
            +
              };
         
     | 
| 
      
 1350 
     | 
    
         
            +
             
     | 
| 
      
 1351 
     | 
    
         
            +
              A2m1f_coeff = [
         
     | 
| 
      
 1352 
     | 
    
         
            +
                // (eps+1)*A2-1, polynomial in eps2 of order 3
         
     | 
| 
      
 1353 
     | 
    
         
            +
                  -11, -28, -192, 0, 256
         
     | 
| 
      
 1354 
     | 
    
         
            +
              ];
         
     | 
| 
      
 1355 
     | 
    
         
            +
             
     | 
| 
      
 1356 
     | 
    
         
            +
              // The scale factor A2-1 = mean value of (d/dsigma)I2 - 1
         
     | 
| 
      
 1357 
     | 
    
         
            +
              g.A2m1f = function(eps) {
         
     | 
| 
      
 1358 
     | 
    
         
            +
                var p = Math.floor(nA2_/2),
         
     | 
| 
      
 1359 
     | 
    
         
            +
                    t = m.polyval(p, A2m1f_coeff, 0, m.sq(eps)) / A2m1f_coeff[p + 1];
         
     | 
| 
      
 1360 
     | 
    
         
            +
                return (t - eps) / (1 + eps);
         
     | 
| 
      
 1361 
     | 
    
         
            +
              };
         
     | 
| 
      
 1362 
     | 
    
         
            +
             
     | 
| 
      
 1363 
     | 
    
         
            +
              C2f_coeff = [
         
     | 
| 
      
 1364 
     | 
    
         
            +
                // C2[1]/eps^1, polynomial in eps2 of order 2
         
     | 
| 
      
 1365 
     | 
    
         
            +
                  +1, 2, 16, 32,
         
     | 
| 
      
 1366 
     | 
    
         
            +
                // C2[2]/eps^2, polynomial in eps2 of order 2
         
     | 
| 
      
 1367 
     | 
    
         
            +
                  +35, 64, 384, 2048,
         
     | 
| 
      
 1368 
     | 
    
         
            +
                // C2[3]/eps^3, polynomial in eps2 of order 1
         
     | 
| 
      
 1369 
     | 
    
         
            +
                  +15, 80, 768,
         
     | 
| 
      
 1370 
     | 
    
         
            +
                // C2[4]/eps^4, polynomial in eps2 of order 1
         
     | 
| 
      
 1371 
     | 
    
         
            +
                  +7, 35, 512,
         
     | 
| 
      
 1372 
     | 
    
         
            +
                // C2[5]/eps^5, polynomial in eps2 of order 0
         
     | 
| 
      
 1373 
     | 
    
         
            +
                  +63, 1280,
         
     | 
| 
      
 1374 
     | 
    
         
            +
                // C2[6]/eps^6, polynomial in eps2 of order 0
         
     | 
| 
      
 1375 
     | 
    
         
            +
                  +77, 2048
         
     | 
| 
      
 1376 
     | 
    
         
            +
              ];
         
     | 
| 
      
 1377 
     | 
    
         
            +
             
     | 
| 
      
 1378 
     | 
    
         
            +
              // The coefficients C2[l] in the Fourier expansion of B2
         
     | 
| 
      
 1379 
     | 
    
         
            +
              g.C2f = function(eps, c) {
         
     | 
| 
      
 1380 
     | 
    
         
            +
                var eps2 = m.sq(eps),
         
     | 
| 
      
 1381 
     | 
    
         
            +
                    d = eps,
         
     | 
| 
      
 1382 
     | 
    
         
            +
                    o = 0,
         
     | 
| 
      
 1383 
     | 
    
         
            +
                    l, p;
         
     | 
| 
      
 1384 
     | 
    
         
            +
                for (l = 1; l <= g.nC2_; ++l) {     // l is index of C2[l]
         
     | 
| 
      
 1385 
     | 
    
         
            +
                  p = Math.floor((g.nC2_ - l) / 2); // order of polynomial in eps^2
         
     | 
| 
      
 1386 
     | 
    
         
            +
                  c[l] = d * m.polyval(p, C2f_coeff, o, eps2) / C2f_coeff[o + p + 1];
         
     | 
| 
      
 1387 
     | 
    
         
            +
                  o += p + 2;
         
     | 
| 
      
 1388 
     | 
    
         
            +
                  d *= eps;
         
     | 
| 
      
 1389 
     | 
    
         
            +
                }
         
     | 
| 
      
 1390 
     | 
    
         
            +
              };
         
     | 
| 
      
 1391 
     | 
    
         
            +
             
     | 
| 
      
 1392 
     | 
    
         
            +
              /**
         
     | 
| 
      
 1393 
     | 
    
         
            +
               * @class
         
     | 
| 
      
 1394 
     | 
    
         
            +
               * @property {number} a the equatorial radius (meters).
         
     | 
| 
      
 1395 
     | 
    
         
            +
               * @property {number} f the flattening.
         
     | 
| 
      
 1396 
     | 
    
         
            +
               * @summary Initialize a Geodesic object for a specific ellipsoid.
         
     | 
| 
      
 1397 
     | 
    
         
            +
               * @classdesc Performs geodesic calculations on an ellipsoid of revolution.
         
     | 
| 
      
 1398 
     | 
    
         
            +
               *   The routines for solving the direct and inverse problems return an
         
     | 
| 
      
 1399 
     | 
    
         
            +
               *   object with some of the following fields set: lat1, lon1, azi1, lat2,
         
     | 
| 
      
 1400 
     | 
    
         
            +
               *   lon2, azi2, s12, a12, m12, M12, M21, S12.  See {@tutorial 2-interface},
         
     | 
| 
      
 1401 
     | 
    
         
            +
               *   "The results".
         
     | 
| 
      
 1402 
     | 
    
         
            +
               * @example
         
     | 
| 
      
 1403 
     | 
    
         
            +
               * var GeographicLib = require("geographiclib"),
         
     | 
| 
      
 1404 
     | 
    
         
            +
               *     geod = GeographicLib.Geodesic.WGS84;
         
     | 
| 
      
 1405 
     | 
    
         
            +
               * var inv = geod.Inverse(1,2,3,4);
         
     | 
| 
      
 1406 
     | 
    
         
            +
               * console.log("lat1 = " + inv.lat1 + ", lon1 = " + inv.lon1 +
         
     | 
| 
      
 1407 
     | 
    
         
            +
               *             ", lat2 = " + inv.lat2 + ", lon2 = " + inv.lon2 +
         
     | 
| 
      
 1408 
     | 
    
         
            +
               *             ",\nazi1 = " + inv.azi1 + ", azi2 = " + inv.azi2 +
         
     | 
| 
      
 1409 
     | 
    
         
            +
               *             ", s12 = " + inv.s12);
         
     | 
| 
      
 1410 
     | 
    
         
            +
               * @param {number} a the equatorial radius of the ellipsoid (meters).
         
     | 
| 
      
 1411 
     | 
    
         
            +
               * @param {number} f the flattening of the ellipsoid.  Setting f = 0 gives
         
     | 
| 
      
 1412 
     | 
    
         
            +
               *   a sphere (on which geodesics are great circles).  Negative f gives a
         
     | 
| 
      
 1413 
     | 
    
         
            +
               *   prolate ellipsoid.
         
     | 
| 
      
 1414 
     | 
    
         
            +
               * @throws an error if the parameters are illegal.
         
     | 
| 
      
 1415 
     | 
    
         
            +
               */
         
     | 
| 
      
 1416 
     | 
    
         
            +
              g.Geodesic = function(a, f) {
         
     | 
| 
      
 1417 
     | 
    
         
            +
                this.a = a;
         
     | 
| 
      
 1418 
     | 
    
         
            +
                this.f = f;
         
     | 
| 
      
 1419 
     | 
    
         
            +
                this._f1 = 1 - this.f;
         
     | 
| 
      
 1420 
     | 
    
         
            +
                this._e2 = this.f * (2 - this.f);
         
     | 
| 
      
 1421 
     | 
    
         
            +
                this._ep2 = this._e2 / m.sq(this._f1); // e2 / (1 - e2)
         
     | 
| 
      
 1422 
     | 
    
         
            +
                this._n = this.f / ( 2 - this.f);
         
     | 
| 
      
 1423 
     | 
    
         
            +
                this._b = this.a * this._f1;
         
     | 
| 
      
 1424 
     | 
    
         
            +
                // authalic radius squared
         
     | 
| 
      
 1425 
     | 
    
         
            +
                this._c2 = (m.sq(this.a) + m.sq(this._b) *
         
     | 
| 
      
 1426 
     | 
    
         
            +
                            (this._e2 === 0 ? 1 :
         
     | 
| 
      
 1427 
     | 
    
         
            +
                             (this._e2 > 0 ? m.atanh(Math.sqrt(this._e2)) :
         
     | 
| 
      
 1428 
     | 
    
         
            +
                              Math.atan(Math.sqrt(-this._e2))) /
         
     | 
| 
      
 1429 
     | 
    
         
            +
                             Math.sqrt(Math.abs(this._e2))))/2;
         
     | 
| 
      
 1430 
     | 
    
         
            +
                // The sig12 threshold for "really short".  Using the auxiliary sphere
         
     | 
| 
      
 1431 
     | 
    
         
            +
                // solution with dnm computed at (bet1 + bet2) / 2, the relative error in
         
     | 
| 
      
 1432 
     | 
    
         
            +
                // the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
         
     | 
| 
      
 1433 
     | 
    
         
            +
                // (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000.  For a given
         
     | 
| 
      
 1434 
     | 
    
         
            +
                // f and sig12, the max error occurs for lines near the pole.  If the old
         
     | 
| 
      
 1435 
     | 
    
         
            +
                // rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
         
     | 
| 
      
 1436 
     | 
    
         
            +
                // by a factor of 2.)  Setting this equal to epsilon gives sig12 = etol2.
         
     | 
| 
      
 1437 
     | 
    
         
            +
                // Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
         
     | 
| 
      
 1438 
     | 
    
         
            +
                // abs(f)) stops etol2 getting too large in the nearly spherical case.
         
     | 
| 
      
 1439 
     | 
    
         
            +
                this._etol2 = 0.1 * tol2_ /
         
     | 
| 
      
 1440 
     | 
    
         
            +
                  Math.sqrt( Math.max(0.001, Math.abs(this.f)) *
         
     | 
| 
      
 1441 
     | 
    
         
            +
                             Math.min(1.0, 1 - this.f/2) / 2 );
         
     | 
| 
      
 1442 
     | 
    
         
            +
                if (!(isFinite(this.a) && this.a > 0))
         
     | 
| 
      
 1443 
     | 
    
         
            +
                  throw new Error("Equatorial radius is not positive");
         
     | 
| 
      
 1444 
     | 
    
         
            +
                if (!(isFinite(this._b) && this._b > 0))
         
     | 
| 
      
 1445 
     | 
    
         
            +
                  throw new Error("Polar semi-axis is not positive");
         
     | 
| 
      
 1446 
     | 
    
         
            +
                this._A3x = new Array(nA3x_);
         
     | 
| 
      
 1447 
     | 
    
         
            +
                this._C3x = new Array(nC3x_);
         
     | 
| 
      
 1448 
     | 
    
         
            +
                this._C4x = new Array(nC4x_);
         
     | 
| 
      
 1449 
     | 
    
         
            +
                this.A3coeff();
         
     | 
| 
      
 1450 
     | 
    
         
            +
                this.C3coeff();
         
     | 
| 
      
 1451 
     | 
    
         
            +
                this.C4coeff();
         
     | 
| 
      
 1452 
     | 
    
         
            +
              };
         
     | 
| 
      
 1453 
     | 
    
         
            +
             
     | 
| 
      
 1454 
     | 
    
         
            +
              A3_coeff = [
         
     | 
| 
      
 1455 
     | 
    
         
            +
                // A3, coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1456 
     | 
    
         
            +
                  -3, 128,
         
     | 
| 
      
 1457 
     | 
    
         
            +
                // A3, coeff of eps^4, polynomial in n of order 1
         
     | 
| 
      
 1458 
     | 
    
         
            +
                  -2, -3, 64,
         
     | 
| 
      
 1459 
     | 
    
         
            +
                // A3, coeff of eps^3, polynomial in n of order 2
         
     | 
| 
      
 1460 
     | 
    
         
            +
                  -1, -3, -1, 16,
         
     | 
| 
      
 1461 
     | 
    
         
            +
                // A3, coeff of eps^2, polynomial in n of order 2
         
     | 
| 
      
 1462 
     | 
    
         
            +
                  +3, -1, -2, 8,
         
     | 
| 
      
 1463 
     | 
    
         
            +
                // A3, coeff of eps^1, polynomial in n of order 1
         
     | 
| 
      
 1464 
     | 
    
         
            +
                  +1, -1, 2,
         
     | 
| 
      
 1465 
     | 
    
         
            +
                // A3, coeff of eps^0, polynomial in n of order 0
         
     | 
| 
      
 1466 
     | 
    
         
            +
                  +1, 1
         
     | 
| 
      
 1467 
     | 
    
         
            +
              ];
         
     | 
| 
      
 1468 
     | 
    
         
            +
             
     | 
| 
      
 1469 
     | 
    
         
            +
              // The scale factor A3 = mean value of (d/dsigma)I3
         
     | 
| 
      
 1470 
     | 
    
         
            +
              g.Geodesic.prototype.A3coeff = function() {
         
     | 
| 
      
 1471 
     | 
    
         
            +
                var o = 0, k = 0,
         
     | 
| 
      
 1472 
     | 
    
         
            +
                    j, p;
         
     | 
| 
      
 1473 
     | 
    
         
            +
                for (j = nA3_ - 1; j >= 0; --j) { // coeff of eps^j
         
     | 
| 
      
 1474 
     | 
    
         
            +
                  p = Math.min(nA3_ - j - 1, j);  // order of polynomial in n
         
     | 
| 
      
 1475 
     | 
    
         
            +
                  this._A3x[k++] = m.polyval(p, A3_coeff, o, this._n) /
         
     | 
| 
      
 1476 
     | 
    
         
            +
                    A3_coeff[o + p + 1];
         
     | 
| 
      
 1477 
     | 
    
         
            +
                  o += p + 2;
         
     | 
| 
      
 1478 
     | 
    
         
            +
                }
         
     | 
| 
      
 1479 
     | 
    
         
            +
              };
         
     | 
| 
      
 1480 
     | 
    
         
            +
             
     | 
| 
      
 1481 
     | 
    
         
            +
              C3_coeff = [
         
     | 
| 
      
 1482 
     | 
    
         
            +
                // C3[1], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1483 
     | 
    
         
            +
                  +3, 128,
         
     | 
| 
      
 1484 
     | 
    
         
            +
                // C3[1], coeff of eps^4, polynomial in n of order 1
         
     | 
| 
      
 1485 
     | 
    
         
            +
                  +2, 5, 128,
         
     | 
| 
      
 1486 
     | 
    
         
            +
                // C3[1], coeff of eps^3, polynomial in n of order 2
         
     | 
| 
      
 1487 
     | 
    
         
            +
                  -1, 3, 3, 64,
         
     | 
| 
      
 1488 
     | 
    
         
            +
                // C3[1], coeff of eps^2, polynomial in n of order 2
         
     | 
| 
      
 1489 
     | 
    
         
            +
                  -1, 0, 1, 8,
         
     | 
| 
      
 1490 
     | 
    
         
            +
                // C3[1], coeff of eps^1, polynomial in n of order 1
         
     | 
| 
      
 1491 
     | 
    
         
            +
                  -1, 1, 4,
         
     | 
| 
      
 1492 
     | 
    
         
            +
                // C3[2], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1493 
     | 
    
         
            +
                  +5, 256,
         
     | 
| 
      
 1494 
     | 
    
         
            +
                // C3[2], coeff of eps^4, polynomial in n of order 1
         
     | 
| 
      
 1495 
     | 
    
         
            +
                  +1, 3, 128,
         
     | 
| 
      
 1496 
     | 
    
         
            +
                // C3[2], coeff of eps^3, polynomial in n of order 2
         
     | 
| 
      
 1497 
     | 
    
         
            +
                  -3, -2, 3, 64,
         
     | 
| 
      
 1498 
     | 
    
         
            +
                // C3[2], coeff of eps^2, polynomial in n of order 2
         
     | 
| 
      
 1499 
     | 
    
         
            +
                  +1, -3, 2, 32,
         
     | 
| 
      
 1500 
     | 
    
         
            +
                // C3[3], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1501 
     | 
    
         
            +
                  +7, 512,
         
     | 
| 
      
 1502 
     | 
    
         
            +
                // C3[3], coeff of eps^4, polynomial in n of order 1
         
     | 
| 
      
 1503 
     | 
    
         
            +
                  -10, 9, 384,
         
     | 
| 
      
 1504 
     | 
    
         
            +
                // C3[3], coeff of eps^3, polynomial in n of order 2
         
     | 
| 
      
 1505 
     | 
    
         
            +
                  +5, -9, 5, 192,
         
     | 
| 
      
 1506 
     | 
    
         
            +
                // C3[4], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1507 
     | 
    
         
            +
                  +7, 512,
         
     | 
| 
      
 1508 
     | 
    
         
            +
                // C3[4], coeff of eps^4, polynomial in n of order 1
         
     | 
| 
      
 1509 
     | 
    
         
            +
                  -14, 7, 512,
         
     | 
| 
      
 1510 
     | 
    
         
            +
                // C3[5], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1511 
     | 
    
         
            +
                  +21, 2560
         
     | 
| 
      
 1512 
     | 
    
         
            +
              ];
         
     | 
| 
      
 1513 
     | 
    
         
            +
             
     | 
| 
      
 1514 
     | 
    
         
            +
              // The coefficients C3[l] in the Fourier expansion of B3
         
     | 
| 
      
 1515 
     | 
    
         
            +
              g.Geodesic.prototype.C3coeff = function() {
         
     | 
| 
      
 1516 
     | 
    
         
            +
                var o = 0, k = 0,
         
     | 
| 
      
 1517 
     | 
    
         
            +
                    l, j, p;
         
     | 
| 
      
 1518 
     | 
    
         
            +
                for (l = 1; l < g.nC3_; ++l) {        // l is index of C3[l]
         
     | 
| 
      
 1519 
     | 
    
         
            +
                  for (j = g.nC3_ - 1; j >= l; --j) { // coeff of eps^j
         
     | 
| 
      
 1520 
     | 
    
         
            +
                    p = Math.min(g.nC3_ - j - 1, j);  // order of polynomial in n
         
     | 
| 
      
 1521 
     | 
    
         
            +
                    this._C3x[k++] = m.polyval(p, C3_coeff, o, this._n) /
         
     | 
| 
      
 1522 
     | 
    
         
            +
                      C3_coeff[o + p + 1];
         
     | 
| 
      
 1523 
     | 
    
         
            +
                    o += p + 2;
         
     | 
| 
      
 1524 
     | 
    
         
            +
                  }
         
     | 
| 
      
 1525 
     | 
    
         
            +
                }
         
     | 
| 
      
 1526 
     | 
    
         
            +
              };
         
     | 
| 
      
 1527 
     | 
    
         
            +
             
     | 
| 
      
 1528 
     | 
    
         
            +
              C4_coeff = [
         
     | 
| 
      
 1529 
     | 
    
         
            +
                // C4[0], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1530 
     | 
    
         
            +
                  +97, 15015,
         
     | 
| 
      
 1531 
     | 
    
         
            +
                // C4[0], coeff of eps^4, polynomial in n of order 1
         
     | 
| 
      
 1532 
     | 
    
         
            +
                  +1088, 156, 45045,
         
     | 
| 
      
 1533 
     | 
    
         
            +
                // C4[0], coeff of eps^3, polynomial in n of order 2
         
     | 
| 
      
 1534 
     | 
    
         
            +
                  -224, -4784, 1573, 45045,
         
     | 
| 
      
 1535 
     | 
    
         
            +
                // C4[0], coeff of eps^2, polynomial in n of order 3
         
     | 
| 
      
 1536 
     | 
    
         
            +
                  -10656, 14144, -4576, -858, 45045,
         
     | 
| 
      
 1537 
     | 
    
         
            +
                // C4[0], coeff of eps^1, polynomial in n of order 4
         
     | 
| 
      
 1538 
     | 
    
         
            +
                  +64, 624, -4576, 6864, -3003, 15015,
         
     | 
| 
      
 1539 
     | 
    
         
            +
                // C4[0], coeff of eps^0, polynomial in n of order 5
         
     | 
| 
      
 1540 
     | 
    
         
            +
                  +100, 208, 572, 3432, -12012, 30030, 45045,
         
     | 
| 
      
 1541 
     | 
    
         
            +
                // C4[1], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1542 
     | 
    
         
            +
                  +1, 9009,
         
     | 
| 
      
 1543 
     | 
    
         
            +
                // C4[1], coeff of eps^4, polynomial in n of order 1
         
     | 
| 
      
 1544 
     | 
    
         
            +
                  -2944, 468, 135135,
         
     | 
| 
      
 1545 
     | 
    
         
            +
                // C4[1], coeff of eps^3, polynomial in n of order 2
         
     | 
| 
      
 1546 
     | 
    
         
            +
                  +5792, 1040, -1287, 135135,
         
     | 
| 
      
 1547 
     | 
    
         
            +
                // C4[1], coeff of eps^2, polynomial in n of order 3
         
     | 
| 
      
 1548 
     | 
    
         
            +
                  +5952, -11648, 9152, -2574, 135135,
         
     | 
| 
      
 1549 
     | 
    
         
            +
                // C4[1], coeff of eps^1, polynomial in n of order 4
         
     | 
| 
      
 1550 
     | 
    
         
            +
                  -64, -624, 4576, -6864, 3003, 135135,
         
     | 
| 
      
 1551 
     | 
    
         
            +
                // C4[2], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1552 
     | 
    
         
            +
                  +8, 10725,
         
     | 
| 
      
 1553 
     | 
    
         
            +
                // C4[2], coeff of eps^4, polynomial in n of order 1
         
     | 
| 
      
 1554 
     | 
    
         
            +
                  +1856, -936, 225225,
         
     | 
| 
      
 1555 
     | 
    
         
            +
                // C4[2], coeff of eps^3, polynomial in n of order 2
         
     | 
| 
      
 1556 
     | 
    
         
            +
                  -8448, 4992, -1144, 225225,
         
     | 
| 
      
 1557 
     | 
    
         
            +
                // C4[2], coeff of eps^2, polynomial in n of order 3
         
     | 
| 
      
 1558 
     | 
    
         
            +
                  -1440, 4160, -4576, 1716, 225225,
         
     | 
| 
      
 1559 
     | 
    
         
            +
                // C4[3], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1560 
     | 
    
         
            +
                  -136, 63063,
         
     | 
| 
      
 1561 
     | 
    
         
            +
                // C4[3], coeff of eps^4, polynomial in n of order 1
         
     | 
| 
      
 1562 
     | 
    
         
            +
                  +1024, -208, 105105,
         
     | 
| 
      
 1563 
     | 
    
         
            +
                // C4[3], coeff of eps^3, polynomial in n of order 2
         
     | 
| 
      
 1564 
     | 
    
         
            +
                  +3584, -3328, 1144, 315315,
         
     | 
| 
      
 1565 
     | 
    
         
            +
                // C4[4], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1566 
     | 
    
         
            +
                  -128, 135135,
         
     | 
| 
      
 1567 
     | 
    
         
            +
                // C4[4], coeff of eps^4, polynomial in n of order 1
         
     | 
| 
      
 1568 
     | 
    
         
            +
                  -2560, 832, 405405,
         
     | 
| 
      
 1569 
     | 
    
         
            +
                // C4[5], coeff of eps^5, polynomial in n of order 0
         
     | 
| 
      
 1570 
     | 
    
         
            +
                  +128, 99099
         
     | 
| 
      
 1571 
     | 
    
         
            +
              ];
         
     | 
| 
      
 1572 
     | 
    
         
            +
             
     | 
| 
      
 1573 
     | 
    
         
            +
              g.Geodesic.prototype.C4coeff = function() {
         
     | 
| 
      
 1574 
     | 
    
         
            +
                var o = 0, k = 0,
         
     | 
| 
      
 1575 
     | 
    
         
            +
                    l, j, p;
         
     | 
| 
      
 1576 
     | 
    
         
            +
                for (l = 0; l < g.nC4_; ++l) {        // l is index of C4[l]
         
     | 
| 
      
 1577 
     | 
    
         
            +
                  for (j = g.nC4_ - 1; j >= l; --j) { // coeff of eps^j
         
     | 
| 
      
 1578 
     | 
    
         
            +
                    p = g.nC4_ - j - 1;               // order of polynomial in n
         
     | 
| 
      
 1579 
     | 
    
         
            +
                    this._C4x[k++] = m.polyval(p, C4_coeff, o, this._n) /
         
     | 
| 
      
 1580 
     | 
    
         
            +
                      C4_coeff[o + p + 1];
         
     | 
| 
      
 1581 
     | 
    
         
            +
                    o += p + 2;
         
     | 
| 
      
 1582 
     | 
    
         
            +
                  }
         
     | 
| 
      
 1583 
     | 
    
         
            +
                }
         
     | 
| 
      
 1584 
     | 
    
         
            +
              };
         
     | 
| 
      
 1585 
     | 
    
         
            +
             
     | 
| 
      
 1586 
     | 
    
         
            +
              g.Geodesic.prototype.A3f = function(eps) {
         
     | 
| 
      
 1587 
     | 
    
         
            +
                // Evaluate A3
         
     | 
| 
      
 1588 
     | 
    
         
            +
                return m.polyval(nA3x_ - 1, this._A3x, 0, eps);
         
     | 
| 
      
 1589 
     | 
    
         
            +
              };
         
     | 
| 
      
 1590 
     | 
    
         
            +
             
     | 
| 
      
 1591 
     | 
    
         
            +
              g.Geodesic.prototype.C3f = function(eps, c) {
         
     | 
| 
      
 1592 
     | 
    
         
            +
                // Evaluate C3 coeffs
         
     | 
| 
      
 1593 
     | 
    
         
            +
                // Elements c[1] thru c[nC3_ - 1] are set
         
     | 
| 
      
 1594 
     | 
    
         
            +
                var mult = 1,
         
     | 
| 
      
 1595 
     | 
    
         
            +
                    o = 0,
         
     | 
| 
      
 1596 
     | 
    
         
            +
                    l, p;
         
     | 
| 
      
 1597 
     | 
    
         
            +
                for (l = 1; l < g.nC3_; ++l) { // l is index of C3[l]
         
     | 
| 
      
 1598 
     | 
    
         
            +
                  p = g.nC3_ - l - 1;          // order of polynomial in eps
         
     | 
| 
      
 1599 
     | 
    
         
            +
                  mult *= eps;
         
     | 
| 
      
 1600 
     | 
    
         
            +
                  c[l] = mult * m.polyval(p, this._C3x, o, eps);
         
     | 
| 
      
 1601 
     | 
    
         
            +
                  o += p + 1;
         
     | 
| 
      
 1602 
     | 
    
         
            +
                }
         
     | 
| 
      
 1603 
     | 
    
         
            +
              };
         
     | 
| 
      
 1604 
     | 
    
         
            +
             
     | 
| 
      
 1605 
     | 
    
         
            +
              g.Geodesic.prototype.C4f = function(eps, c) {
         
     | 
| 
      
 1606 
     | 
    
         
            +
                // Evaluate C4 coeffs
         
     | 
| 
      
 1607 
     | 
    
         
            +
                // Elements c[0] thru c[g.nC4_ - 1] are set
         
     | 
| 
      
 1608 
     | 
    
         
            +
                var mult = 1,
         
     | 
| 
      
 1609 
     | 
    
         
            +
                    o = 0,
         
     | 
| 
      
 1610 
     | 
    
         
            +
                    l, p;
         
     | 
| 
      
 1611 
     | 
    
         
            +
                for (l = 0; l < g.nC4_; ++l) { // l is index of C4[l]
         
     | 
| 
      
 1612 
     | 
    
         
            +
                  p = g.nC4_ - l - 1;          // order of polynomial in eps
         
     | 
| 
      
 1613 
     | 
    
         
            +
                  c[l] = mult * m.polyval(p, this._C4x, o, eps);
         
     | 
| 
      
 1614 
     | 
    
         
            +
                  o += p + 1;
         
     | 
| 
      
 1615 
     | 
    
         
            +
                  mult *= eps;
         
     | 
| 
      
 1616 
     | 
    
         
            +
                }
         
     | 
| 
      
 1617 
     | 
    
         
            +
              };
         
     | 
| 
      
 1618 
     | 
    
         
            +
             
     | 
| 
      
 1619 
     | 
    
         
            +
              // return s12b, m12b, m0, M12, M21
         
     | 
| 
      
 1620 
     | 
    
         
            +
              g.Geodesic.prototype.Lengths = function(eps, sig12,
         
     | 
| 
      
 1621 
     | 
    
         
            +
                                                      ssig1, csig1, dn1, ssig2, csig2, dn2,
         
     | 
| 
      
 1622 
     | 
    
         
            +
                                                      cbet1, cbet2, outmask,
         
     | 
| 
      
 1623 
     | 
    
         
            +
                                                      C1a, C2a) {
         
     | 
| 
      
 1624 
     | 
    
         
            +
                // Return m12b = (reduced length)/_b; also calculate s12b =
         
     | 
| 
      
 1625 
     | 
    
         
            +
                // distance/_b, and m0 = coefficient of secular term in
         
     | 
| 
      
 1626 
     | 
    
         
            +
                // expression for reduced length.
         
     | 
| 
      
 1627 
     | 
    
         
            +
                outmask &= g.OUT_MASK;
         
     | 
| 
      
 1628 
     | 
    
         
            +
                var vals = {},
         
     | 
| 
      
 1629 
     | 
    
         
            +
                    m0x = 0, J12 = 0, A1 = 0, A2 = 0,
         
     | 
| 
      
 1630 
     | 
    
         
            +
                    B1, B2, l, csig12, t;
         
     | 
| 
      
 1631 
     | 
    
         
            +
                if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
         
     | 
| 
      
 1632 
     | 
    
         
            +
                  A1 = g.A1m1f(eps);
         
     | 
| 
      
 1633 
     | 
    
         
            +
                  g.C1f(eps, C1a);
         
     | 
| 
      
 1634 
     | 
    
         
            +
                  if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
         
     | 
| 
      
 1635 
     | 
    
         
            +
                    A2 = g.A2m1f(eps);
         
     | 
| 
      
 1636 
     | 
    
         
            +
                    g.C2f(eps, C2a);
         
     | 
| 
      
 1637 
     | 
    
         
            +
                    m0x = A1 - A2;
         
     | 
| 
      
 1638 
     | 
    
         
            +
                    A2 = 1 + A2;
         
     | 
| 
      
 1639 
     | 
    
         
            +
                  }
         
     | 
| 
      
 1640 
     | 
    
         
            +
                  A1 = 1 + A1;
         
     | 
| 
      
 1641 
     | 
    
         
            +
                }
         
     | 
| 
      
 1642 
     | 
    
         
            +
                if (outmask & g.DISTANCE) {
         
     | 
| 
      
 1643 
     | 
    
         
            +
                  B1 = g.SinCosSeries(true, ssig2, csig2, C1a) -
         
     | 
| 
      
 1644 
     | 
    
         
            +
                    g.SinCosSeries(true, ssig1, csig1, C1a);
         
     | 
| 
      
 1645 
     | 
    
         
            +
                  // Missing a factor of _b
         
     | 
| 
      
 1646 
     | 
    
         
            +
                  vals.s12b = A1 * (sig12 + B1);
         
     | 
| 
      
 1647 
     | 
    
         
            +
                  if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
         
     | 
| 
      
 1648 
     | 
    
         
            +
                    B2 = g.SinCosSeries(true, ssig2, csig2, C2a) -
         
     | 
| 
      
 1649 
     | 
    
         
            +
                      g.SinCosSeries(true, ssig1, csig1, C2a);
         
     | 
| 
      
 1650 
     | 
    
         
            +
                    J12 = m0x * sig12 + (A1 * B1 - A2 * B2);
         
     | 
| 
      
 1651 
     | 
    
         
            +
                  }
         
     | 
| 
      
 1652 
     | 
    
         
            +
                } else if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
         
     | 
| 
      
 1653 
     | 
    
         
            +
                  // Assume here that nC1_ >= nC2_
         
     | 
| 
      
 1654 
     | 
    
         
            +
                  for (l = 1; l <= g.nC2_; ++l)
         
     | 
| 
      
 1655 
     | 
    
         
            +
                    C2a[l] = A1 * C1a[l] - A2 * C2a[l];
         
     | 
| 
      
 1656 
     | 
    
         
            +
                  J12 = m0x * sig12 + (g.SinCosSeries(true, ssig2, csig2, C2a) -
         
     | 
| 
      
 1657 
     | 
    
         
            +
                                       g.SinCosSeries(true, ssig1, csig1, C2a));
         
     | 
| 
      
 1658 
     | 
    
         
            +
                }
         
     | 
| 
      
 1659 
     | 
    
         
            +
                if (outmask & g.REDUCEDLENGTH) {
         
     | 
| 
      
 1660 
     | 
    
         
            +
                  vals.m0 = m0x;
         
     | 
| 
      
 1661 
     | 
    
         
            +
                  // Missing a factor of _b.
         
