ekylibre-cartography 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (59) hide show
  1. checksums.yaml +7 -0
  2. data/README.md +3 -0
  3. data/Rakefile +10 -0
  4. data/app/assets/javascripts/cartography.coffee +535 -0
  5. data/app/assets/javascripts/cartography/base.coffee +11 -0
  6. data/app/assets/javascripts/cartography/controls.coffee +463 -0
  7. data/app/assets/javascripts/cartography/events.coffee +36 -0
  8. data/app/assets/javascripts/cartography/layers.coffee +127 -0
  9. data/app/assets/javascripts/cartography/layers/simple.coffee +37 -0
  10. data/app/assets/javascripts/cartography/leaflet/controls.coffee +420 -0
  11. data/app/assets/javascripts/cartography/leaflet/handlers.coffee +461 -0
  12. data/app/assets/javascripts/cartography/leaflet/i18n.coffee +31 -0
  13. data/app/assets/javascripts/cartography/leaflet/layers.coffee +60 -0
  14. data/app/assets/javascripts/cartography/leaflet/toolbars.coffee +450 -0
  15. data/app/assets/javascripts/cartography/patches.js +8 -0
  16. data/app/assets/javascripts/cartography/util.coffee +18 -0
  17. data/app/assets/javascripts/main.js +18 -0
  18. data/app/assets/stylesheets/cartography.css +86 -0
  19. data/app/helpers/cartography_helper.rb +55 -0
  20. data/lib/cartography.rb +1 -0
  21. data/lib/cartography/engine.rb +11 -0
  22. data/lib/cartography/version.rb +3 -0
  23. data/vendor/assets/components/d3-array/dist/d3-array.js +590 -0
  24. data/vendor/assets/components/d3-array/dist/d3-array.min.js +2 -0
  25. data/vendor/assets/components/geojson-equality/dist/geojson-equality.js +295 -0
  26. data/vendor/assets/components/geojson-equality/dist/geojson-equality.js.map +21 -0
  27. data/vendor/assets/components/geojson-equality/dist/geojson-equality.min.js +1 -0
  28. data/vendor/assets/components/leaflet-controlpanel/dist/leaflet.controlpanel.css +29 -0
  29. data/vendor/assets/components/leaflet-controlpanel/dist/leaflet.controlpanel.js +269 -0
  30. data/vendor/assets/components/leaflet-draw-cut/dist/leaflet.draw.cut.css +1 -0
  31. data/vendor/assets/components/leaflet-draw-cut/dist/leaflet.draw.cut.js +8 -0
  32. data/vendor/assets/components/leaflet-draw-merge/dist/leaflet.draw.merge.css +0 -0
  33. data/vendor/assets/components/leaflet-draw-merge/dist/leaflet.draw.merge.js +48026 -0
  34. data/vendor/assets/components/leaflet-draw/dist/leaflet.draw-src.css +326 -0
  35. data/vendor/assets/components/leaflet-draw/dist/leaflet.draw-src.js +4653 -0
  36. data/vendor/assets/components/leaflet-draw/dist/leaflet.draw-src.map +1 -0
  37. data/vendor/assets/components/leaflet-draw/dist/leaflet.draw.css +10 -0
  38. data/vendor/assets/components/leaflet-draw/dist/leaflet.draw.js +10 -0
  39. data/vendor/assets/components/leaflet-geographicutil/dist/leaflet.geographicutil.js +3220 -0
  40. data/vendor/assets/components/leaflet-reactive_measure/dist/reactive_measure.css +30 -0
  41. data/vendor/assets/components/leaflet-reactive_measure/dist/reactive_measure.js +3764 -0
  42. data/vendor/assets/components/leaflet/dist/leaflet-src.js +13609 -0
  43. data/vendor/assets/components/leaflet/dist/leaflet-src.js.map +1 -0
  44. data/vendor/assets/components/leaflet/dist/leaflet-src.map +1 -0
  45. data/vendor/assets/components/leaflet/dist/leaflet.css +632 -0
  46. data/vendor/assets/components/leaflet/dist/leaflet.js +5 -0
  47. data/vendor/assets/components/leaflet/dist/leaflet.js.map +1 -0
  48. data/vendor/assets/components/martinez-polygon-clipping/dist/martinez.min.js +9 -0
  49. data/vendor/assets/components/martinez-polygon-clipping/dist/martinez.umd.js +1716 -0
  50. data/vendor/assets/components/martinez-polygon-clipping/dist/martinez.umd.js.map +1 -0
  51. data/vendor/assets/components/polygon-clipping/dist/polygon-clipping.js +279 -0
  52. data/vendor/assets/components/polygon-clipping/dist/polygon-clipping.min.js +1 -0
  53. data/vendor/assets/components/rtree/dist/rtree.js +911 -0
  54. data/vendor/assets/components/rtree/dist/rtree.min.js +1 -0
  55. data/vendor/assets/components/splaytree/dist/splay.es6.js +765 -0
  56. data/vendor/assets/components/splaytree/dist/splay.es6.js.map +1 -0
  57. data/vendor/assets/components/splaytree/dist/splay.js +797 -0
  58. data/vendor/assets/components/splaytree/dist/splay.js.map +1 -0
  59. metadata +156 -0
@@ -0,0 +1,30 @@
1
+ .leaflet-draw-tooltip-left {
2
+ background: #363636;
3
+ background: rgba(0, 0, 0, 0.5);
4
+ border: 1px solid transparent;
5
+ position: absolute;
6
+ visibility: hidden;
7
+ white-space: nowrap;
8
+ z-index: 6; }
9
+ .leaflet-draw-tooltip-left:before {
10
+ border: none !important; }
11
+ .leaflet-draw-tooltip-left:after {
12
+ border-left: 6px solid black;
13
+ border-left-color: rgba(0, 0, 0, 0.5);
14
+ border-top: 6px solid transparent;
15
+ border-bottom: 6px solid transparent;
16
+ content: "";
17
+ position: absolute;
18
+ top: 7px;
19
+ left: 100%; }
20
+ .leaflet-draw-tooltip-left span {
21
+ color: inherit; }
22
+
23
+ .leaflet-draw-tooltip-measure.area {
24
+ padding-left: 10px; }
25
+
26
+ .reactive-measure-control {
27
+ background: rgba(255, 255, 255, 0.6);
28
+ padding: 0 8px; }
29
+ .reactive-measure-control.selection {
30
+ background: rgba(255, 196, 136, 0.5); }
@@ -0,0 +1,3764 @@
1
+ /******/ (function(modules) { // webpackBootstrap
2
+ /******/ // The module cache
3
+ /******/ var installedModules = {};
4
+ /******/
5
+ /******/ // The require function
6
+ /******/ function __webpack_require__(moduleId) {
7
+ /******/
8
+ /******/ // Check if module is in cache
9
+ /******/ if(installedModules[moduleId]) {
10
+ /******/ return installedModules[moduleId].exports;
11
+ /******/ }
12
+ /******/ // Create a new module (and put it into the cache)
13
+ /******/ var module = installedModules[moduleId] = {
14
+ /******/ i: moduleId,
15
+ /******/ l: false,
16
+ /******/ exports: {}
17
+ /******/ };
18
+ /******/
19
+ /******/ // Execute the module function
20
+ /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
21
+ /******/
22
+ /******/ // Flag the module as loaded
23
+ /******/ module.l = true;
24
+ /******/
25
+ /******/ // Return the exports of the module
26
+ /******/ return module.exports;
27
+ /******/ }
28
+ /******/
29
+ /******/
30
+ /******/ // expose the modules object (__webpack_modules__)
31
+ /******/ __webpack_require__.m = modules;
32
+ /******/
33
+ /******/ // expose the module cache
34
+ /******/ __webpack_require__.c = installedModules;
35
+ /******/
36
+ /******/ // define getter function for harmony exports
37
+ /******/ __webpack_require__.d = function(exports, name, getter) {
38
+ /******/ if(!__webpack_require__.o(exports, name)) {
39
+ /******/ Object.defineProperty(exports, name, {
40
+ /******/ configurable: false,
41
+ /******/ enumerable: true,
42
+ /******/ get: getter
43
+ /******/ });
44
+ /******/ }
45
+ /******/ };
46
+ /******/
47
+ /******/ // getDefaultExport function for compatibility with non-harmony modules
48
+ /******/ __webpack_require__.n = function(module) {
49
+ /******/ var getter = module && module.__esModule ?
50
+ /******/ function getDefault() { return module['default']; } :
51
+ /******/ function getModuleExports() { return module; };
52
+ /******/ __webpack_require__.d(getter, 'a', getter);
53
+ /******/ return getter;
54
+ /******/ };
55
+ /******/
56
+ /******/ // Object.prototype.hasOwnProperty.call
57
+ /******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
58
+ /******/
59
+ /******/ // __webpack_public_path__
60
+ /******/ __webpack_require__.p = "";
61
+ /******/
62
+ /******/ // Load entry module and return exports
63
+ /******/ return __webpack_require__(__webpack_require__.s = 0);
64
+ /******/ })
65
+ /************************************************************************/
66
+ /******/ ([
67
+ /* 0 */
68
+ /***/ (function(module, exports, __webpack_require__) {
69
+
70
+ __webpack_require__(1);
71
+ module.exports = __webpack_require__(4);
72
+
73
+
74
+ /***/ }),
75
+ /* 1 */
76
+ /***/ (function(module, exports, __webpack_require__) {
77
+
78
+ var L;
79
+
80
+ L = __webpack_require__(2);
81
+
82
+ __webpack_require__(3);
83
+
84
+ L.ReactiveMeasure = {};
85
+
86
+ L.ReactiveMeasure.Draw = {};
87
+
88
+ L.ReactiveMeasure.Edit = {};
89
+
90
+ L.ReactiveMeasure.Draw.Event = {};
91
+
92
+ L.ReactiveMeasure.Edit.Event = {};
93
+
94
+ L.ReactiveMeasure.Draw.Event.MOVE = "reactiveMeasure:draw:move";
95
+
96
+ L.ReactiveMeasure.Edit.Event.MOVE = "reactiveMeasure:edit:move";
97
+
98
+ module.exports = L.ReactiveMeasureControl = L.Control.extend({
99
+ options: {
100
+ position: 'bottomright',
101
+ metric: true,
102
+ feet: false,
103
+ measure: {
104
+ perimeter: 0,
105
+ area: 0
106
+ }
107
+ },
108
+ initialize: function(layers, options) {
109
+ if (options == null) {
110
+ options = {};
111
+ }
112
+ L.Util.setOptions(this, options);
113
+ this.options.measure.perimeter = 0;
114
+ this.options.measure.area = 0;
115
+ if (layers.getLayers().length > 0) {
116
+ return layers.eachLayer((function(_this) {
117
+ return function(layer) {
118
+ var m;
119
+ if (typeof layer.getMeasure === 'function') {
120
+ m = layer.getMeasure();
121
+ _this.options.measure.perimeter += m.perimeter;
122
+ return _this.options.measure.area += m.area;
123
+ }
124
+ };
125
+ })(this));
126
+ }
127
+ },
128
+ onAdd: function(map) {
129
+ this._container = L.DomUtil.create('div', "reactive-measure-control " + map._leaflet_id);
130
+ map.reactiveMeasureControl = this;
131
+ if (map && this._container) {
132
+ this.updateContent(this.options.measure);
133
+ }
134
+ return this._container;
135
+ },
136
+ updateContent: function(measure, options) {
137
+ var text;
138
+ if (measure == null) {
139
+ measure = {};
140
+ }
141
+ if (options == null) {
142
+ options = {};
143
+ }
144
+ text = '';
145
+ if (measure['perimeter']) {
146
+ text += "<span class='leaflet-draw-tooltip-measure perimeter'>" + (L.GeometryUtil.readableDistance(measure.perimeter, !!this.options.metric, !!options.feet)) + "</span>";
147
+ }
148
+ if (measure['area']) {
149
+ text += "<span class='leaflet-draw-tooltip-measure area'>" + (L.GeometryUtil.readableArea(measure.area, !!this.options.metric)) + "</span>";
150
+ }
151
+ if ((options.selection != null) && options.selection === true) {
152
+ L.DomUtil.addClass(this._container, 'selection');
153
+ } else {
154
+ L.DomUtil.removeClass(this._container, 'selection');
155
+ }
156
+ this._container.innerHTML = text;
157
+ }
158
+ });
159
+
160
+ L.FeatureGroup.include({
161
+ getMeasure: function() {
162
+ var measure;
163
+ measure = {
164
+ perimeter: 0,
165
+ area: 0
166
+ };
167
+ this.eachLayer(function(layer) {
168
+ var m;
169
+ m = layer.getMeasure();
170
+ measure.perimeter += m.perimeter;
171
+ return measure.area += m.area;
172
+ });
173
+ return measure;
174
+ }
175
+ });
176
+
177
+ L.Polygon.include({
178
+
179
+ /*
180
+ * Get centroid of the polygon in square meters
181
+ * Portage from leaflet1.0.0-rc1: https://github.com/Leaflet/Leaflet/blob/master/src/layer/vector/Polygon.js
182
+ * @return {number} polygon centroid
183
+ */
184
+ __getCenter: function() {
185
+ var area, center, f, i, j, len, p1, p2, points, x, y;
186
+ this.__project();
187
+ points = this._rings[0];
188
+ len = points.length;
189
+ if (!len) {
190
+ return null;
191
+ }
192
+ area = x = y = 0;
193
+ i = 0;
194
+ j = len - 1;
195
+ while (i < len) {
196
+ p1 = points[i];
197
+ p2 = points[j];
198
+ f = p1.y * p2.x - (p2.y * p1.x);
199
+ x += (p1.x + p2.x) * f;
200
+ y += (p1.y + p2.y) * f;
201
+ area += f * 3;
202
+ j = i++;
203
+ }
204
+ if (area === 0) {
205
+ center = points[0];
206
+ } else {
207
+ center = [x / area, y / area];
208
+ }
209
+ return this._map.layerPointToLatLng(center);
210
+ },
211
+
212
+ /*
213
+ * Return LatLngs as array of [lat, lng] pair.
214
+ * @return {Array} [[lat,lng], [lat,lng]]
215
+ */
216
+ getLatLngsAsArray: function() {
217
+ var arr, k, latlng, len1, ref;
218
+ arr = [];
219
+ ref = this._latlngs[0];
220
+ for (k = 0, len1 = ref.length; k < len1; k++) {
221
+ latlng = ref[k];
222
+ arr.push([latlng.lat, latlng.lng]);
223
+ }
224
+ return arr;
225
+ }
226
+ });
227
+
228
+ L.Polyline.include({
229
+
230
+ /*
231
+ * Return LatLngs as array of [lat, lng] pair.
232
+ * @return {Array} [[lat,lng], [lat,lng]]
233
+ */
234
+ getLatLngsAsArray: function() {
235
+ var arr, k, latlng, len1, ref;
236
+ arr = [];
237
+ ref = this._latlngs;
238
+ for (k = 0, len1 = ref.length; k < len1; k++) {
239
+ latlng = ref[k];
240
+ arr.push([latlng.lat, latlng.lng]);
241
+ }
242
+ return arr;
243
+ },
244
+
245
+ /*
246
+ * Get center of the polyline in meters
247
+ * Portage from leaflet1.0.0-rc1: https://github.com/Leaflet/Leaflet/blob/master/src/layer/vector/Polyline.js
248
+ * @return {number} polyline center
249
+ */
250
+ __getCenter: function() {
251
+ var dist, halfDist, i, len, p1, p2, points, ratio, segDist;
252
+ this.__project();
253
+ i = void 0;
254
+ halfDist = void 0;
255
+ segDist = void 0;
256
+ dist = void 0;
257
+ p1 = void 0;
258
+ p2 = void 0;
259
+ ratio = void 0;
260
+ points = this._rings[0];
261
+ len = points.length;
262
+ if (!len) {
263
+ return null;
264
+ }
265
+ i = 0;
266
+ halfDist = 0;
267
+ while (i < len - 1) {
268
+ halfDist += points[i].distanceTo(points[i + 1]) / 2;
269
+ i++;
270
+ }
271
+ if (halfDist === 0) {
272
+ return this._map.layerPointToLatLng(points[0]);
273
+ }
274
+ i = 0;
275
+ dist = 0;
276
+ while (i < len - 1) {
277
+ p1 = points[i];
278
+ p2 = points[i + 1];
279
+ segDist = p1.distanceTo(p2);
280
+ dist += segDist;
281
+ if (dist > halfDist) {
282
+ ratio = (dist - halfDist) / segDist;
283
+ return this._map.layerPointToLatLng([p2.x - (ratio * (p2.x - p1.x)), p2.y - (ratio * (p2.y - p1.y))]);
284
+ }
285
+ i++;
286
+ }
287
+ },
288
+ __project: function() {
289
+ var pxBounds;
290
+ pxBounds = new L.Bounds;
291
+ this._rings = [];
292
+ this.__projectLatlngs(this._latlngs, this._rings, pxBounds);
293
+ },
294
+ __projectLatlngs: function(latlngs, result, projectedBounds) {
295
+ var flat, i, len, ring;
296
+ flat = latlngs[0] instanceof L.LatLng;
297
+ len = latlngs.length;
298
+ i = void 0;
299
+ ring = void 0;
300
+ if (flat) {
301
+ ring = [];
302
+ i = 0;
303
+ while (i < len) {
304
+ ring[i] = this._map.latLngToLayerPoint(latlngs[i]);
305
+ projectedBounds.extend(ring[i]);
306
+ i++;
307
+ }
308
+ result.push(ring);
309
+ } else {
310
+ i = 0;
311
+ while (i < len) {
312
+ this.__projectLatlngs(latlngs[i], result, projectedBounds);
313
+ i++;
314
+ }
315
+ }
316
+ },
317
+ getMeasure: function() {
318
+ return L.GeographicUtil.Polygon(this.getLatLngsAsArray());
319
+ }
320
+ });
321
+
322
+ L.Draw.Polyline.include({
323
+ __addHooks: L.Draw.Polyline.prototype.addHooks,
324
+ __removeHooks: L.Draw.Polyline.prototype.removeHooks,
325
+ __vertexChanged: L.Draw.Polyline.prototype._vertexChanged,
326
+ _vertexChanged: function(e) {
327
+ this.__vertexChanged.apply(this, arguments);
328
+ if (!this._map.reactiveMeasureControl.options.tooltip && (this._tooltip != null)) {
329
+ L.DomUtil.setOpacity(this._tooltip._container, 0);
330
+ return L.DomUtil.setPosition(this._tooltip._container, L.point(0, 0));
331
+ }
332
+ },
333
+ __onMouseMove: function(e) {
334
+ var center, clone, k, latLng, latLngArray, len1, measure, mouseLatLng, newPos, ref;
335
+ if (!e.target.reactiveMeasureControl.options.tooltip && (this._tooltip != null)) {
336
+ L.DomUtil.setOpacity(this._tooltip._container, 0);
337
+ L.DomUtil.setPosition(this._tooltip._container, L.point(0, 0));
338
+ }
339
+ if (!(this._markers.length > 0)) {
340
+ return;
341
+ }
342
+ newPos = this._map.mouseEventToLayerPoint(e.originalEvent);
343
+ mouseLatLng = this._map.layerPointToLatLng(newPos);
344
+ latLngArray = [];
345
+ ref = this._poly.getLatLngs();
346
+ for (k = 0, len1 = ref.length; k < len1; k++) {
347
+ latLng = ref[k];
348
+ latLngArray.push(latLng);
349
+ }
350
+ latLngArray.push(mouseLatLng);
351
+ if (this._markers.length === 1) {
352
+ clone = L.polyline(latLngArray);
353
+ }
354
+ if (this._markers.length >= 2) {
355
+ clone = L.polygon(latLngArray);
356
+ }
357
+ clone._map = this._map;
358
+ center = clone.__getCenter();
359
+ measure = L.GeographicUtil.Polygon(clone.getLatLngsAsArray());
360
+ e.target.reactiveMeasureControl.updateContent(measure, {
361
+ selection: true
362
+ });
363
+ if (e.target.reactiveMeasureControl.options.tooltip != null) {
364
+ this._tooltip.__updateTooltipMeasure(center, measure, e.target.reactiveMeasureControl.options);
365
+ }
366
+ return this._map.fire(L.ReactiveMeasure.Draw.Event.MOVE, {
367
+ measure: measure
368
+ });
369
+ },
370
+ addHooks: function() {
371
+ this.__addHooks.apply(this, arguments);
372
+ this._map.on('mousemove', this.__onMouseMove, this);
373
+ },
374
+ removeHooks: function() {
375
+ var measure;
376
+ if (this._map.reactiveMeasureControl) {
377
+ measure = L.GeographicUtil.Polygon(this._poly.getLatLngsAsArray());
378
+ if (this._poly._map != null) {
379
+ this._poly._map.reactiveMeasureControl.updateContent(measure, {
380
+ selection: false
381
+ });
382
+ }
383
+ this._map.off('mousemove');
384
+ }
385
+ this.__removeHooks.apply(this, arguments);
386
+ }
387
+ });
388
+
389
+ L.Edit.Poly.include({
390
+ __addHooks: L.Edit.Poly.prototype.addHooks,
391
+ __removeHooks: L.Edit.Poly.prototype.removeHooks,
392
+ __onHandlerDrag: (function(_this) {
393
+ return function(e) {
394
+ var _poly, center, measure;
395
+ _poly = e.target.editing._poly;
396
+ center = _poly.__getCenter();
397
+ measure = L.GeographicUtil.Polygon(_poly.getLatLngsAsArray());
398
+ L.extend(L.Draw.Polyline.prototype.options, {
399
+ target: e.marker.getLatLng()
400
+ });
401
+ if (_poly._map != null) {
402
+ _poly._map.reactiveMeasureControl.updateContent(measure, {
403
+ selection: true
404
+ });
405
+ }
406
+ return _poly._map.fire(L.ReactiveMeasure.Edit.Event.MOVE, {
407
+ measure: measure
408
+ });
409
+ };
410
+ })(this),
411
+ addHooks: function() {
412
+ this.__addHooks.apply(this, arguments);
413
+ return this._poly.on('editdrag', this.__onHandlerDrag, this);
414
+ },
415
+ removeHooks: function() {
416
+ var measure;
417
+ measure = L.GeographicUtil.Polygon(this._poly.getLatLngsAsArray());
418
+ if (this._poly._map != null) {
419
+ this._poly._map.reactiveMeasureControl.updateContent(measure, {
420
+ selection: false
421
+ });
422
+ }
423
+ if (L.EditToolbar.reactiveMeasure) {
424
+ this._poly.off('editdrag');
425
+ }
426
+ return this.__removeHooks.apply(this, arguments);
427
+ }
428
+ });
429
+
430
+ L.Edit.PolyVerticesEdit.include({
431
+ __onTouchMove: L.Edit.PolyVerticesEdit.prototype._onTouchMove,
432
+ __removeMarker: L.Edit.PolyVerticesEdit.prototype._removeMarker,
433
+ _onMarkerDrag: function(e) {
434
+ var marker;
435
+ marker = e.target;
436
+ L.extend(marker._origLatLng, marker._latlng);
437
+ if (marker._middleLeft) {
438
+ marker._middleLeft.setLatLng(this._getMiddleLatLng(marker._prev, marker));
439
+ }
440
+ if (marker._middleRight) {
441
+ marker._middleRight.setLatLng(this._getMiddleLatLng(marker, marker._next));
442
+ }
443
+ this._poly.redraw();
444
+ this._poly.fire('editdrag', {
445
+ marker: e.target
446
+ });
447
+ },
448
+ _onTouchMove: function(e) {
449
+ this.__onTouchMove.apply(this, arguments);
450
+ return this._poly.fire('editdrag');
451
+ },
452
+ _removeMarker: function(marker) {
453
+ this.__removeMarker.apply(this, arguments);
454
+ return this._poly.fire('editdrag', {
455
+ marker: marker
456
+ });
457
+ }
458
+ });
459
+
460
+ L.LatLng.prototype.toArray = function() {
461
+ return [this.lat, this.lng];
462
+ };
463
+
464
+ L.Draw.Tooltip.include({
465
+ __initialize: L.Draw.Tooltip.prototype.initialize,
466
+ __dispose: L.Draw.Tooltip.prototype.dispose,
467
+ initialize: function(map, options) {
468
+ if (options == null) {
469
+ options = {};
470
+ }
471
+ return this.__initialize.apply(this, arguments);
472
+ },
473
+ dispose: function() {
474
+ this._map.off('mouseover');
475
+ return this.__dispose.apply(this, arguments);
476
+ },
477
+ __updateTooltipMeasure: function(latLng, measure, options) {
478
+ var labelText;
479
+ if (measure == null) {
480
+ measure = {};
481
+ }
482
+ if (options == null) {
483
+ options = {};
484
+ }
485
+ labelText = {
486
+ text: ''
487
+ };
488
+ if (measure['perimeter']) {
489
+ labelText['text'] += "<span class='leaflet-draw-tooltip-measure perimeter'>" + (L.GeometryUtil.readableDistance(measure.perimeter, !!options.metric, !!options.feet)) + "</span>";
490
+ }
491
+ if (measure['area']) {
492
+ labelText['text'] += "<span class='leaflet-draw-tooltip-measure area'>" + (L.GeometryUtil.readableArea(measure.area, !!options.metric)) + "</span>";
493
+ }
494
+ if (latLng) {
495
+ this.updateContent(labelText);
496
+ this.__updatePosition(latLng, options);
497
+ }
498
+ },
499
+ __updatePosition: function(latlng, options) {
500
+ var container, container_width, labelWidth, map_width, pos, styles;
501
+ if (options == null) {
502
+ options = {};
503
+ }
504
+ pos = this._map.latLngToLayerPoint(latlng);
505
+ labelWidth = this._container.offsetWidth;
506
+ map_width = this._map._container.offsetWidth;
507
+ L.DomUtil.removeClass(this._container, 'leaflet-draw-tooltip-left');
508
+ if (this._container) {
509
+ this._container.style.visibility = 'inherit';
510
+ container = this._map.layerPointToContainerPoint(pos);
511
+ styles = window.getComputedStyle(this._container);
512
+ container_width = this._container.offsetWidth + parseInt(styles.paddingLeft) + parseInt(styles.paddingRight) + parseInt(styles.marginLeft) + parseInt(styles.marginRight);
513
+ if (container.x < 0 || container.x > (map_width - container_width) || container.y < this._container.offsetHeight) {
514
+ pos = pos.add(L.point(-container_width, 0));
515
+ L.DomUtil.addClass(this._container, 'leaflet-draw-tooltip-left');
516
+ }
517
+ return L.DomUtil.setPosition(this._container, pos);
518
+ }
519
+ },
520
+ hide: function() {
521
+ return this._container.style.visibility = 'hidden';
522
+ }
523
+ });
524
+
525
+
526
+ /***/ }),
527
+ /* 2 */
528
+ /***/ (function(module, exports) {
529
+
530
+ module.exports = L;
531
+
532
+ /***/ }),
533
+ /* 3 */
534
+ /***/ (function(module, exports) {
535
+
536
+ /******/ (function(modules) { // webpackBootstrap
537
+ /******/ // The module cache
538
+ /******/ var installedModules = {};
539
+ /******/
540
+ /******/ // The require function
541
+ /******/ function __webpack_require__(moduleId) {
542
+ /******/
543
+ /******/ // Check if module is in cache
544
+ /******/ if(installedModules[moduleId]) {
545
+ /******/ return installedModules[moduleId].exports;
546
+ /******/ }
547
+ /******/ // Create a new module (and put it into the cache)
548
+ /******/ var module = installedModules[moduleId] = {
549
+ /******/ i: moduleId,
550
+ /******/ l: false,
551
+ /******/ exports: {}
552
+ /******/ };
553
+ /******/
554
+ /******/ // Execute the module function
555
+ /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
556
+ /******/
557
+ /******/ // Flag the module as loaded
558
+ /******/ module.l = true;
559
+ /******/
560
+ /******/ // Return the exports of the module
561
+ /******/ return module.exports;
562
+ /******/ }
563
+ /******/
564
+ /******/
565
+ /******/ // expose the modules object (__webpack_modules__)
566
+ /******/ __webpack_require__.m = modules;
567
+ /******/
568
+ /******/ // expose the module cache
569
+ /******/ __webpack_require__.c = installedModules;
570
+ /******/
571
+ /******/ // define getter function for harmony exports
572
+ /******/ __webpack_require__.d = function(exports, name, getter) {
573
+ /******/ if(!__webpack_require__.o(exports, name)) {
574
+ /******/ Object.defineProperty(exports, name, {
575
+ /******/ configurable: false,
576
+ /******/ enumerable: true,
577
+ /******/ get: getter
578
+ /******/ });
579
+ /******/ }
580
+ /******/ };
581
+ /******/
582
+ /******/ // getDefaultExport function for compatibility with non-harmony modules
583
+ /******/ __webpack_require__.n = function(module) {
584
+ /******/ var getter = module && module.__esModule ?
585
+ /******/ function getDefault() { return module['default']; } :
586
+ /******/ function getModuleExports() { return module; };
587
+ /******/ __webpack_require__.d(getter, 'a', getter);
588
+ /******/ return getter;
589
+ /******/ };
590
+ /******/
591
+ /******/ // Object.prototype.hasOwnProperty.call
592
+ /******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
593
+ /******/
594
+ /******/ // __webpack_public_path__
595
+ /******/ __webpack_require__.p = "";
596
+ /******/
597
+ /******/ // Load entry module and return exports
598
+ /******/ return __webpack_require__(__webpack_require__.s = 0);
599
+ /******/ })
600
+ /************************************************************************/
601
+ /******/ ([
602
+ /* 0 */
603
+ /***/ (function(module, exports, __webpack_require__) {
604
+
605
+ module.exports = __webpack_require__(1);
606
+
607
+
608
+ /***/ }),
609
+ /* 1 */
610
+ /***/ (function(module, exports, __webpack_require__) {
611
+
612
+ var GeographicLib, L;
613
+
614
+ L = __webpack_require__(2);
615
+
616
+ GeographicLib = __webpack_require__(3);
617
+
618
+ L.GeographicUtil = (function() {
619
+ function GeographicUtil() {}
620
+
621
+ GeographicUtil.Polygon = function(points, polyline) {
622
+ var geod, i, j, len, len1, point, poly, poly2;
623
+ if (polyline == null) {
624
+ polyline = false;
625
+ }
626
+ geod = GeographicLib.Geodesic.WGS84;
627
+ poly = geod.Polygon(false);
628
+ for (i = 0, len = points.length; i < len; i++) {
629
+ point = points[i];
630
+ poly.AddPoint(point[0], point[1]);
631
+ }
632
+ poly = poly.Compute(false, true);
633
+ poly2 = geod.Polygon(true);
634
+ for (j = 0, len1 = points.length; j < len1; j++) {
635
+ point = points[j];
636
+ poly2.AddPoint(point[0], point[1]);
637
+ }
638
+ poly2 = poly2.Compute(false, true);
639
+ return {
640
+ extrapolatedPerimeter: poly.perimeter,
641
+ extrapolatedArea: Math.abs(poly.area),
642
+ perimeter: poly2.perimeter
643
+ };
644
+ };
645
+
646
+ GeographicUtil.distance = function(a, b) {
647
+ var geod, r;
648
+ geod = GeographicLib.Geodesic.WGS84;
649
+ r = geod.Inverse(a[0], a[1], b[0], b[1]);
650
+ return r.s12.toFixed(3);
651
+ };
652
+
653
+ return GeographicUtil;
654
+
655
+ })();
656
+
657
+
658
+ /***/ }),
659
+ /* 2 */
660
+ /***/ (function(module, exports) {
661
+
662
+ module.exports = L;
663
+
664
+ /***/ }),
665
+ /* 3 */
666
+ /***/ (function(module, exports, __webpack_require__) {
667
+
668
+ var __WEBPACK_AMD_DEFINE_ARRAY__, __WEBPACK_AMD_DEFINE_RESULT__;/*
669
+ * Geodesic routines from GeographicLib translated to JavaScript. See
670
+ * https://geographiclib.sourceforge.io/html/js/
671
+ *
672
+ * The algorithms are derived in
673
+ *
674
+ * Charles F. F. Karney,
675
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013),
676
+ * https://doi.org/10.1007/s00190-012-0578-z
677
+ * Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
678
+ *
679
+ * This file is the concatenation and compression of the JavaScript files in
680
+ * doc/scripts/GeographicLib in the source tree for GeographicLib.
681
+ *
682
+ * Copyright (c) Charles Karney (2011-2015) <charles@karney.com> and licensed
683
+ * under the MIT/X11 License. For more information, see
684
+ * https://geographiclib.sourceforge.io/
685
+ *
686
+ * Version: 1.49
687
+ * File inventory:
688
+ * Math.js Geodesic.js GeodesicLine.js PolygonArea.js DMS.js
689
+ */
690
+
691
+ (function(cb) {
692
+
693
+ /**************** Math.js ****************/
694
+ /*
695
+ * Math.js
696
+ * Transcription of Math.hpp, Constants.hpp, and Accumulator.hpp into
697
+ * JavaScript.
698
+ *
699
+ * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
700
+ * under the MIT/X11 License. For more information, see
701
+ * https://geographiclib.sourceforge.io/
702
+ */
703
+
704
+ /**
705
+ * @namespace GeographicLib
706
+ * @description The parent namespace for the following modules:
707
+ * - {@link module:GeographicLib/Geodesic GeographicLib/Geodesic} The main
708
+ * engine for solving geodesic problems via the
709
+ * {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
710
+ * - {@link module:GeographicLib/GeodesicLine GeographicLib/GeodesicLine}
711
+ * computes points along a single geodesic line via the
712
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
713
+ * class.