     | 
| 
      
 1662 
     | 
    
         
            +
                  // Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
         
     | 
| 
      
 1663 
     | 
    
         
            +
                  // accurate cancellation in the case of coincident points.
         
     | 
| 
      
 1664 
     | 
    
         
            +
                  vals.m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
         
     | 
| 
      
 1665 
     | 
    
         
            +
                    csig1 * csig2 * J12;
         
     | 
| 
      
 1666 
     | 
    
         
            +
                }
         
     | 
| 
      
 1667 
     | 
    
         
            +
                if (outmask & g.GEODESICSCALE) {
         
     | 
| 
      
 1668 
     | 
    
         
            +
                  csig12 = csig1 * csig2 + ssig1 * ssig2;
         
     | 
| 
      
 1669 
     | 
    
         
            +
                  t = this._ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
         
     | 
| 
      
 1670 
     | 
    
         
            +
                  vals.M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
         
     | 
| 
      
 1671 
     | 
    
         
            +
                  vals.M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
         
     | 
| 
      
 1672 
     | 
    
         
            +
                }
         
     | 
| 
      
 1673 
     | 
    
         
            +
                return vals;
         
     | 
| 
      
 1674 
     | 
    
         
            +
              };
         
     | 
| 
      
 1675 
     | 
    
         
            +
             
     | 
| 
      
 1676 
     | 
    
         
            +
              // return sig12, salp1, calp1, salp2, calp2, dnm
         
     | 
| 
      
 1677 
     | 
    
         
            +
              g.Geodesic.prototype.InverseStart = function(sbet1, cbet1, dn1,
         
     | 
| 
      
 1678 
     | 
    
         
            +
                                                           sbet2, cbet2, dn2,
         
     | 
| 
      
 1679 
     | 
    
         
            +
                                                           lam12, slam12, clam12,
         
     | 
| 
      
 1680 
     | 
    
         
            +
                                                           C1a, C2a) {
         
     | 
| 
      
 1681 
     | 
    
         
            +
                // Return a starting point for Newton's method in salp1 and calp1
         
     | 
| 
      
 1682 
     | 
    
         
            +
                // (function value is -1).  If Newton's method doesn't need to be
         
     | 
| 
      
 1683 
     | 
    
         
            +
                // used, return also salp2 and calp2 and function value is sig12.
         
     | 
| 
      
 1684 
     | 
    
         
            +
                // salp2, calp2 only updated if return val >= 0.
         
     | 
| 
      
 1685 
     | 
    
         
            +
                var vals = {},
         
     | 
| 
      
 1686 
     | 
    
         
            +
                    // bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
         
     | 
| 
      
 1687 
     | 
    
         
            +
                    sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
         
     | 
| 
      
 1688 
     | 
    
         
            +
                    cbet12 = cbet2 * cbet1 + sbet2 * sbet1,
         
     | 
| 
      
 1689 
     | 
    
         
            +
                    sbet12a, shortline, omg12, sbetm2, somg12, comg12, t, ssig12, csig12,
         
     | 
| 
      
 1690 
     | 
    
         
            +
                    x, y, lamscale, betscale, k2, eps, cbet12a, bet12a, m12b, m0, nvals,
         
     | 
| 
      
 1691 
     | 
    
         
            +
                    k, omg12a, lam12x;
         
     | 
| 
      
 1692 
     | 
    
         
            +
                vals.sig12 = -1;        // Return value
         
     | 
| 
      
 1693 
     | 
    
         
            +
                // Volatile declaration needed to fix inverse cases
         
     | 
| 
      
 1694 
     | 
    
         
            +
                // 88.202499451857 0 -88.202499451857 179.981022032992859592
         
     | 
| 
      
 1695 
     | 
    
         
            +
                // 89.262080389218 0 -89.262080389218 179.992207982775375662
         
     | 
| 
      
 1696 
     | 
    
         
            +
                // 89.333123580033 0 -89.333123580032997687 179.99295812360148422
         
     | 
| 
      
 1697 
     | 
    
         
            +
                // which otherwise fail with g++ 4.4.4 x86 -O3
         
     | 
| 
      
 1698 
     | 
    
         
            +
                sbet12a = sbet2 * cbet1;
         
     | 
| 
      
 1699 
     | 
    
         
            +
                sbet12a += cbet2 * sbet1;
         
     | 
| 
      
 1700 
     | 
    
         
            +
             
     | 
| 
      
 1701 
     | 
    
         
            +
                shortline = cbet12 >= 0 && sbet12 < 0.5 && cbet2 * lam12 < 0.5;
         
     | 
| 
      
 1702 
     | 
    
         
            +
                if (shortline) {
         
     | 
| 
      
 1703 
     | 
    
         
            +
                  sbetm2 = m.sq(sbet1 + sbet2);
         
     | 
| 
      
 1704 
     | 
    
         
            +
                  // sin((bet1+bet2)/2)^2
         
     | 
| 
      
 1705 
     | 
    
         
            +
                  // =  (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
         
     | 
| 
      
 1706 
     | 
    
         
            +
                  sbetm2 /= sbetm2 + m.sq(cbet1 + cbet2);
         
     | 
| 
      
 1707 
     | 
    
         
            +
                  vals.dnm = Math.sqrt(1 + this._ep2 * sbetm2);
         
     | 
| 
      
 1708 
     | 
    
         
            +
                  omg12 = lam12 / (this._f1 * vals.dnm);
         
     | 
| 
      
 1709 
     | 
    
         
            +
                  somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
         
     | 
| 
      
 1710 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 1711 
     | 
    
         
            +
                  somg12 = slam12; comg12 = clam12;
         
     | 
| 
      
 1712 
     | 
    
         
            +
                }
         
     | 
| 
      
 1713 
     | 
    
         
            +
             
     | 
| 
      
 1714 
     | 
    
         
            +
                vals.salp1 = cbet2 * somg12;
         
     | 
| 
      
 1715 
     | 
    
         
            +
                vals.calp1 = comg12 >= 0 ?
         
     | 
| 
      
 1716 
     | 
    
         
            +
                  sbet12 + cbet2 * sbet1 * m.sq(somg12) / (1 + comg12) :
         
     | 
| 
      
 1717 
     | 
    
         
            +
                  sbet12a - cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
         
     | 
| 
      
 1718 
     | 
    
         
            +
             
     | 
| 
      
 1719 
     | 
    
         
            +
                ssig12 = m.hypot(vals.salp1, vals.calp1);
         
     | 
| 
      
 1720 
     | 
    
         
            +
                csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
         
     | 
| 
      
 1721 
     | 
    
         
            +
                if (shortline && ssig12 < this._etol2) {
         
     | 
| 
      
 1722 
     | 
    
         
            +
                  // really short lines
         
     | 
| 
      
 1723 
     | 
    
         
            +
                  vals.salp2 = cbet1 * somg12;
         
     | 
| 
      
 1724 
     | 
    
         
            +
                  vals.calp2 = sbet12 - cbet1 * sbet2 *
         
     | 
| 
      
 1725 
     | 
    
         
            +
                    (comg12 >= 0 ? m.sq(somg12) / (1 + comg12) : 1 - comg12);
         
     | 
| 
      
 1726 
     | 
    
         
            +
                  // norm(vals.salp2, vals.calp2);
         
     | 
| 
      
 1727 
     | 
    
         
            +
                  t = m.hypot(vals.salp2, vals.calp2); vals.salp2 /= t; vals.calp2 /= t;
         
     | 
| 
      
 1728 
     | 
    
         
            +
                  // Set return value
         
     | 
| 
      
 1729 
     | 
    
         
            +
                  vals.sig12 = Math.atan2(ssig12, csig12);
         
     | 
| 
      
 1730 
     | 
    
         
            +
                } else if (Math.abs(this._n) > 0.1 || // Skip astroid calc if too eccentric
         
     | 
| 
      
 1731 
     | 
    
         
            +
                           csig12 >= 0 ||
         
     | 
| 
      
 1732 
     | 
    
         
            +
                           ssig12 >= 6 * Math.abs(this._n) * Math.PI * m.sq(cbet1)) {
         
     | 
| 
      
 1733 
     | 
    
         
            +
                  // Nothing to do, zeroth order spherical approximation is OK
         
     | 
| 
      
 1734 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 1735 
     | 
    
         
            +
                  // Scale lam12 and bet2 to x, y coordinate system where antipodal
         
     | 
| 
      
 1736 
     | 
    
         
            +
                  // point is at origin and singular point is at y = 0, x = -1.
         
     | 
| 
      
 1737 
     | 
    
         
            +
                  lam12x = Math.atan2(-slam12, -clam12); // lam12 - pi
         
     | 
| 
      
 1738 
     | 
    
         
            +
                  if (this.f >= 0) {       // In fact f == 0 does not get here
         
     | 
| 
      
 1739 
     | 
    
         
            +
                    // x = dlong, y = dlat
         
     | 
| 
      
 1740 
     | 
    
         
            +
                    k2 = m.sq(sbet1) * this._ep2;
         
     | 
| 
      
 1741 
     | 
    
         
            +
                    eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
         
     | 
| 
      
 1742 
     | 
    
         
            +
                    lamscale = this.f * cbet1 * this.A3f(eps) * Math.PI;
         
     | 
| 
      
 1743 
     | 
    
         
            +
                    betscale = lamscale * cbet1;
         
     | 
| 
      
 1744 
     | 
    
         
            +
             
     | 
| 
      
 1745 
     | 
    
         
            +
                    x = lam12x / lamscale;
         
     | 
| 
      
 1746 
     | 
    
         
            +
                    y = sbet12a / betscale;
         
     | 
| 
      
 1747 
     | 
    
         
            +
                  } else {                  // f < 0
         
     | 
| 
      
 1748 
     | 
    
         
            +
                    // x = dlat, y = dlong
         
     | 
| 
      
 1749 
     | 
    
         
            +
                    cbet12a = cbet2 * cbet1 - sbet2 * sbet1;
         
     | 
| 
      
 1750 
     | 
    
         
            +
                    bet12a = Math.atan2(sbet12a, cbet12a);
         
     | 
| 
      
 1751 
     | 
    
         
            +
                    // In the case of lon12 = 180, this repeats a calculation made
         
     | 
| 
      
 1752 
     | 
    
         
            +
                    // in Inverse.
         
     | 
| 
      
 1753 
     | 
    
         
            +
                    nvals = this.Lengths(this._n, Math.PI + bet12a,
         
     | 
| 
      
 1754 
     | 
    
         
            +
                                         sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
         
     | 
| 
      
 1755 
     | 
    
         
            +
                                         cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
         
     | 
| 
      
 1756 
     | 
    
         
            +
                    m12b = nvals.m12b; m0 = nvals.m0;
         
     | 
| 
      
 1757 
     | 
    
         
            +
                    x = -1 + m12b / (cbet1 * cbet2 * m0 * Math.PI);
         
     | 
| 
      
 1758 
     | 
    
         
            +
                    betscale = x < -0.01 ? sbet12a / x :
         
     | 
| 
      
 1759 
     | 
    
         
            +
                      -this.f * m.sq(cbet1) * Math.PI;
         
     | 
| 
      
 1760 
     | 
    
         
            +
                    lamscale = betscale / cbet1;
         
     | 
| 
      
 1761 
     | 
    
         
            +
                    y = lam12 / lamscale;
         
     | 
| 
      
 1762 
     | 
    
         
            +
                  }
         
     | 
| 
      
 1763 
     | 
    
         
            +
             
     | 
| 
      
 1764 
     | 
    
         
            +
                  if (y > -tol1_ && x > -1 - xthresh_) {
         
     | 
| 
      
 1765 
     | 
    
         
            +
                    // strip near cut
         
     | 
| 
      
 1766 
     | 
    
         
            +
                    if (this.f >= 0) {
         
     | 
| 
      
 1767 
     | 
    
         
            +
                      vals.salp1 = Math.min(1, -x);
         
     | 
| 
      
 1768 
     | 
    
         
            +
                      vals.calp1 = -Math.sqrt(1 - m.sq(vals.salp1));
         
     | 
| 
      
 1769 
     | 
    
         
            +
                    } else {
         
     | 
| 
      
 1770 
     | 
    
         
            +
                      vals.calp1 = Math.max(x > -tol1_ ? 0 : -1, x);
         
     | 
| 
      
 1771 
     | 
    
         
            +
                      vals.salp1 = Math.sqrt(1 - m.sq(vals.calp1));
         
     | 
| 
      
 1772 
     | 
    
         
            +
                    }
         
     | 
| 
      
 1773 
     | 
    
         
            +
                  } else {
         
     | 
| 
      
 1774 
     | 
    
         
            +
                    // Estimate alp1, by solving the astroid problem.
         
     | 
| 
      
 1775 
     | 
    
         
            +
                    //
         
     | 
| 
      
 1776 
     | 
    
         
            +
                    // Could estimate alpha1 = theta + pi/2, directly, i.e.,
         
     | 
| 
      
 1777 
     | 
    
         
            +
                    //   calp1 = y/k; salp1 = -x/(1+k);  for f >= 0
         
     | 
| 
      
 1778 
     | 
    
         
            +
                    //   calp1 = x/(1+k); salp1 = -y/k;  for f < 0 (need to check)
         
     | 
| 
      
 1779 
     | 
    
         
            +
                    //
         
     | 
| 
      
 1780 
     | 
    
         
            +
                    // However, it's better to estimate omg12 from astroid and use
         
     | 
| 
      
 1781 
     | 
    
         
            +
                    // spherical formula to compute alp1.  This reduces the mean number of
         
     | 
| 
      
 1782 
     | 
    
         
            +
                    // Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
         
     | 
| 
      
 1783 
     | 
    
         
            +
                    // (min 0 max 5).  The changes in the number of iterations are as
         
     | 
| 
      
 1784 
     | 
    
         
            +
                    // follows:
         
     | 
| 
      
 1785 
     | 
    
         
            +
                    //
         
     | 
| 
      
 1786 
     | 
    
         
            +
                    // change percent
         
     | 
| 
      
 1787 
     | 
    
         
            +
                    //    1       5
         
     | 
| 
      
 1788 
     | 
    
         
            +
                    //    0      78
         
     | 
| 
      
 1789 
     | 
    
         
            +
                    //   -1      16
         
     | 
| 
      
 1790 
     | 
    
         
            +
                    //   -2       0.6
         
     | 
| 
      
 1791 
     | 
    
         
            +
                    //   -3       0.04
         
     | 
| 
      
 1792 
     | 
    
         
            +
                    //   -4       0.002
         
     | 
| 
      
 1793 
     | 
    
         
            +
                    //
         
     | 
| 
      
 1794 
     | 
    
         
            +
                    // The histogram of iterations is (m = number of iterations estimating
         
     | 
| 
      
 1795 
     | 
    
         
            +
                    // alp1 directly, n = number of iterations estimating via omg12, total
         
     | 
| 
      
 1796 
     | 
    
         
            +
                    // number of trials = 148605):
         
     | 
| 
      
 1797 
     | 
    
         
            +
                    //
         
     | 
| 
      
 1798 
     | 
    
         
            +
                    //  iter    m      n
         
     | 
| 
      
 1799 
     | 
    
         
            +
                    //    0   148    186
         
     | 
| 
      
 1800 
     | 
    
         
            +
                    //    1 13046  13845
         
     | 
| 
      
 1801 
     | 
    
         
            +
                    //    2 93315 102225
         
     | 
| 
      
 1802 
     | 
    
         
            +
                    //    3 36189  32341
         
     | 
| 
      
 1803 
     | 
    
         
            +
                    //    4  5396      7
         
     | 
| 
      
 1804 
     | 
    
         
            +
                    //    5   455      1
         
     | 
| 
      
 1805 
     | 
    
         
            +
                    //    6    56      0
         
     | 
| 
      
 1806 
     | 
    
         
            +
                    //
         
     | 
| 
      
 1807 
     | 
    
         
            +
                    // Because omg12 is near pi, estimate work with omg12a = pi - omg12
         
     | 
| 
      
 1808 
     | 
    
         
            +
                    k = astroid(x, y);
         
     | 
| 
      
 1809 
     | 
    
         
            +
                    omg12a = lamscale * ( this.f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
         
     | 
| 
      
 1810 
     | 
    
         
            +
                    somg12 = Math.sin(omg12a); comg12 = -Math.cos(omg12a);
         
     | 
| 
      
 1811 
     | 
    
         
            +
                    // Update spherical estimate of alp1 using omg12 instead of
         
     | 
| 
      
 1812 
     | 
    
         
            +
                    // lam12
         
     | 
| 
      
 1813 
     | 
    
         
            +
                    vals.salp1 = cbet2 * somg12;
         
     | 
| 
      
 1814 
     | 
    
         
            +
                    vals.calp1 = sbet12a -
         
     | 
| 
      
 1815 
     | 
    
         
            +
                      cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
         
     | 
| 
      
 1816 
     | 
    
         
            +
                  }
         
     | 
| 
      
 1817 
     | 
    
         
            +
                }
         
     | 
| 
      
 1818 
     | 
    
         
            +
                // Sanity check on starting guess.  Backwards check allows NaN through.
         
     | 
| 
      
 1819 
     | 
    
         
            +
                if (!(vals.salp1 <= 0.0)) {
         
     | 
| 
      
 1820 
     | 
    
         
            +
                  // norm(vals.salp1, vals.calp1);
         
     | 
| 
      
 1821 
     | 
    
         
            +
                  t = m.hypot(vals.salp1, vals.calp1); vals.salp1 /= t; vals.calp1 /= t;
         
     | 
| 
      
 1822 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 1823 
     | 
    
         
            +
                  vals.salp1 = 1; vals.calp1 = 0;
         
     | 
| 
      
 1824 
     | 
    
         
            +
                }
         
     | 
| 
      
 1825 
     | 
    
         
            +
                return vals;
         
     | 
| 
      
 1826 
     | 
    
         
            +
              };
         
     | 
| 
      
 1827 
     | 
    
         
            +
             
     | 
| 
      
 1828 
     | 
    
         
            +
              // return lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
         
     | 
| 
      
 1829 
     | 
    
         
            +
              // domg12, dlam12,
         
     | 
| 
      
 1830 
     | 
    
         
            +
              g.Geodesic.prototype.Lambda12 = function(sbet1, cbet1, dn1,
         
     | 
| 
      
 1831 
     | 
    
         
            +
                                                       sbet2, cbet2, dn2,
         
     | 
| 
      
 1832 
     | 
    
         
            +
                                                       salp1, calp1, slam120, clam120,
         
     | 
| 
      
 1833 
     | 
    
         
            +
                                                       diffp, C1a, C2a, C3a) {
         
     | 
| 
      
 1834 
     | 
    
         
            +
                var vals = {},
         
     | 
| 
      
 1835 
     | 
    
         
            +
                    t, salp0, calp0,
         
     | 
| 
      
 1836 
     | 
    
         
            +
                    somg1, comg1, somg2, comg2, somg12, comg12, B312, eta, k2, nvals;
         
     | 
| 
      
 1837 
     | 
    
         
            +
                if (sbet1 === 0 && calp1 === 0)
         
     | 
| 
      
 1838 
     | 
    
         
            +
                  // Break degeneracy of equatorial line.  This case has already been
         
     | 
| 
      
 1839 
     | 
    
         
            +
                  // handled.
         
     | 
| 
      
 1840 
     | 
    
         
            +
                  calp1 = -g.tiny_;
         
     | 
| 
      
 1841 
     | 
    
         
            +
             
     | 
| 
      
 1842 
     | 
    
         
            +
                // sin(alp1) * cos(bet1) = sin(alp0)
         
     | 
| 
      
 1843 
     | 
    
         
            +
                salp0 = salp1 * cbet1;
         
     | 
| 
      
 1844 
     | 
    
         
            +
                calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
         
     | 
| 
      
 1845 
     | 
    
         
            +
             
     | 
| 
      
 1846 
     | 
    
         
            +
                // tan(bet1) = tan(sig1) * cos(alp1)
         
     | 
| 
      
 1847 
     | 
    
         
            +
                // tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
         
     | 
| 
      
 1848 
     | 
    
         
            +
                vals.ssig1 = sbet1; somg1 = salp0 * sbet1;
         
     | 
| 
      
 1849 
     | 
    
         
            +
                vals.csig1 = comg1 = calp1 * cbet1;
         
     | 
| 
      
 1850 
     | 
    
         
            +
                // norm(vals.ssig1, vals.csig1);
         
     | 
| 
      
 1851 
     | 
    
         
            +
                t = m.hypot(vals.ssig1, vals.csig1); vals.ssig1 /= t; vals.csig1 /= t;
         
     | 
| 
      
 1852 
     | 
    
         
            +
                // norm(somg1, comg1); -- don't need to normalize!
         
     | 
| 
      
 1853 
     | 
    
         
            +
             
     | 
| 
      
 1854 
     | 
    
         
            +
                // Enforce symmetries in the case abs(bet2) = -bet1.  Need to be careful
         
     | 
| 
      
 1855 
     | 
    
         
            +
                // about this case, since this can yield singularities in the Newton
         
     | 
| 
      
 1856 
     | 
    
         
            +
                // iteration.
         
     | 
| 
      
 1857 
     | 
    
         
            +
                // sin(alp2) * cos(bet2) = sin(alp0)
         
     | 
| 
      
 1858 
     | 
    
         
            +
                vals.salp2 = cbet2 !== cbet1 ? salp0 / cbet2 : salp1;
         
     | 
| 
      
 1859 
     | 
    
         
            +
                // calp2 = sqrt(1 - sq(salp2))
         
     | 
| 
      
 1860 
     | 
    
         
            +
                //       = sqrt(sq(calp0) - sq(sbet2)) / cbet2
         
     | 
| 
      
 1861 
     | 
    
         
            +
                // and subst for calp0 and rearrange to give (choose positive sqrt
         
     | 
| 
      
 1862 
     | 
    
         
            +
                // to give alp2 in [0, pi/2]).
         
     | 
| 
      
 1863 
     | 
    
         
            +
                vals.calp2 = cbet2 !== cbet1 || Math.abs(sbet2) !== -sbet1 ?
         
     | 
| 
      
 1864 
     | 
    
         
            +
                  Math.sqrt(m.sq(calp1 * cbet1) + (cbet1 < -sbet1 ?
         
     | 
| 
      
 1865 
     | 
    
         
            +
                                                   (cbet2 - cbet1) * (cbet1 + cbet2) :
         
     | 
| 
      
 1866 
     | 
    
         
            +
                                                   (sbet1 - sbet2) * (sbet1 + sbet2))) /
         
     | 
| 
      
 1867 
     | 
    
         
            +
                  cbet2 : Math.abs(calp1);
         
     | 
| 
      
 1868 
     | 
    
         
            +
                // tan(bet2) = tan(sig2) * cos(alp2)
         
     | 
| 
      
 1869 
     | 
    
         
            +
                // tan(omg2) = sin(alp0) * tan(sig2).
         
     | 
| 
      
 1870 
     | 
    
         
            +
                vals.ssig2 = sbet2; somg2 = salp0 * sbet2;
         
     | 
| 
      
 1871 
     | 
    
         
            +
                vals.csig2 = comg2 = vals.calp2 * cbet2;
         
     | 
| 
      
 1872 
     | 
    
         
            +
                // norm(vals.ssig2, vals.csig2);
         
     | 
| 
      
 1873 
     | 
    
         
            +
                t = m.hypot(vals.ssig2, vals.csig2); vals.ssig2 /= t; vals.csig2 /= t;
         
     | 
| 
      
 1874 
     | 
    
         
            +
                // norm(somg2, comg2); -- don't need to normalize!
         
     | 
| 
      
 1875 
     | 
    
         
            +
             
     | 
| 
      
 1876 
     | 
    
         
            +
                // sig12 = sig2 - sig1, limit to [0, pi]
         
     | 
| 
      
 1877 
     | 
    
         
            +
                vals.sig12 = Math.atan2(Math.max(0, vals.csig1 * vals.ssig2 -
         
     | 
| 
      
 1878 
     | 
    
         
            +
                                                    vals.ssig1 * vals.csig2),
         
     | 
| 
      
 1879 
     | 
    
         
            +
                                                    vals.csig1 * vals.csig2 +
         
     | 
| 
      
 1880 
     | 
    
         
            +
                                                    vals.ssig1 * vals.ssig2);
         
     | 
| 
      
 1881 
     | 
    
         
            +
             
     | 
| 
      
 1882 
     | 
    
         
            +
                // omg12 = omg2 - omg1, limit to [0, pi]
         
     | 
| 
      
 1883 
     | 
    
         
            +
                somg12 = Math.max(0, comg1 * somg2 - somg1 * comg2);
         
     | 
| 
      
 1884 
     | 
    
         
            +
                comg12 =             comg1 * comg2 + somg1 * somg2;
         
     | 
| 
      
 1885 
     | 
    
         
            +
                // eta = omg12 - lam120
         
     | 
| 
      
 1886 
     | 
    
         
            +
                eta = Math.atan2(somg12 * clam120 - comg12 * slam120,
         
     | 
| 
      
 1887 
     | 
    
         
            +
                                 comg12 * clam120 + somg12 * slam120);
         
     | 
| 
      
 1888 
     | 
    
         
            +
                k2 = m.sq(calp0) * this._ep2;
         
     | 
| 
      
 1889 
     | 
    
         
            +
                vals.eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
         
     | 
| 
      
 1890 
     | 
    
         
            +
                this.C3f(vals.eps, C3a);
         
     | 
| 
      
 1891 
     | 
    
         
            +
                B312 = (g.SinCosSeries(true, vals.ssig2, vals.csig2, C3a) -
         
     | 
| 
      
 1892 
     | 
    
         
            +
                        g.SinCosSeries(true, vals.ssig1, vals.csig1, C3a));
         
     | 
| 
      
 1893 
     | 
    
         
            +
                vals.domg12 =  -this.f * this.A3f(vals.eps) * salp0 * (vals.sig12 + B312);
         
     | 
| 
      
 1894 
     | 
    
         
            +
                vals.lam12 = eta + vals.domg12;
         
     | 
| 
      
 1895 
     | 
    
         
            +
                if (diffp) {
         
     | 
| 
      
 1896 
     | 
    
         
            +
                  if (vals.calp2 === 0)
         
     | 
| 
      
 1897 
     | 
    
         
            +
                    vals.dlam12 = -2 * this._f1 * dn1 / sbet1;
         
     | 
| 
      
 1898 
     | 
    
         
            +
                  else {
         
     | 
| 
      
 1899 
     | 
    
         
            +
                    nvals = this.Lengths(vals.eps, vals.sig12,
         
     | 
| 
      
 1900 
     | 
    
         
            +
                                         vals.ssig1, vals.csig1, dn1,
         
     | 
| 
      
 1901 
     | 
    
         
            +
                                         vals.ssig2, vals.csig2, dn2,
         
     | 
| 
      
 1902 
     | 
    
         
            +
                                         cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
         
     | 
| 
      
 1903 
     | 
    
         
            +
                    vals.dlam12 = nvals.m12b;
         
     | 
| 
      
 1904 
     | 
    
         
            +
                    vals.dlam12 *= this._f1 / (vals.calp2 * cbet2);
         
     | 
| 
      
 1905 
     | 
    
         
            +
                  }
         
     | 
| 
      
 1906 
     | 
    
         
            +
                }
         
     | 
| 
      
 1907 
     | 
    
         
            +
                return vals;
         
     | 
| 
      
 1908 
     | 
    
         
            +
              };
         
     | 
| 
      
 1909 
     | 
    
         
            +
             
     | 
| 
      
 1910 
     | 
    
         
            +
              /**
         
     | 
| 
      
 1911 
     | 
    
         
            +
               * @summary Solve the inverse geodesic problem.
         
     | 
| 
      
 1912 
     | 
    
         
            +
               * @param {number} lat1 the latitude of the first point in degrees.
         
     | 
| 
      
 1913 
     | 
    
         
            +
               * @param {number} lon1 the longitude of the first point in degrees.
         
     | 
| 
      
 1914 
     | 
    
         
            +
               * @param {number} lat2 the latitude of the second point in degrees.
         
     | 
| 
      
 1915 
     | 
    
         
            +
               * @param {number} lon2 the longitude of the second point in degrees.
         
     | 
| 
      
 1916 
     | 
    
         
            +
               * @param {bitmask} [outmask = STANDARD] which results to include.
         
     | 
| 
      
 1917 
     | 
    
         
            +
               * @returns {object} the requested results
         
     | 
| 
      
 1918 
     | 
    
         
            +
               * @description The lat1, lon1, lat2, lon2, and a12 fields of the result are
         
     | 
| 
      
 1919 
     | 
    
         
            +
               *   always set.  For details on the outmask parameter, see {@tutorial
         
     | 
| 
      
 1920 
     | 
    
         
            +
               *   2-interface}, "The outmask and caps parameters".
         
     | 
| 
      
 1921 
     | 
    
         
            +
               */
         
     | 
| 
      
 1922 
     | 
    
         
            +
              g.Geodesic.prototype.Inverse = function(lat1, lon1, lat2, lon2, outmask) {
         
     | 
| 
      
 1923 
     | 
    
         
            +
                var r, vals;
         
     | 
| 
      
 1924 
     | 
    
         
            +
                if (!outmask) outmask = g.STANDARD;
         
     | 
| 
      
 1925 
     | 
    
         
            +
                if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
         
     | 
| 
      
 1926 
     | 
    
         
            +
                outmask &= g.OUT_MASK;
         
     | 
| 
      
 1927 
     | 
    
         
            +
                r = this.InverseInt(lat1, lon1, lat2, lon2, outmask);
         
     | 
| 
      
 1928 
     | 
    
         
            +
                vals = r.vals;
         
     | 
| 
      
 1929 
     | 
    
         
            +
                if (outmask & g.AZIMUTH) {
         
     | 
| 
      
 1930 
     | 
    
         
            +
                  vals.azi1 = m.atan2d(r.salp1, r.calp1);
         
     | 
| 
      
 1931 
     | 
    
         
            +
                  vals.azi2 = m.atan2d(r.salp2, r.calp2);
         
     | 
| 
      
 1932 
     | 
    
         
            +
                }
         
     | 
| 
      
 1933 
     | 
    
         
            +
                return vals;
         
     | 
| 
      
 1934 
     | 
    
         
            +
              };
         
     | 
| 
      
 1935 
     | 
    
         
            +
             
     | 
| 
      
 1936 
     | 
    
         
            +
              g.Geodesic.prototype.InverseInt = function(lat1, lon1, lat2, lon2, outmask) {
         
     | 
| 
      
 1937 
     | 
    
         
            +
                var vals = {},
         
     | 
| 
      
 1938 
     | 
    
         
            +
                    lon12, lon12s, lonsign, t, swapp, latsign,
         
     | 
| 
      
 1939 
     | 
    
         
            +
                    sbet1, cbet1, sbet2, cbet2, s12x, m12x,
         
     | 
| 
      
 1940 
     | 
    
         
            +
                    dn1, dn2, lam12, slam12, clam12,
         
     | 
| 
      
 1941 
     | 
    
         
            +
                    sig12, calp1, salp1, calp2, salp2, C1a, C2a, C3a, meridian, nvals,
         
     | 
| 
      
 1942 
     | 
    
         
            +
                    ssig1, csig1, ssig2, csig2, eps, omg12, dnm,
         
     | 
| 
      
 1943 
     | 
    
         
            +
                    numit, salp1a, calp1a, salp1b, calp1b,
         
     | 
| 
      
 1944 
     | 
    
         
            +
                    tripn, tripb, v, dv, dalp1, sdalp1, cdalp1, nsalp1,
         
     | 
| 
      
 1945 
     | 
    
         
            +
                    lengthmask, salp0, calp0, alp12, k2, A4, C4a, B41, B42,
         
     | 
| 
      
 1946 
     | 
    
         
            +
                    somg12, comg12, domg12, dbet1, dbet2, salp12, calp12, sdomg12, cdomg12;
         
     | 
| 
      
 1947 
     | 
    
         
            +
                // Compute longitude difference (AngDiff does this carefully).  Result is
         
     | 
| 
      
 1948 
     | 
    
         
            +
                // in [-180, 180] but -180 is only for west-going geodesics.  180 is for
         
     | 
| 
      
 1949 
     | 
    
         
            +
                // east-going and meridional geodesics.
         
     | 
| 
      
 1950 
     | 
    
         
            +
                vals.lat1 = lat1 = m.LatFix(lat1); vals.lat2 = lat2 = m.LatFix(lat2);
         
     | 
| 
      
 1951 
     | 
    
         
            +
                // If really close to the equator, treat as on equator.
         
     | 
| 
      
 1952 
     | 
    
         
            +
                lat1 = m.AngRound(lat1);
         
     | 
| 
      
 1953 
     | 
    
         
            +
                lat2 = m.AngRound(lat2);
         
     | 
| 
      
 1954 
     | 
    
         
            +
                lon12 = m.AngDiff(lon1, lon2); lon12s = lon12.t; lon12 = lon12.s;
         
     | 
| 
      
 1955 
     | 
    
         
            +
                if (outmask & g.LONG_UNROLL) {
         
     | 
| 
      
 1956 
     | 
    
         
            +
                  vals.lon1 = lon1; vals.lon2 = (lon1 + lon12) + lon12s;
         
     | 
| 
      
 1957 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 1958 
     | 
    
         
            +
                  vals.lon1 = m.AngNormalize(lon1); vals.lon2 = m.AngNormalize(lon2);
         
     | 
| 
      
 1959 
     | 
    
         
            +
                }
         
     | 
| 
      
 1960 
     | 
    
         
            +
                // Make longitude difference positive.
         
     | 
| 
      
 1961 
     | 
    
         
            +
                lonsign = lon12 >= 0 ? 1 : -1;
         
     | 
| 
      
 1962 
     | 
    
         
            +
                // If very close to being on the same half-meridian, then make it so.
         
     | 
| 
      
 1963 
     | 
    
         
            +
                lon12 = lonsign * m.AngRound(lon12);
         
     | 
| 
      
 1964 
     | 
    
         
            +
                lon12s = m.AngRound((180 - lon12) - lonsign * lon12s);
         
     | 
| 
      
 1965 
     | 
    
         
            +
                lam12 = lon12 * m.degree;
         
     | 
| 
      
 1966 
     | 
    
         
            +
                t = m.sincosd(lon12 > 90 ? lon12s : lon12);
         
     | 
| 
      
 1967 
     | 
    
         
            +
                slam12 = t.s; clam12 = (lon12 > 90 ? -1 : 1) * t.c;
         
     | 
| 
      
 1968 
     | 
    
         
            +
             
     | 
| 
      
 1969 
     | 
    
         
            +
                // Swap points so that point with higher (abs) latitude is point 1
         
     | 
| 
      
 1970 
     | 
    
         
            +
                // If one latitude is a nan, then it becomes lat1.
         
     | 
| 
      
 1971 
     | 
    
         
            +
                swapp = Math.abs(lat1) < Math.abs(lat2) ? -1 : 1;
         
     | 
| 
      
 1972 
     | 
    
         
            +
                if (swapp < 0) {
         
     | 
| 
      
 1973 
     | 
    
         
            +
                  lonsign *= -1;
         
     | 
| 
      
 1974 
     | 
    
         
            +
                  t = lat1;
         
     | 
| 
      
 1975 
     | 
    
         
            +
                  lat1 = lat2;
         
     | 
| 
      
 1976 
     | 
    
         
            +
                  lat2 = t;
         
     | 
| 
      
 1977 
     | 
    
         
            +
                  // swap(lat1, lat2);
         
     | 
| 
      
 1978 
     | 
    
         
            +
                }
         
     | 
| 
      
 1979 
     | 
    
         
            +
                // Make lat1 <= 0
         
     | 
| 
      
 1980 
     | 
    
         
            +
                latsign = lat1 < 0 ? 1 : -1;
         
     | 
| 
      
 1981 
     | 
    
         
            +
                lat1 *= latsign;
         
     | 
| 
      
 1982 
     | 
    
         
            +
                lat2 *= latsign;
         
     | 
| 
      
 1983 
     | 
    
         
            +
                // Now we have
         
     | 
| 
      
 1984 
     | 
    
         
            +
                //
         
     | 
| 
      
 1985 
     | 
    
         
            +
                //     0 <= lon12 <= 180
         
     | 
| 
      
 1986 
     | 
    
         
            +
                //     -90 <= lat1 <= 0
         
     | 
| 
      
 1987 
     | 
    
         
            +
                //     lat1 <= lat2 <= -lat1
         
     | 
| 
      
 1988 
     | 
    
         
            +
                //
         
     | 
| 
      
 1989 
     | 
    
         
            +
                // longsign, swapp, latsign register the transformation to bring the
         
     | 
| 
      
 1990 
     | 
    
         
            +
                // coordinates to this canonical form.  In all cases, 1 means no change was
         
     | 
| 
      
 1991 
     | 
    
         
            +
                // made.  We make these transformations so that there are few cases to
         
     | 
| 
      
 1992 
     | 
    
         
            +
                // check, e.g., on verifying quadrants in atan2.  In addition, this
         
     | 
| 
      
 1993 
     | 
    
         
            +
                // enforces some symmetries in the results returned.
         
     | 
| 
      
 1994 
     | 
    
         
            +
             
     | 
| 
      
 1995 
     | 
    
         
            +
                t = m.sincosd(lat1); sbet1 = this._f1 * t.s; cbet1 = t.c;
         
     | 
| 
      
 1996 
     | 
    
         
            +
                // norm(sbet1, cbet1);
         
     | 
| 
      
 1997 
     | 
    
         
            +
                t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
         
     | 
| 
      
 1998 
     | 
    
         
            +
                // Ensure cbet1 = +epsilon at poles
         
     | 
| 
      
 1999 
     | 
    
         
            +
                cbet1 = Math.max(g.tiny_, cbet1);
         
     | 
| 
      
 2000 
     | 
    
         
            +
             
     | 
| 
      
 2001 
     | 
    
         
            +
                t = m.sincosd(lat2); sbet2 = this._f1 * t.s; cbet2 = t.c;
         
     | 
| 
      
 2002 
     | 
    
         
            +
                // norm(sbet2, cbet2);
         
     | 
| 
      
 2003 
     | 
    
         
            +
                t = m.hypot(sbet2, cbet2); sbet2 /= t; cbet2 /= t;
         
     | 
| 
      
 2004 
     | 
    
         
            +
                // Ensure cbet2 = +epsilon at poles
         
     | 
| 
      
 2005 
     | 
    
         
            +
                cbet2 = Math.max(g.tiny_, cbet2);
         
     | 
| 
      
 2006 
     | 
    
         
            +
             
     | 
| 
      
 2007 
     | 
    
         
            +
                // If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
         
     | 
| 
      
 2008 
     | 
    
         
            +
                // |bet1| - |bet2|.  Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
         
     | 
| 
      
 2009 
     | 
    
         
            +
                // a better measure.  This logic is used in assigning calp2 in Lambda12.
         
     | 
| 
      
 2010 
     | 
    
         
            +
                // Sometimes these quantities vanish and in that case we force bet2 = +/-
         
     | 
| 
      
 2011 
     | 
    
         
            +
                // bet1 exactly.  An example where is is necessary is the inverse problem
         
     | 
| 
      
 2012 
     | 
    
         
            +
                // 48.522876735459 0 -48.52287673545898293 179.599720456223079643
         
     | 
| 
      
 2013 
     | 
    
         
            +
                // which failed with Visual Studio 10 (Release and Debug)
         
     | 
| 
      
 2014 
     | 
    
         
            +
             
     | 
| 
      
 2015 
     | 
    
         
            +
                if (cbet1 < -sbet1) {
         
     | 
| 
      
 2016 
     | 
    
         
            +
                  if (cbet2 === cbet1)
         
     | 
| 
      
 2017 
     | 
    
         
            +
                    sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
         
     | 
| 
      
 2018 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 2019 
     | 
    
         
            +
                  if (Math.abs(sbet2) === -sbet1)
         
     | 
| 
      
 2020 
     | 
    
         
            +
                    cbet2 = cbet1;
         
     | 
| 
      
 2021 
     | 
    
         
            +
                }
         
     | 
| 
      
 2022 
     | 
    
         
            +
             
     | 
| 
      
 2023 
     | 
    
         
            +
                dn1 = Math.sqrt(1 + this._ep2 * m.sq(sbet1));
         
     | 
| 
      
 2024 
     | 
    
         
            +
                dn2 = Math.sqrt(1 + this._ep2 * m.sq(sbet2));
         
     | 
| 
      
 2025 
     | 
    
         
            +
             
     | 
| 
      
 2026 
     | 
    
         
            +
                // index zero elements of these arrays are unused
         
     | 
| 
      
 2027 
     | 
    
         
            +
                C1a = new Array(g.nC1_ + 1);
         
     | 
| 
      
 2028 
     | 
    
         
            +
                C2a = new Array(g.nC2_ + 1);
         
     | 
| 
      
 2029 
     | 
    
         
            +
                C3a = new Array(g.nC3_);
         
     | 
| 
      
 2030 
     | 
    
         
            +
             
     | 
| 
      
 2031 
     | 
    
         
            +
                meridian = lat1 === -90 || slam12 === 0;
         
     | 
| 
      
 2032 
     | 
    
         
            +
                if (meridian) {
         
     | 
| 
      
 2033 
     | 
    
         
            +
             
     | 
| 
      
 2034 
     | 
    
         
            +
                  // Endpoints are on a single full meridian, so the geodesic might
         
     | 
| 
      
 2035 
     | 
    
         
            +
                  // lie on a meridian.
         
     | 
| 
      
 2036 
     | 
    
         
            +
             
     | 
| 
      
 2037 
     | 
    
         
            +
                  calp1 = clam12; salp1 = slam12; // Head to the target longitude
         
     | 
| 
      
 2038 
     | 
    
         
            +
                  calp2 = 1; salp2 = 0;           // At the target we're heading north
         
     | 
| 
      
 2039 
     | 
    
         
            +
             
     | 
| 
      
 2040 
     | 
    
         
            +
                  // tan(bet) = tan(sig) * cos(alp)
         
     | 
| 
      
 2041 
     | 
    
         
            +
                  ssig1 = sbet1; csig1 = calp1 * cbet1;
         
     | 
| 
      
 2042 
     | 
    
         
            +
                  ssig2 = sbet2; csig2 = calp2 * cbet2;
         
     | 
| 
      
 2043 
     | 
    
         
            +
             
     | 
| 
      
 2044 
     | 
    
         
            +
                  // sig12 = sig2 - sig1
         
     | 
| 
      
 2045 
     | 
    
         
            +
                  sig12 = Math.atan2(Math.max(0, csig1 * ssig2 - ssig1 * csig2),
         
     | 
| 
      
 2046 
     | 
    
         
            +
                                                 csig1 * csig2 + ssig1 * ssig2);
         
     | 
| 
      
 2047 
     | 
    
         
            +
                  nvals = this.Lengths(this._n, sig12,
         
     | 
| 
      
 2048 
     | 
    
         
            +
                                       ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
         
     | 
| 
      
 2049 
     | 
    
         
            +
                                       outmask | g.DISTANCE | g.REDUCEDLENGTH,
         
     | 
| 
      
 2050 
     | 
    
         
            +
                                       C1a, C2a);
         
     | 
| 
      
 2051 
     | 
    
         
            +
                  s12x = nvals.s12b;
         
     | 
| 
      
 2052 
     | 
    
         
            +
                  m12x = nvals.m12b;
         
     | 
| 
      
 2053 
     | 
    
         
            +
                  // Ignore m0
         
     | 
| 
      
 2054 
     | 
    
         
            +
                  if (outmask & g.GEODESICSCALE) {
         
     | 
| 
      
 2055 
     | 
    
         
            +
                    vals.M12 = nvals.M12;
         
     | 
| 
      
 2056 
     | 
    
         
            +
                    vals.M21 = nvals.M21;
         
     | 
| 
      
 2057 
     | 
    
         
            +
                  }
         
     | 
| 
      
 2058 
     | 
    
         
            +
                  // Add the check for sig12 since zero length geodesics might yield
         
     | 
| 
      
 2059 
     | 
    
         
            +
                  // m12 < 0.  Test case was
         
     | 
| 
      
 2060 
     | 
    
         
            +
                  //
         
     | 
| 
      
 2061 
     | 
    
         
            +
                  //    echo 20.001 0 20.001 0 | GeodSolve -i
         
     | 
| 
      
 2062 
     | 
    
         
            +
                  //
         
     | 
| 
      
 2063 
     | 
    
         
            +
                  // In fact, we will have sig12 > pi/2 for meridional geodesic
         
     | 
| 
      
 2064 
     | 
    
         
            +
                  // which is not a shortest path.
         
     | 
| 
      
 2065 
     | 
    
         
            +
                  if (sig12 < 1 || m12x >= 0) {
         
     | 
| 
      
 2066 
     | 
    
         
            +
                    // Need at least 2, to handle 90 0 90 180
         
     | 
| 
      
 2067 
     | 
    
         
            +
                    if (sig12 < 3 * g.tiny_)
         
     | 
| 
      
 2068 
     | 
    
         
            +
                      sig12 = m12x = s12x = 0;
         
     | 
| 
      
 2069 
     | 
    
         
            +
                    m12x *= this._b;
         
     | 
| 
      
 2070 
     | 
    
         
            +
                    s12x *= this._b;
         
     | 
| 
      
 2071 
     | 
    
         
            +
                    vals.a12 = sig12 / m.degree;
         
     | 
| 
      
 2072 
     | 
    
         
            +
                  } else
         
     | 
| 
      
 2073 
     | 
    
         
            +
                    // m12 < 0, i.e., prolate and too close to anti-podal
         
     | 
| 
      
 2074 
     | 
    
         
            +
                    meridian = false;
         
     | 
| 
      
 2075 
     | 
    
         
            +
                }
         
     | 
| 
      
 2076 
     | 
    
         
            +
             
     | 
| 
      
 2077 
     | 
    
         
            +
                somg12 = 2;
         
     | 
| 
      
 2078 
     | 
    
         
            +
                if (!meridian &&
         
     | 
| 
      
 2079 
     | 
    
         
            +
                    sbet1 === 0 &&           // and sbet2 == 0
         
     | 
| 
      
 2080 
     | 
    
         
            +
                    (this.f <= 0 || lon12s >= this.f * 180)) {
         
     | 
| 
      
 2081 
     | 
    
         
            +
             
     | 
| 
      
 2082 
     | 
    
         
            +
                  // Geodesic runs along equator
         
     | 
| 
      
 2083 
     | 
    
         
            +
                  calp1 = calp2 = 0; salp1 = salp2 = 1;
         
     | 
| 
      
 2084 
     | 
    
         
            +
                  s12x = this.a * lam12;
         
     | 
| 
      
 2085 
     | 
    
         
            +
                  sig12 = omg12 = lam12 / this._f1;
         
     | 
| 
      
 2086 
     | 
    
         
            +
                  m12x = this._b * Math.sin(sig12);
         
     | 
| 
      
 2087 
     | 
    
         
            +
                  if (outmask & g.GEODESICSCALE)
         
     | 
| 
      
 2088 
     | 
    
         
            +
                    vals.M12 = vals.M21 = Math.cos(sig12);
         
     | 
| 
      
 2089 
     | 
    
         
            +
                  vals.a12 = lon12 / this._f1;
         
     | 
| 
      
 2090 
     | 
    
         
            +
             
     | 
| 
      
 2091 
     | 
    
         
            +
                } else if (!meridian) {
         
     | 
| 
      
 2092 
     | 
    
         
            +
             
     | 
| 
      
 2093 
     | 
    
         
            +
                  // Now point1 and point2 belong within a hemisphere bounded by a
         
     | 
| 
      
 2094 
     | 
    
         
            +
                  // meridian and geodesic is neither meridional or equatorial.
         
     | 
| 
      
 2095 
     | 
    
         
            +
             
     | 
| 
      
 2096 
     | 
    
         
            +
                  // Figure a starting point for Newton's method
         
     | 
| 
      
 2097 
     | 
    
         
            +
                  nvals = this.InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
         
     | 
| 
      
 2098 
     | 
    
         
            +
                                            lam12, slam12, clam12, C1a, C2a);
         
     | 
| 
      
 2099 
     | 
    
         
            +
                  sig12 = nvals.sig12;
         
     | 
| 
      
 2100 
     | 
    
         
            +
                  salp1 = nvals.salp1;
         
     | 
| 
      
 2101 
     | 
    
         
            +
                  calp1 = nvals.calp1;
         
     | 
| 
      
 2102 
     | 
    
         
            +
             
     | 
| 
      
 2103 
     | 
    
         
            +
                  if (sig12 >= 0) {
         
     | 
| 
      
 2104 
     | 
    
         
            +
                    salp2 = nvals.salp2;
         
     | 
| 
      
 2105 
     | 
    
         
            +
                    calp2 = nvals.calp2;
         
     | 
| 
      
 2106 
     | 
    
         
            +
                    // Short lines (InverseStart sets salp2, calp2, dnm)
         
     | 
| 
      
 2107 
     | 
    
         
            +
             
     | 
| 
      
 2108 
     | 
    
         
            +
                    dnm = nvals.dnm;
         
     | 
| 
      
 2109 
     | 
    
         
            +
                    s12x = sig12 * this._b * dnm;
         
     | 
| 
      
 2110 
     | 
    
         
            +
                    m12x = m.sq(dnm) * this._b * Math.sin(sig12 / dnm);
         
     | 
| 
      
 2111 
     | 
    
         
            +
                    if (outmask & g.GEODESICSCALE)
         
     | 
| 
      
 2112 
     | 
    
         
            +
                      vals.M12 = vals.M21 = Math.cos(sig12 / dnm);
         
     | 
| 
      
 2113 
     | 
    
         
            +
                    vals.a12 = sig12 / m.degree;
         
     | 
| 
      
 2114 
     | 
    
         
            +
                    omg12 = lam12 / (this._f1 * dnm);
         
     | 
| 
      
 2115 
     | 
    
         
            +
                  } else {
         
     | 
| 
      
 2116 
     | 
    
         
            +
             
     | 
| 
      
 2117 
     | 
    
         
            +
                    // Newton's method.  This is a straightforward solution of f(alp1) =
         
     | 
| 
      
 2118 
     | 
    
         
            +
                    // lambda12(alp1) - lam12 = 0 with one wrinkle.  f(alp) has exactly one
         
     | 
| 
      
 2119 
     | 
    
         
            +
                    // root in the interval (0, pi) and its derivative is positive at the
         
     | 
| 
      
 2120 
     | 
    
         
            +
                    // root.  Thus f(alp) is positive for alp > alp1 and negative for alp <
         
     | 
| 
      
 2121 
     | 
    
         
            +
                    // alp1.  During the course of the iteration, a range (alp1a, alp1b) is
         
     | 
| 
      
 2122 
     | 
    
         
            +
                    // maintained which brackets the root and with each evaluation of
         
     | 
| 
      
 2123 
     | 
    
         
            +
                    // f(alp) the range is shrunk if possible.  Newton's method is
         
     | 
| 
      
 2124 
     | 
    
         
            +
                    // restarted whenever the derivative of f is negative (because the new
         
     | 
| 
      
 2125 
     | 
    
         
            +
                    // value of alp1 is then further from the solution) or if the new
         
     | 
| 
      
 2126 
     | 
    
         
            +
                    // estimate of alp1 lies outside (0,pi); in this case, the new starting
         
     | 
| 
      
 2127 
     | 
    
         
            +
                    // guess is taken to be (alp1a + alp1b) / 2.
         
     | 
| 
      
 2128 
     | 
    
         
            +
                    numit = 0;
         
     | 
| 
      
 2129 
     | 
    
         
            +
                    // Bracketing range
         
     | 
| 
      
 2130 
     | 
    
         
            +
                    salp1a = g.tiny_; calp1a = 1; salp1b = g.tiny_; calp1b = -1;
         
     | 
| 
      
 2131 
     | 
    
         
            +
                    for (tripn = false, tripb = false; numit < maxit2_; ++numit) {
         
     | 
| 
      
 2132 
     | 
    
         
            +
                      // the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
         
     | 
| 
      
 2133 
     | 
    
         
            +
                      // WGS84 and random input: mean = 2.85, sd = 0.60
         
     | 
| 
      
 2134 
     | 
    
         
            +
                      nvals = this.Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
         
     | 
| 
      
 2135 
     | 
    
         
            +
                                            salp1, calp1, slam12, clam12, numit < maxit1_,
         
     | 
| 
      
 2136 
     | 
    
         
            +
                                            C1a, C2a, C3a);
         
     | 
| 
      
 2137 
     | 
    
         
            +
                      v = nvals.lam12;
         
     | 
| 
      
 2138 
     | 
    
         
            +
                      salp2 = nvals.salp2;
         
     | 
| 
      
 2139 
     | 
    
         
            +
                      calp2 = nvals.calp2;
         
     | 
| 
      
 2140 
     | 
    
         
            +
                      sig12 = nvals.sig12;
         
     | 
| 
      
 2141 
     | 
    
         
            +
                      ssig1 = nvals.ssig1;
         
     | 
| 
      
 2142 
     | 
    
         
            +
                      csig1 = nvals.csig1;
         
     | 
| 
      
 2143 
     | 
    
         
            +
                      ssig2 = nvals.ssig2;
         
     | 
| 
      
 2144 
     | 
    
         
            +
                      csig2 = nvals.csig2;
         
     | 
| 
      
 2145 
     | 
    
         
            +
                      eps = nvals.eps;
         
     | 
| 
      
 2146 
     | 
    
         
            +
                      domg12 = nvals.domg12;
         
     | 
| 
      
 2147 
     | 
    
         
            +
                      dv = nvals.dlam12;
         
     | 
| 
      
 2148 
     | 
    
         
            +
             
     | 
| 
      
 2149 
     | 
    
         
            +
                      // 2 * tol0 is approximately 1 ulp for a number in [0, pi].
         
     | 
| 
      
 2150 
     | 
    
         
            +
                      // Reversed test to allow escape with NaNs
         
     | 
| 
      
 2151 
     | 
    
         
            +
                      if (tripb || !(Math.abs(v) >= (tripn ? 8 : 1) * tol0_))
         
     | 
| 
      
 2152 
     | 
    
         
            +
                        break;
         
     | 
| 
      
 2153 
     | 
    
         
            +
                      // Update bracketing values
         
     | 
| 
      
 2154 
     | 
    
         
            +
                      if (v > 0 && (numit < maxit1_ || calp1/salp1 > calp1b/salp1b)) {
         
     | 
| 
      
 2155 
     | 
    
         
            +
                        salp1b = salp1; calp1b = calp1;
         
     | 
| 
      
 2156 
     | 
    
         
            +
                      } else if (v < 0 &&
         
     | 
| 
      
 2157 
     | 
    
         
            +
                                 (numit < maxit1_ || calp1/salp1 < calp1a/salp1a)) {
         
     | 
| 
      
 2158 
     | 
    
         
            +
                        salp1a = salp1; calp1a = calp1;
         
     | 
| 
      
 2159 
     | 
    
         
            +
                      }
         
     | 
| 
      
 2160 
     | 
    
         
            +
                      if (numit < maxit1_ && dv > 0) {
         
     | 
| 
      
 2161 
     | 
    
         
            +
                        dalp1 = -v/dv;
         
     | 
| 
      
 2162 
     | 
    
         
            +
                        sdalp1 = Math.sin(dalp1); cdalp1 = Math.cos(dalp1);
         
     | 
| 
      
 2163 
     | 
    
         
            +
                        nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
         
     | 
| 
      
 2164 
     | 
    
         
            +
                        if (nsalp1 > 0 && Math.abs(dalp1) < Math.PI) {
         
     | 
| 
      
 2165 
     | 
    
         
            +
                          calp1 = calp1 * cdalp1 - salp1 * sdalp1;
         
     | 
| 
      
 2166 
     | 
    
         
            +
                          salp1 = nsalp1;
         
     | 
| 
      
 2167 
     | 
    
         
            +
                          // norm(salp1, calp1);
         
     | 
| 
      
 2168 
     | 
    
         
            +
                          t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
         
     | 
| 
      
 2169 
     | 
    
         
            +
                          // In some regimes we don't get quadratic convergence because
         
     | 
| 
      
 2170 
     | 
    
         
            +
                          // slope -> 0.  So use convergence conditions based on epsilon
         
     | 
| 
      
 2171 
     | 
    
         
            +
                          // instead of sqrt(epsilon).
         
     | 
| 
      
 2172 
     | 
    
         
            +
                          tripn = Math.abs(v) <= 16 * tol0_;
         
     | 
| 
      
 2173 
     | 
    
         
            +
                          continue;
         
     | 
| 
      
 2174 
     | 
    
         
            +
                        }
         
     | 
| 
      
 2175 
     | 
    
         
            +
                      }
         
     | 
| 
      
 2176 
     | 
    
         
            +
                      // Either dv was not positive or updated value was outside legal
         
     | 
| 
      
 2177 
     | 
    
         
            +
                      // range.  Use the midpoint of the bracket as the next estimate.
         
     | 
| 
      
 2178 
     | 
    
         
            +
                      // This mechanism is not needed for the WGS84 ellipsoid, but it does
         
     | 
| 
      
 2179 
     | 
    
         
            +
                      // catch problems with more eccentric ellipsoids.  Its efficacy is
         
     | 
| 
      
 2180 
     | 
    
         
            +
                      // such for the WGS84 test set with the starting guess set to alp1 =
         
     | 
| 
      
 2181 
     | 
    
         
            +
                      // 90deg:
         
     | 
| 
      
 2182 
     | 
    
         
            +
                      // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
         
     | 
| 
      
 2183 
     | 
    
         
            +
                      // WGS84 and random input: mean = 4.74, sd = 0.99
         
     | 
| 
      
 2184 
     | 
    
         
            +
                      salp1 = (salp1a + salp1b)/2;
         
     | 
| 
      
 2185 
     | 
    
         
            +
                      calp1 = (calp1a + calp1b)/2;
         
     | 
| 
      
 2186 
     | 
    
         
            +
                      // norm(salp1, calp1);
         
     | 
| 
      
 2187 
     | 
    
         
            +
                      t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
         
     | 
| 
      
 2188 
     | 
    
         
            +
                      tripn = false;
         
     | 
| 
      
 2189 
     | 
    
         
            +
                      tripb = (Math.abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
         
     | 
| 
      
 2190 
     | 
    
         
            +
                               Math.abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
         
     | 
| 
      
 2191 
     | 
    
         
            +
                    }
         
     | 
| 
      
 2192 
     | 
    
         
            +
                    lengthmask = outmask |
         
     | 
| 
      
 2193 
     | 
    
         
            +
                        (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE) ?
         