714
+ * - {@link module:GeographicLib/PolygonArea GeographicLib/PolygonArea}
715
+ * computes the area of a geodesic polygon via the
716
+ * {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
717
+ * class.
718
+ * - {@link module:GeographicLib/DMS GeographicLib/DMS} handles the decoding
719
+ * and encoding of angles in degree, minutes, and seconds, via static
720
+ * functions in this module.
721
+ * - {@link module:GeographicLib/Constants GeographicLib/Constants} defines
722
+ * constants specifying the version numbers and the parameters for the WGS84
723
+ * ellipsoid.
724
+ *
725
+ * The following modules are used internally by the package:
726
+ * - {@link module:GeographicLib/Math GeographicLib/Math} defines various
727
+ * mathematical functions.
728
+ * - {@link module:GeographicLib/Accumulator GeographicLib/Accumulator}
729
+ * interally used by
730
+ * {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea} (via the
731
+ * {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class)
732
+ * for summing the contributions to the area of a polygon.
733
+ */
734
+ "use strict";
735
+ var GeographicLib = {};
736
+ GeographicLib.Constants = {};
737
+ GeographicLib.Math = {};
738
+ GeographicLib.Accumulator = {};
739
+
740
+ (function(
741
+ /**
742
+ * @exports GeographicLib/Constants
743
+ * @description Define constants defining the version and WGS84 parameters.
744
+ */
745
+ c) {
746
+
747
+ /**
748
+ * @constant
749
+ * @summary WGS84 parameters.
750
+ * @property {number} a the equatorial radius (meters).
751
+ * @property {number} f the flattening.
752
+ */
753
+ c.WGS84 = { a: 6378137, f: 1/298.257223563 };
754
+ /**
755
+ * @constant
756
+ * @summary an array of version numbers.
757
+ * @property {number} major the major version number.
758
+ * @property {number} minor the minor version number.
759
+ * @property {number} patch the patch number.
760
+ */
761
+ c.version = { major: 1, minor: 49, patch: 0 };
762
+ /**
763
+ * @constant
764
+ * @summary version string
765
+ */
766
+ c.version_string = "1.49";
767
+ })(GeographicLib.Constants);
768
+
769
+ (function(
770
+ /**
771
+ * @exports GeographicLib/Math
772
+ * @description Some useful mathematical constants and functions (mainly for
773
+ * internal use).
774
+ */
775
+ m) {
776
+
777
+ /**
778
+ * @summary The number of digits of precision in floating-point numbers.
779
+ * @constant {number}
780
+ */
781
+ m.digits = 53;
782
+ /**
783
+ * @summary The machine epsilon.
784
+ * @constant {number}
785
+ */
786
+ m.epsilon = Math.pow(0.5, m.digits - 1);
787
+ /**
788
+ * @summary The factor to convert degrees to radians.
789
+ * @constant {number}
790
+ */
791
+ m.degree = Math.PI/180;
792
+
793
+ /**
794
+ * @summary Square a number.
795
+ * @param {number} x the number.
796
+ * @returns {number} the square.
797
+ */
798
+ m.sq = function(x) { return x * x; };
799
+
800
+ /**
801
+ * @summary The hypotenuse function.
802
+ * @param {number} x the first side.
803
+ * @param {number} y the second side.
804
+ * @returns {number} the hypotenuse.
805
+ */
806
+ m.hypot = function(x, y) {
807
+ var a, b;
808
+ x = Math.abs(x);
809
+ y = Math.abs(y);
810
+ a = Math.max(x, y); b = Math.min(x, y) / (a ? a : 1);
811
+ return a * Math.sqrt(1 + b * b);
812
+ };
813
+
814
+ /**
815
+ * @summary Cube root function.
816
+ * @param {number} x the argument.
817
+ * @returns {number} the real cube root.
818
+ */
819
+ m.cbrt = function(x) {
820
+ var y = Math.pow(Math.abs(x), 1/3);
821
+ return x < 0 ? -y : y;
822
+ };
823
+
824
+ /**
825
+ * @summary The log1p function.
826
+ * @param {number} x the argument.
827
+ * @returns {number} log(1 + x).
828
+ */
829
+ m.log1p = function(x) {
830
+ var y = 1 + x,
831
+ z = y - 1;
832
+ // Here's the explanation for this magic: y = 1 + z, exactly, and z
833
+ // approx x, thus log(y)/z (which is nearly constant near z = 0) returns
834
+ // a good approximation to the true log(1 + x)/x. The multiplication x *
835
+ // (log(y)/z) introduces little additional error.
836
+ return z === 0 ? x : x * Math.log(y) / z;
837
+ };
838
+
839
+ /**
840
+ * @summary Inverse hyperbolic tangent.
841
+ * @param {number} x the argument.
842
+ * @returns {number} tanh<sup>&minus;1</sup> x.
843
+ */
844
+ m.atanh = function(x) {
845
+ var y = Math.abs(x); // Enforce odd parity
846
+ y = m.log1p(2 * y/(1 - y))/2;
847
+ return x < 0 ? -y : y;
848
+ };
849
+
850
+ /**
851
+ * @summary Copy the sign.
852
+ * @param {number} x gives the magitude of the result.
853
+ * @param {number} y gives the sign of the result.
854
+ * @returns {number} value with the magnitude of x and with the sign of y.
855
+ */
856
+ m.copysign = function(x, y) {
857
+ return Math.abs(x) * (y < 0 || (y === 0 && 1/y < 0) ? -1 : 1);
858
+ };
859
+
860
+ /**
861
+ * @summary An error-free sum.
862
+ * @param {number} u
863
+ * @param {number} v
864
+ * @returns {object} sum with sum.s = round(u + v) and sum.t is u + v &minus;
865
+ * round(u + v)
866
+ */
867
+ m.sum = function(u, v) {
868
+ var s = u + v,
869
+ up = s - v,
870
+ vpp = s - up,
871
+ t;
872
+ up -= u;
873
+ vpp -= v;
874
+ t = -(up + vpp);
875
+ // u + v = s + t
876
+ // = round(u + v) + t
877
+ return {s: s, t: t};
878
+ };
879
+
880
+ /**
881
+ * @summary Evaluate a polynomial.
882
+ * @param {integer} N the order of the polynomial.
883
+ * @param {array} p the coefficient array (of size N + 1) (leading
884
+ * order coefficient first)
885
+ * @param {number} x the variable.
886
+ * @returns {number} the value of the polynomial.
887
+ */
888
+ m.polyval = function(N, p, s, x) {
889
+ var y = N < 0 ? 0 : p[s++];
890
+ while (--N >= 0) y = y * x + p[s++];
891
+ return y;
892
+ };
893
+
894
+ /**
895
+ * @summary Coarsen a value close to zero.
896
+ * @param {number} x
897
+ * @returns {number} the coarsened value.
898
+ */
899
+ m.AngRound = function(x) {
900
+ // The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57 for
901
+ // reals = 0.7 pm on the earth if x is an angle in degrees. (This is about
902
+ // 1000 times more resolution than we get with angles around 90 degrees.)
903
+ // We use this to avoid having to deal with near singular cases when x is
904
+ // non-zero but tiny (e.g., 1.0e-200). This converts -0 to +0; however
905
+ // tiny negative numbers get converted to -0.
906
+ if (x === 0) return x;
907
+ var z = 1/16,
908
+ y = Math.abs(x);
909
+ // The compiler mustn't "simplify" z - (z - y) to y
910
+ y = y < z ? z - (z - y) : y;
911
+ return x < 0 ? -y : y;
912
+ };
913
+
914
+ /**
915
+ * @summary Normalize an angle.
916
+ * @param {number} x the angle in degrees.
917
+ * @returns {number} the angle reduced to the range (&minus;180&deg;,
918
+ * 180&deg;].
919
+ */
920
+ m.AngNormalize = function(x) {
921
+ // Place angle in [-180, 180).
922
+ x = x % 360;
923
+ return x <= -180 ? x + 360 : (x <= 180 ? x : x - 360);
924
+ };
925
+
926
+ /**
927
+ * @summary Normalize a latitude.
928
+ * @param {number} x the angle in degrees.
929
+ * @returns {number} x if it is in the range [&minus;90&deg;, 90&deg;],
930
+ * otherwise return NaN.
931
+ */
932
+ m.LatFix = function(x) {
933
+ // Replace angle with NaN if outside [-90, 90].
934
+ return Math.abs(x) > 90 ? Number.NaN : x;
935
+ };
936
+
937
+ /**
938
+ * @summary The exact difference of two angles reduced to (&minus;180&deg;,
939
+ * 180&deg;]
940
+ * @param {number} x the first angle in degrees.
941
+ * @param {number} y the second angle in degrees.
942
+ * @return {object} diff the exact difference, y &minus; x.
943
+ *
944
+ * This computes z = y &minus; x exactly, reduced to (&minus;180&deg;,
945
+ * 180&deg;]; and then sets diff.s = d = round(z) and diff.t = e = z &minus;
946
+ * round(z). If d = &minus;180, then e &gt; 0; If d = 180, then e &le; 0.
947
+ */
948
+ m.AngDiff = function(x, y) {
949
+ // Compute y - x and reduce to [-180,180] accurately.
950
+ var r = m.sum(m.AngNormalize(-x), m.AngNormalize(y)),
951
+ d = m.AngNormalize(r.s),
952
+ t = r.t;
953
+ return m.sum(d === 180 && t > 0 ? -180 : d, t);
954
+ };
955
+
956
+ /**
957
+ * @summary Evaluate the sine and cosine function with the argument in
958
+ * degrees
959
+ * @param {number} x in degrees.
960
+ * @returns {object} r with r.s = sin(x) and r.c = cos(x).
961
+ */
962
+ m.sincosd = function(x) {
963
+ // In order to minimize round-off errors, this function exactly reduces
964
+ // the argument to the range [-45, 45] before converting it to radians.
965
+ var r, q, s, c, sinx, cosx;
966
+ r = x % 360;
967
+ q = Math.floor(r / 90 + 0.5);
968
+ r -= 90 * q;
969
+ // now abs(r) <= 45
970
+ r *= this.degree;
971
+ // Possibly could call the gnu extension sincos
972
+ s = Math.sin(r); c = Math.cos(r);
973
+ switch (q & 3) {
974
+ case 0: sinx = s; cosx = c; break;
975
+ case 1: sinx = c; cosx = -s; break;
976
+ case 2: sinx = -s; cosx = -c; break;
977
+ default: sinx = -c; cosx = s; break; // case 3
978
+ }
979
+ if (x !== 0) { sinx += 0; cosx += 0; }
980
+ return {s: sinx, c: cosx};
981
+ };
982
+
983
+ /**
984
+ * @summary Evaluate the atan2 function with the result in degrees
985
+ * @param {number} y
986
+ * @param {number} x
987
+ * @returns atan2(y, x) in degrees, in the range (&minus;180&deg;
988
+ * 180&deg;].
989
+ */
990
+ m.atan2d = function(y, x) {
991
+ // In order to minimize round-off errors, this function rearranges the
992
+ // arguments so that result of atan2 is in the range [-pi/4, pi/4] before
993
+ // converting it to degrees and mapping the result to the correct
994
+ // quadrant.
995
+ var q = 0, t, ang;
996
+ if (Math.abs(y) > Math.abs(x)) { t = x; x = y; y = t; q = 2; }
997
+ if (x < 0) { x = -x; ++q; }
998
+ // here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
999
+ ang = Math.atan2(y, x) / this.degree;
1000
+ switch (q) {
1001
+ // Note that atan2d(-0.0, 1.0) will return -0. However, we expect that
1002
+ // atan2d will not be called with y = -0. If need be, include
1003
+ //
1004
+ // case 0: ang = 0 + ang; break;
1005
+ //
1006
+ // and handle mpfr as in AngRound.
1007
+ case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
1008
+ case 2: ang = 90 - ang; break;
1009
+ case 3: ang = -90 + ang; break;
1010
+ }
1011
+ return ang;
1012
+ };
1013
+ })(GeographicLib.Math);
1014
+
1015
+ (function(
1016
+ /**
1017
+ * @exports GeographicLib/Accumulator
1018
+ * @description Accurate summation via the
1019
+ * {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class
1020
+ * (mainly for internal use).
1021
+ */
1022
+ a, m) {
1023
+
1024
+ /**
1025
+ * @class
1026
+ * @summary Accurate summation of many numbers.
1027
+ * @classdesc This allows many numbers to be added together with twice the
1028
+ * normal precision. In the documentation of the member functions, sum
1029
+ * stands for the value currently held in the accumulator.
1030
+ * @param {number | Accumulator} [y = 0] set sum = y.
1031
+ */
1032
+ a.Accumulator = function(y) {
1033
+ this.Set(y);
1034
+ };
1035
+
1036
+ /**
1037
+ * @summary Set the accumulator to a number.
1038
+ * @param {number | Accumulator} [y = 0] set sum = y.
1039
+ */
1040
+ a.Accumulator.prototype.Set = function(y) {
1041
+ if (!y) y = 0;
1042
+ if (y.constructor === a.Accumulator) {
1043
+ this._s = y._s;
1044
+ this._t = y._t;
1045
+ } else {
1046
+ this._s = y;
1047
+ this._t = 0;
1048
+ }
1049
+ };
1050
+
1051
+ /**
1052
+ * @summary Add a number to the accumulator.
1053
+ * @param {number} [y = 0] set sum += y.
1054
+ */
1055
+ a.Accumulator.prototype.Add = function(y) {
1056
+ // Here's Shewchuk's solution...
1057
+ // Accumulate starting at least significant end
1058
+ var u = m.sum(y, this._t),
1059
+ v = m.sum(u.s, this._s);
1060
+ u = u.t;
1061
+ this._s = v.s;
1062
+ this._t = v.t;
1063
+ // Start is _s, _t decreasing and non-adjacent. Sum is now (s + t + u)
1064
+ // exactly with s, t, u non-adjacent and in decreasing order (except
1065
+ // for possible zeros). The following code tries to normalize the
1066
+ // result. Ideally, we want _s = round(s+t+u) and _u = round(s+t+u -
1067
+ // _s). The follow does an approximate job (and maintains the
1068
+ // decreasing non-adjacent property). Here are two "failures" using
1069
+ // 3-bit floats:
1070
+ //
1071
+ // Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp
1072
+ // [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3
1073
+ //
1074
+ // Case 2: _s+_t is not as close to s+t+u as it shold be
1075
+ // [64, 5] + 4 -> [64, 8, 1] -> [64, 8] = 72 (off by 1)
1076
+ // should be [80, -7] = 73 (exact)
1077
+ //
1078
+ // "Fixing" these problems is probably not worth the expense. The
1079
+ // representation inevitably leads to small errors in the accumulated
1080
+ // values. The additional errors illustrated here amount to 1 ulp of
1081
+ // the less significant word during each addition to the Accumulator
1082
+ // and an additional possible error of 1 ulp in the reported sum.
1083
+ //
1084
+ // Incidentally, the "ideal" representation described above is not
1085
+ // canonical, because _s = round(_s + _t) may not be true. For
1086
+ // example, with 3-bit floats:
1087
+ //
1088
+ // [128, 16] + 1 -> [160, -16] -- 160 = round(145).
1089
+ // But [160, 0] - 16 -> [128, 16] -- 128 = round(144).
1090
+ //
1091
+ if (this._s === 0) // This implies t == 0,
1092
+ this._s = u; // so result is u
1093
+ else
1094
+ this._t += u; // otherwise just accumulate u to t.
1095
+ };
1096
+
1097
+ /**
1098
+ * @summary Return the result of adding a number to sum (but
1099
+ * don't change sum).
1100
+ * @param {number} [y = 0] the number to be added to the sum.
1101
+ * @return sum + y.
1102
+ */
1103
+ a.Accumulator.prototype.Sum = function(y) {
1104
+ var b;
1105
+ if (!y)
1106
+ return this._s;
1107
+ else {
1108
+ b = new a.Accumulator(this);
1109
+ b.Add(y);
1110
+ return b._s;
1111
+ }
1112
+ };
1113
+
1114
+ /**
1115
+ * @summary Set sum = &minus;sum.
1116
+ */
1117
+ a.Accumulator.prototype.Negate = function() {
1118
+ this._s *= -1;
1119
+ this._t *= -1;
1120
+ };
1121
+ })(GeographicLib.Accumulator, GeographicLib.Math);
1122
+
1123
+ /**************** Geodesic.js ****************/
1124
+ /*
1125
+ * Geodesic.js
1126
+ * Transcription of Geodesic.[ch]pp into JavaScript.
1127
+ *
1128
+ * See the documentation for the C++ class. The conversion is a literal
1129
+ * conversion from C++.
1130
+ *
1131
+ * The algorithms are derived in
1132
+ *
1133
+ * Charles F. F. Karney,
1134
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
1135
+ * https://doi.org/10.1007/s00190-012-0578-z
1136
+ * Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
1137
+ *
1138
+ * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
1139
+ * under the MIT/X11 License. For more information, see
1140
+ * https://geographiclib.sourceforge.io/
1141
+ */
1142
+
1143
+ // Load AFTER Math.js
1144
+
1145
+ GeographicLib.Geodesic = {};
1146
+ GeographicLib.GeodesicLine = {};
1147
+ GeographicLib.PolygonArea = {};
1148
+
1149
+ (function(
1150
+ /**
1151
+ * @exports GeographicLib/Geodesic
1152
+ * @description Solve geodesic problems via the
1153
+ * {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
1154
+ */
1155
+ g, l, p, m, c) {
1156
+
1157
+ var GEOGRAPHICLIB_GEODESIC_ORDER = 6,
1158
+ nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER,
1159
+ nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER,
1160
+ nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER,
1161
+ nA3x_ = nA3_,
1162
+ nC3x_, nC4x_,
1163
+ maxit1_ = 20,
1164
+ maxit2_ = maxit1_ + m.digits + 10,
1165
+ tol0_ = m.epsilon,
1166
+ tol1_ = 200 * tol0_,
1167
+ tol2_ = Math.sqrt(tol0_),
1168
+ tolb_ = tol0_ * tol1_,
1169
+ xthresh_ = 1000 * tol2_,
1170
+ CAP_NONE = 0,
1171
+ CAP_ALL = 0x1F,
1172
+ CAP_MASK = CAP_ALL,
1173
+ OUT_ALL = 0x7F80,
1174
+ astroid,
1175
+ A1m1f_coeff, C1f_coeff, C1pf_coeff,
1176
+ A2m1f_coeff, C2f_coeff,
1177
+ A3_coeff, C3_coeff, C4_coeff;
1178
+
1179
+ g.tiny_ = Math.sqrt(Number.MIN_VALUE);
1180
+ g.nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
1181
+ g.nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER;
1182
+ g.nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
1183
+ g.nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
1184
+ g.nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER;
1185
+ nC3x_ = (g.nC3_ * (g.nC3_ - 1)) / 2;
1186
+ nC4x_ = (g.nC4_ * (g.nC4_ + 1)) / 2;
1187
+ g.CAP_C1 = 1<<0;
1188
+ g.CAP_C1p = 1<<1;
1189
+ g.CAP_C2 = 1<<2;
1190
+ g.CAP_C3 = 1<<3;
1191
+ g.CAP_C4 = 1<<4;
1192
+
1193
+ g.NONE = 0;
1194
+ g.ARC = 1<<6;
1195
+ g.LATITUDE = 1<<7 | CAP_NONE;
1196
+ g.LONGITUDE = 1<<8 | g.CAP_C3;
1197
+ g.AZIMUTH = 1<<9 | CAP_NONE;
1198
+ g.DISTANCE = 1<<10 | g.CAP_C1;
1199
+ g.STANDARD = g.LATITUDE | g.LONGITUDE | g.AZIMUTH | g.DISTANCE;
1200
+ g.DISTANCE_IN = 1<<11 | g.CAP_C1 | g.CAP_C1p;
1201
+ g.REDUCEDLENGTH = 1<<12 | g.CAP_C1 | g.CAP_C2;
1202
+ g.GEODESICSCALE = 1<<13 | g.CAP_C1 | g.CAP_C2;
1203
+ g.AREA = 1<<14 | g.CAP_C4;
1204
+ g.ALL = OUT_ALL| CAP_ALL;
1205
+ g.LONG_UNROLL = 1<<15;
1206
+ g.OUT_MASK = OUT_ALL| g.LONG_UNROLL;
1207
+
1208
+ g.SinCosSeries = function(sinp, sinx, cosx, c) {
1209
+ // Evaluate
1210
+ // y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) :
1211
+ // sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
1212
+ // using Clenshaw summation. N.B. c[0] is unused for sin series
1213
+ // Approx operation count = (n + 5) mult and (2 * n + 2) add
1214
+ var k = c.length, // Point to one beyond last element
1215
+ n = k - (sinp ? 1 : 0),
1216
+ ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
1217
+ y0 = n & 1 ? c[--k] : 0, y1 = 0; // accumulators for sum
1218
+ // Now n is even
1219
+ n = Math.floor(n/2);
1220
+ while (n--) {
1221
+ // Unroll loop x 2, so accumulators return to their original role
1222
+ y1 = ar * y0 - y1 + c[--k];
1223
+ y0 = ar * y1 - y0 + c[--k];
1224
+ }
1225
+ return (sinp ? 2 * sinx * cosx * y0 : // sin(2 * x) * y0
1226
+ cosx * (y0 - y1)); // cos(x) * (y0 - y1)
1227
+ };
1228
+
1229
+ astroid = function(x, y) {
1230
+ // Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive
1231
+ // root k. This solution is adapted from Geocentric::Reverse.
1232
+ var k,
1233
+ p = m.sq(x),
1234
+ q = m.sq(y),
1235
+ r = (p + q - 1) / 6,
1236
+ S, r2, r3, disc, u, T3, T, ang, v, uv, w;
1237
+ if ( !(q === 0 && r <= 0) ) {
1238
+ // Avoid possible division by zero when r = 0 by multiplying
1239
+ // equations for s and t by r^3 and r, resp.
1240
+ S = p * q / 4; // S = r^3 * s
1241
+ r2 = m.sq(r);
1242
+ r3 = r * r2;
1243
+ // The discriminant of the quadratic equation for T3. This is
1244
+ // zero on the evolute curve p^(1/3)+q^(1/3) = 1
1245
+ disc = S * (S + 2 * r3);
1246
+ u = r;
1247
+ if (disc >= 0) {
1248
+ T3 = S + r3;
1249
+ // Pick the sign on the sqrt to maximize abs(T3). This
1250
+ // minimizes loss of precision due to cancellation. The
1251
+ // result is unchanged because of the way the T is used
1252
+ // in definition of u.
1253
+ T3 += T3 < 0 ? -Math.sqrt(disc) : Math.sqrt(disc); // T3 = (r * t)^3
1254
+ // N.B. cbrt always returns the real root. cbrt(-8) = -2.
1255
+ T = m.cbrt(T3); // T = r * t
1256
+ // T can be zero; but then r2 / T -> 0.
1257
+ u += T + (T !== 0 ? r2 / T : 0);
1258
+ } else {
1259
+ // T is complex, but the way u is defined the result is real.
1260
+ ang = Math.atan2(Math.sqrt(-disc), -(S + r3));
1261
+ // There are three possible cube roots. We choose the
1262
+ // root which avoids cancellation. Note that disc < 0
1263
+ // implies that r < 0.
1264
+ u += 2 * r * Math.cos(ang / 3);
1265
+ }
1266
+ v = Math.sqrt(m.sq(u) + q); // guaranteed positive
1267
+ // Avoid loss of accuracy when u < 0.
1268
+ uv = u < 0 ? q / (v - u) : u + v; // u+v, guaranteed positive
1269
+ w = (uv - q) / (2 * v); // positive?
1270
+ // Rearrange expression for k to avoid loss of accuracy due to
1271
+ // subtraction. Division by 0 not possible because uv > 0, w >= 0.
1272
+ k = uv / (Math.sqrt(uv + m.sq(w)) + w); // guaranteed positive
1273
+ } else { // q == 0 && r <= 0
1274
+ // y = 0 with |x| <= 1. Handle this case directly.
1275
+ // for y small, positive root is k = abs(y)/sqrt(1-x^2)
1276
+ k = 0;
1277
+ }
1278
+ return k;
1279
+ };
1280
+
1281
+ A1m1f_coeff = [
1282
+ // (1-eps)*A1-1, polynomial in eps2 of order 3
1283
+ +1, 4, 64, 0, 256
1284
+ ];
1285
+
1286
+ // The scale factor A1-1 = mean value of (d/dsigma)I1 - 1
1287
+ g.A1m1f = function(eps) {
1288
+ var p = Math.floor(nA1_/2),
1289
+ t = m.polyval(p, A1m1f_coeff, 0, m.sq(eps)) / A1m1f_coeff[p + 1];
1290
+ return (t + eps) / (1 - eps);
1291
+ };
1292
+
1293
+ C1f_coeff = [
1294
+ // C1[1]/eps^1, polynomial in eps2 of order 2
1295
+ -1, 6, -16, 32,
1296
+ // C1[2]/eps^2, polynomial in eps2 of order 2
1297
+ -9, 64, -128, 2048,
1298
+ // C1[3]/eps^3, polynomial in eps2 of order 1
1299
+ +9, -16, 768,
1300
+ // C1[4]/eps^4, polynomial in eps2 of order 1
1301
+ +3, -5, 512,
1302
+ // C1[5]/eps^5, polynomial in eps2 of order 0
1303
+ -7, 1280,
1304
+ // C1[6]/eps^6, polynomial in eps2 of order 0
1305
+ -7, 2048
1306
+ ];
1307
+
1308
+ // The coefficients C1[l] in the Fourier expansion of B1
1309
+ g.C1f = function(eps, c) {
1310
+ var eps2 = m.sq(eps),
1311
+ d = eps,
1312
+ o = 0,
1313
+ l, p;
1314
+ for (l = 1; l <= g.nC1_; ++l) { // l is index of C1p[l]
1315
+ p = Math.floor((g.nC1_ - l) / 2); // order of polynomial in eps^2
1316
+ c[l] = d * m.polyval(p, C1f_coeff, o, eps2) / C1f_coeff[o + p + 1];
1317
+ o += p + 2;
1318
+ d *= eps;
1319
+ }
1320
+ };
1321
+
1322
+ C1pf_coeff = [
1323
+ // C1p[1]/eps^1, polynomial in eps2 of order 2
1324
+ +205, -432, 768, 1536,
1325
+ // C1p[2]/eps^2, polynomial in eps2 of order 2
1326
+ +4005, -4736, 3840, 12288,
1327
+ // C1p[3]/eps^3, polynomial in eps2 of order 1
1328
+ -225, 116, 384,
1329
+ // C1p[4]/eps^4, polynomial in eps2 of order 1
1330
+ -7173, 2695, 7680,
1331
+ // C1p[5]/eps^5, polynomial in eps2 of order 0
1332
+ +3467, 7680,
1333
+ // C1p[6]/eps^6, polynomial in eps2 of order 0
1334
+ +38081, 61440
1335
+ ];
1336
+
1337
+ // The coefficients C1p[l] in the Fourier expansion of B1p
1338
+ g.C1pf = function(eps, c) {
1339
+ var eps2 = m.sq(eps),
1340
+ d = eps,
1341
+ o = 0,
1342
+ l, p;
1343
+ for (l = 1; l <= g.nC1p_; ++l) { // l is index of C1p[l]
1344
+ p = Math.floor((g.nC1p_ - l) / 2); // order of polynomial in eps^2
1345
+ c[l] = d * m.polyval(p, C1pf_coeff, o, eps2) / C1pf_coeff[o + p + 1];
1346
+ o += p + 2;
1347
+ d *= eps;
1348
+ }
1349
+ };
1350
+
1351
+ A2m1f_coeff = [
1352
+ // (eps+1)*A2-1, polynomial in eps2 of order 3
1353
+ -11, -28, -192, 0, 256
1354
+ ];
1355
+
1356
+ // The scale factor A2-1 = mean value of (d/dsigma)I2 - 1
1357
+ g.A2m1f = function(eps) {
1358
+ var p = Math.floor(nA2_/2),
1359
+ t = m.polyval(p, A2m1f_coeff, 0, m.sq(eps)) / A2m1f_coeff[p + 1];
1360
+ return (t - eps) / (1 + eps);
1361
+ };
1362
+
1363
+ C2f_coeff = [
1364
+ // C2[1]/eps^1, polynomial in eps2 of order 2
1365
+ +1, 2, 16, 32,
1366
+ // C2[2]/eps^2, polynomial in eps2 of order 2
1367
+ +35, 64, 384, 2048,
1368
+ // C2[3]/eps^3, polynomial in eps2 of order 1
1369
+ +15, 80, 768,
1370
+ // C2[4]/eps^4, polynomial in eps2 of order 1
1371
+ +7, 35, 512,
1372
+ // C2[5]/eps^5, polynomial in eps2 of order 0
1373
+ +63, 1280,
1374
+ // C2[6]/eps^6, polynomial in eps2 of order 0
1375
+ +77, 2048
1376
+ ];
1377
+
1378
+ // The coefficients C2[l] in the Fourier expansion of B2
1379
+ g.C2f = function(eps, c) {
1380
+ var eps2 = m.sq(eps),
1381
+ d = eps,
1382
+ o = 0,
1383
+ l, p;
1384
+ for (l = 1; l <= g.nC2_; ++l) { // l is index of C2[l]
1385
+ p = Math.floor((g.nC2_ - l) / 2); // order of polynomial in eps^2
1386
+ c[l] = d * m.polyval(p, C2f_coeff, o, eps2) / C2f_coeff[o + p + 1];
1387
+ o += p + 2;
1388
+ d *= eps;
1389
+ }
1390
+ };
1391
+
1392
+ /**
1393
+ * @class
1394
+ * @property {number} a the equatorial radius (meters).
1395
+ * @property {number} f the flattening.
1396
+ * @summary Initialize a Geodesic object for a specific ellipsoid.
1397
+ * @classdesc Performs geodesic calculations on an ellipsoid of revolution.
1398
+ * The routines for solving the direct and inverse problems return an
1399
+ * object with some of the following fields set: lat1, lon1, azi1, lat2,
1400
+ * lon2, azi2, s12, a12, m12, M12, M21, S12. See {@tutorial 2-interface},
1401
+ * "The results".
1402
+ * @example
1403
+ * var GeographicLib = require("geographiclib"),
1404
+ * geod = GeographicLib.Geodesic.WGS84;
1405
+ * var inv = geod.Inverse(1,2,3,4);
1406
+ * console.log("lat1 = " + inv.lat1 + ", lon1 = " + inv.lon1 +
1407
+ * ", lat2 = " + inv.lat2 + ", lon2 = " + inv.lon2 +
1408
+ * ",\nazi1 = " + inv.azi1 + ", azi2 = " + inv.azi2 +
1409
+ * ", s12 = " + inv.s12);
1410
+ * @param {number} a the equatorial radius of the ellipsoid (meters).
1411
+ * @param {number} f the flattening of the ellipsoid. Setting f = 0 gives
1412
+ * a sphere (on which geodesics are great circles). Negative f gives a
1413
+ * prolate ellipsoid.
1414
+ * @throws an error if the parameters are illegal.
1415
+ */
1416
+ g.Geodesic = function(a, f) {
1417
+ this.a = a;
1418
+ this.f = f;
1419
+ this._f1 = 1 - this.f;
1420
+ this._e2 = this.f * (2 - this.f);
1421
+ this._ep2 = this._e2 / m.sq(this._f1); // e2 / (1 - e2)
1422
+ this._n = this.f / ( 2 - this.f);
1423
+ this._b = this.a * this._f1;
1424
+ // authalic radius squared
1425
+ this._c2 = (m.sq(this.a) + m.sq(this._b) *
1426
+ (this._e2 === 0 ? 1 :
1427
+ (this._e2 > 0 ? m.atanh(Math.sqrt(this._e2)) :
1428
+ Math.atan(Math.sqrt(-this._e2))) /
1429
+ Math.sqrt(Math.abs(this._e2))))/2;
1430
+ // The sig12 threshold for "really short". Using the auxiliary sphere
1431
+ // solution with dnm computed at (bet1 + bet2) / 2, the relative error in
1432
+ // the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
1433
+ // (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a given
1434
+ // f and sig12, the max error occurs for lines near the pole. If the old
1435
+ // rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
1436
+ // by a factor of 2.) Setting this equal to epsilon gives sig12 = etol2.
1437
+ // Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
1438
+ // abs(f)) stops etol2 getting too large in the nearly spherical case.