     | 
| 
      
 2194 
     | 
    
         
            +
                         g.DISTANCE : g.NONE);
         
     | 
| 
      
 2195 
     | 
    
         
            +
                    nvals = this.Lengths(eps, sig12,
         
     | 
| 
      
 2196 
     | 
    
         
            +
                                         ssig1, csig1, dn1, ssig2, csig2, dn2,
         
     | 
| 
      
 2197 
     | 
    
         
            +
                                         cbet1, cbet2,
         
     | 
| 
      
 2198 
     | 
    
         
            +
                                         lengthmask, C1a, C2a);
         
     | 
| 
      
 2199 
     | 
    
         
            +
                    s12x = nvals.s12b;
         
     | 
| 
      
 2200 
     | 
    
         
            +
                    m12x = nvals.m12b;
         
     | 
| 
      
 2201 
     | 
    
         
            +
                    // Ignore m0
         
     | 
| 
      
 2202 
     | 
    
         
            +
                    if (outmask & g.GEODESICSCALE) {
         
     | 
| 
      
 2203 
     | 
    
         
            +
                      vals.M12 = nvals.M12;
         
     | 
| 
      
 2204 
     | 
    
         
            +
                      vals.M21 = nvals.M21;
         
     | 
| 
      
 2205 
     | 
    
         
            +
                    }
         
     | 
| 
      
 2206 
     | 
    
         
            +
                    m12x *= this._b;
         
     | 
| 
      
 2207 
     | 
    
         
            +
                    s12x *= this._b;
         
     | 
| 
      
 2208 
     | 
    
         
            +
                    vals.a12 = sig12 / m.degree;
         
     | 
| 
      
 2209 
     | 
    
         
            +
                    if (outmask & g.AREA) {
         
     | 
| 
      
 2210 
     | 
    
         
            +
                      // omg12 = lam12 - domg12
         
     | 
| 
      
 2211 
     | 
    
         
            +
                      sdomg12 = Math.sin(domg12); cdomg12 = Math.cos(domg12);
         
     | 
| 
      
 2212 
     | 
    
         
            +
                      somg12 = slam12 * cdomg12 - clam12 * sdomg12;
         
     | 
| 
      
 2213 
     | 
    
         
            +
                      comg12 = clam12 * cdomg12 + slam12 * sdomg12;
         
     | 
| 
      
 2214 
     | 
    
         
            +
                    }
         
     | 
| 
      
 2215 
     | 
    
         
            +
                  }
         
     | 
| 
      
 2216 
     | 
    
         
            +
                }
         
     | 
| 
      
 2217 
     | 
    
         
            +
             
     | 
| 
      
 2218 
     | 
    
         
            +
                if (outmask & g.DISTANCE)
         
     | 
| 
      
 2219 
     | 
    
         
            +
                  vals.s12 = 0 + s12x;      // Convert -0 to 0
         
     | 
| 
      
 2220 
     | 
    
         
            +
             
     | 
| 
      
 2221 
     | 
    
         
            +
                if (outmask & g.REDUCEDLENGTH)
         
     | 
| 
      
 2222 
     | 
    
         
            +
                  vals.m12 = 0 + m12x;      // Convert -0 to 0
         
     | 
| 
      
 2223 
     | 
    
         
            +
             
     | 
| 
      
 2224 
     | 
    
         
            +
                if (outmask & g.AREA) {
         
     | 
| 
      
 2225 
     | 
    
         
            +
                  // From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
         
     | 
| 
      
 2226 
     | 
    
         
            +
                  salp0 = salp1 * cbet1;
         
     | 
| 
      
 2227 
     | 
    
         
            +
                  calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
         
     | 
| 
      
 2228 
     | 
    
         
            +
                  if (calp0 !== 0 && salp0 !== 0) {
         
     | 
| 
      
 2229 
     | 
    
         
            +
                    // From Lambda12: tan(bet) = tan(sig) * cos(alp)
         
     | 
| 
      
 2230 
     | 
    
         
            +
                    ssig1 = sbet1; csig1 = calp1 * cbet1;
         
     | 
| 
      
 2231 
     | 
    
         
            +
                    ssig2 = sbet2; csig2 = calp2 * cbet2;
         
     | 
| 
      
 2232 
     | 
    
         
            +
                    k2 = m.sq(calp0) * this._ep2;
         
     | 
| 
      
 2233 
     | 
    
         
            +
                    eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
         
     | 
| 
      
 2234 
     | 
    
         
            +
                    // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
         
     | 
| 
      
 2235 
     | 
    
         
            +
                    A4 = m.sq(this.a) * calp0 * salp0 * this._e2;
         
     | 
| 
      
 2236 
     | 
    
         
            +
                    // norm(ssig1, csig1);
         
     | 
| 
      
 2237 
     | 
    
         
            +
                    t = m.hypot(ssig1, csig1); ssig1 /= t; csig1 /= t;
         
     | 
| 
      
 2238 
     | 
    
         
            +
                    // norm(ssig2, csig2);
         
     | 
| 
      
 2239 
     | 
    
         
            +
                    t = m.hypot(ssig2, csig2); ssig2 /= t; csig2 /= t;
         
     | 
| 
      
 2240 
     | 
    
         
            +
                    C4a = new Array(g.nC4_);
         
     | 
| 
      
 2241 
     | 
    
         
            +
                    this.C4f(eps, C4a);
         
     | 
| 
      
 2242 
     | 
    
         
            +
                    B41 = g.SinCosSeries(false, ssig1, csig1, C4a);
         
     | 
| 
      
 2243 
     | 
    
         
            +
                    B42 = g.SinCosSeries(false, ssig2, csig2, C4a);
         
     | 
| 
      
 2244 
     | 
    
         
            +
                    vals.S12 = A4 * (B42 - B41);
         
     | 
| 
      
 2245 
     | 
    
         
            +
                  } else
         
     | 
| 
      
 2246 
     | 
    
         
            +
                    // Avoid problems with indeterminate sig1, sig2 on equator
         
     | 
| 
      
 2247 
     | 
    
         
            +
                    vals.S12 = 0;
         
     | 
| 
      
 2248 
     | 
    
         
            +
                  if (!meridian && somg12 > 1) {
         
     | 
| 
      
 2249 
     | 
    
         
            +
                    somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
         
     | 
| 
      
 2250 
     | 
    
         
            +
                  }
         
     | 
| 
      
 2251 
     | 
    
         
            +
                  if (!meridian &&
         
     | 
| 
      
 2252 
     | 
    
         
            +
                      comg12 > -0.7071 &&      // Long difference not too big
         
     | 
| 
      
 2253 
     | 
    
         
            +
                      sbet2 - sbet1 < 1.75) { // Lat difference not too big
         
     | 
| 
      
 2254 
     | 
    
         
            +
                    // Use tan(Gamma/2) = tan(omg12/2)
         
     | 
| 
      
 2255 
     | 
    
         
            +
                    // * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
         
     | 
| 
      
 2256 
     | 
    
         
            +
                    // with tan(x/2) = sin(x)/(1+cos(x))
         
     | 
| 
      
 2257 
     | 
    
         
            +
                    domg12 = 1 + comg12; dbet1 = 1 + cbet1; dbet2 = 1 + cbet2;
         
     | 
| 
      
 2258 
     | 
    
         
            +
                    alp12 = 2 * Math.atan2( somg12 * (sbet1*dbet2 + sbet2*dbet1),
         
     | 
| 
      
 2259 
     | 
    
         
            +
                                            domg12 * (sbet1*sbet2 + dbet1*dbet2) );
         
     | 
| 
      
 2260 
     | 
    
         
            +
                  } else {
         
     | 
| 
      
 2261 
     | 
    
         
            +
                    // alp12 = alp2 - alp1, used in atan2 so no need to normalize
         
     | 
| 
      
 2262 
     | 
    
         
            +
                    salp12 = salp2 * calp1 - calp2 * salp1;
         
     | 
| 
      
 2263 
     | 
    
         
            +
                    calp12 = calp2 * calp1 + salp2 * salp1;
         
     | 
| 
      
 2264 
     | 
    
         
            +
                    // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
         
     | 
| 
      
 2265 
     | 
    
         
            +
                    // salp12 = -0 and alp12 = -180.  However this depends on the sign
         
     | 
| 
      
 2266 
     | 
    
         
            +
                    // being attached to 0 correctly.  The following ensures the correct
         
     | 
| 
      
 2267 
     | 
    
         
            +
                    // behavior.
         
     | 
| 
      
 2268 
     | 
    
         
            +
                    if (salp12 === 0 && calp12 < 0) {
         
     | 
| 
      
 2269 
     | 
    
         
            +
                      salp12 = g.tiny_ * calp1;
         
     | 
| 
      
 2270 
     | 
    
         
            +
                      calp12 = -1;
         
     | 
| 
      
 2271 
     | 
    
         
            +
                    }
         
     | 
| 
      
 2272 
     | 
    
         
            +
                    alp12 = Math.atan2(salp12, calp12);
         
     | 
| 
      
 2273 
     | 
    
         
            +
                  }
         
     | 
| 
      
 2274 
     | 
    
         
            +
                  vals.S12 += this._c2 * alp12;
         
     | 
| 
      
 2275 
     | 
    
         
            +
                  vals.S12 *= swapp * lonsign * latsign;
         
     | 
| 
      
 2276 
     | 
    
         
            +
                  // Convert -0 to 0
         
     | 
| 
      
 2277 
     | 
    
         
            +
                  vals.S12 += 0;
         
     | 
| 
      
 2278 
     | 
    
         
            +
                }
         
     | 
| 
      
 2279 
     | 
    
         
            +
             
     | 
| 
      
 2280 
     | 
    
         
            +
                // Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
         
     | 
| 
      
 2281 
     | 
    
         
            +
                if (swapp < 0) {
         
     | 
| 
      
 2282 
     | 
    
         
            +
                  t = salp1;
         
     | 
| 
      
 2283 
     | 
    
         
            +
                  salp1 = salp2;
         
     | 
| 
      
 2284 
     | 
    
         
            +
                  salp2 = t;
         
     | 
| 
      
 2285 
     | 
    
         
            +
                  // swap(salp1, salp2);
         
     | 
| 
      
 2286 
     | 
    
         
            +
                  t = calp1;
         
     | 
| 
      
 2287 
     | 
    
         
            +
                  calp1 = calp2;
         
     | 
| 
      
 2288 
     | 
    
         
            +
                  calp2 = t;
         
     | 
| 
      
 2289 
     | 
    
         
            +
                  // swap(calp1, calp2);
         
     | 
| 
      
 2290 
     | 
    
         
            +
                  if (outmask & g.GEODESICSCALE) {
         
     | 
| 
      
 2291 
     | 
    
         
            +
                    t = vals.M12;
         
     | 
| 
      
 2292 
     | 
    
         
            +
                    vals.M12 = vals.M21;
         
     | 
| 
      
 2293 
     | 
    
         
            +
                    vals.M21 = t;
         
     | 
| 
      
 2294 
     | 
    
         
            +
                    // swap(vals.M12, vals.M21);
         
     | 
| 
      
 2295 
     | 
    
         
            +
                  }
         
     | 
| 
      
 2296 
     | 
    
         
            +
                }
         
     | 
| 
      
 2297 
     | 
    
         
            +
             
     | 
| 
      
 2298 
     | 
    
         
            +
                salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
         
     | 
| 
      
 2299 
     | 
    
         
            +
                salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
         
     | 
| 
      
 2300 
     | 
    
         
            +
             
     | 
| 
      
 2301 
     | 
    
         
            +
                return {vals: vals,
         
     | 
| 
      
 2302 
     | 
    
         
            +
                        salp1: salp1, calp1: calp1,
         
     | 
| 
      
 2303 
     | 
    
         
            +
                        salp2: salp2, calp2: calp2};
         
     | 
| 
      
 2304 
     | 
    
         
            +
              };
         
     | 
| 
      
 2305 
     | 
    
         
            +
             
     | 
| 
      
 2306 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2307 
     | 
    
         
            +
               * @summary Solve the general direct geodesic problem.
         
     | 
| 
      
 2308 
     | 
    
         
            +
               * @param {number} lat1 the latitude of the first point in degrees.
         
     | 
| 
      
 2309 
     | 
    
         
            +
               * @param {number} lon1 the longitude of the first point in degrees.
         
     | 
| 
      
 2310 
     | 
    
         
            +
               * @param {number} azi1 the azimuth at the first point in degrees.
         
     | 
| 
      
 2311 
     | 
    
         
            +
               * @param {bool} arcmode is the next parameter an arc length?
         
     | 
| 
      
 2312 
     | 
    
         
            +
               * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
         
     | 
| 
      
 2313 
     | 
    
         
            +
               *   first point to the second in (arcmode ? degrees : meters).
         
     | 
| 
      
 2314 
     | 
    
         
            +
               * @param {bitmask} [outmask = STANDARD] which results to include.
         
     | 
| 
      
 2315 
     | 
    
         
            +
               * @returns {object} the requested results.
         
     | 
| 
      
 2316 
     | 
    
         
            +
               * @description The lat1, lon1, azi1, and a12 fields of the result are always
         
     | 
| 
      
 2317 
     | 
    
         
            +
               *   set; s12 is included if arcmode is false.  For details on the outmask
         
     | 
| 
      
 2318 
     | 
    
         
            +
               *   parameter, see {@tutorial 2-interface}, "The outmask and caps
         
     | 
| 
      
 2319 
     | 
    
         
            +
               *   parameters".
         
     | 
| 
      
 2320 
     | 
    
         
            +
               */
         
     | 
| 
      
 2321 
     | 
    
         
            +
              g.Geodesic.prototype.GenDirect = function(lat1, lon1, azi1,
         
     | 
| 
      
 2322 
     | 
    
         
            +
                                                        arcmode, s12_a12, outmask) {
         
     | 
| 
      
 2323 
     | 
    
         
            +
                var line;
         
     | 
| 
      
 2324 
     | 
    
         
            +
                if (!outmask) outmask = g.STANDARD;
         
     | 
| 
      
 2325 
     | 
    
         
            +
                else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
         
     | 
| 
      
 2326 
     | 
    
         
            +
                // Automatically supply DISTANCE_IN if necessary
         
     | 
| 
      
 2327 
     | 
    
         
            +
                if (!arcmode) outmask |= g.DISTANCE_IN;
         
     | 
| 
      
 2328 
     | 
    
         
            +
                line = new l.GeodesicLine(this, lat1, lon1, azi1, outmask);
         
     | 
| 
      
 2329 
     | 
    
         
            +
                return line.GenPosition(arcmode, s12_a12, outmask);
         
     | 
| 
      
 2330 
     | 
    
         
            +
              };
         
     | 
| 
      
 2331 
     | 
    
         
            +
             
     | 
| 
      
 2332 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2333 
     | 
    
         
            +
               * @summary Solve the direct geodesic problem.
         
     | 
| 
      
 2334 
     | 
    
         
            +
               * @param {number} lat1 the latitude of the first point in degrees.
         
     | 
| 
      
 2335 
     | 
    
         
            +
               * @param {number} lon1 the longitude of the first point in degrees.
         
     | 
| 
      
 2336 
     | 
    
         
            +
               * @param {number} azi1 the azimuth at the first point in degrees.
         
     | 
| 
      
 2337 
     | 
    
         
            +
               * @param {number} s12 the distance from the first point to the second in
         
     | 
| 
      
 2338 
     | 
    
         
            +
               *   meters.
         
     | 
| 
      
 2339 
     | 
    
         
            +
               * @param {bitmask} [outmask = STANDARD] which results to include.
         
     | 
| 
      
 2340 
     | 
    
         
            +
               * @returns {object} the requested results.
         
     | 
| 
      
 2341 
     | 
    
         
            +
               * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
         
     | 
| 
      
 2342 
     | 
    
         
            +
               *   always set.  For details on the outmask parameter, see {@tutorial
         
     | 
| 
      
 2343 
     | 
    
         
            +
               *   2-interface}, "The outmask and caps parameters".
         
     | 
| 
      
 2344 
     | 
    
         
            +
               */
         
     | 
| 
      
 2345 
     | 
    
         
            +
              g.Geodesic.prototype.Direct = function(lat1, lon1, azi1, s12, outmask) {
         
     | 
| 
      
 2346 
     | 
    
         
            +
                return this.GenDirect(lat1, lon1, azi1, false, s12, outmask);
         
     | 
| 
      
 2347 
     | 
    
         
            +
              };
         
     | 
| 
      
 2348 
     | 
    
         
            +
             
     | 
| 
      
 2349 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2350 
     | 
    
         
            +
               * @summary Solve the direct geodesic problem with arc length.
         
     | 
| 
      
 2351 
     | 
    
         
            +
               * @param {number} lat1 the latitude of the first point in degrees.
         
     | 
| 
      
 2352 
     | 
    
         
            +
               * @param {number} lon1 the longitude of the first point in degrees.
         
     | 
| 
      
 2353 
     | 
    
         
            +
               * @param {number} azi1 the azimuth at the first point in degrees.
         
     | 
| 
      
 2354 
     | 
    
         
            +
               * @param {number} a12 the arc length from the first point to the second in
         
     | 
| 
      
 2355 
     | 
    
         
            +
               *   degrees.
         
     | 
| 
      
 2356 
     | 
    
         
            +
               * @param {bitmask} [outmask = STANDARD] which results to include.
         
     | 
| 
      
 2357 
     | 
    
         
            +
               * @returns {object} the requested results.
         
     | 
| 
      
 2358 
     | 
    
         
            +
               * @description The lat1, lon1, azi1, and a12 fields of the result are
         
     | 
| 
      
 2359 
     | 
    
         
            +
               *   always set.  For details on the outmask parameter, see {@tutorial
         
     | 
| 
      
 2360 
     | 
    
         
            +
               *   2-interface}, "The outmask and caps parameters".
         
     | 
| 
      
 2361 
     | 
    
         
            +
               */
         
     | 
| 
      
 2362 
     | 
    
         
            +
              g.Geodesic.prototype.ArcDirect = function(lat1, lon1, azi1, a12, outmask) {
         
     | 
| 
      
 2363 
     | 
    
         
            +
                return this.GenDirect(lat1, lon1, azi1, true, a12, outmask);
         
     | 
| 
      
 2364 
     | 
    
         
            +
              };
         
     | 
| 
      
 2365 
     | 
    
         
            +
             
     | 
| 
      
 2366 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2367 
     | 
    
         
            +
               * @summary Create a {@link module:GeographicLib/GeodesicLine.GeodesicLine
         
     | 
| 
      
 2368 
     | 
    
         
            +
               *   GeodesicLine} object.
         
     | 
| 
      
 2369 
     | 
    
         
            +
               * @param {number} lat1 the latitude of the first point in degrees.
         
     | 
| 
      
 2370 
     | 
    
         
            +
               * @param {number} lon1 the longitude of the first point in degrees.
         
     | 
| 
      
 2371 
     | 
    
         
            +
               * @param {number} azi1 the azimuth at the first point in degrees.
         
     | 
| 
      
 2372 
     | 
    
         
            +
               *   degrees.
         
     | 
| 
      
 2373 
     | 
    
         
            +
               * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
         
     | 
| 
      
 2374 
     | 
    
         
            +
               *   include.
         
     | 
| 
      
 2375 
     | 
    
         
            +
               * @returns {object} the
         
     | 
| 
      
 2376 
     | 
    
         
            +
               *   {@link module:GeographicLib/GeodesicLine.GeodesicLine
         
     | 
| 
      
 2377 
     | 
    
         
            +
               *   GeodesicLine} object
         
     | 
| 
      
 2378 
     | 
    
         
            +
               * @description For details on the caps parameter, see {@tutorial
         
     | 
| 
      
 2379 
     | 
    
         
            +
               *   2-interface}, "The outmask and caps parameters".
         
     | 
| 
      
 2380 
     | 
    
         
            +
               */
         
     | 
| 
      
 2381 
     | 
    
         
            +
              g.Geodesic.prototype.Line = function(lat1, lon1, azi1, caps) {
         
     | 
| 
      
 2382 
     | 
    
         
            +
                return new l.GeodesicLine(this, lat1, lon1, azi1, caps);
         
     | 
| 
      
 2383 
     | 
    
         
            +
              };
         
     | 
| 
      
 2384 
     | 
    
         
            +
             
     | 
| 
      
 2385 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2386 
     | 
    
         
            +
               * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
         
     | 
| 
      
 2387 
     | 
    
         
            +
               *   GeodesicLine} in terms of the direct geodesic problem specified in terms
         
     | 
| 
      
 2388 
     | 
    
         
            +
               *   of distance.
         
     | 
| 
      
 2389 
     | 
    
         
            +
               * @param {number} lat1 the latitude of the first point in degrees.
         
     | 
| 
      
 2390 
     | 
    
         
            +
               * @param {number} lon1 the longitude of the first point in degrees.
         
     | 
| 
      
 2391 
     | 
    
         
            +
               * @param {number} azi1 the azimuth at the first point in degrees.
         
     | 
| 
      
 2392 
     | 
    
         
            +
               *   degrees.
         
     | 
| 
      
 2393 
     | 
    
         
            +
               * @param {number} s12 the distance between point 1 and point 2 (meters); it
         
     | 
| 
      
 2394 
     | 
    
         
            +
               *   can be negative.
         
     | 
| 
      
 2395 
     | 
    
         
            +
               * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
         
     | 
| 
      
 2396 
     | 
    
         
            +
               *   include.
         
     | 
| 
      
 2397 
     | 
    
         
            +
               * @returns {object} the
         
     | 
| 
      
 2398 
     | 
    
         
            +
               *   {@link module:GeographicLib/GeodesicLine.GeodesicLine
         
     | 
| 
      
 2399 
     | 
    
         
            +
               *   GeodesicLine} object
         
     | 
| 
      
 2400 
     | 
    
         
            +
               * @description This function sets point 3 of the GeodesicLine to correspond
         
     | 
| 
      
 2401 
     | 
    
         
            +
               *   to point 2 of the direct geodesic problem.  For details on the caps
         
     | 
| 
      
 2402 
     | 
    
         
            +
               *   parameter, see {@tutorial 2-interface}, "The outmask and caps
         
     | 
| 
      
 2403 
     | 
    
         
            +
               *   parameters".
         
     | 
| 
      
 2404 
     | 
    
         
            +
               */
         
     | 
| 
      
 2405 
     | 
    
         
            +
              g.Geodesic.prototype.DirectLine = function(lat1, lon1, azi1, s12, caps) {
         
     | 
| 
      
 2406 
     | 
    
         
            +
                return this.GenDirectLine(lat1, lon1, azi1, false, s12, caps);
         
     | 
| 
      
 2407 
     | 
    
         
            +
              };
         
     | 
| 
      
 2408 
     | 
    
         
            +
             
     | 
| 
      
 2409 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2410 
     | 
    
         
            +
               * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
         
     | 
| 
      
 2411 
     | 
    
         
            +
               *   GeodesicLine} in terms of the direct geodesic problem specified in terms
         
     | 
| 
      
 2412 
     | 
    
         
            +
               *   of arc length.
         
     | 
| 
      
 2413 
     | 
    
         
            +
               * @param {number} lat1 the latitude of the first point in degrees.
         
     | 
| 
      
 2414 
     | 
    
         
            +
               * @param {number} lon1 the longitude of the first point in degrees.
         
     | 
| 
      
 2415 
     | 
    
         
            +
               * @param {number} azi1 the azimuth at the first point in degrees.
         
     | 
| 
      
 2416 
     | 
    
         
            +
               *   degrees.
         
     | 
| 
      
 2417 
     | 
    
         
            +
               * @param {number} a12 the arc length between point 1 and point 2 (degrees);
         
     | 
| 
      
 2418 
     | 
    
         
            +
               *   it can be negative.
         
     | 
| 
      
 2419 
     | 
    
         
            +
               * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
         
     | 
| 
      
 2420 
     | 
    
         
            +
               *   include.
         
     | 
| 
      
 2421 
     | 
    
         
            +
               * @returns {object} the
         
     | 
| 
      
 2422 
     | 
    
         
            +
               *   {@link module:GeographicLib/GeodesicLine.GeodesicLine
         
     | 
| 
      
 2423 
     | 
    
         
            +
               *   GeodesicLine} object
         
     | 
| 
      
 2424 
     | 
    
         
            +
               * @description This function sets point 3 of the GeodesicLine to correspond
         
     | 
| 
      
 2425 
     | 
    
         
            +
               *   to point 2 of the direct geodesic problem.  For details on the caps
         
     | 
| 
      
 2426 
     | 
    
         
            +
               *   parameter, see {@tutorial 2-interface}, "The outmask and caps
         
     | 
| 
      
 2427 
     | 
    
         
            +
               *   parameters".
         
     | 
| 
      
 2428 
     | 
    
         
            +
               */
         
     | 
| 
      
 2429 
     | 
    
         
            +
              g.Geodesic.prototype.ArcDirectLine = function(lat1, lon1, azi1, a12, caps) {
         
     | 
| 
      
 2430 
     | 
    
         
            +
                return this.GenDirectLine(lat1, lon1, azi1, true, a12, caps);
         
     | 
| 
      
 2431 
     | 
    
         
            +
              };
         
     | 
| 
      
 2432 
     | 
    
         
            +
             
     | 
| 
      
 2433 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2434 
     | 
    
         
            +
               * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
         
     | 
| 
      
 2435 
     | 
    
         
            +
               *   GeodesicLine} in terms of the direct geodesic problem specified in terms
         
     | 
| 
      
 2436 
     | 
    
         
            +
               *   of either distance or arc length.
         
     | 
| 
      
 2437 
     | 
    
         
            +
               * @param {number} lat1 the latitude of the first point in degrees.
         
     | 
| 
      
 2438 
     | 
    
         
            +
               * @param {number} lon1 the longitude of the first point in degrees.
         
     | 
| 
      
 2439 
     | 
    
         
            +
               * @param {number} azi1 the azimuth at the first point in degrees.
         
     | 
| 
      
 2440 
     | 
    
         
            +
               *   degrees.
         
     | 
| 
      
 2441 
     | 
    
         
            +
               * @param {bool} arcmode boolean flag determining the meaning of the
         
     | 
| 
      
 2442 
     | 
    
         
            +
               *   s12_a12.
         
     | 
| 
      
 2443 
     | 
    
         
            +
               * @param {number} s12_a12 if arcmode is false, this is the distance between
         
     | 
| 
      
 2444 
     | 
    
         
            +
               *   point 1 and point 2 (meters); otherwise it is the arc length between
         
     | 
| 
      
 2445 
     | 
    
         
            +
               *   point 1 and point 2 (degrees); it can be negative.
         
     | 
| 
      
 2446 
     | 
    
         
            +
               * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
         
     | 
| 
      
 2447 
     | 
    
         
            +
               *   include.
         
     | 
| 
      
 2448 
     | 
    
         
            +
               * @returns {object} the
         
     | 
| 
      
 2449 
     | 
    
         
            +
               *   {@link module:GeographicLib/GeodesicLine.GeodesicLine
         
     | 
| 
      
 2450 
     | 
    
         
            +
               *   GeodesicLine} object
         
     | 
| 
      
 2451 
     | 
    
         
            +
               * @description This function sets point 3 of the GeodesicLine to correspond
         
     | 
| 
      
 2452 
     | 
    
         
            +
               *   to point 2 of the direct geodesic problem.  For details on the caps
         
     | 
| 
      
 2453 
     | 
    
         
            +
               *   parameter, see {@tutorial 2-interface}, "The outmask and caps
         
     | 
| 
      
 2454 
     | 
    
         
            +
               *   parameters".
         
     | 
| 
      
 2455 
     | 
    
         
            +
               */
         
     | 
| 
      
 2456 
     | 
    
         
            +
              g.Geodesic.prototype.GenDirectLine = function(lat1, lon1, azi1,
         
     | 
| 
      
 2457 
     | 
    
         
            +
                                                            arcmode, s12_a12, caps) {
         
     | 
| 
      
 2458 
     | 
    
         
            +
                var t;
         
     | 
| 
      
 2459 
     | 
    
         
            +
                if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
         
     | 
| 
      
 2460 
     | 
    
         
            +
                // Automatically supply DISTANCE_IN if necessary
         
     | 
| 
      
 2461 
     | 
    
         
            +
                if (!arcmode) caps |= g.DISTANCE_IN;
         
     | 
| 
      
 2462 
     | 
    
         
            +
                t = new l.GeodesicLine(this, lat1, lon1, azi1, caps);
         
     | 
| 
      
 2463 
     | 
    
         
            +
                t.GenSetDistance(arcmode, s12_a12);
         
     | 
| 
      
 2464 
     | 
    
         
            +
                return t;
         
     | 
| 
      
 2465 
     | 
    
         
            +
              };
         
     | 
| 
      
 2466 
     | 
    
         
            +
             
     | 
| 
      
 2467 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2468 
     | 
    
         
            +
               * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
         
     | 
| 
      
 2469 
     | 
    
         
            +
               *   GeodesicLine} in terms of the inverse geodesic problem.
         
     | 
| 
      
 2470 
     | 
    
         
            +
               * @param {number} lat1 the latitude of the first point in degrees.
         
     | 
| 
      
 2471 
     | 
    
         
            +
               * @param {number} lon1 the longitude of the first point in degrees.
         
     | 
| 
      
 2472 
     | 
    
         
            +
               * @param {number} lat2 the latitude of the second point in degrees.
         
     | 
| 
      
 2473 
     | 
    
         
            +
               * @param {number} lon2 the longitude of the second point in degrees.
         
     | 
| 
      
 2474 
     | 
    
         
            +
               * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
         
     | 
| 
      
 2475 
     | 
    
         
            +
               *   include.
         
     | 
| 
      
 2476 
     | 
    
         
            +
               * @returns {object} the
         
     | 
| 
      
 2477 
     | 
    
         
            +
               *   {@link module:GeographicLib/GeodesicLine.GeodesicLine
         
     | 
| 
      
 2478 
     | 
    
         
            +
               *   GeodesicLine} object
         
     | 
| 
      
 2479 
     | 
    
         
            +
               * @description This function sets point 3 of the GeodesicLine to correspond
         
     | 
| 
      
 2480 
     | 
    
         
            +
               *   to point 2 of the inverse geodesic problem.  For details on the caps
         
     | 
| 
      
 2481 
     | 
    
         
            +
               *   parameter, see {@tutorial 2-interface}, "The outmask and caps
         
     | 
| 
      
 2482 
     | 
    
         
            +
               *   parameters".
         
     | 
| 
      
 2483 
     | 
    
         
            +
               */
         
     | 
| 
      
 2484 
     | 
    
         
            +
              g.Geodesic.prototype.InverseLine = function(lat1, lon1, lat2, lon2, caps) {
         
     | 
| 
      
 2485 
     | 
    
         
            +
                var r, t, azi1;
         
     | 
| 
      
 2486 
     | 
    
         
            +
                if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
         
     | 
| 
      
 2487 
     | 
    
         
            +
                r = this.InverseInt(lat1, lon1, lat2, lon2, g.ARC);
         
     | 
| 
      
 2488 
     | 
    
         
            +
                azi1 = m.atan2d(r.salp1, r.calp1);
         
     | 
| 
      
 2489 
     | 
    
         
            +
                // Ensure that a12 can be converted to a distance
         
     | 
| 
      
 2490 
     | 
    
         
            +
                if (caps & (g.OUT_MASK & g.DISTANCE_IN)) caps |= g.DISTANCE;
         
     | 
| 
      
 2491 
     | 
    
         
            +
                t = new l.GeodesicLine(this, lat1, lon1, azi1, caps, r.salp1, r.calp1);
         
     | 
| 
      
 2492 
     | 
    
         
            +
                t.SetArc(r.vals.a12);
         
     | 
| 
      
 2493 
     | 
    
         
            +
                return t;
         
     | 
| 
      
 2494 
     | 
    
         
            +
              };
         
     | 
| 
      
 2495 
     | 
    
         
            +
             
     | 
| 
      
 2496 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2497 
     | 
    
         
            +
               * @summary Create a {@link module:GeographicLib/PolygonArea.PolygonArea
         
     | 
| 
      
 2498 
     | 
    
         
            +
               *   PolygonArea} object.
         
     | 
| 
      
 2499 
     | 
    
         
            +
               * @param {bool} [polyline = false] if true the new PolygonArea object
         
     | 
| 
      
 2500 
     | 
    
         
            +
               *   describes a polyline instead of a polygon.
         
     | 
| 
      
 2501 
     | 
    
         
            +
               * @returns {object} the
         
     | 
| 
      
 2502 
     | 
    
         
            +
               *   {@link module:GeographicLib/PolygonArea.PolygonArea
         
     | 
| 
      
 2503 
     | 
    
         
            +
               *   PolygonArea} object
         
     | 
| 
      
 2504 
     | 
    
         
            +
               */
         
     | 
| 
      
 2505 
     | 
    
         
            +
              g.Geodesic.prototype.Polygon = function(polyline) {
         
     | 
| 
      
 2506 
     | 
    
         
            +
                return new p.PolygonArea(this, polyline);
         
     | 
| 
      
 2507 
     | 
    
         
            +
              };
         
     | 
| 
      
 2508 
     | 
    
         
            +
             
     | 
| 
      
 2509 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2510 
     | 
    
         
            +
               * @summary a {@link module:GeographicLib/Geodesic.Geodesic Geodesic} object
         
     | 
| 
      
 2511 
     | 
    
         
            +
               *   initialized for the WGS84 ellipsoid.
         
     | 
| 
      
 2512 
     | 
    
         
            +
               * @constant {object}
         
     | 
| 
      
 2513 
     | 
    
         
            +
               */
         
     | 
| 
      
 2514 
     | 
    
         
            +
              g.WGS84 = new g.Geodesic(c.WGS84.a, c.WGS84.f);
         
     | 
| 
      
 2515 
     | 
    
         
            +
            })(GeographicLib.Geodesic, GeographicLib.GeodesicLine,
         
     | 
| 
      
 2516 
     | 
    
         
            +
               GeographicLib.PolygonArea, GeographicLib.Math, GeographicLib.Constants);
         
     | 
| 
      
 2517 
     | 
    
         
            +
             
     | 
| 
      
 2518 
     | 
    
         
            +
            /**************** GeodesicLine.js ****************/
         
     | 
| 
      
 2519 
     | 
    
         
            +
            /*
         
     | 
| 
      
 2520 
     | 
    
         
            +
             * GeodesicLine.js
         
     | 
| 
      
 2521 
     | 
    
         
            +
             * Transcription of GeodesicLine.[ch]pp into JavaScript.
         
     | 
| 
      
 2522 
     | 
    
         
            +
             *
         
     | 
| 
      
 2523 
     | 
    
         
            +
             * See the documentation for the C++ class.  The conversion is a literal
         
     | 
| 
      
 2524 
     | 
    
         
            +
             * conversion from C++.
         