1439
+ this._etol2 = 0.1 * tol2_ /
1440
+ Math.sqrt( Math.max(0.001, Math.abs(this.f)) *
1441
+ Math.min(1.0, 1 - this.f/2) / 2 );
1442
+ if (!(isFinite(this.a) && this.a > 0))
1443
+ throw new Error("Equatorial radius is not positive");
1444
+ if (!(isFinite(this._b) && this._b > 0))
1445
+ throw new Error("Polar semi-axis is not positive");
1446
+ this._A3x = new Array(nA3x_);
1447
+ this._C3x = new Array(nC3x_);
1448
+ this._C4x = new Array(nC4x_);
1449
+ this.A3coeff();
1450
+ this.C3coeff();
1451
+ this.C4coeff();
1452
+ };
1453
+
1454
+ A3_coeff = [
1455
+ // A3, coeff of eps^5, polynomial in n of order 0
1456
+ -3, 128,
1457
+ // A3, coeff of eps^4, polynomial in n of order 1
1458
+ -2, -3, 64,
1459
+ // A3, coeff of eps^3, polynomial in n of order 2
1460
+ -1, -3, -1, 16,
1461
+ // A3, coeff of eps^2, polynomial in n of order 2
1462
+ +3, -1, -2, 8,
1463
+ // A3, coeff of eps^1, polynomial in n of order 1
1464
+ +1, -1, 2,
1465
+ // A3, coeff of eps^0, polynomial in n of order 0
1466
+ +1, 1
1467
+ ];
1468
+
1469
+ // The scale factor A3 = mean value of (d/dsigma)I3
1470
+ g.Geodesic.prototype.A3coeff = function() {
1471
+ var o = 0, k = 0,
1472
+ j, p;
1473
+ for (j = nA3_ - 1; j >= 0; --j) { // coeff of eps^j
1474
+ p = Math.min(nA3_ - j - 1, j); // order of polynomial in n
1475
+ this._A3x[k++] = m.polyval(p, A3_coeff, o, this._n) /
1476
+ A3_coeff[o + p + 1];
1477
+ o += p + 2;
1478
+ }
1479
+ };
1480
+
1481
+ C3_coeff = [
1482
+ // C3[1], coeff of eps^5, polynomial in n of order 0
1483
+ +3, 128,
1484
+ // C3[1], coeff of eps^4, polynomial in n of order 1
1485
+ +2, 5, 128,
1486
+ // C3[1], coeff of eps^3, polynomial in n of order 2
1487
+ -1, 3, 3, 64,
1488
+ // C3[1], coeff of eps^2, polynomial in n of order 2
1489
+ -1, 0, 1, 8,
1490
+ // C3[1], coeff of eps^1, polynomial in n of order 1
1491
+ -1, 1, 4,
1492
+ // C3[2], coeff of eps^5, polynomial in n of order 0
1493
+ +5, 256,
1494
+ // C3[2], coeff of eps^4, polynomial in n of order 1
1495
+ +1, 3, 128,
1496
+ // C3[2], coeff of eps^3, polynomial in n of order 2
1497
+ -3, -2, 3, 64,
1498
+ // C3[2], coeff of eps^2, polynomial in n of order 2
1499
+ +1, -3, 2, 32,
1500
+ // C3[3], coeff of eps^5, polynomial in n of order 0
1501
+ +7, 512,
1502
+ // C3[3], coeff of eps^4, polynomial in n of order 1
1503
+ -10, 9, 384,
1504
+ // C3[3], coeff of eps^3, polynomial in n of order 2
1505
+ +5, -9, 5, 192,
1506
+ // C3[4], coeff of eps^5, polynomial in n of order 0
1507
+ +7, 512,
1508
+ // C3[4], coeff of eps^4, polynomial in n of order 1
1509
+ -14, 7, 512,
1510
+ // C3[5], coeff of eps^5, polynomial in n of order 0
1511
+ +21, 2560
1512
+ ];
1513
+
1514
+ // The coefficients C3[l] in the Fourier expansion of B3
1515
+ g.Geodesic.prototype.C3coeff = function() {
1516
+ var o = 0, k = 0,
1517
+ l, j, p;
1518
+ for (l = 1; l < g.nC3_; ++l) { // l is index of C3[l]
1519
+ for (j = g.nC3_ - 1; j >= l; --j) { // coeff of eps^j
1520
+ p = Math.min(g.nC3_ - j - 1, j); // order of polynomial in n
1521
+ this._C3x[k++] = m.polyval(p, C3_coeff, o, this._n) /
1522
+ C3_coeff[o + p + 1];
1523
+ o += p + 2;
1524
+ }
1525
+ }
1526
+ };
1527
+
1528
+ C4_coeff = [
1529
+ // C4[0], coeff of eps^5, polynomial in n of order 0
1530
+ +97, 15015,
1531
+ // C4[0], coeff of eps^4, polynomial in n of order 1
1532
+ +1088, 156, 45045,
1533
+ // C4[0], coeff of eps^3, polynomial in n of order 2
1534
+ -224, -4784, 1573, 45045,
1535
+ // C4[0], coeff of eps^2, polynomial in n of order 3
1536
+ -10656, 14144, -4576, -858, 45045,
1537
+ // C4[0], coeff of eps^1, polynomial in n of order 4
1538
+ +64, 624, -4576, 6864, -3003, 15015,
1539
+ // C4[0], coeff of eps^0, polynomial in n of order 5
1540
+ +100, 208, 572, 3432, -12012, 30030, 45045,
1541
+ // C4[1], coeff of eps^5, polynomial in n of order 0
1542
+ +1, 9009,
1543
+ // C4[1], coeff of eps^4, polynomial in n of order 1
1544
+ -2944, 468, 135135,
1545
+ // C4[1], coeff of eps^3, polynomial in n of order 2
1546
+ +5792, 1040, -1287, 135135,
1547
+ // C4[1], coeff of eps^2, polynomial in n of order 3
1548
+ +5952, -11648, 9152, -2574, 135135,
1549
+ // C4[1], coeff of eps^1, polynomial in n of order 4
1550
+ -64, -624, 4576, -6864, 3003, 135135,
1551
+ // C4[2], coeff of eps^5, polynomial in n of order 0
1552
+ +8, 10725,
1553
+ // C4[2], coeff of eps^4, polynomial in n of order 1
1554
+ +1856, -936, 225225,
1555
+ // C4[2], coeff of eps^3, polynomial in n of order 2
1556
+ -8448, 4992, -1144, 225225,
1557
+ // C4[2], coeff of eps^2, polynomial in n of order 3
1558
+ -1440, 4160, -4576, 1716, 225225,
1559
+ // C4[3], coeff of eps^5, polynomial in n of order 0
1560
+ -136, 63063,
1561
+ // C4[3], coeff of eps^4, polynomial in n of order 1
1562
+ +1024, -208, 105105,
1563
+ // C4[3], coeff of eps^3, polynomial in n of order 2
1564
+ +3584, -3328, 1144, 315315,
1565
+ // C4[4], coeff of eps^5, polynomial in n of order 0
1566
+ -128, 135135,
1567
+ // C4[4], coeff of eps^4, polynomial in n of order 1
1568
+ -2560, 832, 405405,
1569
+ // C4[5], coeff of eps^5, polynomial in n of order 0
1570
+ +128, 99099
1571
+ ];
1572
+
1573
+ g.Geodesic.prototype.C4coeff = function() {
1574
+ var o = 0, k = 0,
1575
+ l, j, p;
1576
+ for (l = 0; l < g.nC4_; ++l) { // l is index of C4[l]
1577
+ for (j = g.nC4_ - 1; j >= l; --j) { // coeff of eps^j
1578
+ p = g.nC4_ - j - 1; // order of polynomial in n
1579
+ this._C4x[k++] = m.polyval(p, C4_coeff, o, this._n) /
1580
+ C4_coeff[o + p + 1];
1581
+ o += p + 2;
1582
+ }
1583
+ }
1584
+ };
1585
+
1586
+ g.Geodesic.prototype.A3f = function(eps) {
1587
+ // Evaluate A3
1588
+ return m.polyval(nA3x_ - 1, this._A3x, 0, eps);
1589
+ };
1590
+
1591
+ g.Geodesic.prototype.C3f = function(eps, c) {
1592
+ // Evaluate C3 coeffs
1593
+ // Elements c[1] thru c[nC3_ - 1] are set
1594
+ var mult = 1,
1595
+ o = 0,
1596
+ l, p;
1597
+ for (l = 1; l < g.nC3_; ++l) { // l is index of C3[l]
1598
+ p = g.nC3_ - l - 1; // order of polynomial in eps
1599
+ mult *= eps;
1600
+ c[l] = mult * m.polyval(p, this._C3x, o, eps);
1601
+ o += p + 1;
1602
+ }
1603
+ };
1604
+
1605
+ g.Geodesic.prototype.C4f = function(eps, c) {
1606
+ // Evaluate C4 coeffs
1607
+ // Elements c[0] thru c[g.nC4_ - 1] are set
1608
+ var mult = 1,
1609
+ o = 0,
1610
+ l, p;
1611
+ for (l = 0; l < g.nC4_; ++l) { // l is index of C4[l]
1612
+ p = g.nC4_ - l - 1; // order of polynomial in eps
1613
+ c[l] = mult * m.polyval(p, this._C4x, o, eps);
1614
+ o += p + 1;
1615
+ mult *= eps;
1616
+ }
1617
+ };
1618
+
1619
+ // return s12b, m12b, m0, M12, M21
1620
+ g.Geodesic.prototype.Lengths = function(eps, sig12,
1621
+ ssig1, csig1, dn1, ssig2, csig2, dn2,
1622
+ cbet1, cbet2, outmask,
1623
+ C1a, C2a) {
1624
+ // Return m12b = (reduced length)/_b; also calculate s12b =
1625
+ // distance/_b, and m0 = coefficient of secular term in
1626
+ // expression for reduced length.
1627
+ outmask &= g.OUT_MASK;
1628
+ var vals = {},
1629
+ m0x = 0, J12 = 0, A1 = 0, A2 = 0,
1630
+ B1, B2, l, csig12, t;
1631
+ if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
1632
+ A1 = g.A1m1f(eps);
1633
+ g.C1f(eps, C1a);
1634
+ if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
1635
+ A2 = g.A2m1f(eps);
1636
+ g.C2f(eps, C2a);
1637
+ m0x = A1 - A2;
1638
+ A2 = 1 + A2;
1639
+ }
1640
+ A1 = 1 + A1;
1641
+ }
1642
+ if (outmask & g.DISTANCE) {
1643
+ B1 = g.SinCosSeries(true, ssig2, csig2, C1a) -
1644
+ g.SinCosSeries(true, ssig1, csig1, C1a);
1645
+ // Missing a factor of _b
1646
+ vals.s12b = A1 * (sig12 + B1);
1647
+ if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
1648
+ B2 = g.SinCosSeries(true, ssig2, csig2, C2a) -
1649
+ g.SinCosSeries(true, ssig1, csig1, C2a);
1650
+ J12 = m0x * sig12 + (A1 * B1 - A2 * B2);
1651
+ }
1652
+ } else if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
1653
+ // Assume here that nC1_ >= nC2_
1654
+ for (l = 1; l <= g.nC2_; ++l)
1655
+ C2a[l] = A1 * C1a[l] - A2 * C2a[l];
1656
+ J12 = m0x * sig12 + (g.SinCosSeries(true, ssig2, csig2, C2a) -
1657
+ g.SinCosSeries(true, ssig1, csig1, C2a));
1658
+ }
1659
+ if (outmask & g.REDUCEDLENGTH) {
1660
+ vals.m0 = m0x;
1661
+ // Missing a factor of _b.
1662
+ // Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
1663
+ // accurate cancellation in the case of coincident points.
1664
+ vals.m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
1665
+ csig1 * csig2 * J12;
1666
+ }
1667
+ if (outmask & g.GEODESICSCALE) {
1668
+ csig12 = csig1 * csig2 + ssig1 * ssig2;
1669
+ t = this._ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
1670
+ vals.M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
1671
+ vals.M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
1672
+ }
1673
+ return vals;
1674
+ };
1675
+
1676
+ // return sig12, salp1, calp1, salp2, calp2, dnm
1677
+ g.Geodesic.prototype.InverseStart = function(sbet1, cbet1, dn1,
1678
+ sbet2, cbet2, dn2,
1679
+ lam12, slam12, clam12,
1680
+ C1a, C2a) {
1681
+ // Return a starting point for Newton's method in salp1 and calp1
1682
+ // (function value is -1). If Newton's method doesn't need to be
1683
+ // used, return also salp2 and calp2 and function value is sig12.
1684
+ // salp2, calp2 only updated if return val >= 0.
1685
+ var vals = {},
1686
+ // bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
1687
+ sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
1688
+ cbet12 = cbet2 * cbet1 + sbet2 * sbet1,
1689
+ sbet12a, shortline, omg12, sbetm2, somg12, comg12, t, ssig12, csig12,
1690
+ x, y, lamscale, betscale, k2, eps, cbet12a, bet12a, m12b, m0, nvals,
1691
+ k, omg12a, lam12x;
1692
+ vals.sig12 = -1; // Return value
1693
+ // Volatile declaration needed to fix inverse cases
1694
+ // 88.202499451857 0 -88.202499451857 179.981022032992859592
1695
+ // 89.262080389218 0 -89.262080389218 179.992207982775375662
1696
+ // 89.333123580033 0 -89.333123580032997687 179.99295812360148422
1697
+ // which otherwise fail with g++ 4.4.4 x86 -O3
1698
+ sbet12a = sbet2 * cbet1;
1699
+ sbet12a += cbet2 * sbet1;
1700
+
1701
+ shortline = cbet12 >= 0 && sbet12 < 0.5 && cbet2 * lam12 < 0.5;
1702
+ if (shortline) {
1703
+ sbetm2 = m.sq(sbet1 + sbet2);
1704
+ // sin((bet1+bet2)/2)^2
1705
+ // = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
1706
+ sbetm2 /= sbetm2 + m.sq(cbet1 + cbet2);
1707
+ vals.dnm = Math.sqrt(1 + this._ep2 * sbetm2);
1708
+ omg12 = lam12 / (this._f1 * vals.dnm);
1709
+ somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
1710
+ } else {
1711
+ somg12 = slam12; comg12 = clam12;
1712
+ }
1713
+
1714
+ vals.salp1 = cbet2 * somg12;
1715
+ vals.calp1 = comg12 >= 0 ?
1716
+ sbet12 + cbet2 * sbet1 * m.sq(somg12) / (1 + comg12) :
1717
+ sbet12a - cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
1718
+
1719
+ ssig12 = m.hypot(vals.salp1, vals.calp1);
1720
+ csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
1721
+ if (shortline && ssig12 < this._etol2) {
1722
+ // really short lines
1723
+ vals.salp2 = cbet1 * somg12;
1724
+ vals.calp2 = sbet12 - cbet1 * sbet2 *
1725
+ (comg12 >= 0 ? m.sq(somg12) / (1 + comg12) : 1 - comg12);
1726
+ // norm(vals.salp2, vals.calp2);
1727
+ t = m.hypot(vals.salp2, vals.calp2); vals.salp2 /= t; vals.calp2 /= t;
1728
+ // Set return value
1729
+ vals.sig12 = Math.atan2(ssig12, csig12);
1730
+ } else if (Math.abs(this._n) > 0.1 || // Skip astroid calc if too eccentric
1731
+ csig12 >= 0 ||
1732
+ ssig12 >= 6 * Math.abs(this._n) * Math.PI * m.sq(cbet1)) {
1733
+ // Nothing to do, zeroth order spherical approximation is OK
1734
+ } else {
1735
+ // Scale lam12 and bet2 to x, y coordinate system where antipodal
1736
+ // point is at origin and singular point is at y = 0, x = -1.
1737
+ lam12x = Math.atan2(-slam12, -clam12); // lam12 - pi
1738
+ if (this.f >= 0) { // In fact f == 0 does not get here
1739
+ // x = dlong, y = dlat
1740
+ k2 = m.sq(sbet1) * this._ep2;
1741
+ eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
1742
+ lamscale = this.f * cbet1 * this.A3f(eps) * Math.PI;
1743
+ betscale = lamscale * cbet1;
1744
+
1745
+ x = lam12x / lamscale;
1746
+ y = sbet12a / betscale;
1747
+ } else { // f < 0
1748
+ // x = dlat, y = dlong
1749
+ cbet12a = cbet2 * cbet1 - sbet2 * sbet1;
1750
+ bet12a = Math.atan2(sbet12a, cbet12a);
1751
+ // In the case of lon12 = 180, this repeats a calculation made
1752
+ // in Inverse.
1753
+ nvals = this.Lengths(this._n, Math.PI + bet12a,
1754
+ sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
1755
+ cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
1756
+ m12b = nvals.m12b; m0 = nvals.m0;
1757
+ x = -1 + m12b / (cbet1 * cbet2 * m0 * Math.PI);
1758
+ betscale = x < -0.01 ? sbet12a / x :
1759
+ -this.f * m.sq(cbet1) * Math.PI;
1760
+ lamscale = betscale / cbet1;
1761
+ y = lam12 / lamscale;
1762
+ }
1763
+
1764
+ if (y > -tol1_ && x > -1 - xthresh_) {
1765
+ // strip near cut
1766
+ if (this.f >= 0) {
1767
+ vals.salp1 = Math.min(1, -x);
1768
+ vals.calp1 = -Math.sqrt(1 - m.sq(vals.salp1));
1769
+ } else {
1770
+ vals.calp1 = Math.max(x > -tol1_ ? 0 : -1, x);
1771
+ vals.salp1 = Math.sqrt(1 - m.sq(vals.calp1));
1772
+ }
1773
+ } else {
1774
+ // Estimate alp1, by solving the astroid problem.