     | 
| 
      
 2525 
     | 
    
         
            +
             *
         
     | 
| 
      
 2526 
     | 
    
         
            +
             * The algorithms are derived in
         
     | 
| 
      
 2527 
     | 
    
         
            +
             *
         
     | 
| 
      
 2528 
     | 
    
         
            +
             *    Charles F. F. Karney,
         
     | 
| 
      
 2529 
     | 
    
         
            +
             *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
         
     | 
| 
      
 2530 
     | 
    
         
            +
             *    https://doi.org/10.1007/s00190-012-0578-z
         
     | 
| 
      
 2531 
     | 
    
         
            +
             *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
         
     | 
| 
      
 2532 
     | 
    
         
            +
             *
         
     | 
| 
      
 2533 
     | 
    
         
            +
             * Copyright (c) Charles Karney (2011-2016) <charles@karney.com> and licensed
         
     | 
| 
      
 2534 
     | 
    
         
            +
             * under the MIT/X11 License.  For more information, see
         
     | 
| 
      
 2535 
     | 
    
         
            +
             * https://geographiclib.sourceforge.io/
         
     | 
| 
      
 2536 
     | 
    
         
            +
             */
         
     | 
| 
      
 2537 
     | 
    
         
            +
             
     | 
| 
      
 2538 
     | 
    
         
            +
            // Load AFTER GeographicLib/Math.js, GeographicLib/Geodesic.js
         
     | 
| 
      
 2539 
     | 
    
         
            +
             
     | 
| 
      
 2540 
     | 
    
         
            +
            (function(
         
     | 
| 
      
 2541 
     | 
    
         
            +
              g,
         
     | 
| 
      
 2542 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2543 
     | 
    
         
            +
               * @exports GeographicLib/GeodesicLine
         
     | 
| 
      
 2544 
     | 
    
         
            +
               * @description Solve geodesic problems on a single geodesic line via the
         
     | 
| 
      
 2545 
     | 
    
         
            +
               *   {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
         
     | 
| 
      
 2546 
     | 
    
         
            +
               *   class.
         
     | 
| 
      
 2547 
     | 
    
         
            +
               */
         
     | 
| 
      
 2548 
     | 
    
         
            +
              l, m) {
         
     | 
| 
      
 2549 
     | 
    
         
            +
             
     | 
| 
      
 2550 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2551 
     | 
    
         
            +
               * @class
         
     | 
| 
      
 2552 
     | 
    
         
            +
               * @property {number} a the equatorial radius (meters).
         
     | 
| 
      
 2553 
     | 
    
         
            +
               * @property {number} f the flattening.
         
     | 
| 
      
 2554 
     | 
    
         
            +
               * @property {number} lat1 the initial latitude (degrees).
         
     | 
| 
      
 2555 
     | 
    
         
            +
               * @property {number} lon1 the initial longitude (degrees).
         
     | 
| 
      
 2556 
     | 
    
         
            +
               * @property {number} azi1 the initial azimuth (degrees).
         
     | 
| 
      
 2557 
     | 
    
         
            +
               * @property {number} salp1 the sine of the azimuth at the first point.
         
     | 
| 
      
 2558 
     | 
    
         
            +
               * @property {number} calp1 the cosine the azimuth at the first point.
         
     | 
| 
      
 2559 
     | 
    
         
            +
               * @property {number} s13 the distance to point 3 (meters).
         
     | 
| 
      
 2560 
     | 
    
         
            +
               * @property {number} a13 the arc length to point 3 (degrees).
         
     | 
| 
      
 2561 
     | 
    
         
            +
               * @property {bitmask} caps the capabilities of the object.
         
     | 
| 
      
 2562 
     | 
    
         
            +
               * @summary Initialize a GeodesicLine object.  For details on the caps
         
     | 
| 
      
 2563 
     | 
    
         
            +
               *   parameter, see {@tutorial 2-interface}, "The outmask and caps
         
     | 
| 
      
 2564 
     | 
    
         
            +
               *   parameters".
         
     | 
| 
      
 2565 
     | 
    
         
            +
               * @classdesc Performs geodesic calculations along a given geodesic line.
         
     | 
| 
      
 2566 
     | 
    
         
            +
               *   This object is usually instantiated by
         
     | 
| 
      
 2567 
     | 
    
         
            +
               *   {@link module:GeographicLib/Geodesic.Geodesic#Line Geodesic.Line}.
         
     | 
| 
      
 2568 
     | 
    
         
            +
               *   The methods
         
     | 
| 
      
 2569 
     | 
    
         
            +
               *   {@link module:GeographicLib/Geodesic.Geodesic#DirectLine
         
     | 
| 
      
 2570 
     | 
    
         
            +
               *   Geodesic.DirectLine} and
         
     | 
| 
      
 2571 
     | 
    
         
            +
               *   {@link module:GeographicLib/Geodesic.Geodesic#InverseLine
         
     | 
| 
      
 2572 
     | 
    
         
            +
               *   Geodesic.InverseLine} set in addition the position of a reference point
         
     | 
| 
      
 2573 
     | 
    
         
            +
               *   3.
         
     | 
| 
      
 2574 
     | 
    
         
            +
               * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
         
     | 
| 
      
 2575 
     | 
    
         
            +
               *   Geodesic} object.
         
     | 
| 
      
 2576 
     | 
    
         
            +
               * @param {number} lat1 the latitude of the first point in degrees.
         
     | 
| 
      
 2577 
     | 
    
         
            +
               * @param {number} lon1 the longitude of the first point in degrees.
         
     | 
| 
      
 2578 
     | 
    
         
            +
               * @param {number} azi1 the azimuth at the first point in degrees.
         
     | 
| 
      
 2579 
     | 
    
         
            +
               * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
         
     | 
| 
      
 2580 
     | 
    
         
            +
               *   include; LATITUDE | AZIMUTH are always included.
         
     | 
| 
      
 2581 
     | 
    
         
            +
               */
         
     | 
| 
      
 2582 
     | 
    
         
            +
              l.GeodesicLine = function(geod, lat1, lon1, azi1, caps, salp1, calp1) {
         
     | 
| 
      
 2583 
     | 
    
         
            +
                var t, cbet1, sbet1, eps, s, c;
         
     | 
| 
      
 2584 
     | 
    
         
            +
                if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
         
     | 
| 
      
 2585 
     | 
    
         
            +
             
     | 
| 
      
 2586 
     | 
    
         
            +
                this.a = geod.a;
         
     | 
| 
      
 2587 
     | 
    
         
            +
                this.f = geod.f;
         
     | 
| 
      
 2588 
     | 
    
         
            +
                this._b = geod._b;
         
     | 
| 
      
 2589 
     | 
    
         
            +
                this._c2 = geod._c2;
         
     | 
| 
      
 2590 
     | 
    
         
            +
                this._f1 = geod._f1;
         
     | 
| 
      
 2591 
     | 
    
         
            +
                this.caps = caps | g.LATITUDE | g.AZIMUTH | g.LONG_UNROLL;
         
     | 
| 
      
 2592 
     | 
    
         
            +
             
     | 
| 
      
 2593 
     | 
    
         
            +
                this.lat1 = m.LatFix(lat1);
         
     | 
| 
      
 2594 
     | 
    
         
            +
                this.lon1 = lon1;
         
     | 
| 
      
 2595 
     | 
    
         
            +
                if (typeof salp1 === 'undefined' || typeof calp1 === 'undefined') {
         
     | 
| 
      
 2596 
     | 
    
         
            +
                  this.azi1 = m.AngNormalize(azi1);
         
     | 
| 
      
 2597 
     | 
    
         
            +
                  t = m.sincosd(m.AngRound(this.azi1)); this.salp1 = t.s; this.calp1 = t.c;
         
     | 
| 
      
 2598 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 2599 
     | 
    
         
            +
                  this.azi1 = azi1; this.salp1 = salp1; this.calp1 = calp1;
         
     | 
| 
      
 2600 
     | 
    
         
            +
                }
         
     | 
| 
      
 2601 
     | 
    
         
            +
                t = m.sincosd(m.AngRound(this.lat1)); sbet1 = this._f1 * t.s; cbet1 = t.c;
         
     | 
| 
      
 2602 
     | 
    
         
            +
                // norm(sbet1, cbet1);
         
     | 
| 
      
 2603 
     | 
    
         
            +
                t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
         
     | 
| 
      
 2604 
     | 
    
         
            +
                // Ensure cbet1 = +epsilon at poles
         
     | 
| 
      
 2605 
     | 
    
         
            +
                cbet1 = Math.max(g.tiny_, cbet1);
         
     | 
| 
      
 2606 
     | 
    
         
            +
                this._dn1 = Math.sqrt(1 + geod._ep2 * m.sq(sbet1));
         
     | 
| 
      
 2607 
     | 
    
         
            +
             
     | 
| 
      
 2608 
     | 
    
         
            +
                // Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
         
     | 
| 
      
 2609 
     | 
    
         
            +
                this._salp0 = this.salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
         
     | 
| 
      
 2610 
     | 
    
         
            +
                // Alt: calp0 = hypot(sbet1, calp1 * cbet1).  The following
         
     | 
| 
      
 2611 
     | 
    
         
            +
                // is slightly better (consider the case salp1 = 0).
         
     | 
| 
      
 2612 
     | 
    
         
            +
                this._calp0 = m.hypot(this.calp1, this.salp1 * sbet1);
         
     | 
| 
      
 2613 
     | 
    
         
            +
                // Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
         
     | 
| 
      
 2614 
     | 
    
         
            +
                // sig = 0 is nearest northward crossing of equator.
         
     | 
| 
      
 2615 
     | 
    
         
            +
                // With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
         
     | 
| 
      
 2616 
     | 
    
         
            +
                // With bet1 =  pi/2, alp1 = -pi, sig1 =  pi/2
         
     | 
| 
      
 2617 
     | 
    
         
            +
                // With bet1 = -pi/2, alp1 =  0 , sig1 = -pi/2
         
     | 
| 
      
 2618 
     | 
    
         
            +
                // Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
         
     | 
| 
      
 2619 
     | 
    
         
            +
                // With alp0 in (0, pi/2], quadrants for sig and omg coincide.
         
     | 
| 
      
 2620 
     | 
    
         
            +
                // No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
         
     | 
| 
      
 2621 
     | 
    
         
            +
                // With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
         
     | 
| 
      
 2622 
     | 
    
         
            +
                this._ssig1 = sbet1; this._somg1 = this._salp0 * sbet1;
         
     | 
| 
      
 2623 
     | 
    
         
            +
                this._csig1 = this._comg1 =
         
     | 
| 
      
 2624 
     | 
    
         
            +
                  sbet1 !== 0 || this.calp1 !== 0 ? cbet1 * this.calp1 : 1;
         
     | 
| 
      
 2625 
     | 
    
         
            +
                // norm(this._ssig1, this._csig1); // sig1 in (-pi, pi]
         
     | 
| 
      
 2626 
     | 
    
         
            +
                t = m.hypot(this._ssig1, this._csig1);
         
     | 
| 
      
 2627 
     | 
    
         
            +
                this._ssig1 /= t; this._csig1 /= t;
         
     | 
| 
      
 2628 
     | 
    
         
            +
                // norm(this._somg1, this._comg1); -- don't need to normalize!
         
     | 
| 
      
 2629 
     | 
    
         
            +
             
     | 
| 
      
 2630 
     | 
    
         
            +
                this._k2 = m.sq(this._calp0) * geod._ep2;
         
     | 
| 
      
 2631 
     | 
    
         
            +
                eps = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2);
         
     | 
| 
      
 2632 
     | 
    
         
            +
             
     | 
| 
      
 2633 
     | 
    
         
            +
                if (this.caps & g.CAP_C1) {
         
     | 
| 
      
 2634 
     | 
    
         
            +
                  this._A1m1 = g.A1m1f(eps);
         
     | 
| 
      
 2635 
     | 
    
         
            +
                  this._C1a = new Array(g.nC1_ + 1);
         
     | 
| 
      
 2636 
     | 
    
         
            +
                  g.C1f(eps, this._C1a);
         
     | 
| 
      
 2637 
     | 
    
         
            +
                  this._B11 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C1a);
         
     | 
| 
      
 2638 
     | 
    
         
            +
                  s = Math.sin(this._B11); c = Math.cos(this._B11);
         
     | 
| 
      
 2639 
     | 
    
         
            +
                  // tau1 = sig1 + B11
         
     | 
| 
      
 2640 
     | 
    
         
            +
                  this._stau1 = this._ssig1 * c + this._csig1 * s;
         
     | 
| 
      
 2641 
     | 
    
         
            +
                  this._ctau1 = this._csig1 * c - this._ssig1 * s;
         
     | 
| 
      
 2642 
     | 
    
         
            +
                  // Not necessary because C1pa reverts C1a
         
     | 
| 
      
 2643 
     | 
    
         
            +
                  //    _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa);
         
     | 
| 
      
 2644 
     | 
    
         
            +
                }
         
     | 
| 
      
 2645 
     | 
    
         
            +
             
     | 
| 
      
 2646 
     | 
    
         
            +
                if (this.caps & g.CAP_C1p) {
         
     | 
| 
      
 2647 
     | 
    
         
            +
                  this._C1pa = new Array(g.nC1p_ + 1);
         
     | 
| 
      
 2648 
     | 
    
         
            +
                  g.C1pf(eps, this._C1pa);
         
     | 
| 
      
 2649 
     | 
    
         
            +
                }
         
     | 
| 
      
 2650 
     | 
    
         
            +
             
     | 
| 
      
 2651 
     | 
    
         
            +
                if (this.caps & g.CAP_C2) {
         
     | 
| 
      
 2652 
     | 
    
         
            +
                  this._A2m1 = g.A2m1f(eps);
         
     | 
| 
      
 2653 
     | 
    
         
            +
                  this._C2a = new Array(g.nC2_ + 1);
         
     | 
| 
      
 2654 
     | 
    
         
            +
                  g.C2f(eps, this._C2a);
         
     | 
| 
      
 2655 
     | 
    
         
            +
                  this._B21 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C2a);
         
     | 
| 
      
 2656 
     | 
    
         
            +
                }
         
     | 
| 
      
 2657 
     | 
    
         
            +
             
     | 
| 
      
 2658 
     | 
    
         
            +
                if (this.caps & g.CAP_C3) {
         
     | 
| 
      
 2659 
     | 
    
         
            +
                  this._C3a = new Array(g.nC3_);
         
     | 
| 
      
 2660 
     | 
    
         
            +
                  geod.C3f(eps, this._C3a);
         
     | 
| 
      
 2661 
     | 
    
         
            +
                  this._A3c = -this.f * this._salp0 * geod.A3f(eps);
         
     | 
| 
      
 2662 
     | 
    
         
            +
                  this._B31 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C3a);
         
     | 
| 
      
 2663 
     | 
    
         
            +
                }
         
     | 
| 
      
 2664 
     | 
    
         
            +
             
     | 
| 
      
 2665 
     | 
    
         
            +
                if (this.caps & g.CAP_C4) {
         
     | 
| 
      
 2666 
     | 
    
         
            +
                  this._C4a = new Array(g.nC4_); // all the elements of _C4a are used
         
     | 
| 
      
 2667 
     | 
    
         
            +
                  geod.C4f(eps, this._C4a);
         
     | 
| 
      
 2668 
     | 
    
         
            +
                  // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
         
     | 
| 
      
 2669 
     | 
    
         
            +
                  this._A4 = m.sq(this.a) * this._calp0 * this._salp0 * geod._e2;
         
     | 
| 
      
 2670 
     | 
    
         
            +
                  this._B41 = g.SinCosSeries(false, this._ssig1, this._csig1, this._C4a);
         
     | 
| 
      
 2671 
     | 
    
         
            +
                }
         
     | 
| 
      
 2672 
     | 
    
         
            +
             
     | 
| 
      
 2673 
     | 
    
         
            +
                this.a13 = this.s13 = Number.NaN;
         
     | 
| 
      
 2674 
     | 
    
         
            +
              };
         
     | 
| 
      
 2675 
     | 
    
         
            +
             
     | 
| 
      
 2676 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2677 
     | 
    
         
            +
               * @summary Find the position on the line (general case).
         
     | 
| 
      
 2678 
     | 
    
         
            +
               * @param {bool} arcmode is the next parameter an arc length?
         
     | 
| 
      
 2679 
     | 
    
         
            +
               * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
         
     | 
| 
      
 2680 
     | 
    
         
            +
               *   first point to the second in (arcmode ? degrees : meters).
         
     | 
| 
      
 2681 
     | 
    
         
            +
               * @param {bitmask} [outmask = STANDARD] which results to include; this is
         
     | 
| 
      
 2682 
     | 
    
         
            +
               *   subject to the capabilities of the object.
         
     | 
| 
      
 2683 
     | 
    
         
            +
               * @returns {object} the requested results.
         
     | 
| 
      
 2684 
     | 
    
         
            +
               * @description The lat1, lon1, azi1, and a12 fields of the result are
         
     | 
| 
      
 2685 
     | 
    
         
            +
               *   always set; s12 is included if arcmode is false.  For details on the
         
     | 
| 
      
 2686 
     | 
    
         
            +
               *   outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
         
     | 
| 
      
 2687 
     | 
    
         
            +
               *   parameters".
         
     | 
| 
      
 2688 
     | 
    
         
            +
               */
         
     | 
| 
      
 2689 
     | 
    
         
            +
              l.GeodesicLine.prototype.GenPosition = function(arcmode, s12_a12,
         
     | 
| 
      
 2690 
     | 
    
         
            +
                                                              outmask) {
         
     | 
| 
      
 2691 
     | 
    
         
            +
                var vals = {},
         
     | 
| 
      
 2692 
     | 
    
         
            +
                    sig12, ssig12, csig12, B12, AB1, ssig2, csig2, tau12, s, c, serr,
         
     | 
| 
      
 2693 
     | 
    
         
            +
                    omg12, lam12, lon12, E, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2,
         
     | 
| 
      
 2694 
     | 
    
         
            +
                    B22, AB2, J12, t, B42, salp12, calp12;
         
     | 
| 
      
 2695 
     | 
    
         
            +
                if (!outmask) outmask = g.STANDARD;
         
     | 
| 
      
 2696 
     | 
    
         
            +
                else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
         
     | 
| 
      
 2697 
     | 
    
         
            +
                outmask &= this.caps & g.OUT_MASK;
         
     | 
| 
      
 2698 
     | 
    
         
            +
                vals.lat1 = this.lat1; vals.azi1 = this.azi1;
         
     | 
| 
      
 2699 
     | 
    
         
            +
                vals.lon1 = outmask & g.LONG_UNROLL ?
         
     | 
| 
      
 2700 
     | 
    
         
            +
                  this.lon1 : m.AngNormalize(this.lon1);
         
     | 
| 
      
 2701 
     | 
    
         
            +
                if (arcmode)
         
     | 
| 
      
 2702 
     | 
    
         
            +
                  vals.a12 = s12_a12;
         
     | 
| 
      
 2703 
     | 
    
         
            +
                else
         
     | 
| 
      
 2704 
     | 
    
         
            +
                  vals.s12 = s12_a12;
         
     | 
| 
      
 2705 
     | 
    
         
            +
                if (!( arcmode || (this.caps & g.DISTANCE_IN & g.OUT_MASK) )) {
         
     | 
| 
      
 2706 
     | 
    
         
            +
                  // Uninitialized or impossible distance calculation requested
         
     | 
| 
      
 2707 
     | 
    
         
            +
                  vals.a12 = Number.NaN;
         
     | 
| 
      
 2708 
     | 
    
         
            +
                  return vals;
         
     | 
| 
      
 2709 
     | 
    
         
            +
                }
         
     | 
| 
      
 2710 
     | 
    
         
            +
             
     | 
| 
      
 2711 
     | 
    
         
            +
                // Avoid warning about uninitialized B12.
         
     | 
| 
      
 2712 
     | 
    
         
            +
                B12 = 0; AB1 = 0;
         
     | 
| 
      
 2713 
     | 
    
         
            +
                if (arcmode) {
         
     | 
| 
      
 2714 
     | 
    
         
            +
                  // Interpret s12_a12 as spherical arc length
         
     | 
| 
      
 2715 
     | 
    
         
            +
                  sig12 = s12_a12 * m.degree;
         
     | 
| 
      
 2716 
     | 
    
         
            +
                  t = m.sincosd(s12_a12); ssig12 = t.s; csig12 = t.c;
         
     | 
| 
      
 2717 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 2718 
     | 
    
         
            +
                  // Interpret s12_a12 as distance
         
     | 
| 
      
 2719 
     | 
    
         
            +
                  tau12 = s12_a12 / (this._b * (1 + this._A1m1));
         
     | 
| 
      
 2720 
     | 
    
         
            +
                  s = Math.sin(tau12);
         
     | 
| 
      
 2721 
     | 
    
         
            +
                  c = Math.cos(tau12);
         
     | 
| 
      
 2722 
     | 
    
         
            +
                  // tau2 = tau1 + tau12
         
     | 
| 
      
 2723 
     | 
    
         
            +
                  B12 = -g.SinCosSeries(true,
         
     | 
| 
      
 2724 
     | 
    
         
            +
                                        this._stau1 * c + this._ctau1 * s,
         
     | 
| 
      
 2725 
     | 
    
         
            +
                                        this._ctau1 * c - this._stau1 * s,
         
     | 
| 
      
 2726 
     | 
    
         
            +
                                        this._C1pa);
         
     | 
| 
      
 2727 
     | 
    
         
            +
                  sig12 = tau12 - (B12 - this._B11);
         
     | 
| 
      
 2728 
     | 
    
         
            +
                  ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
         
     | 
| 
      
 2729 
     | 
    
         
            +
                  if (Math.abs(this.f) > 0.01) {
         
     | 
| 
      
 2730 
     | 
    
         
            +
                    // Reverted distance series is inaccurate for |f| > 1/100, so correct
         
     | 
| 
      
 2731 
     | 
    
         
            +
                    // sig12 with 1 Newton iteration.  The following table shows the
         
     | 
| 
      
 2732 
     | 
    
         
            +
                    // approximate maximum error for a = WGS_a() and various f relative to
         
     | 
| 
      
 2733 
     | 
    
         
            +
                    // GeodesicExact.
         
     | 
| 
      
 2734 
     | 
    
         
            +
                    //     erri = the error in the inverse solution (nm)
         
     | 
| 
      
 2735 
     | 
    
         
            +
                    //     errd = the error in the direct solution (series only) (nm)
         
     | 
| 
      
 2736 
     | 
    
         
            +
                    //     errda = the error in the direct solution
         
     | 
| 
      
 2737 
     | 
    
         
            +
                    //             (series + 1 Newton) (nm)
         
     | 
| 
      
 2738 
     | 
    
         
            +
                    //
         
     | 
| 
      
 2739 
     | 
    
         
            +
                    //       f     erri  errd errda
         
     | 
| 
      
 2740 
     | 
    
         
            +
                    //     -1/5    12e6 1.2e9  69e6
         
     | 
| 
      
 2741 
     | 
    
         
            +
                    //     -1/10  123e3  12e6 765e3
         
     | 
| 
      
 2742 
     | 
    
         
            +
                    //     -1/20   1110 108e3  7155
         
     | 
| 
      
 2743 
     | 
    
         
            +
                    //     -1/50  18.63 200.9 27.12
         
     | 
| 
      
 2744 
     | 
    
         
            +
                    //     -1/100 18.63 23.78 23.37
         
     | 
| 
      
 2745 
     | 
    
         
            +
                    //     -1/150 18.63 21.05 20.26
         
     | 
| 
      
 2746 
     | 
    
         
            +
                    //      1/150 22.35 24.73 25.83
         
     | 
| 
      
 2747 
     | 
    
         
            +
                    //      1/100 22.35 25.03 25.31
         
     | 
| 
      
 2748 
     | 
    
         
            +
                    //      1/50  29.80 231.9 30.44
         
     | 
| 
      
 2749 
     | 
    
         
            +
                    //      1/20   5376 146e3  10e3
         
     | 
| 
      
 2750 
     | 
    
         
            +
                    //      1/10  829e3  22e6 1.5e6
         
     | 
| 
      
 2751 
     | 
    
         
            +
                    //      1/5   157e6 3.8e9 280e6
         
     | 
| 
      
 2752 
     | 
    
         
            +
                    ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
         
     | 
| 
      
 2753 
     | 
    
         
            +
                    csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
         
     | 
| 
      
 2754 
     | 
    
         
            +
                    B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
         
     | 
| 
      
 2755 
     | 
    
         
            +
                    serr = (1 + this._A1m1) * (sig12 + (B12 - this._B11)) -
         
     | 
| 
      
 2756 
     | 
    
         
            +
                      s12_a12 / this._b;
         
     | 
| 
      
 2757 
     | 
    
         
            +
                    sig12 = sig12 - serr / Math.sqrt(1 + this._k2 * m.sq(ssig2));
         
     | 
| 
      
 2758 
     | 
    
         
            +
                    ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
         
     | 
| 
      
 2759 
     | 
    
         
            +
                    // Update B12 below
         
     | 
| 
      
 2760 
     | 
    
         
            +
                  }
         
     | 
| 
      
 2761 
     | 
    
         
            +
                }
         
     | 
| 
      
 2762 
     | 
    
         
            +
             
     | 
| 
      
 2763 
     | 
    
         
            +
                // sig2 = sig1 + sig12
         
     | 
| 
      
 2764 
     | 
    
         
            +
                ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
         
     | 
| 
      
 2765 
     | 
    
         
            +
                csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
         
     | 
| 
      
 2766 
     | 
    
         
            +
                dn2 = Math.sqrt(1 + this._k2 * m.sq(ssig2));
         
     | 
| 
      
 2767 
     | 
    
         
            +
                if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
         
     | 
| 
      
 2768 
     | 
    
         
            +
                  if (arcmode || Math.abs(this.f) > 0.01)
         
     | 
| 
      
 2769 
     | 
    
         
            +
                    B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
         
     | 
| 
      
 2770 
     | 
    
         
            +
                  AB1 = (1 + this._A1m1) * (B12 - this._B11);
         
     | 
| 
      
 2771 
     | 
    
         
            +
                }
         
     | 
| 
      
 2772 
     | 
    
         
            +
                // sin(bet2) = cos(alp0) * sin(sig2)
         
     | 
| 
      
 2773 
     | 
    
         
            +
                sbet2 = this._calp0 * ssig2;
         
     | 
| 
      
 2774 
     | 
    
         
            +
                // Alt: cbet2 = hypot(csig2, salp0 * ssig2);
         
     | 
| 
      
 2775 
     | 
    
         
            +
                cbet2 = m.hypot(this._salp0, this._calp0 * csig2);
         
     | 
| 
      
 2776 
     | 
    
         
            +
                if (cbet2 === 0)
         
     | 
| 
      
 2777 
     | 
    
         
            +
                  // I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case
         
     | 
| 
      
 2778 
     | 
    
         
            +
                  cbet2 = csig2 = g.tiny_;
         
     | 
| 
      
 2779 
     | 
    
         
            +
                // tan(alp0) = cos(sig2)*tan(alp2)
         
     | 
| 
      
 2780 
     | 
    
         
            +
                salp2 = this._salp0; calp2 = this._calp0 * csig2; // No need to normalize
         
     | 
| 
      
 2781 
     | 
    
         
            +
             
     | 
| 
      
 2782 
     | 
    
         
            +
                if (arcmode && (outmask & g.DISTANCE))
         
     | 
| 
      
 2783 
     | 
    
         
            +
                  vals.s12 = this._b * ((1 + this._A1m1) * sig12 + AB1);
         
     | 
| 
      
 2784 
     | 
    
         
            +
             
     | 
| 
      
 2785 
     | 
    
         
            +
                if (outmask & g.LONGITUDE) {
         
     | 
| 
      
 2786 
     | 
    
         
            +
                  // tan(omg2) = sin(alp0) * tan(sig2)
         
     | 
| 
      
 2787 
     | 
    
         
            +
                  somg2 = this._salp0 * ssig2; comg2 = csig2; // No need to normalize
         
     | 
| 
      
 2788 
     | 
    
         
            +
                  E = m.copysign(1, this._salp0);
         
     | 
| 
      
 2789 
     | 
    
         
            +
                  // omg12 = omg2 - omg1
         
     | 
| 
      
 2790 
     | 
    
         
            +
                  omg12 = outmask & g.LONG_UNROLL ?
         
     | 
| 
      
 2791 
     | 
    
         
            +
                    E * (sig12 -
         
     | 
| 
      
 2792 
     | 
    
         
            +
                         (Math.atan2(ssig2, csig2) -
         
     | 
| 
      
 2793 
     | 
    
         
            +
                          Math.atan2(this._ssig1, this._csig1)) +
         
     | 
| 
      
 2794 
     | 
    
         
            +
                         (Math.atan2(E * somg2, comg2) -
         
     | 
| 
      
 2795 
     | 
    
         
            +
                          Math.atan2(E * this._somg1, this._comg1))) :
         
     | 
| 
      
 2796 
     | 
    
         
            +
                    Math.atan2(somg2 * this._comg1 - comg2 * this._somg1,
         
     | 
| 
      
 2797 
     | 
    
         
            +
                                 comg2 * this._comg1 + somg2 * this._somg1);
         
     | 
| 
      
 2798 
     | 
    
         
            +
                  lam12 = omg12 + this._A3c *
         
     | 
| 
      
 2799 
     | 
    
         
            +
                    ( sig12 + (g.SinCosSeries(true, ssig2, csig2, this._C3a) -
         
     | 
| 
      
 2800 
     | 
    
         
            +
                               this._B31));
         
     | 
| 
      
 2801 
     | 
    
         
            +
                  lon12 = lam12 / m.degree;
         
     | 
| 
      
 2802 
     | 
    
         
            +
                  vals.lon2 = outmask & g.LONG_UNROLL ? this.lon1 + lon12 :
         
     | 
| 
      
 2803 
     | 
    
         
            +
                    m.AngNormalize(m.AngNormalize(this.lon1) + m.AngNormalize(lon12));
         
     | 
| 
      
 2804 
     | 
    
         
            +
                }
         
     | 
| 
      
 2805 
     | 
    
         
            +
             
     | 
| 
      
 2806 
     | 
    
         
            +
                if (outmask & g.LATITUDE)
         
     | 
| 
      
 2807 
     | 
    
         
            +
                  vals.lat2 = m.atan2d(sbet2, this._f1 * cbet2);
         
     | 
| 
      
 2808 
     | 
    
         
            +
             
     | 
| 
      
 2809 
     | 
    
         
            +
                if (outmask & g.AZIMUTH)
         
     | 
| 
      
 2810 
     | 
    
         
            +
                  vals.azi2 = m.atan2d(salp2, calp2);
         
     | 
| 
      
 2811 
     | 
    
         
            +
             
     | 
| 
      
 2812 
     | 
    
         
            +
                if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
         
     | 
| 
      
 2813 
     | 
    
         
            +
                  B22 = g.SinCosSeries(true, ssig2, csig2, this._C2a);
         
     | 
| 
      
 2814 
     | 
    
         
            +
                  AB2 = (1 + this._A2m1) * (B22 - this._B21);
         
     | 
| 
      
 2815 
     | 
    
         
            +
                  J12 = (this._A1m1 - this._A2m1) * sig12 + (AB1 - AB2);
         
     | 
| 
      
 2816 
     | 
    
         
            +
                  if (outmask & g.REDUCEDLENGTH)
         
     | 
| 
      
 2817 
     | 
    
         
            +
                    // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
         
     | 
| 
      
 2818 
     | 
    
         
            +
                    // accurate cancellation in the case of coincident points.
         