1775
+ //
1776
+ // Could estimate alpha1 = theta + pi/2, directly, i.e.,
1777
+ // calp1 = y/k; salp1 = -x/(1+k); for f >= 0
1778
+ // calp1 = x/(1+k); salp1 = -y/k; for f < 0 (need to check)
1779
+ //
1780
+ // However, it's better to estimate omg12 from astroid and use
1781
+ // spherical formula to compute alp1. This reduces the mean number of
1782
+ // Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
1783
+ // (min 0 max 5). The changes in the number of iterations are as
1784
+ // follows:
1785
+ //
1786
+ // change percent
1787
+ // 1 5
1788
+ // 0 78
1789
+ // -1 16
1790
+ // -2 0.6
1791
+ // -3 0.04
1792
+ // -4 0.002
1793
+ //
1794
+ // The histogram of iterations is (m = number of iterations estimating
1795
+ // alp1 directly, n = number of iterations estimating via omg12, total
1796
+ // number of trials = 148605):
1797
+ //
1798
+ // iter m n
1799
+ // 0 148 186
1800
+ // 1 13046 13845
1801
+ // 2 93315 102225
1802
+ // 3 36189 32341
1803
+ // 4 5396 7
1804
+ // 5 455 1
1805
+ // 6 56 0
1806
+ //
1807
+ // Because omg12 is near pi, estimate work with omg12a = pi - omg12
1808
+ k = astroid(x, y);
1809
+ omg12a = lamscale * ( this.f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
1810
+ somg12 = Math.sin(omg12a); comg12 = -Math.cos(omg12a);
1811
+ // Update spherical estimate of alp1 using omg12 instead of
1812
+ // lam12
1813
+ vals.salp1 = cbet2 * somg12;
1814
+ vals.calp1 = sbet12a -
1815
+ cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
1816
+ }
1817
+ }
1818
+ // Sanity check on starting guess. Backwards check allows NaN through.
1819
+ if (!(vals.salp1 <= 0.0)) {
1820
+ // norm(vals.salp1, vals.calp1);
1821
+ t = m.hypot(vals.salp1, vals.calp1); vals.salp1 /= t; vals.calp1 /= t;
1822
+ } else {
1823
+ vals.salp1 = 1; vals.calp1 = 0;
1824
+ }
1825
+ return vals;
1826
+ };
1827
+
1828
+ // return lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
1829
+ // domg12, dlam12,
1830
+ g.Geodesic.prototype.Lambda12 = function(sbet1, cbet1, dn1,
1831
+ sbet2, cbet2, dn2,
1832
+ salp1, calp1, slam120, clam120,
1833
+ diffp, C1a, C2a, C3a) {
1834
+ var vals = {},
1835
+ t, salp0, calp0,
1836
+ somg1, comg1, somg2, comg2, somg12, comg12, B312, eta, k2, nvals;
1837
+ if (sbet1 === 0 && calp1 === 0)
1838
+ // Break degeneracy of equatorial line. This case has already been
1839
+ // handled.
1840
+ calp1 = -g.tiny_;
1841
+
1842
+ // sin(alp1) * cos(bet1) = sin(alp0)
1843
+ salp0 = salp1 * cbet1;
1844
+ calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
1845
+
1846
+ // tan(bet1) = tan(sig1) * cos(alp1)
1847
+ // tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
1848
+ vals.ssig1 = sbet1; somg1 = salp0 * sbet1;
1849
+ vals.csig1 = comg1 = calp1 * cbet1;
1850
+ // norm(vals.ssig1, vals.csig1);
1851
+ t = m.hypot(vals.ssig1, vals.csig1); vals.ssig1 /= t; vals.csig1 /= t;
1852
+ // norm(somg1, comg1); -- don't need to normalize!
1853
+
1854
+ // Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
1855
+ // about this case, since this can yield singularities in the Newton
1856
+ // iteration.
1857
+ // sin(alp2) * cos(bet2) = sin(alp0)
1858
+ vals.salp2 = cbet2 !== cbet1 ? salp0 / cbet2 : salp1;
1859
+ // calp2 = sqrt(1 - sq(salp2))
1860
+ // = sqrt(sq(calp0) - sq(sbet2)) / cbet2
1861
+ // and subst for calp0 and rearrange to give (choose positive sqrt
1862
+ // to give alp2 in [0, pi/2]).
1863
+ vals.calp2 = cbet2 !== cbet1 || Math.abs(sbet2) !== -sbet1 ?
1864
+ Math.sqrt(m.sq(calp1 * cbet1) + (cbet1 < -sbet1 ?
1865
+ (cbet2 - cbet1) * (cbet1 + cbet2) :
1866
+ (sbet1 - sbet2) * (sbet1 + sbet2))) /
1867
+ cbet2 : Math.abs(calp1);
1868
+ // tan(bet2) = tan(sig2) * cos(alp2)
1869
+ // tan(omg2) = sin(alp0) * tan(sig2).
1870
+ vals.ssig2 = sbet2; somg2 = salp0 * sbet2;
1871
+ vals.csig2 = comg2 = vals.calp2 * cbet2;
1872
+ // norm(vals.ssig2, vals.csig2);
1873
+ t = m.hypot(vals.ssig2, vals.csig2); vals.ssig2 /= t; vals.csig2 /= t;
1874
+ // norm(somg2, comg2); -- don't need to normalize!
1875
+
1876
+ // sig12 = sig2 - sig1, limit to [0, pi]
1877
+ vals.sig12 = Math.atan2(Math.max(0, vals.csig1 * vals.ssig2 -
1878
+ vals.ssig1 * vals.csig2),
1879
+ vals.csig1 * vals.csig2 +
1880
+ vals.ssig1 * vals.ssig2);
1881
+
1882
+ // omg12 = omg2 - omg1, limit to [0, pi]
1883
+ somg12 = Math.max(0, comg1 * somg2 - somg1 * comg2);
1884
+ comg12 = comg1 * comg2 + somg1 * somg2;
1885
+ // eta = omg12 - lam120
1886
+ eta = Math.atan2(somg12 * clam120 - comg12 * slam120,
1887
+ comg12 * clam120 + somg12 * slam120);
1888
+ k2 = m.sq(calp0) * this._ep2;
1889
+ vals.eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
1890
+ this.C3f(vals.eps, C3a);
1891
+ B312 = (g.SinCosSeries(true, vals.ssig2, vals.csig2, C3a) -
1892
+ g.SinCosSeries(true, vals.ssig1, vals.csig1, C3a));
1893
+ vals.domg12 = -this.f * this.A3f(vals.eps) * salp0 * (vals.sig12 + B312);
1894
+ vals.lam12 = eta + vals.domg12;
1895
+ if (diffp) {
1896
+ if (vals.calp2 === 0)
1897
+ vals.dlam12 = -2 * this._f1 * dn1 / sbet1;
1898
+ else {
1899
+ nvals = this.Lengths(vals.eps, vals.sig12,
1900
+ vals.ssig1, vals.csig1, dn1,
1901
+ vals.ssig2, vals.csig2, dn2,
1902
+ cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
1903
+ vals.dlam12 = nvals.m12b;
1904
+ vals.dlam12 *= this._f1 / (vals.calp2 * cbet2);
1905
+ }
1906
+ }
1907
+ return vals;
1908
+ };
1909
+
1910
+ /**
1911
+ * @summary Solve the inverse geodesic problem.
1912
+ * @param {number} lat1 the latitude of the first point in degrees.
1913
+ * @param {number} lon1 the longitude of the first point in degrees.
1914
+ * @param {number} lat2 the latitude of the second point in degrees.
1915
+ * @param {number} lon2 the longitude of the second point in degrees.
1916
+ * @param {bitmask} [outmask = STANDARD] which results to include.
1917
+ * @returns {object} the requested results
1918
+ * @description The lat1, lon1, lat2, lon2, and a12 fields of the result are
1919
+ * always set. For details on the outmask parameter, see {@tutorial
1920
+ * 2-interface}, "The outmask and caps parameters".
1921
+ */
1922
+ g.Geodesic.prototype.Inverse = function(lat1, lon1, lat2, lon2, outmask) {
1923
+ var r, vals;
1924
+ if (!outmask) outmask = g.STANDARD;
1925
+ if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
1926
+ outmask &= g.OUT_MASK;
1927
+ r = this.InverseInt(lat1, lon1, lat2, lon2, outmask);
1928
+ vals = r.vals;
1929
+ if (outmask & g.AZIMUTH) {
1930
+ vals.azi1 = m.atan2d(r.salp1, r.calp1);
1931
+ vals.azi2 = m.atan2d(r.salp2, r.calp2);
1932
+ }
1933
+ return vals;
1934
+ };
1935
+
1936
+ g.Geodesic.prototype.InverseInt = function(lat1, lon1, lat2, lon2, outmask) {
1937
+ var vals = {},
1938
+ lon12, lon12s, lonsign, t, swapp, latsign,
1939
+ sbet1, cbet1, sbet2, cbet2, s12x, m12x,
1940
+ dn1, dn2, lam12, slam12, clam12,
1941
+ sig12, calp1, salp1, calp2, salp2, C1a, C2a, C3a, meridian, nvals,
1942
+ ssig1, csig1, ssig2, csig2, eps, omg12, dnm,
1943
+ numit, salp1a, calp1a, salp1b, calp1b,
1944
+ tripn, tripb, v, dv, dalp1, sdalp1, cdalp1, nsalp1,
1945
+ lengthmask, salp0, calp0, alp12, k2, A4, C4a, B41, B42,
1946
+ somg12, comg12, domg12, dbet1, dbet2, salp12, calp12, sdomg12, cdomg12;
1947
+ // Compute longitude difference (AngDiff does this carefully). Result is
1948
+ // in [-180, 180] but -180 is only for west-going geodesics. 180 is for
1949
+ // east-going and meridional geodesics.
1950
+ vals.lat1 = lat1 = m.LatFix(lat1); vals.lat2 = lat2 = m.LatFix(lat2);
1951
+ // If really close to the equator, treat as on equator.
1952
+ lat1 = m.AngRound(lat1);
1953
+ lat2 = m.AngRound(lat2);
1954
+ lon12 = m.AngDiff(lon1, lon2); lon12s = lon12.t; lon12 = lon12.s;
1955
+ if (outmask & g.LONG_UNROLL) {
1956
+ vals.lon1 = lon1; vals.lon2 = (lon1 + lon12) + lon12s;
1957
+ } else {
1958
+ vals.lon1 = m.AngNormalize(lon1); vals.lon2 = m.AngNormalize(lon2);
1959
+ }
1960
+ // Make longitude difference positive.
1961
+ lonsign = lon12 >= 0 ? 1 : -1;
1962
+ // If very close to being on the same half-meridian, then make it so.
1963
+ lon12 = lonsign * m.AngRound(lon12);
1964
+ lon12s = m.AngRound((180 - lon12) - lonsign * lon12s);
1965
+ lam12 = lon12 * m.degree;
1966
+ t = m.sincosd(lon12 > 90 ? lon12s : lon12);
1967
+ slam12 = t.s; clam12 = (lon12 > 90 ? -1 : 1) * t.c;
1968
+
1969
+ // Swap points so that point with higher (abs) latitude is point 1
1970
+ // If one latitude is a nan, then it becomes lat1.
1971
+ swapp = Math.abs(lat1) < Math.abs(lat2) ? -1 : 1;
1972
+ if (swapp < 0) {
1973
+ lonsign *= -1;
1974
+ t = lat1;
1975
+ lat1 = lat2;
1976
+ lat2 = t;
1977
+ // swap(lat1, lat2);
1978
+ }
1979
+ // Make lat1 <= 0
1980
+ latsign = lat1 < 0 ? 1 : -1;
1981
+ lat1 *= latsign;
1982
+ lat2 *= latsign;
1983
+ // Now we have
1984
+ //
1985
+ // 0 <= lon12 <= 180
1986
+ // -90 <= lat1 <= 0
1987
+ // lat1 <= lat2 <= -lat1
1988
+ //
1989
+ // longsign, swapp, latsign register the transformation to bring the
1990
+ // coordinates to this canonical form. In all cases, 1 means no change was
1991
+ // made. We make these transformations so that there are few cases to
1992
+ // check, e.g., on verifying quadrants in atan2. In addition, this
1993
+ // enforces some symmetries in the results returned.
1994
+
1995
+ t = m.sincosd(lat1); sbet1 = this._f1 * t.s; cbet1 = t.c;
1996
+ // norm(sbet1, cbet1);
1997
+ t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
1998
+ // Ensure cbet1 = +epsilon at poles
1999
+ cbet1 = Math.max(g.tiny_, cbet1);
2000
+
2001
+ t = m.sincosd(lat2); sbet2 = this._f1 * t.s; cbet2 = t.c;
2002
+ // norm(sbet2, cbet2);
2003
+ t = m.hypot(sbet2, cbet2); sbet2 /= t; cbet2 /= t;
2004
+ // Ensure cbet2 = +epsilon at poles
2005
+ cbet2 = Math.max(g.tiny_, cbet2);
2006
+
2007
+ // If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
2008
+ // |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
2009
+ // a better measure. This logic is used in assigning calp2 in Lambda12.
2010
+ // Sometimes these quantities vanish and in that case we force bet2 = +/-
2011
+ // bet1 exactly. An example where is is necessary is the inverse problem
2012
+ // 48.522876735459 0 -48.52287673545898293 179.599720456223079643
2013
+ // which failed with Visual Studio 10 (Release and Debug)
2014
+
2015
+ if (cbet1 < -sbet1) {
2016
+ if (cbet2 === cbet1)
2017
+ sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
2018
+ } else {
2019
+ if (Math.abs(sbet2) === -sbet1)
2020
+ cbet2 = cbet1;
2021
+ }
2022
+
2023
+ dn1 = Math.sqrt(1 + this._ep2 * m.sq(sbet1));
2024
+ dn2 = Math.sqrt(1 + this._ep2 * m.sq(sbet2));
2025
+
2026
+ // index zero elements of these arrays are unused
2027
+ C1a = new Array(g.nC1_ + 1);
2028
+ C2a = new Array(g.nC2_ + 1);
2029
+ C3a = new Array(g.nC3_);
2030
+
2031
+ meridian = lat1 === -90 || slam12 === 0;
2032
+ if (meridian) {
2033
+
2034
+ // Endpoints are on a single full meridian, so the geodesic might
2035
+ // lie on a meridian.
2036
+
2037
+ calp1 = clam12; salp1 = slam12; // Head to the target longitude
2038
+ calp2 = 1; salp2 = 0; // At the target we're heading north
2039
+
2040
+ // tan(bet) = tan(sig) * cos(alp)
2041
+ ssig1 = sbet1; csig1 = calp1 * cbet1;
2042
+ ssig2 = sbet2; csig2 = calp2 * cbet2;
2043
+
2044
+ // sig12 = sig2 - sig1
2045
+ sig12 = Math.atan2(Math.max(0, csig1 * ssig2 - ssig1 * csig2),
2046
+ csig1 * csig2 + ssig1 * ssig2);
2047
+ nvals = this.Lengths(this._n, sig12,
2048
+ ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
2049
+ outmask | g.DISTANCE | g.REDUCEDLENGTH,
2050
+ C1a, C2a);
2051
+ s12x = nvals.s12b;
2052
+ m12x = nvals.m12b;
2053
+ // Ignore m0
2054
+ if (outmask & g.GEODESICSCALE) {
2055
+ vals.M12 = nvals.M12;
2056
+ vals.M21 = nvals.M21;
2057
+ }
2058
+ // Add the check for sig12 since zero length geodesics might yield
2059
+ // m12 < 0. Test case was
2060
+ //
2061
+ // echo 20.001 0 20.001 0 | GeodSolve -i
2062
+ //
2063
+ // In fact, we will have sig12 > pi/2 for meridional geodesic
2064
+ // which is not a shortest path.
2065
+ if (sig12 < 1 || m12x >= 0) {
2066
+ // Need at least 2, to handle 90 0 90 180
2067
+ if (sig12 < 3 * g.tiny_)
2068
+ sig12 = m12x = s12x = 0;
2069
+ m12x *= this._b;
2070
+ s12x *= this._b;
2071
+ vals.a12 = sig12 / m.degree;
2072
+ } else
2073
+ // m12 < 0, i.e., prolate and too close to anti-podal
2074
+ meridian = false;
2075
+ }
2076
+
2077
+ somg12 = 2;
2078
+ if (!meridian &&
2079
+ sbet1 === 0 && // and sbet2 == 0
2080
+ (this.f <= 0 || lon12s >= this.f * 180)) {
2081
+
2082
+ // Geodesic runs along equator
2083
+ calp1 = calp2 = 0; salp1 = salp2 = 1;
2084
+ s12x = this.a * lam12;
2085
+ sig12 = omg12 = lam12 / this._f1;
2086
+ m12x = this._b * Math.sin(sig12);
2087
+ if (outmask & g.GEODESICSCALE)
2088
+ vals.M12 = vals.M21 = Math.cos(sig12);
2089
+ vals.a12 = lon12 / this._f1;
2090
+
2091
+ } else if (!meridian) {
2092
+
2093
+ // Now point1 and point2 belong within a hemisphere bounded by a
2094
+ // meridian and geodesic is neither meridional or equatorial.