     | 
| 
      
 2819 
     | 
    
         
            +
                    vals.m12 = this._b * ((      dn2 * (this._csig1 * ssig2) -
         
     | 
| 
      
 2820 
     | 
    
         
            +
                                           this._dn1 * (this._ssig1 * csig2)) -
         
     | 
| 
      
 2821 
     | 
    
         
            +
                                          this._csig1 * csig2 * J12);
         
     | 
| 
      
 2822 
     | 
    
         
            +
                  if (outmask & g.GEODESICSCALE) {
         
     | 
| 
      
 2823 
     | 
    
         
            +
                    t = this._k2 * (ssig2 - this._ssig1) * (ssig2 + this._ssig1) /
         
     | 
| 
      
 2824 
     | 
    
         
            +
                      (this._dn1 + dn2);
         
     | 
| 
      
 2825 
     | 
    
         
            +
                    vals.M12 = csig12 +
         
     | 
| 
      
 2826 
     | 
    
         
            +
                      (t * ssig2 - csig2 * J12) * this._ssig1 / this._dn1;
         
     | 
| 
      
 2827 
     | 
    
         
            +
                    vals.M21 = csig12 -
         
     | 
| 
      
 2828 
     | 
    
         
            +
                      (t * this._ssig1 - this._csig1 * J12) * ssig2 / dn2;
         
     | 
| 
      
 2829 
     | 
    
         
            +
                  }
         
     | 
| 
      
 2830 
     | 
    
         
            +
                }
         
     | 
| 
      
 2831 
     | 
    
         
            +
             
     | 
| 
      
 2832 
     | 
    
         
            +
                if (outmask & g.AREA) {
         
     | 
| 
      
 2833 
     | 
    
         
            +
                  B42 = g.SinCosSeries(false, ssig2, csig2, this._C4a);
         
     | 
| 
      
 2834 
     | 
    
         
            +
                  if (this._calp0 === 0 || this._salp0 === 0) {
         
     | 
| 
      
 2835 
     | 
    
         
            +
                    // alp12 = alp2 - alp1, used in atan2 so no need to normalize
         
     | 
| 
      
 2836 
     | 
    
         
            +
                    salp12 = salp2 * this.calp1 - calp2 * this.salp1;
         
     | 
| 
      
 2837 
     | 
    
         
            +
                    calp12 = calp2 * this.calp1 + salp2 * this.salp1;
         
     | 
| 
      
 2838 
     | 
    
         
            +
                  } else {
         
     | 
| 
      
 2839 
     | 
    
         
            +
                    // tan(alp) = tan(alp0) * sec(sig)
         
     | 
| 
      
 2840 
     | 
    
         
            +
                    // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
         
     | 
| 
      
 2841 
     | 
    
         
            +
                    // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
         
     | 
| 
      
 2842 
     | 
    
         
            +
                    // If csig12 > 0, write
         
     | 
| 
      
 2843 
     | 
    
         
            +
                    //   csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
         
     | 
| 
      
 2844 
     | 
    
         
            +
                    // else
         
     | 
| 
      
 2845 
     | 
    
         
            +
                    //   csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
         
     | 
| 
      
 2846 
     | 
    
         
            +
                    // No need to normalize
         
     | 
| 
      
 2847 
     | 
    
         
            +
                    salp12 = this._calp0 * this._salp0 *
         
     | 
| 
      
 2848 
     | 
    
         
            +
                      (csig12 <= 0 ? this._csig1 * (1 - csig12) + ssig12 * this._ssig1 :
         
     | 
| 
      
 2849 
     | 
    
         
            +
                       ssig12 * (this._csig1 * ssig12 / (1 + csig12) + this._ssig1));
         
     | 
| 
      
 2850 
     | 
    
         
            +
                    calp12 = m.sq(this._salp0) + m.sq(this._calp0) * this._csig1 * csig2;
         
     | 
| 
      
 2851 
     | 
    
         
            +
                  }
         
     | 
| 
      
 2852 
     | 
    
         
            +
                  vals.S12 = this._c2 * Math.atan2(salp12, calp12) +
         
     | 
| 
      
 2853 
     | 
    
         
            +
                    this._A4 * (B42 - this._B41);
         
     | 
| 
      
 2854 
     | 
    
         
            +
                }
         
     | 
| 
      
 2855 
     | 
    
         
            +
             
     | 
| 
      
 2856 
     | 
    
         
            +
                if (!arcmode)
         
     | 
| 
      
 2857 
     | 
    
         
            +
                  vals.a12 = sig12 / m.degree;
         
     | 
| 
      
 2858 
     | 
    
         
            +
                return vals;
         
     | 
| 
      
 2859 
     | 
    
         
            +
              };
         
     | 
| 
      
 2860 
     | 
    
         
            +
             
     | 
| 
      
 2861 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2862 
     | 
    
         
            +
               * @summary Find the position on the line given s12.
         
     | 
| 
      
 2863 
     | 
    
         
            +
               * @param {number} s12 the distance from the first point to the second in
         
     | 
| 
      
 2864 
     | 
    
         
            +
               *   meters.
         
     | 
| 
      
 2865 
     | 
    
         
            +
               * @param {bitmask} [outmask = STANDARD] which results to include; this is
         
     | 
| 
      
 2866 
     | 
    
         
            +
               *   subject to the capabilities of the object.
         
     | 
| 
      
 2867 
     | 
    
         
            +
               * @returns {object} the requested results.
         
     | 
| 
      
 2868 
     | 
    
         
            +
               * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
         
     | 
| 
      
 2869 
     | 
    
         
            +
               *   always set; s12 is included if arcmode is false.  For details on the
         
     | 
| 
      
 2870 
     | 
    
         
            +
               *   outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
         
     | 
| 
      
 2871 
     | 
    
         
            +
               *   parameters".
         
     | 
| 
      
 2872 
     | 
    
         
            +
               */
         
     | 
| 
      
 2873 
     | 
    
         
            +
              l.GeodesicLine.prototype.Position = function(s12, outmask) {
         
     | 
| 
      
 2874 
     | 
    
         
            +
                return this.GenPosition(false, s12, outmask);
         
     | 
| 
      
 2875 
     | 
    
         
            +
              };
         
     | 
| 
      
 2876 
     | 
    
         
            +
             
     | 
| 
      
 2877 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2878 
     | 
    
         
            +
               * @summary Find the position on the line given a12.
         
     | 
| 
      
 2879 
     | 
    
         
            +
               * @param {number} a12 the arc length from the first point to the second in
         
     | 
| 
      
 2880 
     | 
    
         
            +
               *   degrees.
         
     | 
| 
      
 2881 
     | 
    
         
            +
               * @param {bitmask} [outmask = STANDARD] which results to include; this is
         
     | 
| 
      
 2882 
     | 
    
         
            +
               *   subject to the capabilities of the object.
         
     | 
| 
      
 2883 
     | 
    
         
            +
               * @returns {object} the requested results.
         
     | 
| 
      
 2884 
     | 
    
         
            +
               * @description The lat1, lon1, azi1, and a12 fields of the result are
         
     | 
| 
      
 2885 
     | 
    
         
            +
               *   always set.  For details on the outmask parameter, see {@tutorial
         
     | 
| 
      
 2886 
     | 
    
         
            +
               *   2-interface}, "The outmask and caps parameters".
         
     | 
| 
      
 2887 
     | 
    
         
            +
               */
         
     | 
| 
      
 2888 
     | 
    
         
            +
              l.GeodesicLine.prototype.ArcPosition = function(a12, outmask) {
         
     | 
| 
      
 2889 
     | 
    
         
            +
                return this.GenPosition(true, a12, outmask);
         
     | 
| 
      
 2890 
     | 
    
         
            +
              };
         
     | 
| 
      
 2891 
     | 
    
         
            +
             
     | 
| 
      
 2892 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2893 
     | 
    
         
            +
               * @summary Specify position of point 3 in terms of either distance or arc
         
     | 
| 
      
 2894 
     | 
    
         
            +
               *   length.
         
     | 
| 
      
 2895 
     | 
    
         
            +
               * @param {bool} arcmode boolean flag determining the meaning of the second
         
     | 
| 
      
 2896 
     | 
    
         
            +
               *   parameter; if arcmode is false, then the GeodesicLine object must have
         
     | 
| 
      
 2897 
     | 
    
         
            +
               *   been constructed with caps |= DISTANCE_IN.
         
     | 
| 
      
 2898 
     | 
    
         
            +
               * @param {number} s13_a13 if arcmode is false, this is the distance from
         
     | 
| 
      
 2899 
     | 
    
         
            +
               *   point 1 to point 3 (meters); otherwise it is the arc length from
         
     | 
| 
      
 2900 
     | 
    
         
            +
               *   point 1 to point 3 (degrees); it can be negative.
         
     | 
| 
      
 2901 
     | 
    
         
            +
               **********************************************************************/
         
     | 
| 
      
 2902 
     | 
    
         
            +
              l.GeodesicLine.prototype.GenSetDistance = function(arcmode, s13_a13) {
         
     | 
| 
      
 2903 
     | 
    
         
            +
                if (arcmode)
         
     | 
| 
      
 2904 
     | 
    
         
            +
                  this.SetArc(s13_a13);
         
     | 
| 
      
 2905 
     | 
    
         
            +
                else
         
     | 
| 
      
 2906 
     | 
    
         
            +
                  this.SetDistance(s13_a13);
         
     | 
| 
      
 2907 
     | 
    
         
            +
              };
         
     | 
| 
      
 2908 
     | 
    
         
            +
             
     | 
| 
      
 2909 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2910 
     | 
    
         
            +
               * @summary Specify position of point 3 in terms distance.
         
     | 
| 
      
 2911 
     | 
    
         
            +
               * @param {number} s13 the distance from point 1 to point 3 (meters); it
         
     | 
| 
      
 2912 
     | 
    
         
            +
               *   can be negative.
         
     | 
| 
      
 2913 
     | 
    
         
            +
               **********************************************************************/
         
     | 
| 
      
 2914 
     | 
    
         
            +
              l.GeodesicLine.prototype.SetDistance = function(s13) {
         
     | 
| 
      
 2915 
     | 
    
         
            +
                var r;
         
     | 
| 
      
 2916 
     | 
    
         
            +
                this.s13 = s13;
         
     | 
| 
      
 2917 
     | 
    
         
            +
                r = this.GenPosition(false, this.s13, g.ARC);
         
     | 
| 
      
 2918 
     | 
    
         
            +
                this.a13 = 0 + r.a12;       // the 0+ converts undefined into NaN
         
     | 
| 
      
 2919 
     | 
    
         
            +
              };
         
     | 
| 
      
 2920 
     | 
    
         
            +
             
     | 
| 
      
 2921 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2922 
     | 
    
         
            +
               * @summary Specify position of point 3 in terms of arc length.
         
     | 
| 
      
 2923 
     | 
    
         
            +
               * @param {number} a13 the arc length from point 1 to point 3 (degrees);
         
     | 
| 
      
 2924 
     | 
    
         
            +
               *   it can be negative.
         
     | 
| 
      
 2925 
     | 
    
         
            +
               **********************************************************************/
         
     | 
| 
      
 2926 
     | 
    
         
            +
              l.GeodesicLine.prototype.SetArc = function(a13) {
         
     | 
| 
      
 2927 
     | 
    
         
            +
                var r;
         
     | 
| 
      
 2928 
     | 
    
         
            +
                this.a13 = a13;
         
     | 
| 
      
 2929 
     | 
    
         
            +
                r = this.GenPosition(true, this.a13, g.DISTANCE);
         
     | 
| 
      
 2930 
     | 
    
         
            +
                this.s13 = 0 + r.s12;       // the 0+ converts undefined into NaN
         
     | 
| 
      
 2931 
     | 
    
         
            +
              };
         
     | 
| 
      
 2932 
     | 
    
         
            +
             
     | 
| 
      
 2933 
     | 
    
         
            +
            })(GeographicLib.Geodesic, GeographicLib.GeodesicLine, GeographicLib.Math);
         
     | 
| 
      
 2934 
     | 
    
         
            +
             
     | 
| 
      
 2935 
     | 
    
         
            +
            /**************** PolygonArea.js ****************/
         
     | 
| 
      
 2936 
     | 
    
         
            +
            /*
         
     | 
| 
      
 2937 
     | 
    
         
            +
             * PolygonArea.js
         
     | 
| 
      
 2938 
     | 
    
         
            +
             * Transcription of PolygonArea.[ch]pp into JavaScript.
         
     | 
| 
      
 2939 
     | 
    
         
            +
             *
         
     | 
| 
      
 2940 
     | 
    
         
            +
             * See the documentation for the C++ class.  The conversion is a literal
         
     | 
| 
      
 2941 
     | 
    
         
            +
             * conversion from C++.
         
     | 
| 
      
 2942 
     | 
    
         
            +
             *
         
     | 
| 
      
 2943 
     | 
    
         
            +
             * The algorithms are derived in
         
     | 
| 
      
 2944 
     | 
    
         
            +
             *
         
     | 
| 
      
 2945 
     | 
    
         
            +
             *    Charles F. F. Karney,
         
     | 
| 
      
 2946 
     | 
    
         
            +
             *    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
         
     | 
| 
      
 2947 
     | 
    
         
            +
             *    https://doi.org/10.1007/s00190-012-0578-z
         
     | 
| 
      
 2948 
     | 
    
         
            +
             *    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
         
     | 
| 
      
 2949 
     | 
    
         
            +
             *
         
     | 
| 
      
 2950 
     | 
    
         
            +
             * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
         
     | 
| 
      
 2951 
     | 
    
         
            +
             * under the MIT/X11 License.  For more information, see
         
     | 
| 
      
 2952 
     | 
    
         
            +
             * https://geographiclib.sourceforge.io/
         
     | 
| 
      
 2953 
     | 
    
         
            +
             */
         
     | 
| 
      
 2954 
     | 
    
         
            +
             
     | 
| 
      
 2955 
     | 
    
         
            +
            // Load AFTER GeographicLib/Math.js and GeographicLib/Geodesic.js
         
     | 
| 
      
 2956 
     | 
    
         
            +
             
     | 
| 
      
 2957 
     | 
    
         
            +
            (function(
         
     | 
| 
      
 2958 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2959 
     | 
    
         
            +
               * @exports GeographicLib/PolygonArea
         
     | 
| 
      
 2960 
     | 
    
         
            +
               * @description Compute the area of geodesic polygons via the
         
     | 
| 
      
 2961 
     | 
    
         
            +
               *   {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
         
     | 
| 
      
 2962 
     | 
    
         
            +
               *   class.
         
     | 
| 
      
 2963 
     | 
    
         
            +
               */
         
     | 
| 
      
 2964 
     | 
    
         
            +
              p, g, m, a) {
         
     | 
| 
      
 2965 
     | 
    
         
            +
             
     | 
| 
      
 2966 
     | 
    
         
            +
              var transit, transitdirect;
         
     | 
| 
      
 2967 
     | 
    
         
            +
              transit = function(lon1, lon2) {
         
     | 
| 
      
 2968 
     | 
    
         
            +
                // Return 1 or -1 if crossing prime meridian in east or west direction.
         
     | 
| 
      
 2969 
     | 
    
         
            +
                // Otherwise return zero.
         
     | 
| 
      
 2970 
     | 
    
         
            +
                var lon12, cross;
         
     | 
| 
      
 2971 
     | 
    
         
            +
                // Compute lon12 the same way as Geodesic::Inverse.
         
     | 
| 
      
 2972 
     | 
    
         
            +
                lon1 = m.AngNormalize(lon1);
         
     | 
| 
      
 2973 
     | 
    
         
            +
                lon2 = m.AngNormalize(lon2);
         
     | 
| 
      
 2974 
     | 
    
         
            +
                lon12 = m.AngDiff(lon1, lon2).s;
         
     | 
| 
      
 2975 
     | 
    
         
            +
                cross = lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
         
     | 
| 
      
 2976 
     | 
    
         
            +
                  (lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
         
     | 
| 
      
 2977 
     | 
    
         
            +
                return cross;
         
     | 
| 
      
 2978 
     | 
    
         
            +
              };
         
     | 
| 
      
 2979 
     | 
    
         
            +
             
     | 
| 
      
 2980 
     | 
    
         
            +
              // an alternate version of transit to deal with longitudes in the direct
         
     | 
| 
      
 2981 
     | 
    
         
            +
              // problem.
         
     | 
| 
      
 2982 
     | 
    
         
            +
              transitdirect = function(lon1, lon2) {
         
     | 
| 
      
 2983 
     | 
    
         
            +
                // We want to compute exactly
         
     | 
| 
      
 2984 
     | 
    
         
            +
                //   int(floor(lon2 / 360)) - int(floor(lon1 / 360))
         
     | 
| 
      
 2985 
     | 
    
         
            +
                // Since we only need the parity of the result we can use std::remquo but
         
     | 
| 
      
 2986 
     | 
    
         
            +
                // this is buggy with g++ 4.8.3 and requires C++11.  So instead we do
         
     | 
| 
      
 2987 
     | 
    
         
            +
                lon1 = lon1 % 720.0; lon2 = lon2 % 720.0;
         
     | 
| 
      
 2988 
     | 
    
         
            +
                return ( ((lon2 >= 0 && lon2 < 360) || lon2 < -360 ? 0 : 1) -
         
     | 
| 
      
 2989 
     | 
    
         
            +
                         ((lon1 >= 0 && lon1 < 360) || lon1 < -360 ? 0 : 1) );
         
     | 
| 
      
 2990 
     | 
    
         
            +
              };
         
     | 
| 
      
 2991 
     | 
    
         
            +
             
     | 
| 
      
 2992 
     | 
    
         
            +
              /**
         
     | 
| 
      
 2993 
     | 
    
         
            +
               * @class
         
     | 
| 
      
 2994 
     | 
    
         
            +
               * @property {number} a the equatorial radius (meters).
         
     | 
| 
      
 2995 
     | 
    
         
            +
               * @property {number} f the flattening.
         
     | 
| 
      
 2996 
     | 
    
         
            +
               * @property {bool} polyline whether the PolygonArea object describes a
         
     | 
| 
      
 2997 
     | 
    
         
            +
               *   polyline or a polygon.
         
     | 
| 
      
 2998 
     | 
    
         
            +
               * @property {number} num the number of vertices so far.
         
     | 
| 
      
 2999 
     | 
    
         
            +
               * @property {number} lat the current latitude (degrees).
         
     | 
| 
      
 3000 
     | 
    
         
            +
               * @property {number} lon the current longitude (degrees).
         
     | 
| 
      
 3001 
     | 
    
         
            +
               * @summary Initialize a PolygonArea object.
         
     | 
| 
      
 3002 
     | 
    
         
            +
               * @classdesc Computes the area and perimeter of a geodesic polygon.
         
     | 
| 
      
 3003 
     | 
    
         
            +
               *   This object is usually instantiated by
         
     | 
| 
      
 3004 
     | 
    
         
            +
               *   {@link module:GeographicLib/Geodesic.Geodesic#Polygon Geodesic.Polygon}.
         
     | 
| 
      
 3005 
     | 
    
         
            +
               * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
         
     | 
| 
      
 3006 
     | 
    
         
            +
               *   Geodesic} object.
         
     | 
| 
      
 3007 
     | 
    
         
            +
               * @param {bool} [polyline = false] if true the new PolygonArea object
         
     | 
| 
      
 3008 
     | 
    
         
            +
               *   describes a polyline instead of a polygon.
         
     | 
| 
      
 3009 
     | 
    
         
            +
               */
         
     | 
| 
      
 3010 
     | 
    
         
            +
              p.PolygonArea = function(geod, polyline) {
         
     | 
| 
      
 3011 
     | 
    
         
            +
                this._geod = geod;
         
     | 
| 
      
 3012 
     | 
    
         
            +
                this.a = this._geod.a;
         
     | 
| 
      
 3013 
     | 
    
         
            +
                this.f = this._geod.f;
         
     | 
| 
      
 3014 
     | 
    
         
            +
                this._area0 = 4 * Math.PI * geod._c2;
         
     | 
| 
      
 3015 
     | 
    
         
            +
                this.polyline = !polyline ? false : polyline;
         
     | 
| 
      
 3016 
     | 
    
         
            +
                this._mask = g.LATITUDE | g.LONGITUDE | g.DISTANCE |
         
     | 
| 
      
 3017 
     | 
    
         
            +
                      (this.polyline ? g.NONE : g.AREA | g.LONG_UNROLL);
         
     | 
| 
      
 3018 
     | 
    
         
            +
                if (!this.polyline)
         
     | 
| 
      
 3019 
     | 
    
         
            +
                  this._areasum = new a.Accumulator(0);
         
     | 
| 
      
 3020 
     | 
    
         
            +
                this._perimetersum = new a.Accumulator(0);
         
     | 
| 
      
 3021 
     | 
    
         
            +
                this.Clear();
         
     | 
| 
      
 3022 
     | 
    
         
            +
              };
         
     | 
| 
      
 3023 
     | 
    
         
            +
             
     | 
| 
      
 3024 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3025 
     | 
    
         
            +
               * @summary Clear the PolygonArea object, setting the number of vertices to
         
     | 
| 
      
 3026 
     | 
    
         
            +
               *   0.
         
     | 
| 
      
 3027 
     | 
    
         
            +
               */
         
     | 
| 
      
 3028 
     | 
    
         
            +
              p.PolygonArea.prototype.Clear = function() {
         
     | 
| 
      
 3029 
     | 
    
         
            +
                this.num = 0;
         
     | 
| 
      
 3030 
     | 
    
         
            +
                this._crossings = 0;
         
     | 
| 
      
 3031 
     | 
    
         
            +
                if (!this.polyline)
         
     | 
| 
      
 3032 
     | 
    
         
            +
                  this._areasum.Set(0);
         
     | 
| 
      
 3033 
     | 
    
         
            +
                this._perimetersum.Set(0);
         
     | 
| 
      
 3034 
     | 
    
         
            +
                this._lat0 = this._lon0 = this.lat = this.lon = Number.NaN;
         
     | 
| 
      
 3035 
     | 
    
         
            +
              };
         
     | 
| 
      
 3036 
     | 
    
         
            +
             
     | 
| 
      
 3037 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3038 
     | 
    
         
            +
               * @summary Add the next vertex to the polygon.
         
     | 
| 
      
 3039 
     | 
    
         
            +
               * @param {number} lat the latitude of the point (degrees).
         
     | 
| 
      
 3040 
     | 
    
         
            +
               * @param {number} lon the longitude of the point (degrees).
         
     | 
| 
      
 3041 
     | 
    
         
            +
               * @description This adds an edge from the current vertex to the new vertex.
         
     | 
| 
      
 3042 
     | 
    
         
            +
               */
         
     | 
| 
      
 3043 
     | 
    
         
            +
              p.PolygonArea.prototype.AddPoint = function(lat, lon) {
         
     | 
| 
      
 3044 
     | 
    
         
            +
                var t;
         
     | 
| 
      
 3045 
     | 
    
         
            +
                if (this.num === 0) {
         
     | 
| 
      
 3046 
     | 
    
         
            +
                  this._lat0 = this.lat = lat;
         
     | 
| 
      
 3047 
     | 
    
         
            +
                  this._lon0 = this.lon = lon;
         
     | 
| 
      
 3048 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 3049 
     | 
    
         
            +
                  t = this._geod.Inverse(this.lat, this.lon, lat, lon, this._mask);
         
     | 
| 
      
 3050 
     | 
    
         
            +
                  this._perimetersum.Add(t.s12);
         
     | 
| 
      
 3051 
     | 
    
         
            +
                  if (!this.polyline) {
         
     | 
| 
      
 3052 
     | 
    
         
            +
                    this._areasum.Add(t.S12);
         
     | 
| 
      
 3053 
     | 
    
         
            +
                    this._crossings += transit(this.lon, lon);
         
     | 
| 
      
 3054 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3055 
     | 
    
         
            +
                  this.lat = lat;
         
     | 
| 
      
 3056 
     | 
    
         
            +
                  this.lon = lon;
         
     | 
| 
      
 3057 
     | 
    
         
            +
                }
         
     | 
| 
      
 3058 
     | 
    
         
            +
                ++this.num;
         
     | 
| 
      
 3059 
     | 
    
         
            +
              };
         
     | 
| 
      
 3060 
     | 
    
         
            +
             
     | 
| 
      
 3061 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3062 
     | 
    
         
            +
               * @summary Add the next edge to the polygon.
         
     | 
| 
      
 3063 
     | 
    
         
            +
               * @param {number} azi the azimuth at the current the point (degrees).
         
     | 
| 
      
 3064 
     | 
    
         
            +
               * @param {number} s the length of the edge (meters).
         
     | 
| 
      
 3065 
     | 
    
         
            +
               * @description This specifies the new vertex in terms of the edge from the
         
     | 
| 
      
 3066 
     | 
    
         
            +
               *   current vertex.
         
     | 
| 
      
 3067 
     | 
    
         
            +
               */
         
     | 
| 
      
 3068 
     | 
    
         
            +
              p.PolygonArea.prototype.AddEdge = function(azi, s) {
         
     | 
| 
      
 3069 
     | 
    
         
            +
                var t;
         
     | 
| 
      
 3070 
     | 
    
         
            +
                if (this.num) {
         
     | 
| 
      
 3071 
     | 
    
         
            +
                  t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
         
     | 
| 
      
 3072 
     | 
    
         
            +
                  this._perimetersum.Add(s);
         
     | 
| 
      
 3073 
     | 
    
         
            +
                  if (!this.polyline) {
         
     | 
| 
      
 3074 
     | 
    
         
            +
                    this._areasum.Add(t.S12);
         
     | 
| 
      
 3075 
     | 
    
         
            +
                    this._crossings += transitdirect(this.lon, t.lon2);
         
     | 
| 
      
 3076 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3077 
     | 
    
         
            +
                  this.lat = t.lat2;
         
     | 
| 
      
 3078 
     | 
    
         
            +
                  this.lon = t.lon2;
         
     | 
| 
      
 3079 
     | 
    
         
            +
                }
         
     | 
| 
      
 3080 
     | 
    
         
            +
                ++this.num;
         
     | 
| 
      
 3081 
     | 
    
         
            +
              };
         
     | 
| 
      
 3082 
     | 
    
         
            +
             
     | 
| 
      
 3083 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3084 
     | 
    
         
            +
               * @summary Compute the perimeter and area of the polygon.
         
     | 
| 
      
 3085 
     | 
    
         
            +
               * @param {bool} reverse if true then clockwise (instead of
         
     | 
| 
      
 3086 
     | 
    
         
            +
               *   counter-clockwise) traversal counts as a positive area.
         
     | 
| 
      
 3087 
     | 
    
         
            +
               * @param {bool} sign if true then return a signed result for the area if the
         
     | 
| 
      
 3088 
     | 
    
         
            +
               *   polygon is traversed in the "wrong" direction instead of returning the
         
     | 
| 
      
 3089 
     | 
    
         
            +
               *   area for the rest of the earth.
         
     | 
| 
      
 3090 
     | 
    
         
            +
               * @returns {object} r where r.number is the number of vertices, r.perimeter
         
     | 
| 
      
 3091 
     | 
    
         
            +
               *   is the perimeter (meters), and r.area (only returned if polyline is
         
     | 
| 
      
 3092 
     | 
    
         
            +
               *   false) is the area (meters<sup>2</sup>).
         
     | 
| 
      
 3093 
     | 
    
         
            +
               * @description If the object is a polygon (and not a polygon), the perimeter
         
     | 
| 
      
 3094 
     | 
    
         
            +
               *   includes the length of a final edge connecting the current point to the
         
     | 
| 
      
 3095 
     | 
    
         
            +
               *   initial point.  If the object is a polyline, then area is nan.  More
         
     | 
| 
      
 3096 
     | 
    
         
            +
               *   points can be added to the polygon after this call.
         
     | 
| 
      
 3097 
     | 
    
         
            +
               */
         
     | 
| 
      
 3098 
     | 
    
         
            +
              p.PolygonArea.prototype.Compute = function(reverse, sign) {
         
     | 
| 
      
 3099 
     | 
    
         
            +
                var vals = {number: this.num}, t, tempsum, crossings;
         
     | 
| 
      
 3100 
     | 
    
         
            +
                if (this.num < 2) {
         
     | 
| 
      
 3101 
     | 
    
         
            +
                  vals.perimeter = 0;
         
     | 
| 
      
 3102 
     | 
    
         
            +
                  if (!this.polyline)
         
     | 
| 
      
 3103 
     | 
    
         
            +
                    vals.area = 0;
         
     | 
| 
      
 3104 
     | 
    
         
            +
                  return vals;
         
     | 
| 
      
 3105 
     | 
    
         
            +
                }
         
     | 
| 
      
 3106 
     | 
    
         
            +
                if (this.polyline) {
         
     | 
| 
      
 3107 
     | 
    
         
            +
                  vals.perimeter = this._perimetersum.Sum();
         
     | 
| 
      
 3108 
     | 
    
         
            +
                  return vals;
         
     | 
| 
      
 3109 
     | 
    
         
            +
                }
         
     | 
| 
      
 3110 
     | 
    
         
            +
                t = this._geod.Inverse(this.lat, this.lon, this._lat0, this._lon0,
         
     | 
| 
      
 3111 
     | 
    
         
            +
                                       this._mask);
         
     | 
| 
      
 3112 
     | 
    
         
            +
                vals.perimeter = this._perimetersum.Sum(t.s12);
         
     | 
| 
      
 3113 
     | 
    
         
            +
                tempsum = new a.Accumulator(this._areasum);
         
     | 
| 
      
 3114 
     | 
    
         
            +
                tempsum.Add(t.S12);
         
     | 
| 
      
 3115 
     | 
    
         
            +
                crossings = this._crossings + transit(this.lon, this._lon0);
         
     | 
| 
      
 3116 
     | 
    
         
            +
                if (crossings & 1)
         
     | 
| 
      
 3117 
     | 
    
         
            +
                  tempsum.Add( (tempsum.Sum() < 0 ? 1 : -1) * this._area0/2 );
         
     | 
| 
      
 3118 
     | 
    
         
            +
                // area is with the clockwise sense.  If !reverse convert to
         
     | 
| 
      
 3119 
     | 
    
         
            +
                // counter-clockwise convention.
         
     | 
| 
      
 3120 
     | 
    
         
            +
                if (!reverse)
         
     | 
| 
      
 3121 
     | 
    
         
            +
                  tempsum.Negate();
         
     | 
| 
      
 3122 
     | 
    
         
            +
                // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
         
     | 
| 
      
 3123 
     | 
    
         
            +
                if (sign) {
         
     | 
| 
      
 3124 
     | 
    
         
            +
                  if (tempsum.Sum() > this._area0/2)
         
     | 
| 
      
 3125 
     | 
    
         
            +
                    tempsum.Add( -this._area0 );
         
     | 
| 
      
 3126 
     | 
    
         
            +
                  else if (tempsum.Sum() <= -this._area0/2)
         
     | 
| 
      
 3127 
     | 
    
         
            +
                    tempsum.Add( +this._area0 );
         
     | 
| 
      
 3128 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 3129 
     | 
    
         
            +
                  if (tempsum.Sum() >= this._area0)
         
     | 
| 
      
 3130 
     | 
    
         
            +
                    tempsum.Add( -this._area0 );
         
     | 
| 
      
 3131 
     | 
    
         
            +
                  else if (tempsum < 0)
         
     | 
| 
      
 3132 
     | 
    
         
            +
                    tempsum.Add( -this._area0 );
         
     | 
| 
      
 3133 
     | 
    
         
            +
                }
         
     | 
| 
      
 3134 
     | 
    
         
            +
                vals.area = tempsum.Sum();
         
     | 
| 
      
 3135 
     | 
    
         
            +
                return vals;
         
     | 
| 
      
 3136 
     | 
    
         
            +
              };
         
     | 
| 
      
 3137 
     | 
    
         
            +
             
     | 
| 
      
 3138 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3139 
     | 
    
         
            +
               * @summary Compute the perimeter and area of the polygon with a tentative
         
     | 
| 
      
 3140 
     | 
    
         
            +
               *   new vertex.
         