2095
+
2096
+ // Figure a starting point for Newton's method
2097
+ nvals = this.InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
2098
+ lam12, slam12, clam12, C1a, C2a);
2099
+ sig12 = nvals.sig12;
2100
+ salp1 = nvals.salp1;
2101
+ calp1 = nvals.calp1;
2102
+
2103
+ if (sig12 >= 0) {
2104
+ salp2 = nvals.salp2;
2105
+ calp2 = nvals.calp2;
2106
+ // Short lines (InverseStart sets salp2, calp2, dnm)
2107
+
2108
+ dnm = nvals.dnm;
2109
+ s12x = sig12 * this._b * dnm;
2110
+ m12x = m.sq(dnm) * this._b * Math.sin(sig12 / dnm);
2111
+ if (outmask & g.GEODESICSCALE)
2112
+ vals.M12 = vals.M21 = Math.cos(sig12 / dnm);
2113
+ vals.a12 = sig12 / m.degree;
2114
+ omg12 = lam12 / (this._f1 * dnm);
2115
+ } else {
2116
+
2117
+ // Newton's method. This is a straightforward solution of f(alp1) =
2118
+ // lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
2119
+ // root in the interval (0, pi) and its derivative is positive at the
2120
+ // root. Thus f(alp) is positive for alp > alp1 and negative for alp <
2121
+ // alp1. During the course of the iteration, a range (alp1a, alp1b) is
2122
+ // maintained which brackets the root and with each evaluation of
2123
+ // f(alp) the range is shrunk if possible. Newton's method is
2124
+ // restarted whenever the derivative of f is negative (because the new
2125
+ // value of alp1 is then further from the solution) or if the new
2126
+ // estimate of alp1 lies outside (0,pi); in this case, the new starting
2127
+ // guess is taken to be (alp1a + alp1b) / 2.
2128
+ numit = 0;
2129
+ // Bracketing range
2130
+ salp1a = g.tiny_; calp1a = 1; salp1b = g.tiny_; calp1b = -1;
2131
+ for (tripn = false, tripb = false; numit < maxit2_; ++numit) {
2132
+ // the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
2133
+ // WGS84 and random input: mean = 2.85, sd = 0.60
2134
+ nvals = this.Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
2135
+ salp1, calp1, slam12, clam12, numit < maxit1_,
2136
+ C1a, C2a, C3a);
2137
+ v = nvals.lam12;
2138
+ salp2 = nvals.salp2;
2139
+ calp2 = nvals.calp2;
2140
+ sig12 = nvals.sig12;
2141
+ ssig1 = nvals.ssig1;
2142
+ csig1 = nvals.csig1;
2143
+ ssig2 = nvals.ssig2;
2144
+ csig2 = nvals.csig2;
2145
+ eps = nvals.eps;
2146
+ domg12 = nvals.domg12;
2147
+ dv = nvals.dlam12;
2148
+
2149
+ // 2 * tol0 is approximately 1 ulp for a number in [0, pi].
2150
+ // Reversed test to allow escape with NaNs
2151
+ if (tripb || !(Math.abs(v) >= (tripn ? 8 : 1) * tol0_))
2152
+ break;
2153
+ // Update bracketing values
2154
+ if (v > 0 && (numit < maxit1_ || calp1/salp1 > calp1b/salp1b)) {
2155
+ salp1b = salp1; calp1b = calp1;
2156
+ } else if (v < 0 &&
2157
+ (numit < maxit1_ || calp1/salp1 < calp1a/salp1a)) {
2158
+ salp1a = salp1; calp1a = calp1;
2159
+ }
2160
+ if (numit < maxit1_ && dv > 0) {
2161
+ dalp1 = -v/dv;
2162
+ sdalp1 = Math.sin(dalp1); cdalp1 = Math.cos(dalp1);
2163
+ nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
2164
+ if (nsalp1 > 0 && Math.abs(dalp1) < Math.PI) {
2165
+ calp1 = calp1 * cdalp1 - salp1 * sdalp1;
2166
+ salp1 = nsalp1;
2167
+ // norm(salp1, calp1);
2168
+ t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
2169
+ // In some regimes we don't get quadratic convergence because
2170
+ // slope -> 0. So use convergence conditions based on epsilon
2171
+ // instead of sqrt(epsilon).
2172
+ tripn = Math.abs(v) <= 16 * tol0_;
2173
+ continue;
2174
+ }
2175
+ }
2176
+ // Either dv was not positive or updated value was outside legal
2177
+ // range. Use the midpoint of the bracket as the next estimate.
2178
+ // This mechanism is not needed for the WGS84 ellipsoid, but it does
2179
+ // catch problems with more eccentric ellipsoids. Its efficacy is
2180
+ // such for the WGS84 test set with the starting guess set to alp1 =
2181
+ // 90deg:
2182
+ // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
2183
+ // WGS84 and random input: mean = 4.74, sd = 0.99
2184
+ salp1 = (salp1a + salp1b)/2;
2185
+ calp1 = (calp1a + calp1b)/2;
2186
+ // norm(salp1, calp1);
2187
+ t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
2188
+ tripn = false;
2189
+ tripb = (Math.abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
2190
+ Math.abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
2191
+ }
2192
+ lengthmask = outmask |
2193
+ (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE) ?
2194
+ g.DISTANCE : g.NONE);
2195
+ nvals = this.Lengths(eps, sig12,
2196
+ ssig1, csig1, dn1, ssig2, csig2, dn2,
2197
+ cbet1, cbet2,
2198
+ lengthmask, C1a, C2a);
2199
+ s12x = nvals.s12b;
2200
+ m12x = nvals.m12b;
2201
+ // Ignore m0
2202
+ if (outmask & g.GEODESICSCALE) {
2203
+ vals.M12 = nvals.M12;
2204
+ vals.M21 = nvals.M21;
2205
+ }
2206
+ m12x *= this._b;
2207
+ s12x *= this._b;
2208
+ vals.a12 = sig12 / m.degree;
2209
+ if (outmask & g.AREA) {
2210
+ // omg12 = lam12 - domg12
2211
+ sdomg12 = Math.sin(domg12); cdomg12 = Math.cos(domg12);
2212
+ somg12 = slam12 * cdomg12 - clam12 * sdomg12;
2213
+ comg12 = clam12 * cdomg12 + slam12 * sdomg12;
2214
+ }
2215
+ }
2216
+ }
2217
+
2218
+ if (outmask & g.DISTANCE)
2219
+ vals.s12 = 0 + s12x; // Convert -0 to 0
2220
+
2221
+ if (outmask & g.REDUCEDLENGTH)
2222
+ vals.m12 = 0 + m12x; // Convert -0 to 0
2223
+
2224
+ if (outmask & g.AREA) {
2225
+ // From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
2226
+ salp0 = salp1 * cbet1;
2227
+ calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
2228
+ if (calp0 !== 0 && salp0 !== 0) {
2229
+ // From Lambda12: tan(bet) = tan(sig) * cos(alp)
2230
+ ssig1 = sbet1; csig1 = calp1 * cbet1;
2231
+ ssig2 = sbet2; csig2 = calp2 * cbet2;
2232
+ k2 = m.sq(calp0) * this._ep2;
2233
+ eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
2234
+ // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
2235
+ A4 = m.sq(this.a) * calp0 * salp0 * this._e2;
2236
+ // norm(ssig1, csig1);
2237
+ t = m.hypot(ssig1, csig1); ssig1 /= t; csig1 /= t;
2238
+ // norm(ssig2, csig2);
2239
+ t = m.hypot(ssig2, csig2); ssig2 /= t; csig2 /= t;
2240
+ C4a = new Array(g.nC4_);
2241
+ this.C4f(eps, C4a);
2242
+ B41 = g.SinCosSeries(false, ssig1, csig1, C4a);
2243
+ B42 = g.SinCosSeries(false, ssig2, csig2, C4a);
2244
+ vals.S12 = A4 * (B42 - B41);
2245
+ } else
2246
+ // Avoid problems with indeterminate sig1, sig2 on equator
2247
+ vals.S12 = 0;
2248
+ if (!meridian && somg12 > 1) {
2249
+ somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
2250
+ }
2251
+ if (!meridian &&
2252
+ comg12 > -0.7071 && // Long difference not too big
2253
+ sbet2 - sbet1 < 1.75) { // Lat difference not too big
2254
+ // Use tan(Gamma/2) = tan(omg12/2)
2255
+ // * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
2256
+ // with tan(x/2) = sin(x)/(1+cos(x))
2257
+ domg12 = 1 + comg12; dbet1 = 1 + cbet1; dbet2 = 1 + cbet2;
2258
+ alp12 = 2 * Math.atan2( somg12 * (sbet1*dbet2 + sbet2*dbet1),
2259
+ domg12 * (sbet1*sbet2 + dbet1*dbet2) );
2260
+ } else {
2261
+ // alp12 = alp2 - alp1, used in atan2 so no need to normalize
2262
+ salp12 = salp2 * calp1 - calp2 * salp1;
2263
+ calp12 = calp2 * calp1 + salp2 * salp1;
2264
+ // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
2265
+ // salp12 = -0 and alp12 = -180. However this depends on the sign
2266
+ // being attached to 0 correctly. The following ensures the correct
2267
+ // behavior.
2268
+ if (salp12 === 0 && calp12 < 0) {
2269
+ salp12 = g.tiny_ * calp1;
2270
+ calp12 = -1;
2271
+ }
2272
+ alp12 = Math.atan2(salp12, calp12);
2273
+ }
2274
+ vals.S12 += this._c2 * alp12;
2275
+ vals.S12 *= swapp * lonsign * latsign;
2276
+ // Convert -0 to 0
2277
+ vals.S12 += 0;
2278
+ }
2279
+
2280
+ // Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
2281
+ if (swapp < 0) {
2282
+ t = salp1;
2283
+ salp1 = salp2;
2284
+ salp2 = t;
2285
+ // swap(salp1, salp2);
2286
+ t = calp1;
2287
+ calp1 = calp2;
2288
+ calp2 = t;
2289
+ // swap(calp1, calp2);
2290
+ if (outmask & g.GEODESICSCALE) {
2291
+ t = vals.M12;
2292
+ vals.M12 = vals.M21;
2293
+ vals.M21 = t;
2294
+ // swap(vals.M12, vals.M21);
2295
+ }
2296
+ }
2297
+
2298
+ salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
2299
+ salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
2300
+
2301
+ return {vals: vals,
2302
+ salp1: salp1, calp1: calp1,
2303
+ salp2: salp2, calp2: calp2};
2304
+ };
2305
+
2306
+ /**
2307
+ * @summary Solve the general direct geodesic problem.
2308
+ * @param {number} lat1 the latitude of the first point in degrees.
2309
+ * @param {number} lon1 the longitude of the first point in degrees.
2310
+ * @param {number} azi1 the azimuth at the first point in degrees.
2311
+ * @param {bool} arcmode is the next parameter an arc length?
2312
+ * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
2313
+ * first point to the second in (arcmode ? degrees : meters).
2314
+ * @param {bitmask} [outmask = STANDARD] which results to include.
2315
+ * @returns {object} the requested results.
2316
+ * @description The lat1, lon1, azi1, and a12 fields of the result are always
2317
+ * set; s12 is included if arcmode is false. For details on the outmask
2318
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2319
+ * parameters".
2320
+ */
2321
+ g.Geodesic.prototype.GenDirect = function(lat1, lon1, azi1,
2322
+ arcmode, s12_a12, outmask) {
2323
+ var line;
2324
+ if (!outmask) outmask = g.STANDARD;
2325
+ else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
2326
+ // Automatically supply DISTANCE_IN if necessary
2327
+ if (!arcmode) outmask |= g.DISTANCE_IN;
2328
+ line = new l.GeodesicLine(this, lat1, lon1, azi1, outmask);
2329
+ return line.GenPosition(arcmode, s12_a12, outmask);
2330
+ };
2331
+
2332
+ /**
2333
+ * @summary Solve the direct geodesic problem.
2334
+ * @param {number} lat1 the latitude of the first point in degrees.
2335
+ * @param {number} lon1 the longitude of the first point in degrees.
2336
+ * @param {number} azi1 the azimuth at the first point in degrees.
2337
+ * @param {number} s12 the distance from the first point to the second in
2338
+ * meters.
2339
+ * @param {bitmask} [outmask = STANDARD] which results to include.
2340
+ * @returns {object} the requested results.
2341
+ * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
2342
+ * always set. For details on the outmask parameter, see {@tutorial
2343
+ * 2-interface}, "The outmask and caps parameters".
2344
+ */
2345
+ g.Geodesic.prototype.Direct = function(lat1, lon1, azi1, s12, outmask) {
2346
+ return this.GenDirect(lat1, lon1, azi1, false, s12, outmask);
2347
+ };
2348
+
2349
+ /**
2350
+ * @summary Solve the direct geodesic problem with arc length.
2351
+ * @param {number} lat1 the latitude of the first point in degrees.
2352
+ * @param {number} lon1 the longitude of the first point in degrees.
2353
+ * @param {number} azi1 the azimuth at the first point in degrees.
2354
+ * @param {number} a12 the arc length from the first point to the second in
2355
+ * degrees.
2356
+ * @param {bitmask} [outmask = STANDARD] which results to include.
2357
+ * @returns {object} the requested results.
2358
+ * @description The lat1, lon1, azi1, and a12 fields of the result are
2359
+ * always set. For details on the outmask parameter, see {@tutorial
2360
+ * 2-interface}, "The outmask and caps parameters".
2361
+ */
2362
+ g.Geodesic.prototype.ArcDirect = function(lat1, lon1, azi1, a12, outmask) {
2363
+ return this.GenDirect(lat1, lon1, azi1, true, a12, outmask);
2364
+ };
2365
+
2366
+ /**
2367
+ * @summary Create a {@link module:GeographicLib/GeodesicLine.GeodesicLine
2368
+ * GeodesicLine} object.
2369
+ * @param {number} lat1 the latitude of the first point in degrees.
2370
+ * @param {number} lon1 the longitude of the first point in degrees.
2371
+ * @param {number} azi1 the azimuth at the first point in degrees.
2372
+ * degrees.
2373
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2374
+ * include.
2375
+ * @returns {object} the
2376
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
2377
+ * GeodesicLine} object
2378
+ * @description For details on the caps parameter, see {@tutorial
2379
+ * 2-interface}, "The outmask and caps parameters".
2380
+ */
2381
+ g.Geodesic.prototype.Line = function(lat1, lon1, azi1, caps) {
2382
+ return new l.GeodesicLine(this, lat1, lon1, azi1, caps);
2383
+ };
2384
+
2385
+ /**
2386
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
2387
+ * GeodesicLine} in terms of the direct geodesic problem specified in terms
2388
+ * of distance.
2389
+ * @param {number} lat1 the latitude of the first point in degrees.
2390
+ * @param {number} lon1 the longitude of the first point in degrees.
2391
+ * @param {number} azi1 the azimuth at the first point in degrees.
2392
+ * degrees.
2393
+ * @param {number} s12 the distance between point 1 and point 2 (meters); it
2394
+ * can be negative.
2395
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2396
+ * include.
2397
+ * @returns {object} the
2398
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
2399
+ * GeodesicLine} object
2400
+ * @description This function sets point 3 of the GeodesicLine to correspond
2401
+ * to point 2 of the direct geodesic problem. For details on the caps
2402
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2403
+ * parameters".
2404
+ */
2405
+ g.Geodesic.prototype.DirectLine = function(lat1, lon1, azi1, s12, caps) {
2406
+ return this.GenDirectLine(lat1, lon1, azi1, false, s12, caps);
2407
+ };
2408
+
2409
+ /**
2410
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
2411
+ * GeodesicLine} in terms of the direct geodesic problem specified in terms
2412
+ * of arc length.
2413
+ * @param {number} lat1 the latitude of the first point in degrees.
2414
+ * @param {number} lon1 the longitude of the first point in degrees.
2415
+ * @param {number} azi1 the azimuth at the first point in degrees.
2416
+ * degrees.
2417
+ * @param {number} a12 the arc length between point 1 and point 2 (degrees);
2418
+ * it can be negative.
2419
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2420
+ * include.
2421
+ * @returns {object} the
2422
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
2423
+ * GeodesicLine} object
2424
+ * @description This function sets point 3 of the GeodesicLine to correspond
2425
+ * to point 2 of the direct geodesic problem. For details on the caps
2426
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2427
+ * parameters".
2428
+ */
2429
+ g.Geodesic.prototype.ArcDirectLine = function(lat1, lon1, azi1, a12, caps) {
2430
+ return this.GenDirectLine(lat1, lon1, azi1, true, a12, caps);
2431
+ };
2432
+
2433
+ /**
2434
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
2435
+ * GeodesicLine} in terms of the direct geodesic problem specified in terms
2436
+ * of either distance or arc length.
2437
+ * @param {number} lat1 the latitude of the first point in degrees.
2438
+ * @param {number} lon1 the longitude of the first point in degrees.
2439
+ * @param {number} azi1 the azimuth at the first point in degrees.
2440
+ * degrees.
2441
+ * @param {bool} arcmode boolean flag determining the meaning of the
2442
+ * s12_a12.