     | 
| 
      
 3141 
     | 
    
         
            +
               * @param {number} lat the latitude of the point (degrees).
         
     | 
| 
      
 3142 
     | 
    
         
            +
               * @param {number} lon the longitude of the point (degrees).
         
     | 
| 
      
 3143 
     | 
    
         
            +
               * @param {bool} reverse if true then clockwise (instead of
         
     | 
| 
      
 3144 
     | 
    
         
            +
               *   counter-clockwise) traversal counts as a positive area.
         
     | 
| 
      
 3145 
     | 
    
         
            +
               * @param {bool} sign if true then return a signed result for the area if the
         
     | 
| 
      
 3146 
     | 
    
         
            +
               *   polygon is traversed in the "wrong" direction instead of returning the
         
     | 
| 
      
 3147 
     | 
    
         
            +
               * @returns {object} r where r.number is the number of vertices, r.perimeter
         
     | 
| 
      
 3148 
     | 
    
         
            +
               *   is the perimeter (meters), and r.area (only returned if polyline is
         
     | 
| 
      
 3149 
     | 
    
         
            +
               *   false) is the area (meters<sup>2</sup>).
         
     | 
| 
      
 3150 
     | 
    
         
            +
               * @description A new vertex is *not* added to the polygon.
         
     | 
| 
      
 3151 
     | 
    
         
            +
               */
         
     | 
| 
      
 3152 
     | 
    
         
            +
              p.PolygonArea.prototype.TestPoint = function(lat, lon, reverse, sign) {
         
     | 
| 
      
 3153 
     | 
    
         
            +
                var vals = {number: this.num + 1}, t, tempsum, crossings, i;
         
     | 
| 
      
 3154 
     | 
    
         
            +
                if (this.num === 0) {
         
     | 
| 
      
 3155 
     | 
    
         
            +
                  vals.perimeter = 0;
         
     | 
| 
      
 3156 
     | 
    
         
            +
                  if (!this.polyline)
         
     | 
| 
      
 3157 
     | 
    
         
            +
                    vals.area = 0;
         
     | 
| 
      
 3158 
     | 
    
         
            +
                  return vals;
         
     | 
| 
      
 3159 
     | 
    
         
            +
                }
         
     | 
| 
      
 3160 
     | 
    
         
            +
                vals.perimeter = this._perimetersum.Sum();
         
     | 
| 
      
 3161 
     | 
    
         
            +
                tempsum = this.polyline ? 0 : this._areasum.Sum();
         
     | 
| 
      
 3162 
     | 
    
         
            +
                crossings = this._crossings;
         
     | 
| 
      
 3163 
     | 
    
         
            +
                for (i = 0; i < (this.polyline ? 1 : 2); ++i) {
         
     | 
| 
      
 3164 
     | 
    
         
            +
                  t = this._geod.Inverse(
         
     | 
| 
      
 3165 
     | 
    
         
            +
                   i === 0 ? this.lat : lat, i === 0 ? this.lon : lon,
         
     | 
| 
      
 3166 
     | 
    
         
            +
                   i !== 0 ? this._lat0 : lat, i !== 0 ? this._lon0 : lon,
         
     | 
| 
      
 3167 
     | 
    
         
            +
                   this._mask);
         
     | 
| 
      
 3168 
     | 
    
         
            +
                  vals.perimeter += t.s12;
         
     | 
| 
      
 3169 
     | 
    
         
            +
                  if (!this.polyline) {
         
     | 
| 
      
 3170 
     | 
    
         
            +
                    tempsum += t.S12;
         
     | 
| 
      
 3171 
     | 
    
         
            +
                    crossings += transit(i === 0 ? this.lon : lon,
         
     | 
| 
      
 3172 
     | 
    
         
            +
                                           i !== 0 ? this._lon0 : lon);
         
     | 
| 
      
 3173 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3174 
     | 
    
         
            +
                }
         
     | 
| 
      
 3175 
     | 
    
         
            +
             
     | 
| 
      
 3176 
     | 
    
         
            +
                if (this.polyline)
         
     | 
| 
      
 3177 
     | 
    
         
            +
                  return vals;
         
     | 
| 
      
 3178 
     | 
    
         
            +
             
     | 
| 
      
 3179 
     | 
    
         
            +
                if (crossings & 1)
         
     | 
| 
      
 3180 
     | 
    
         
            +
                  tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
         
     | 
| 
      
 3181 
     | 
    
         
            +
                // area is with the clockwise sense.  If !reverse convert to
         
     | 
| 
      
 3182 
     | 
    
         
            +
                // counter-clockwise convention.
         
     | 
| 
      
 3183 
     | 
    
         
            +
                if (!reverse)
         
     | 
| 
      
 3184 
     | 
    
         
            +
                  tempsum *= -1;
         
     | 
| 
      
 3185 
     | 
    
         
            +
                // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
         
     | 
| 
      
 3186 
     | 
    
         
            +
                if (sign) {
         
     | 
| 
      
 3187 
     | 
    
         
            +
                  if (tempsum > this._area0/2)
         
     | 
| 
      
 3188 
     | 
    
         
            +
                    tempsum -= this._area0;
         
     | 
| 
      
 3189 
     | 
    
         
            +
                  else if (tempsum <= -this._area0/2)
         
     | 
| 
      
 3190 
     | 
    
         
            +
                    tempsum += this._area0;
         
     | 
| 
      
 3191 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 3192 
     | 
    
         
            +
                  if (tempsum >= this._area0)
         
     | 
| 
      
 3193 
     | 
    
         
            +
                    tempsum -= this._area0;
         
     | 
| 
      
 3194 
     | 
    
         
            +
                  else if (tempsum < 0)
         
     | 
| 
      
 3195 
     | 
    
         
            +
                    tempsum += this._area0;
         
     | 
| 
      
 3196 
     | 
    
         
            +
                }
         
     | 
| 
      
 3197 
     | 
    
         
            +
                vals.area = tempsum;
         
     | 
| 
      
 3198 
     | 
    
         
            +
                return vals;
         
     | 
| 
      
 3199 
     | 
    
         
            +
              };
         
     | 
| 
      
 3200 
     | 
    
         
            +
             
     | 
| 
      
 3201 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3202 
     | 
    
         
            +
               * @summary Compute the perimeter and area of the polygon with a tentative
         
     | 
| 
      
 3203 
     | 
    
         
            +
               *   new edge.
         
     | 
| 
      
 3204 
     | 
    
         
            +
               * @param {number} azi the azimuth of the edge (degrees).
         
     | 
| 
      
 3205 
     | 
    
         
            +
               * @param {number} s the length of the edge (meters).
         
     | 
| 
      
 3206 
     | 
    
         
            +
               * @param {bool} reverse if true then clockwise (instead of
         
     | 
| 
      
 3207 
     | 
    
         
            +
               *   counter-clockwise) traversal counts as a positive area.
         
     | 
| 
      
 3208 
     | 
    
         
            +
               * @param {bool} sign if true then return a signed result for the area if the
         
     | 
| 
      
 3209 
     | 
    
         
            +
               *   polygon is traversed in the "wrong" direction instead of returning the
         
     | 
| 
      
 3210 
     | 
    
         
            +
               * @returns {object} r where r.number is the number of vertices, r.perimeter
         
     | 
| 
      
 3211 
     | 
    
         
            +
               *   is the perimeter (meters), and r.area (only returned if polyline is
         
     | 
| 
      
 3212 
     | 
    
         
            +
               *   false) is the area (meters<sup>2</sup>).
         
     | 
| 
      
 3213 
     | 
    
         
            +
               * @description A new vertex is *not* added to the polygon.
         
     | 
| 
      
 3214 
     | 
    
         
            +
               */
         
     | 
| 
      
 3215 
     | 
    
         
            +
              p.PolygonArea.prototype.TestEdge = function(azi, s, reverse, sign) {
         
     | 
| 
      
 3216 
     | 
    
         
            +
                var vals = {number: this.num ? this.num + 1 : 0}, t, tempsum, crossings;
         
     | 
| 
      
 3217 
     | 
    
         
            +
                if (this.num === 0)
         
     | 
| 
      
 3218 
     | 
    
         
            +
                  return vals;
         
     | 
| 
      
 3219 
     | 
    
         
            +
                vals.perimeter = this._perimetersum.Sum() + s;
         
     | 
| 
      
 3220 
     | 
    
         
            +
                if (this.polyline)
         
     | 
| 
      
 3221 
     | 
    
         
            +
                  return vals;
         
     | 
| 
      
 3222 
     | 
    
         
            +
             
     | 
| 
      
 3223 
     | 
    
         
            +
                tempsum = this._areasum.Sum();
         
     | 
| 
      
 3224 
     | 
    
         
            +
                crossings = this._crossings;
         
     | 
| 
      
 3225 
     | 
    
         
            +
                t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
         
     | 
| 
      
 3226 
     | 
    
         
            +
                tempsum += t.S12;
         
     | 
| 
      
 3227 
     | 
    
         
            +
                crossings += transitdirect(this.lon, t.lon2);
         
     | 
| 
      
 3228 
     | 
    
         
            +
                t = this._geod.Inverse(t.lat2, t.lon2, this._lat0, this._lon0, this._mask);
         
     | 
| 
      
 3229 
     | 
    
         
            +
                vals.perimeter += t.s12;
         
     | 
| 
      
 3230 
     | 
    
         
            +
                tempsum += t.S12;
         
     | 
| 
      
 3231 
     | 
    
         
            +
                crossings += transit(t.lon2, this._lon0);
         
     | 
| 
      
 3232 
     | 
    
         
            +
             
     | 
| 
      
 3233 
     | 
    
         
            +
                if (crossings & 1)
         
     | 
| 
      
 3234 
     | 
    
         
            +
                  tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
         
     | 
| 
      
 3235 
     | 
    
         
            +
                // area is with the clockwise sense.  If !reverse convert to
         
     | 
| 
      
 3236 
     | 
    
         
            +
                // counter-clockwise convention.
         
     | 
| 
      
 3237 
     | 
    
         
            +
                if (!reverse)
         
     | 
| 
      
 3238 
     | 
    
         
            +
                  tempsum *= -1;
         
     | 
| 
      
 3239 
     | 
    
         
            +
                // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
         
     | 
| 
      
 3240 
     | 
    
         
            +
                if (sign) {
         
     | 
| 
      
 3241 
     | 
    
         
            +
                  if (tempsum > this._area0/2)
         
     | 
| 
      
 3242 
     | 
    
         
            +
                    tempsum -= this._area0;
         
     | 
| 
      
 3243 
     | 
    
         
            +
                  else if (tempsum <= -this._area0/2)
         
     | 
| 
      
 3244 
     | 
    
         
            +
                    tempsum += this._area0;
         
     | 
| 
      
 3245 
     | 
    
         
            +
                } else {
         
     | 
| 
      
 3246 
     | 
    
         
            +
                  if (tempsum >= this._area0)
         
     | 
| 
      
 3247 
     | 
    
         
            +
                    tempsum -= this._area0;
         
     | 
| 
      
 3248 
     | 
    
         
            +
                  else if (tempsum < 0)
         
     | 
| 
      
 3249 
     | 
    
         
            +
                    tempsum += this._area0;
         
     | 
| 
      
 3250 
     | 
    
         
            +
                }
         
     | 
| 
      
 3251 
     | 
    
         
            +
                vals.area = tempsum;
         
     | 
| 
      
 3252 
     | 
    
         
            +
                return vals;
         
     | 
| 
      
 3253 
     | 
    
         
            +
              };
         
     | 
| 
      
 3254 
     | 
    
         
            +
             
     | 
| 
      
 3255 
     | 
    
         
            +
            })(GeographicLib.PolygonArea, GeographicLib.Geodesic,
         
     | 
| 
      
 3256 
     | 
    
         
            +
               GeographicLib.Math, GeographicLib.Accumulator);
         
     | 
| 
      
 3257 
     | 
    
         
            +
             
     | 
| 
      
 3258 
     | 
    
         
            +
            /**************** DMS.js ****************/
         
     | 
| 
      
 3259 
     | 
    
         
            +
            /*
         
     | 
| 
      
 3260 
     | 
    
         
            +
             * DMS.js
         
     | 
| 
      
 3261 
     | 
    
         
            +
             * Transcription of DMS.[ch]pp into JavaScript.
         
     | 
| 
      
 3262 
     | 
    
         
            +
             *
         
     | 
| 
      
 3263 
     | 
    
         
            +
             * See the documentation for the C++ class.  The conversion is a literal
         
     | 
| 
      
 3264 
     | 
    
         
            +
             * conversion from C++.
         
     | 
| 
      
 3265 
     | 
    
         
            +
             *
         
     | 
| 
      
 3266 
     | 
    
         
            +
             * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
         
     | 
| 
      
 3267 
     | 
    
         
            +
             * under the MIT/X11 License.  For more information, see
         
     | 
| 
      
 3268 
     | 
    
         
            +
             * https://geographiclib.sourceforge.io/
         
     | 
| 
      
 3269 
     | 
    
         
            +
             */
         
     | 
| 
      
 3270 
     | 
    
         
            +
             
     | 
| 
      
 3271 
     | 
    
         
            +
            GeographicLib.DMS = {};
         
     | 
| 
      
 3272 
     | 
    
         
            +
             
     | 
| 
      
 3273 
     | 
    
         
            +
            (function(
         
     | 
| 
      
 3274 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3275 
     | 
    
         
            +
               * @exports GeographicLib/DMS
         
     | 
| 
      
 3276 
     | 
    
         
            +
               * @description Decode/Encode angles expressed as degrees, minutes, and
         
     | 
| 
      
 3277 
     | 
    
         
            +
               *   seconds.  This module defines several constants:
         
     | 
| 
      
 3278 
     | 
    
         
            +
               *   - hemisphere indicator (returned by
         
     | 
| 
      
 3279 
     | 
    
         
            +
               *       {@link module:GeographicLib/DMS.Decode Decode}) and a formatting
         
     | 
| 
      
 3280 
     | 
    
         
            +
               *       indicator (used by
         
     | 
| 
      
 3281 
     | 
    
         
            +
               *       {@link module:GeographicLib/DMS.Encode Encode})
         
     | 
| 
      
 3282 
     | 
    
         
            +
               *     - NONE = 0, no designator and format as plain angle;
         
     | 
| 
      
 3283 
     | 
    
         
            +
               *     - LATITUDE = 1, a N/S designator and format as latitude;
         
     | 
| 
      
 3284 
     | 
    
         
            +
               *     - LONGITUDE = 2, an E/W designator and format as longitude;
         
     | 
| 
      
 3285 
     | 
    
         
            +
               *     - AZIMUTH = 3, format as azimuth;
         
     | 
| 
      
 3286 
     | 
    
         
            +
               *   - the specification of the trailing component in
         
     | 
| 
      
 3287 
     | 
    
         
            +
               *       {@link module:GeographicLib/DMS.Encode Encode}
         
     | 
| 
      
 3288 
     | 
    
         
            +
               *     - DEGREE;
         
     | 
| 
      
 3289 
     | 
    
         
            +
               *     - MINUTE;
         
     | 
| 
      
 3290 
     | 
    
         
            +
               *     - SECOND.
         
     | 
| 
      
 3291 
     | 
    
         
            +
               */
         
     | 
| 
      
 3292 
     | 
    
         
            +
              d) {
         
     | 
| 
      
 3293 
     | 
    
         
            +
             
     | 
| 
      
 3294 
     | 
    
         
            +
              var lookup, zerofill, internalDecode, numMatch,
         
     | 
| 
      
 3295 
     | 
    
         
            +
                  hemispheres_ = "SNWE",
         
     | 
| 
      
 3296 
     | 
    
         
            +
                  signs_ = "-+",
         
     | 
| 
      
 3297 
     | 
    
         
            +
                  digits_ = "0123456789",
         
     | 
| 
      
 3298 
     | 
    
         
            +
                  dmsindicators_ = "D'\":",
         
     | 
| 
      
 3299 
     | 
    
         
            +
                  // dmsindicatorsu_ = "\u00b0\u2032\u2033"; // Unicode variants
         
     | 
| 
      
 3300 
     | 
    
         
            +
                  dmsindicatorsu_ = "\u00b0'\"", // Use degree symbol
         
     | 
| 
      
 3301 
     | 
    
         
            +
                  components_ = ["degrees", "minutes", "seconds"];
         
     | 
| 
      
 3302 
     | 
    
         
            +
              lookup = function(s, c) {
         
     | 
| 
      
 3303 
     | 
    
         
            +
                return s.indexOf(c.toUpperCase());
         
     | 
| 
      
 3304 
     | 
    
         
            +
              };
         
     | 
| 
      
 3305 
     | 
    
         
            +
              zerofill = function(s, n) {
         
     | 
| 
      
 3306 
     | 
    
         
            +
                return String("0000").substr(0, Math.max(0, Math.min(4, n-s.length))) +
         
     | 
| 
      
 3307 
     | 
    
         
            +
                  s;
         
     | 
| 
      
 3308 
     | 
    
         
            +
              };
         
     | 
| 
      
 3309 
     | 
    
         
            +
              d.NONE = 0;
         
     | 
| 
      
 3310 
     | 
    
         
            +
              d.LATITUDE = 1;
         
     | 
| 
      
 3311 
     | 
    
         
            +
              d.LONGITUDE = 2;
         
     | 
| 
      
 3312 
     | 
    
         
            +
              d.AZIMUTH = 3;
         
     | 
| 
      
 3313 
     | 
    
         
            +
              d.DEGREE = 0;
         
     | 
| 
      
 3314 
     | 
    
         
            +
              d.MINUTE = 1;
         
     | 
| 
      
 3315 
     | 
    
         
            +
              d.SECOND = 2;
         
     | 
| 
      
 3316 
     | 
    
         
            +
             
     | 
| 
      
 3317 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3318 
     | 
    
         
            +
               * @summary Decode a DMS string.
         
     | 
| 
      
 3319 
     | 
    
         
            +
               * @description The interpretation of the string is given in the
         
     | 
| 
      
 3320 
     | 
    
         
            +
               *   documentation of the corresponding function, Decode(string&, flag&)
         
     | 
| 
      
 3321 
     | 
    
         
            +
               *   in the {@link
         
     | 
| 
      
 3322 
     | 
    
         
            +
               *   https://geographiclib.sourceforge.io/html/classGeographicLib_1_1DMS.html
         
     | 
| 
      
 3323 
     | 
    
         
            +
               *   C++ DMS class}
         
     | 
| 
      
 3324 
     | 
    
         
            +
               * @param {string} dms the string.
         
     | 
| 
      
 3325 
     | 
    
         
            +
               * @returns {object} r where r.val is the decoded value (degrees) and r.ind
         
     | 
| 
      
 3326 
     | 
    
         
            +
               *   is a hemisphere designator, one of NONE, LATITUDE, LONGITUDE.
         
     | 
| 
      
 3327 
     | 
    
         
            +
               * @throws an error if the string is illegal.
         
     | 
| 
      
 3328 
     | 
    
         
            +
               */
         
     | 
| 
      
 3329 
     | 
    
         
            +
              d.Decode = function(dms) {
         
     | 
| 
      
 3330 
     | 
    
         
            +
                var dmsa = dms, end,
         
     | 
| 
      
 3331 
     | 
    
         
            +
                    v = 0, i = 0, mi, pi, vals,
         
     | 
| 
      
 3332 
     | 
    
         
            +
                    ind1 = d.NONE, ind2, p, pa, pb;
         
     | 
| 
      
 3333 
     | 
    
         
            +
                dmsa = dmsa.replace(/\u00b0/g, 'd')
         
     | 
| 
      
 3334 
     | 
    
         
            +
                      .replace(/\u00ba/g, 'd')
         
     | 
| 
      
 3335 
     | 
    
         
            +
                      .replace(/\u2070/g, 'd')
         
     | 
| 
      
 3336 
     | 
    
         
            +
                      .replace(/\u02da/g, 'd')
         
     | 
| 
      
 3337 
     | 
    
         
            +
                      .replace(/\u2032/g, '\'')
         
     | 
| 
      
 3338 
     | 
    
         
            +
                      .replace(/\u00b4/g, '\'')
         
     | 
| 
      
 3339 
     | 
    
         
            +
                      .replace(/\u2019/g, '\'')
         
     | 
| 
      
 3340 
     | 
    
         
            +
                      .replace(/\u2033/g, '"')
         
     | 
| 
      
 3341 
     | 
    
         
            +
                      .replace(/\u201d/g, '"')
         
     | 
| 
      
 3342 
     | 
    
         
            +
                      .replace(/\u2212/g, '-')
         
     | 
| 
      
 3343 
     | 
    
         
            +
                      .replace(/''/g, '"')
         
     | 
| 
      
 3344 
     | 
    
         
            +
                      .trim();
         
     | 
| 
      
 3345 
     | 
    
         
            +
                end = dmsa.length;
         
     | 
| 
      
 3346 
     | 
    
         
            +
                // p is pointer to the next piece that needs decoding
         
     | 
| 
      
 3347 
     | 
    
         
            +
                for (p = 0; p < end; p = pb, ++i) {
         
     | 
| 
      
 3348 
     | 
    
         
            +
                  pa = p;
         
     | 
| 
      
 3349 
     | 
    
         
            +
                  // Skip over initial hemisphere letter (for i == 0)
         
     | 
| 
      
 3350 
     | 
    
         
            +
                  if (i === 0 && lookup(hemispheres_, dmsa.charAt(pa)) >= 0)
         
     | 
| 
      
 3351 
     | 
    
         
            +
                    ++pa;
         
     | 
| 
      
 3352 
     | 
    
         
            +
                  // Skip over initial sign (checking for it if i == 0)
         
     | 
| 
      
 3353 
     | 
    
         
            +
                  if (i > 0 || (pa < end && lookup(signs_, dmsa.charAt(pa)) >= 0))
         
     | 
| 
      
 3354 
     | 
    
         
            +
                    ++pa;
         
     | 
| 
      
 3355 
     | 
    
         
            +
                  // Find next sign
         
     | 
| 
      
 3356 
     | 
    
         
            +
                  mi = dmsa.substr(pa, end - pa).indexOf('-');
         
     | 
| 
      
 3357 
     | 
    
         
            +
                  pi = dmsa.substr(pa, end - pa).indexOf('+');
         
     | 
| 
      
 3358 
     | 
    
         
            +
                  if (mi < 0) mi = end; else mi += pa;
         
     | 
| 
      
 3359 
     | 
    
         
            +
                  if (pi < 0) pi = end; else pi += pa;
         
     | 
| 
      
 3360 
     | 
    
         
            +
                  pb = Math.min(mi, pi);
         
     | 
| 
      
 3361 
     | 
    
         
            +
                  vals = internalDecode(dmsa.substr(p, pb - p));
         
     | 
| 
      
 3362 
     | 
    
         
            +
                  v += vals.val; ind2 = vals.ind;
         
     | 
| 
      
 3363 
     | 
    
         
            +
                  if (ind1 === d.NONE)
         
     | 
| 
      
 3364 
     | 
    
         
            +
                    ind1 = ind2;
         
     | 
| 
      
 3365 
     | 
    
         
            +
                  else if (!(ind2 === d.NONE || ind1 === ind2))
         
     | 
| 
      
 3366 
     | 
    
         
            +
                    throw new Error("Incompatible hemisphere specifies in " +
         
     | 
| 
      
 3367 
     | 
    
         
            +
                                    dmsa.substr(0, pb));
         
     | 
| 
      
 3368 
     | 
    
         
            +
                }
         
     | 
| 
      
 3369 
     | 
    
         
            +
                if (i === 0)
         
     | 
| 
      
 3370 
     | 
    
         
            +
                  throw new Error("Empty or incomplete DMS string " + dmsa);
         
     | 
| 
      
 3371 
     | 
    
         
            +
                return {val: v, ind: ind1};
         
     | 
| 
      
 3372 
     | 
    
         
            +
              };
         
     | 
| 
      
 3373 
     | 
    
         
            +
             
     | 
| 
      
 3374 
     | 
    
         
            +
              internalDecode = function(dmsa) {
         
     | 
| 
      
 3375 
     | 
    
         
            +
                var vals = {}, errormsg = "",
         
     | 
| 
      
 3376 
     | 
    
         
            +
                    sign, beg, end, ind1, k,
         
     | 
| 
      
 3377 
     | 
    
         
            +
                    ipieces, fpieces, npiece,
         
     | 
| 
      
 3378 
     | 
    
         
            +
                    icurrent, fcurrent, ncurrent, p,
         
     | 
| 
      
 3379 
     | 
    
         
            +
                    pointseen,
         
     | 
| 
      
 3380 
     | 
    
         
            +
                    digcount, intcount,
         
     | 
| 
      
 3381 
     | 
    
         
            +
                    x;
         
     | 
| 
      
 3382 
     | 
    
         
            +
                do {                       // Executed once (provides the ability to break)
         
     | 
| 
      
 3383 
     | 
    
         
            +
                  sign = 1;
         
     | 
| 
      
 3384 
     | 
    
         
            +
                  beg = 0; end = dmsa.length;
         
     | 
| 
      
 3385 
     | 
    
         
            +
                  ind1 = d.NONE;
         
     | 
| 
      
 3386 
     | 
    
         
            +
                  k = -1;
         
     | 
| 
      
 3387 
     | 
    
         
            +
                  if (end > beg && (k = lookup(hemispheres_, dmsa.charAt(beg))) >= 0) {
         
     | 
| 
      
 3388 
     | 
    
         
            +
                    ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
         
     | 
| 
      
 3389 
     | 
    
         
            +
                    sign = (k & 1) ? 1 : -1;
         
     | 
| 
      
 3390 
     | 
    
         
            +
                    ++beg;
         
     | 
| 
      
 3391 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3392 
     | 
    
         
            +
                  if (end > beg &&
         
     | 
| 
      
 3393 
     | 
    
         
            +
                      (k = lookup(hemispheres_, dmsa.charAt(end-1))) >= 0) {
         
     | 
| 
      
 3394 
     | 
    
         
            +
                    if (k >= 0) {
         
     | 
| 
      
 3395 
     | 
    
         
            +
                      if (ind1 !== d.NONE) {
         
     | 
| 
      
 3396 
     | 
    
         
            +
                        if (dmsa.charAt(beg - 1).toUpperCase() ===
         
     | 
| 
      
 3397 
     | 
    
         
            +
                            dmsa.charAt(end - 1).toUpperCase())
         
     | 
| 
      
 3398 
     | 
    
         
            +
                          errormsg = "Repeated hemisphere indicators " +
         
     | 
| 
      
 3399 
     | 
    
         
            +
                          dmsa.charAt(beg - 1) + " in " +
         
     | 
| 
      
 3400 
     | 
    
         
            +
                          dmsa.substr(beg - 1, end - beg + 1);
         
     | 
| 
      
 3401 
     | 
    
         
            +
                        else
         
     | 
| 
      
 3402 
     | 
    
         
            +
                          errormsg = "Contradictory hemisphere indicators " +
         
     | 
| 
      
 3403 
     | 
    
         
            +
                          dmsa.charAt(beg - 1) + " and " + dmsa.charAt(end - 1) + " in " +
         
     | 
| 
      
 3404 
     | 
    
         
            +
                          dmsa.substr(beg - 1, end - beg + 1);
         
     | 
| 
      
 3405 
     | 
    
         
            +
                        break;
         
     | 
| 
      
 3406 
     | 
    
         
            +
                      }
         
     | 
| 
      
 3407 
     | 
    
         
            +
                      ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
         
     | 
| 
      
 3408 
     | 
    
         
            +
                      sign = (k & 1) ? 1 : -1;
         
     | 
| 
      
 3409 
     | 
    
         
            +
                      --end;
         
     | 
| 
      
 3410 
     | 
    
         
            +
                    }
         
     | 
| 
      
 3411 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3412 
     | 
    
         
            +
                  if (end > beg && (k = lookup(signs_, dmsa.charAt(beg))) >= 0) {
         
     | 
| 
      
 3413 
     | 
    
         
            +
                    if (k >= 0) {
         
     | 
| 
      
 3414 
     | 
    
         
            +
                      sign *= k ? 1 : -1;
         
     | 
| 
      
 3415 
     | 
    
         
            +
                      ++beg;
         
     | 
| 
      
 3416 
     | 
    
         
            +
                    }
         
     | 
| 
      
 3417 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3418 
     | 
    
         
            +
                  if (end === beg) {
         
     | 
| 
      
 3419 
     | 
    
         
            +
                    errormsg = "Empty or incomplete DMS string " + dmsa;
         
     | 
| 
      
 3420 
     | 
    
         
            +
                    break;
         
     | 
| 
      
 3421 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3422 
     | 
    
         
            +
                  ipieces = [0, 0, 0];
         
     | 
| 
      
 3423 
     | 
    
         
            +
                  fpieces = [0, 0, 0];
         
     | 
| 
      
 3424 
     | 
    
         
            +
                  npiece = 0;
         
     | 
| 
      
 3425 
     | 
    
         
            +
                  icurrent = 0;
         
     | 
| 
      
 3426 
     | 
    
         
            +
                  fcurrent = 0;
         
     | 
| 
      
 3427 
     | 
    
         
            +
                  ncurrent = 0;
         
     | 
| 
      
 3428 
     | 
    
         
            +
                  p = beg;
         
     | 
| 
      
 3429 
     | 
    
         
            +
                  pointseen = false;
         
     | 
| 
      
 3430 
     | 
    
         
            +
                  digcount = 0;
         
     | 
| 
      
 3431 
     | 
    
         
            +
                  intcount = 0;
         
     | 
| 
      
 3432 
     | 
    
         
            +
                  while (p < end) {
         
     | 
| 
      
 3433 
     | 
    
         
            +
                    x = dmsa.charAt(p++);
         
     | 
| 
      
 3434 
     | 
    
         
            +
                    if ((k = lookup(digits_, x)) >= 0) {
         
     | 
| 
      
 3435 
     | 
    
         
            +
                      ++ncurrent;
         
     | 
| 
      
 3436 
     | 
    
         
            +
                      if (digcount > 0) {
         
     | 
| 
      
 3437 
     | 
    
         
            +
                        ++digcount;         // Count of decimal digits
         
     | 
| 
      
 3438 
     | 
    
         
            +
                      } else {
         
     | 
| 
      
 3439 
     | 
    
         
            +
                        icurrent = 10 * icurrent + k;
         
     | 
| 
      
 3440 
     | 
    
         
            +
                        ++intcount;
         
     | 
| 
      
 3441 
     | 
    
         
            +
                      }
         
     | 
| 
      
 3442 
     | 
    
         
            +
                    } else if (x === '.') {
         
     | 
| 
      
 3443 
     | 
    
         
            +
                      if (pointseen) {
         
     | 
| 
      
 3444 
     | 
    
         
            +
                        errormsg = "Multiple decimal points in " +
         
     | 
| 
      
 3445 
     | 
    
         
            +
                          dmsa.substr(beg, end - beg);
         
     | 
| 
      
 3446 
     | 
    
         
            +
                        break;
         
     | 
| 
      
 3447 
     | 
    
         
            +
                      }
         
     | 
| 
      
 3448 
     | 
    
         
            +
                      pointseen = true;
         
     | 
| 
      
 3449 
     | 
    
         
            +
                      digcount = 1;
         
     | 
| 
      
 3450 
     | 
    
         
            +
                    } else if ((k = lookup(dmsindicators_, x)) >= 0) {
         
     | 
| 
      
 3451 
     | 
    
         
            +
                      if (k >= 3) {
         
     | 
| 
      
 3452 
     | 
    
         
            +
                        if (p === end) {
         
     | 
| 
      
 3453 
     | 
    
         
            +
                          errormsg = "Illegal for colon to appear at the end of " +
         
     | 
| 
      
 3454 
     | 
    
         
            +
                            dmsa.substr(beg, end - beg);
         
     | 
| 
      
 3455 
     | 
    
         
            +
                          break;
         
     | 
| 
      
 3456 
     | 
    
         
            +
                        }
         
     | 
| 
      
 3457 
     | 
    
         
            +
                        k = npiece;
         
     | 
| 
      
 3458 
     | 
    
         
            +
                      }
         
     | 
| 
      
 3459 
     | 
    
         
            +
                      if (k === npiece - 1) {
         
     | 
| 
      
 3460 
     | 
    
         
            +
                        errormsg = "Repeated " + components_[k] +
         
     | 
| 
      
 3461 
     | 
    
         
            +
                          " component in " + dmsa.substr(beg, end - beg);
         
     | 
| 
      
 3462 
     | 
    
         
            +
                        break;
         
     | 
| 
      
 3463 
     | 
    
         
            +
                      } else if (k < npiece) {
         
     | 
| 
      
 3464 
     | 
    
         
            +
                        errormsg = components_[k] + " component follows " +
         
     | 
| 
      
 3465 
     | 
    
         
            +
                          components_[npiece - 1] + " component in " +
         
     | 
| 
      
 3466 
     | 
    
         
            +
                          dmsa.substr(beg, end - beg);
         
     | 
| 
      
 3467 
     | 
    
         
            +
                        break;
         
     | 
| 
      
 3468 
     | 
    
         
            +
                      }
         
     | 
| 
      
 3469 
     | 
    
         
            +
                      if (ncurrent === 0) {
         
     | 
| 
      
 3470 
     | 
    
         
            +
                        errormsg = "Missing numbers in " + components_[k] +
         
     | 
| 
      
 3471 
     | 
    
         
            +
                          " component of " + dmsa.substr(beg, end - beg);
         
     | 
| 
      
 3472 
     | 
    
         
            +
                        break;
         
     | 
| 
      
 3473 
     | 
    
         
            +
                      }
         
     | 
| 
      
 3474 
     | 
    
         
            +
                      if (digcount > 0) {
         
     | 
| 
      
 3475 
     | 
    
         
            +
                        fcurrent = parseFloat(dmsa.substr(p - intcount - digcount - 1,
         
     | 
| 
      
 3476 
     | 
    
         
            +
                                                          intcount + digcount));
         
     | 
| 
      
 3477 
     | 
    
         
            +
                        icurrent = 0;
         
     | 
| 
      
 3478 
     | 
    
         
            +
                      }
         
     | 
| 
      
 3479 
     | 
    
         
            +
                      ipieces[k] = icurrent;
         
     | 
| 
      
 3480 
     | 
    
         
            +
                      fpieces[k] = icurrent + fcurrent;
         
     | 
| 
      
 3481 
     | 
    
         
            +
                      if (p < end) {
         
     | 
| 
      
 3482 
     | 
    
         
            +
                        npiece = k + 1;
         
     | 
| 
      
 3483 
     | 
    
         
            +
                        icurrent = fcurrent = 0;
         
     | 
| 
      
 3484 
     | 
    
         
            +
                        ncurrent = digcount = intcount = 0;
         
     | 
| 
      
 3485 
     | 
    
         
            +
                      }
         
     | 
| 
      
 3486 
     | 
    
         
            +
                    } else if (lookup(signs_, x) >= 0) {
         
     | 
| 
      
 3487 
     | 
    
         
            +
                      errormsg = "Internal sign in DMS string " +
         
     | 
| 
      
 3488 
     | 
    
         
            +
                        dmsa.substr(beg, end - beg);
         
     | 
| 
      
 3489 
     | 
    
         
            +
                      break;
         
     | 
| 
      
 3490 
     | 
    
         
            +
                    } else {
         
     | 
| 
      
 3491 
     | 
    
         
            +
                      errormsg = "Illegal character " + x + " in DMS string " +
         
     | 
| 
      
 3492 
     | 
    
         
            +
                        dmsa.substr(beg, end - beg);
         
     | 
| 
      
 3493 
     | 
    
         
            +
                      break;
         
     | 
| 
      
 3494 
     | 
    
         
            +
                    }
         
     | 
| 
      
 3495 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3496 
     | 
    
         
            +
                  if (errormsg.length)
         
     | 
| 
      
 3497 
     | 
    
         
            +
                    break;
         
     | 
| 
      
 3498 
     | 
    
         
            +
                  if (lookup(dmsindicators_, dmsa.charAt(p - 1)) < 0) {
         
     | 
| 
      
 3499 
     | 
    
         
            +
                    if (npiece >= 3) {
         
     | 
| 
      
 3500 
     | 
    
         
            +
                      errormsg = "Extra text following seconds in DMS string " +
         
     | 
| 
      
 3501 
     | 
    
         
            +
                        dmsa.substr(beg, end - beg);
         
     | 
| 
      
 3502 
     | 
    
         
            +
                      break;
         
     | 
| 
      
 3503 
     | 
    
         
            +
                    }
         
     | 
| 
      
 3504 
     | 
    
         
            +
                    if (ncurrent === 0) {
         
     | 
| 
      
 3505 
     | 
    
         
            +
                      errormsg = "Missing numbers in trailing component of " +
         
     | 
| 
      
 3506 
     | 
    
         
            +
                        dmsa.substr(beg, end - beg);
         
     | 
| 
      
 3507 
     | 
    
         
            +
                      break;
         
     | 
| 
      
 3508 
     | 
    
         
            +
                    }
         
     | 
| 
      
 3509 
     | 
    
         
            +
                    if (digcount > 0) {
         
     | 
| 
      
 3510 
     | 
    
         
            +
                      fcurrent = parseFloat(dmsa.substr(p - intcount - digcount,
         
     | 
| 
      
 3511 
     | 
    
         
            +
                                                        intcount + digcount));
         
     | 
| 
      
 3512 
     | 
    
         
            +
                      icurrent = 0;
         
     | 
| 
      
 3513 
     | 
    
         
            +
                    }
         
     | 
| 
      
 3514 
     | 
    
         
            +
                    ipieces[npiece] = icurrent;
         
     | 
| 
      
 3515 
     | 
    
         
            +
                    fpieces[npiece] = icurrent + fcurrent;
         
     | 
| 
      
 3516 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3517 
     | 
    
         
            +
                  if (pointseen && digcount === 0) {
         
     | 
| 
      
 3518 
     | 
    
         
            +
                    errormsg = "Decimal point in non-terminal component of " +
         
     | 
| 
      
 3519 
     | 
    
         
            +
                      dmsa.substr(beg, end - beg);
         
     | 
| 
      
 3520 
     | 
    
         
            +
                    break;
         
     | 
| 
      
 3521 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3522 
     | 
    
         
            +
                  // Note that we accept 59.999999... even though it rounds to 60.
         
     | 
| 
      
 3523 
     | 
    
         
            +
                  if (ipieces[1] >= 60 || fpieces[1] > 60) {
         
     | 
| 
      
 3524 
     | 
    
         
            +
                    errormsg = "Minutes " + fpieces[1] + " not in range [0,60)";
         
     | 
| 
      
 3525 
     | 
    
         
            +
                    break;
         
     | 
| 
      
 3526 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3527 
     | 
    
         
            +
                  if (ipieces[2] >= 60 || fpieces[2] > 60) {
         
     | 
| 
      
 3528 
     | 
    
         
            +
                    errormsg = "Seconds " + fpieces[2] + " not in range [0,60)";
         
     | 
| 
      
 3529 
     | 
    
         
            +
                    break;
         
     | 
| 
      
 3530 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3531 
     | 
    
         
            +
                  vals.ind = ind1;
         
     | 
| 
      
 3532 
     | 
    
         
            +
                  // Assume check on range of result is made by calling routine (which
         
     | 
| 
      
 3533 
     | 
    
         
            +
                  // might be able to offer a better diagnostic).
         
     | 
| 
      
 3534 
     | 
    
         
            +
                  vals.val = sign *
         
     | 
| 
      
 3535 
     | 
    
         
            +
                    ( fpieces[2] ? (60*(60*fpieces[0] + fpieces[1]) + fpieces[2]) / 3600 :
         
     | 
| 
      
 3536 
     | 
    
         
            +
                      ( fpieces[1] ? (60*fpieces[0] + fpieces[1]) / 60 : fpieces[0] ) );
         
     | 
| 
      
 3537 
     | 
    
         
            +
                  return vals;
         
     | 
| 
      
 3538 
     | 
    
         
            +
                } while (false);
         
     | 
| 
      
 3539 
     | 
    
         
            +
                vals.val = numMatch(dmsa);
         
     | 
| 
      
 3540 
     | 
    
         
            +
                if (vals.val === 0)
         
     | 
| 
      
 3541 
     | 
    
         
            +
                  throw new Error(errormsg);
         
     | 
| 
      
 3542 
     | 
    
         
            +
                else
         
     | 
| 
      
 3543 
     | 
    
         
            +
                  vals.ind = d.NONE;
         
     | 
| 
      
 3544 
     | 
    
         
            +
                return vals;
         
     | 
| 
      
 3545 
     | 
    
         
            +
              };
         
     | 
| 
      
 3546 
     | 
    
         
            +
             
     | 
| 
      
 3547 
     | 
    
         
            +
              numMatch = function(s) {
         
     | 
| 
      
 3548 
     | 
    
         
            +
                var t, sign, p0, p1;
         
     | 
| 
      
 3549 
     | 
    
         
            +
                if (s.length < 3)
         
     | 
| 
      
 3550 
     | 
    
         
            +
                  return 0;
         
     | 
| 
      
 3551 
     | 
    
         
            +
                t = s.toUpperCase().replace(/0+$/, "");
         
     | 
| 
      
 3552 
     | 
    
         
            +
                sign = t.charAt(0) === '-' ? -1 : 1;
         
     | 
| 
      
 3553 
     | 
    
         
            +
                p0 = t.charAt(0) === '-' || t.charAt(0) === '+' ? 1 : 0;
         
     | 
| 
      
 3554 
     | 
    
         
            +
                p1 = t.length - 1;
         
     | 
| 
      
 3555 
     | 
    
         
            +
                if (p1 + 1 < p0 + 3)
         
     | 
| 
      
 3556 
     | 
    
         
            +
                  return 0;
         
     | 
| 
      
 3557 
     | 
    
         
            +
                // Strip off sign and trailing 0s
         
     | 
| 
      
 3558 
     | 
    
         
            +
                t = t.substr(p0, p1 + 1 - p0); // Length at least 3
         
     | 
| 
      
 3559 
     | 
    
         
            +
                if (t === "NAN" || t === "1.#QNAN" || t === "1.#SNAN" || t === "1.#IND" ||
         
     | 
| 
      
 3560 
     | 
    
         
            +
                    t === "1.#R")
         
     | 
| 
      
 3561 
     | 
    
         
            +
                  return Number.NaN;
         
     | 
| 
      
 3562 
     | 
    
         
            +
                else if (t === "INF" || t === "1.#INF")
         
     | 
| 
      
 3563 
     | 
    
         
            +
                  return sign * Number.POSITIVE_INFINITY;
         
     | 
| 
      
 3564 
     | 
    
         
            +
                return 0;
         
     | 
| 
      
 3565 
     | 
    
         
            +
              };
         
     | 
| 
      
 3566 
     | 
    
         
            +
             
     | 
| 
      
 3567 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3568 
     | 
    
         
            +
               * @summary Decode two DMS strings interpreting them as a latitude/longitude
         
     | 
| 
      
 3569 
     | 
    
         
            +
               *   pair.
         
     | 
| 
      
 3570 
     | 
    
         
            +
               * @param {string} stra the first string.
         
     | 
| 
      
 3571 
     | 
    
         
            +
               * @param {string} strb the first string.
         
     | 
| 
      
 3572 
     | 
    
         
            +
               * @param {bool} [longfirst = false] if true assume then longitude is given
         
     | 
| 
      
 3573 
     | 
    
         
            +
               *   first (in the absense of any hemisphere indicators).
         
     | 
| 
      
 3574 
     | 
    
         
            +
               * @returns {object} r where r.lat is the decoded latitude and r.lon is the
         
     | 
| 
      
 3575 
     | 
    
         
            +
               *   decoded longitude (both in degrees).
         
     | 
| 
      
 3576 
     | 
    
         
            +
               * @throws an error if the strings are illegal.
         
     | 
| 
      
 3577 
     | 
    
         
            +
               */
         
     | 
| 
      
 3578 
     | 
    
         
            +
              d.DecodeLatLon = function(stra, strb, longfirst) {
         
     | 
| 
      
 3579 
     | 
    
         
            +
                var vals = {},
         
     | 
| 
      
 3580 
     | 
    
         
            +
                    valsa = d.Decode(stra),
         
     | 
| 
      
 3581 
     | 
    
         
            +
                    valsb = d.Decode(strb),
         
     | 
| 
      
 3582 
     | 
    
         
            +
                    a = valsa.val, ia = valsa.ind,
         
     | 
| 
      
 3583 
     | 
    
         
            +
                    b = valsb.val, ib = valsb.ind,
         
     | 
| 
      
 3584 
     | 
    
         
            +
                    lat, lon;
         
     | 
| 
      
 3585 
     | 
    
         
            +
                if (!longfirst) longfirst = false;
         
     | 
| 
      
 3586 
     | 
    
         
            +
                if (ia === d.NONE && ib === d.NONE) {
         
     | 
| 
      
 3587 
     | 
    
         
            +
                  // Default to lat, long unless longfirst
         
     | 
| 
      
 3588 
     | 
    
         
            +
                  ia = longfirst ? d.LONGITUDE : d.LATITUDE;
         
     | 
| 
      
 3589 
     | 
    
         
            +
                  ib = longfirst ? d.LATITUDE : d.LONGITUDE;
         
     | 
| 
      
 3590 
     | 
    
         
            +
                } else if (ia === d.NONE)
         
     | 
| 
      
 3591 
     | 
    
         
            +
                  ia = d.LATITUDE + d.LONGITUDE - ib;
         
     | 
| 
      
 3592 
     | 
    
         
            +
                else if (ib === d.NONE)
         
     | 
| 
      
 3593 
     | 
    
         
            +
                  ib = d.LATITUDE + d.LONGITUDE - ia;
         
     | 
| 
      
 3594 
     | 
    
         
            +
                if (ia === ib)
         
     | 
| 
      
 3595 
     | 
    
         
            +
                  throw new Error("Both " + stra + " and " + strb + " interpreted as " +
         
     | 
| 
      
 3596 
     | 
    
         
            +
                                  (ia === d.LATITUDE ? "latitudes" : "longitudes"));
         
     | 
| 
      
 3597 
     | 
    
         
            +
                lat = ia === d.LATITUDE ? a : b;
         
     | 
| 
      
 3598 
     | 
    
         
            +
                lon = ia === d.LATITUDE ? b : a;
         
     | 
| 
      
 3599 
     | 
    
         
            +
                if (Math.abs(lat) > 90)
         
     | 
| 
      
 3600 
     | 
    
         
            +
                  throw new Error("Latitude " + lat + " not in [-90,90]");
         
     | 
| 
      
 3601 
     | 
    
         
            +
                vals.lat = lat;
         
     | 
| 
      
 3602 
     | 
    
         
            +
                vals.lon = lon;
         
     | 
| 
      
 3603 
     | 
    
         
            +
                return vals;
         
     | 
| 
      
 3604 
     | 
    
         
            +
              };
         
     | 
| 
      
 3605 
     | 
    
         
            +
             
     | 
| 
      
 3606 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3607 
     | 
    
         
            +
               * @summary Decode a DMS string interpreting it as an arc length.
         
     | 
| 
      
 3608 
     | 
    
         
            +
               * @param {string} angstr the string (this must not include a hemisphere
         
     | 
| 
      
 3609 
     | 
    
         
            +
               *   indicator).
         
     | 
| 
      
 3610 
     | 
    
         
            +
               * @returns {number} the arc length (degrees).
         
     | 
| 
      
 3611 
     | 
    
         
            +
               * @throws an error if the string is illegal.
         
     | 
| 
      
 3612 
     | 
    
         
            +
               */
         
     | 
| 
      
 3613 
     | 
    
         
            +
              d.DecodeAngle = function(angstr) {
         
     | 
| 
      
 3614 
     | 
    
         
            +
                var vals = d.Decode(angstr),
         
     | 
| 
      
 3615 
     | 
    
         
            +
                    ang = vals.val, ind = vals.ind;
         
     | 
| 
      
 3616 
     | 
    
         
            +
                if (ind !== d.NONE)
         
     | 
| 
      
 3617 
     | 
    
         
            +
                  throw new Error("Arc angle " + angstr +
         
     | 
| 
      
 3618 
     | 
    
         
            +
                                  " includes a hemisphere N/E/W/S");
         
     | 
| 
      
 3619 
     | 
    
         
            +
                return ang;
         
     | 
| 
      
 3620 
     | 
    
         
            +
              };
         
     | 
| 
      
 3621 
     | 
    
         
            +
             
     | 
| 
      
 3622 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3623 
     | 
    
         
            +
               * @summary Decode a DMS string interpreting it as an azimuth.
         
     | 
| 
      
 3624 
     | 
    
         
            +
               * @param {string} azistr the string (this may include an E/W hemisphere
         
     | 
| 
      
 3625 
     | 
    
         
            +
               *   indicator).
         
     | 
| 
      
 3626 
     | 
    
         
            +
               * @returns {number} the azimuth (degrees).
         
     | 
| 
      
 3627 
     | 
    
         
            +
               * @throws an error if the string is illegal.
         
     | 
| 
      
 3628 
     | 
    
         
            +
               */
         
     | 
| 
      
 3629 
     | 
    
         
            +
              d.DecodeAzimuth = function(azistr) {
         
     | 
| 
      
 3630 
     | 
    
         
            +
                var vals = d.Decode(azistr),
         
     | 
| 
      
 3631 
     | 
    
         
            +
                    azi = vals.val, ind = vals.ind;
         
     | 
| 
      
 3632 
     | 
    
         
            +
                if (ind === d.LATITUDE)
         
     | 
| 
      
 3633 
     | 
    
         
            +
                  throw new Error("Azimuth " + azistr + " has a latitude hemisphere N/S");
         
     | 
| 
      
 3634 
     | 
    
         
            +
                return azi;
         
     | 
| 
      
 3635 
     | 
    
         
            +
              };
         
     | 
| 
      
 3636 
     | 
    
         
            +
             
     | 
| 
      
 3637 
     | 
    
         
            +
              /**
         
     | 
| 
      
 3638 
     | 
    
         
            +
               * @summary Convert angle (in degrees) into a DMS string (using °, ',
         
     | 
| 
      
 3639 
     | 
    
         
            +
               *  and ").
         
     | 
| 
      
 3640 
     | 
    
         
            +
               * @param {number} angle input angle (degrees).
         
     | 
| 
      
 3641 
     | 
    
         
            +
               * @param {number} trailing one of DEGREE, MINUTE, or SECOND to indicate
         
     | 
| 
      
 3642 
     | 
    
         
            +
               *   the trailing component of the string (this component is given as a
         
     | 
| 
      
 3643 
     | 
    
         
            +
               *   decimal number if necessary).
         
     | 
| 
      
 3644 
     | 
    
         
            +
               * @param {number} prec the number of digits after the decimal point for
         
     | 
| 
      
 3645 
     | 
    
         
            +
               *   the trailing component.
         
     | 
| 
      
 3646 
     | 
    
         
            +
               * @param {number} [ind = NONE] a formatting indicator, one of NONE,
         
     | 
| 
      
 3647 
     | 
    
         
            +
               *   LATITUDE, LONGITUDE, AZIMUTH.
         
     | 
| 
      
 3648 
     | 
    
         
            +
               * @returns {string} the resulting string formatted as follows:
         
     | 
| 
      
 3649 
     | 
    
         
            +
               *   * NONE, signed result no leading zeros on degrees except in the units
         
     | 
| 
      
 3650 
     | 
    
         
            +
               *     place, e.g., -8°03'.
         
     | 
| 
      
 3651 
     | 
    
         
            +
               *   * LATITUDE, trailing N or S hemisphere designator, no sign, pad
         
     | 
| 
      
 3652 
     | 
    
         
            +
               *     degrees to 2 digits, e.g., 08°03'S.
         
     | 
| 
      
 3653 
     | 
    
         
            +
               *   * LONGITUDE, trailing E or W hemisphere designator, no sign, pad
         
     | 
| 
      
 3654 
     | 
    
         
            +
               *     degrees to 3 digits, e.g., 008°03'W.
         
     | 
| 
      
 3655 
     | 
    
         
            +
               *   * AZIMUTH, convert to the range [0, 360°), no sign, pad degrees to
         
     | 
| 
      
 3656 
     | 
    
         
            +
               *     3 digits, e.g., 351°57'.
         
     | 
| 
      
 3657 
     | 
    
         
            +
               */
         
     | 
| 
      
 3658 
     | 
    
         
            +
              d.Encode = function(angle, trailing, prec, ind) {
         
     | 
| 
      
 3659 
     | 
    
         
            +
                // Assume check on range of input angle has been made by calling
         
     | 
| 
      
 3660 
     | 
    
         
            +
                // routine (which might be able to offer a better diagnostic).
         
     | 
| 
      
 3661 
     | 
    
         
            +
                var scale = 1, i, sign,
         
     | 
| 
      
 3662 
     | 
    
         
            +
                    idegree, fdegree, f, pieces, ip, fp, s;
         
     | 
| 
      
 3663 
     | 
    
         
            +
                if (!ind) ind = d.NONE;
         
     | 
| 
      
 3664 
     | 
    
         
            +
                if (!isFinite(angle))
         
     | 
| 
      
 3665 
     | 
    
         
            +
                  return angle < 0 ? String("-inf") :
         
     | 
| 
      
 3666 
     | 
    
         
            +
                  (angle > 0 ? String("inf") : String("nan"));
         
     | 
| 
      
 3667 
     | 
    
         
            +
             
     | 
| 
      
 3668 
     | 
    
         
            +
                // 15 - 2 * trailing = ceiling(log10(2^53/90/60^trailing)).
         
     | 
| 
      
 3669 
     | 
    
         
            +
                // This suffices to give full real precision for numbers in [-90,90]
         
     | 
| 
      
 3670 
     | 
    
         
            +
                prec = Math.min(15 - 2 * trailing, prec);
         
     | 
| 
      
 3671 
     | 
    
         
            +
                for (i = 0; i < trailing; ++i)
         
     | 
| 
      
 3672 
     | 
    
         
            +
                  scale *= 60;
         
     | 
| 
      
 3673 
     | 
    
         
            +
                for (i = 0; i < prec; ++i)
         
     | 
| 
      
 3674 
     | 
    
         
            +
                  scale *= 10;
         
     | 
| 
      
 3675 
     | 
    
         
            +
                if (ind === d.AZIMUTH)
         
     | 
| 
      
 3676 
     | 
    
         
            +
                  angle -= Math.floor(angle/360) * 360;
         
     | 
| 
      
 3677 
     | 
    
         
            +
                sign = angle < 0 ? -1 : 1;
         
     | 
| 
      
 3678 
     | 
    
         
            +
                angle *= sign;
         
     | 
| 
      
 3679 
     | 
    
         
            +
             
     | 
| 
      
 3680 
     | 
    
         
            +
                // Break off integer part to preserve precision in manipulation of
         
     | 
| 
      
 3681 
     | 
    
         
            +
                // fractional part.
         
     | 
| 
      
 3682 
     | 
    
         
            +
                idegree = Math.floor(angle);
         
     | 
| 
      
 3683 
     | 
    
         
            +
                fdegree = (angle - idegree) * scale + 0.5;
         
     | 
| 
      
 3684 
     | 
    
         
            +
                f = Math.floor(fdegree);
         
     | 
| 
      
 3685 
     | 
    
         
            +
                // Implement the "round ties to even" rule
         
     | 
| 
      
 3686 
     | 
    
         
            +
                fdegree = (f === fdegree && (f & 1) === 1) ? f - 1 : f;
         
     | 
| 
      
 3687 
     | 
    
         
            +
                fdegree /= scale;
         
     | 
| 
      
 3688 
     | 
    
         
            +
             
     | 
| 
      
 3689 
     | 
    
         
            +
                fdegree = Math.floor((angle - idegree) * scale + 0.5) / scale;
         
     | 
| 
      
 3690 
     | 
    
         
            +
                if (fdegree >= 1) {
         
     | 
| 
      
 3691 
     | 
    
         
            +
                  idegree += 1;
         
     | 
| 
      
 3692 
     | 
    
         
            +
                  fdegree -= 1;
         
     | 
| 
      
 3693 
     | 
    
         
            +
                }
         
     | 
| 
      
 3694 
     | 
    
         
            +
                pieces = [fdegree, 0, 0];
         
     | 
| 
      
 3695 
     | 
    
         
            +
                for (i = 1; i <= trailing; ++i) {
         
     | 
| 
      
 3696 
     | 
    
         
            +
                  ip = Math.floor(pieces[i - 1]);
         
     | 
| 
      
 3697 
     | 
    
         
            +
                  fp = pieces[i - 1] - ip;
         
     | 
| 
      
 3698 
     | 
    
         
            +
                  pieces[i] = fp * 60;
         
     | 
| 
      
 3699 
     | 
    
         
            +
                  pieces[i - 1] = ip;
         
     | 
| 
      
 3700 
     | 
    
         
            +
                }
         
     | 
| 
      
 3701 
     | 
    
         
            +
                pieces[0] += idegree;
         
     | 
| 
      
 3702 
     | 
    
         
            +
                s = "";
         
     | 
| 
      
 3703 
     | 
    
         
            +
                if (ind === d.NONE && sign < 0)
         
     | 
| 
      
 3704 
     | 
    
         
            +
                  s += '-';
         
     | 
| 
      
 3705 
     | 
    
         
            +
                switch (trailing) {
         
     | 
| 
      
 3706 
     | 
    
         
            +
                case d.DEGREE:
         
     | 
| 
      
 3707 
     | 
    
         
            +
                  s += zerofill(pieces[0].toFixed(prec),
         
     | 
| 
      
 3708 
     | 
    
         
            +
                                ind === d.NONE ? 0 :
         
     | 
| 
      
 3709 
     | 
    
         
            +
                                1 + Math.min(ind, 2) + prec + (prec ? 1 : 0)) +
         
     | 
| 
      
 3710 
     | 
    
         
            +
                    dmsindicatorsu_.charAt(0);
         
     | 
| 
      
 3711 
     | 
    
         
            +
                  break;
         
     | 
| 
      
 3712 
     | 
    
         
            +
                default:
         
     | 
| 
      
 3713 
     | 
    
         
            +
                  s += zerofill(pieces[0].toFixed(0),
         
     | 
| 
      
 3714 
     | 
    
         
            +
                                ind === d.NONE ? 0 : 1 + Math.min(ind, 2)) +
         
     | 
| 
      
 3715 
     | 
    
         
            +
                    dmsindicatorsu_.charAt(0);
         
     | 
| 
      
 3716 
     | 
    
         
            +
                  switch (trailing) {
         
     | 
| 
      
 3717 
     | 
    
         
            +
                  case d.MINUTE:
         
     | 
| 
      
 3718 
     | 
    
         
            +
                    s += zerofill(pieces[1].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
         
     | 
| 
      
 3719 
     | 
    
         
            +
                      dmsindicatorsu_.charAt(1);
         
     | 
| 
      
 3720 
     | 
    
         
            +
                    break;
         
     | 
| 
      
 3721 
     | 
    
         
            +
                  case d.SECOND:
         
     | 
| 
      
 3722 
     | 
    
         
            +
                    s += zerofill(pieces[1].toFixed(0), 2) + dmsindicatorsu_.charAt(1);
         
     | 
| 
      
 3723 
     | 
    
         
            +
                    s += zerofill(pieces[2].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
         
     | 
| 
      
 3724 
     | 
    
         
            +
                      dmsindicatorsu_.charAt(2);
         
     | 
| 
      
 3725 
     | 
    
         
            +
                    break;
         
     | 
| 
      
 3726 
     | 
    
         
            +
                  default:
         
     | 
| 
      
 3727 
     | 
    
         
            +
                    break;
         
     | 
| 
      
 3728 
     | 
    
         
            +
                  }
         
     | 
| 
      
 3729 
     | 
    
         
            +
                }
         
     | 
| 
      
 3730 
     | 
    
         
            +
                if (ind !== d.NONE && ind !== d.AZIMUTH)
         
     | 
| 
      
 3731 
     | 
    
         
            +
                  s += hemispheres_.charAt((ind === d.LATITUDE ? 0 : 2) +
         
     | 
| 
      
 3732 
     | 
    
         
            +
                                           (sign < 0 ? 0 : 1));
         
     | 
| 
      
 3733 
     | 
    
         
            +
                return s;
         
     | 
| 
      
 3734 
     | 
    
         
            +
              };
         
     | 
| 
      
 3735 
     | 
    
         
            +
            })(GeographicLib.DMS);
         
     | 
| 
      
 3736 
     | 
    
         
            +
             
     | 
| 
      
 3737 
     | 
    
         
            +
            cb(GeographicLib);
         
     | 
| 
      
 3738 
     | 
    
         
            +
             
     | 
| 
      
 3739 
     | 
    
         
            +
            })(function(geo) {
         
     | 
| 
      
 3740 
     | 
    
         
            +
              if (typeof module === 'object' && module.exports) {
         
     | 
| 
      
 3741 
     | 
    
         
            +
                /******** support loading with node's require ********/
         
     | 
| 
      
 3742 
     | 
    
         
            +
                module.exports = geo;
         
     | 
| 
      
 3743 
     | 
    
         
            +
              } else if (true) {
         
     | 
| 
      
 3744 
     | 
    
         
            +
                /******** support loading with AMD ********/
         
     | 
| 
      
 3745 
     | 
    
         
            +
                !(__WEBPACK_AMD_DEFINE_ARRAY__ = [], __WEBPACK_AMD_DEFINE_RESULT__ = function() { return geo; }.apply(exports, __WEBPACK_AMD_DEFINE_ARRAY__),
         
     | 
| 
      
 3746 
     | 
    
         
            +
            				__WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
         
     | 
| 
      
 3747 
     | 
    
         
            +
              } else {
         
     | 
| 
      
 3748 
     | 
    
         
            +
                /******** otherwise just pollute our global namespace ********/
         
     | 
| 
      
 3749 
     | 
    
         
            +
                window.GeographicLib = geo;
         
     | 
| 
      
 3750 
     | 
    
         
            +
              }
         
     | 
| 
      
 3751 
     | 
    
         
            +
            });
         
     | 
| 
      
 3752 
     | 
    
         
            +
             
     | 
| 
      
 3753 
     | 
    
         
            +
             
     | 
| 
      
 3754 
     | 
    
         
            +
            /***/ })
         
     | 
| 
      
 3755 
     | 
    
         
            +
            /******/ ]);
         
     | 
| 
      
 3756 
     | 
    
         
            +
             
     | 
| 
      
 3757 
     | 
    
         
            +
            /***/ }),
         
     | 
| 
      
 3758 
     | 
    
         
            +
            /* 4 */
         
     | 
| 
      
 3759 
     | 
    
         
            +
            /***/ (function(module, exports) {
         
     | 
| 
      
 3760 
     | 
    
         
            +
             
     | 
| 
      
 3761 
     | 
    
         
            +
            // removed by extract-text-webpack-plugin
         
     | 
| 
      
 3762 
     | 
    
         
            +
             
     | 
| 
      
 3763 
     | 
    
         
            +
            /***/ })
         
     | 
| 
      
 3764 
     | 
    
         
            +
            /******/ ]);
         
     |