2443
+ * @param {number} s12_a12 if arcmode is false, this is the distance between
2444
+ * point 1 and point 2 (meters); otherwise it is the arc length between
2445
+ * point 1 and point 2 (degrees); it can be negative.
2446
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2447
+ * include.
2448
+ * @returns {object} the
2449
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
2450
+ * GeodesicLine} object
2451
+ * @description This function sets point 3 of the GeodesicLine to correspond
2452
+ * to point 2 of the direct geodesic problem. For details on the caps
2453
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2454
+ * parameters".
2455
+ */
2456
+ g.Geodesic.prototype.GenDirectLine = function(lat1, lon1, azi1,
2457
+ arcmode, s12_a12, caps) {
2458
+ var t;
2459
+ if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
2460
+ // Automatically supply DISTANCE_IN if necessary
2461
+ if (!arcmode) caps |= g.DISTANCE_IN;
2462
+ t = new l.GeodesicLine(this, lat1, lon1, azi1, caps);
2463
+ t.GenSetDistance(arcmode, s12_a12);
2464
+ return t;
2465
+ };
2466
+
2467
+ /**
2468
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
2469
+ * GeodesicLine} in terms of the inverse geodesic problem.
2470
+ * @param {number} lat1 the latitude of the first point in degrees.
2471
+ * @param {number} lon1 the longitude of the first point in degrees.
2472
+ * @param {number} lat2 the latitude of the second point in degrees.
2473
+ * @param {number} lon2 the longitude of the second point in degrees.
2474
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2475
+ * include.
2476
+ * @returns {object} the
2477
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
2478
+ * GeodesicLine} object
2479
+ * @description This function sets point 3 of the GeodesicLine to correspond
2480
+ * to point 2 of the inverse geodesic problem. For details on the caps
2481
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2482
+ * parameters".
2483
+ */
2484
+ g.Geodesic.prototype.InverseLine = function(lat1, lon1, lat2, lon2, caps) {
2485
+ var r, t, azi1;
2486
+ if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
2487
+ r = this.InverseInt(lat1, lon1, lat2, lon2, g.ARC);
2488
+ azi1 = m.atan2d(r.salp1, r.calp1);
2489
+ // Ensure that a12 can be converted to a distance
2490
+ if (caps & (g.OUT_MASK & g.DISTANCE_IN)) caps |= g.DISTANCE;
2491
+ t = new l.GeodesicLine(this, lat1, lon1, azi1, caps, r.salp1, r.calp1);
2492
+ t.SetArc(r.vals.a12);
2493
+ return t;
2494
+ };
2495
+
2496
+ /**
2497
+ * @summary Create a {@link module:GeographicLib/PolygonArea.PolygonArea
2498
+ * PolygonArea} object.
2499
+ * @param {bool} [polyline = false] if true the new PolygonArea object
2500
+ * describes a polyline instead of a polygon.
2501
+ * @returns {object} the
2502
+ * {@link module:GeographicLib/PolygonArea.PolygonArea
2503
+ * PolygonArea} object
2504
+ */
2505
+ g.Geodesic.prototype.Polygon = function(polyline) {
2506
+ return new p.PolygonArea(this, polyline);
2507
+ };
2508
+
2509
+ /**
2510
+ * @summary a {@link module:GeographicLib/Geodesic.Geodesic Geodesic} object
2511
+ * initialized for the WGS84 ellipsoid.
2512
+ * @constant {object}
2513
+ */
2514
+ g.WGS84 = new g.Geodesic(c.WGS84.a, c.WGS84.f);
2515
+ })(GeographicLib.Geodesic, GeographicLib.GeodesicLine,
2516
+ GeographicLib.PolygonArea, GeographicLib.Math, GeographicLib.Constants);
2517
+
2518
+ /**************** GeodesicLine.js ****************/
2519
+ /*
2520
+ * GeodesicLine.js
2521
+ * Transcription of GeodesicLine.[ch]pp into JavaScript.
2522
+ *
2523
+ * See the documentation for the C++ class. The conversion is a literal
2524
+ * conversion from C++.
2525
+ *
2526
+ * The algorithms are derived in
2527
+ *
2528
+ * Charles F. F. Karney,
2529
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
2530
+ * https://doi.org/10.1007/s00190-012-0578-z
2531
+ * Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
2532
+ *
2533
+ * Copyright (c) Charles Karney (2011-2016) <charles@karney.com> and licensed
2534
+ * under the MIT/X11 License. For more information, see
2535
+ * https://geographiclib.sourceforge.io/
2536
+ */
2537
+
2538
+ // Load AFTER GeographicLib/Math.js, GeographicLib/Geodesic.js
2539
+
2540
+ (function(
2541
+ g,
2542
+ /**
2543
+ * @exports GeographicLib/GeodesicLine
2544
+ * @description Solve geodesic problems on a single geodesic line via the
2545
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
2546
+ * class.
2547
+ */
2548
+ l, m) {
2549
+
2550
+ /**
2551
+ * @class
2552
+ * @property {number} a the equatorial radius (meters).
2553
+ * @property {number} f the flattening.
2554
+ * @property {number} lat1 the initial latitude (degrees).
2555
+ * @property {number} lon1 the initial longitude (degrees).
2556
+ * @property {number} azi1 the initial azimuth (degrees).
2557
+ * @property {number} salp1 the sine of the azimuth at the first point.
2558
+ * @property {number} calp1 the cosine the azimuth at the first point.
2559
+ * @property {number} s13 the distance to point 3 (meters).
2560
+ * @property {number} a13 the arc length to point 3 (degrees).
2561
+ * @property {bitmask} caps the capabilities of the object.
2562
+ * @summary Initialize a GeodesicLine object. For details on the caps
2563
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
2564
+ * parameters".
2565
+ * @classdesc Performs geodesic calculations along a given geodesic line.
2566
+ * This object is usually instantiated by
2567
+ * {@link module:GeographicLib/Geodesic.Geodesic#Line Geodesic.Line}.
2568
+ * The methods
2569
+ * {@link module:GeographicLib/Geodesic.Geodesic#DirectLine
2570
+ * Geodesic.DirectLine} and
2571
+ * {@link module:GeographicLib/Geodesic.Geodesic#InverseLine
2572
+ * Geodesic.InverseLine} set in addition the position of a reference point
2573
+ * 3.
2574
+ * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
2575
+ * Geodesic} object.
2576
+ * @param {number} lat1 the latitude of the first point in degrees.
2577
+ * @param {number} lon1 the longitude of the first point in degrees.
2578
+ * @param {number} azi1 the azimuth at the first point in degrees.
2579
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
2580
+ * include; LATITUDE | AZIMUTH are always included.
2581
+ */
2582
+ l.GeodesicLine = function(geod, lat1, lon1, azi1, caps, salp1, calp1) {
2583
+ var t, cbet1, sbet1, eps, s, c;
2584
+ if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
2585
+
2586
+ this.a = geod.a;
2587
+ this.f = geod.f;
2588
+ this._b = geod._b;
2589
+ this._c2 = geod._c2;
2590
+ this._f1 = geod._f1;
2591
+ this.caps = caps | g.LATITUDE | g.AZIMUTH | g.LONG_UNROLL;
2592
+
2593
+ this.lat1 = m.LatFix(lat1);
2594
+ this.lon1 = lon1;
2595
+ if (typeof salp1 === 'undefined' || typeof calp1 === 'undefined') {
2596
+ this.azi1 = m.AngNormalize(azi1);
2597
+ t = m.sincosd(m.AngRound(this.azi1)); this.salp1 = t.s; this.calp1 = t.c;
2598
+ } else {
2599
+ this.azi1 = azi1; this.salp1 = salp1; this.calp1 = calp1;
2600
+ }
2601
+ t = m.sincosd(m.AngRound(this.lat1)); sbet1 = this._f1 * t.s; cbet1 = t.c;
2602
+ // norm(sbet1, cbet1);
2603
+ t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
2604
+ // Ensure cbet1 = +epsilon at poles
2605
+ cbet1 = Math.max(g.tiny_, cbet1);
2606
+ this._dn1 = Math.sqrt(1 + geod._ep2 * m.sq(sbet1));
2607
+
2608
+ // Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
2609
+ this._salp0 = this.salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
2610
+ // Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following
2611
+ // is slightly better (consider the case salp1 = 0).
2612
+ this._calp0 = m.hypot(this.calp1, this.salp1 * sbet1);
2613
+ // Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
2614
+ // sig = 0 is nearest northward crossing of equator.
2615
+ // With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
2616
+ // With bet1 = pi/2, alp1 = -pi, sig1 = pi/2
2617
+ // With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2
2618
+ // Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
2619
+ // With alp0 in (0, pi/2], quadrants for sig and omg coincide.
2620
+ // No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
2621
+ // With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
2622
+ this._ssig1 = sbet1; this._somg1 = this._salp0 * sbet1;
2623
+ this._csig1 = this._comg1 =
2624
+ sbet1 !== 0 || this.calp1 !== 0 ? cbet1 * this.calp1 : 1;
2625
+ // norm(this._ssig1, this._csig1); // sig1 in (-pi, pi]
2626
+ t = m.hypot(this._ssig1, this._csig1);
2627
+ this._ssig1 /= t; this._csig1 /= t;
2628
+ // norm(this._somg1, this._comg1); -- don't need to normalize!
2629
+
2630
+ this._k2 = m.sq(this._calp0) * geod._ep2;
2631
+ eps = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2);
2632
+
2633
+ if (this.caps & g.CAP_C1) {
2634
+ this._A1m1 = g.A1m1f(eps);
2635
+ this._C1a = new Array(g.nC1_ + 1);
2636
+ g.C1f(eps, this._C1a);
2637
+ this._B11 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C1a);
2638
+ s = Math.sin(this._B11); c = Math.cos(this._B11);
2639
+ // tau1 = sig1 + B11
2640
+ this._stau1 = this._ssig1 * c + this._csig1 * s;
2641
+ this._ctau1 = this._csig1 * c - this._ssig1 * s;
2642
+ // Not necessary because C1pa reverts C1a
2643
+ // _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa);
2644
+ }
2645
+
2646
+ if (this.caps & g.CAP_C1p) {
2647
+ this._C1pa = new Array(g.nC1p_ + 1);
2648
+ g.C1pf(eps, this._C1pa);
2649
+ }
2650
+
2651
+ if (this.caps & g.CAP_C2) {
2652
+ this._A2m1 = g.A2m1f(eps);
2653
+ this._C2a = new Array(g.nC2_ + 1);
2654
+ g.C2f(eps, this._C2a);
2655
+ this._B21 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C2a);
2656
+ }
2657
+
2658
+ if (this.caps & g.CAP_C3) {
2659
+ this._C3a = new Array(g.nC3_);
2660
+ geod.C3f(eps, this._C3a);
2661
+ this._A3c = -this.f * this._salp0 * geod.A3f(eps);
2662
+ this._B31 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C3a);
2663
+ }
2664
+
2665
+ if (this.caps & g.CAP_C4) {
2666
+ this._C4a = new Array(g.nC4_); // all the elements of _C4a are used
2667
+ geod.C4f(eps, this._C4a);
2668
+ // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
2669
+ this._A4 = m.sq(this.a) * this._calp0 * this._salp0 * geod._e2;
2670
+ this._B41 = g.SinCosSeries(false, this._ssig1, this._csig1, this._C4a);
2671
+ }
2672
+
2673
+ this.a13 = this.s13 = Number.NaN;
2674
+ };
2675
+
2676
+ /**
2677
+ * @summary Find the position on the line (general case).
2678
+ * @param {bool} arcmode is the next parameter an arc length?
2679
+ * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
2680
+ * first point to the second in (arcmode ? degrees : meters).
2681
+ * @param {bitmask} [outmask = STANDARD] which results to include; this is
2682
+ * subject to the capabilities of the object.
2683
+ * @returns {object} the requested results.
2684
+ * @description The lat1, lon1, azi1, and a12 fields of the result are
2685
+ * always set; s12 is included if arcmode is false. For details on the
2686
+ * outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
2687
+ * parameters".
2688
+ */
2689
+ l.GeodesicLine.prototype.GenPosition = function(arcmode, s12_a12,
2690
+ outmask) {
2691
+ var vals = {},
2692
+ sig12, ssig12, csig12, B12, AB1, ssig2, csig2, tau12, s, c, serr,
2693
+ omg12, lam12, lon12, E, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2,
2694
+ B22, AB2, J12, t, B42, salp12, calp12;
2695
+ if (!outmask) outmask = g.STANDARD;
2696
+ else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
2697
+ outmask &= this.caps & g.OUT_MASK;
2698
+ vals.lat1 = this.lat1; vals.azi1 = this.azi1;
2699
+ vals.lon1 = outmask & g.LONG_UNROLL ?
2700
+ this.lon1 : m.AngNormalize(this.lon1);
2701
+ if (arcmode)
2702
+ vals.a12 = s12_a12;
2703
+ else
2704
+ vals.s12 = s12_a12;
2705
+ if (!( arcmode || (this.caps & g.DISTANCE_IN & g.OUT_MASK) )) {
2706
+ // Uninitialized or impossible distance calculation requested
2707
+ vals.a12 = Number.NaN;
2708
+ return vals;
2709
+ }
2710
+
2711
+ // Avoid warning about uninitialized B12.
2712
+ B12 = 0; AB1 = 0;
2713
+ if (arcmode) {
2714
+ // Interpret s12_a12 as spherical arc length
2715
+ sig12 = s12_a12 * m.degree;
2716
+ t = m.sincosd(s12_a12); ssig12 = t.s; csig12 = t.c;
2717
+ } else {
2718
+ // Interpret s12_a12 as distance
2719
+ tau12 = s12_a12 / (this._b * (1 + this._A1m1));
2720
+ s = Math.sin(tau12);
2721
+ c = Math.cos(tau12);
2722
+ // tau2 = tau1 + tau12
2723
+ B12 = -g.SinCosSeries(true,
2724
+ this._stau1 * c + this._ctau1 * s,
2725
+ this._ctau1 * c - this._stau1 * s,
2726
+ this._C1pa);
2727
+ sig12 = tau12 - (B12 - this._B11);
2728
+ ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
2729
+ if (Math.abs(this.f) > 0.01) {
2730
+ // Reverted distance series is inaccurate for |f| > 1/100, so correct
2731
+ // sig12 with 1 Newton iteration. The following table shows the
2732
+ // approximate maximum error for a = WGS_a() and various f relative to
2733
+ // GeodesicExact.
2734
+ // erri = the error in the inverse solution (nm)
2735
+ // errd = the error in the direct solution (series only) (nm)
2736
+ // errda = the error in the direct solution
2737
+ // (series + 1 Newton) (nm)
2738
+ //
2739
+ // f erri errd errda
2740
+ // -1/5 12e6 1.2e9 69e6
2741
+ // -1/10 123e3 12e6 765e3
2742
+ // -1/20 1110 108e3 7155
2743
+ // -1/50 18.63 200.9 27.12
2744
+ // -1/100 18.63 23.78 23.37
2745
+ // -1/150 18.63 21.05 20.26
2746
+ // 1/150 22.35 24.73 25.83
2747
+ // 1/100 22.35 25.03 25.31
2748
+ // 1/50 29.80 231.9 30.44
2749
+ // 1/20 5376 146e3 10e3
2750
+ // 1/10 829e3 22e6 1.5e6
2751
+ // 1/5 157e6 3.8e9 280e6
2752
+ ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
2753
+ csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
2754
+ B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
2755
+ serr = (1 + this._A1m1) * (sig12 + (B12 - this._B11)) -
2756
+ s12_a12 / this._b;
2757
+ sig12 = sig12 - serr / Math.sqrt(1 + this._k2 * m.sq(ssig2));
2758
+ ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
2759
+ // Update B12 below
2760
+ }
2761
+ }
2762
+
2763
+ // sig2 = sig1 + sig12
2764
+ ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
2765
+ csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
2766
+ dn2 = Math.sqrt(1 + this._k2 * m.sq(ssig2));
2767
+ if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
2768
+ if (arcmode || Math.abs(this.f) > 0.01)
2769
+ B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
2770
+ AB1 = (1 + this._A1m1) * (B12 - this._B11);
2771
+ }
2772
+ // sin(bet2) = cos(alp0) * sin(sig2)
2773
+ sbet2 = this._calp0 * ssig2;
2774
+ // Alt: cbet2 = hypot(csig2, salp0 * ssig2);
2775
+ cbet2 = m.hypot(this._salp0, this._calp0 * csig2);
2776
+ if (cbet2 === 0)
2777
+ // I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case
2778
+ cbet2 = csig2 = g.tiny_;
2779
+ // tan(alp0) = cos(sig2)*tan(alp2)
2780
+ salp2 = this._salp0; calp2 = this._calp0 * csig2; // No need to normalize
2781
+
2782
+ if (arcmode && (outmask & g.DISTANCE))
2783
+ vals.s12 = this._b * ((1 + this._A1m1) * sig12 + AB1);
2784
+
2785
+ if (outmask & g.LONGITUDE) {
2786
+ // tan(omg2) = sin(alp0) * tan(sig2)
2787
+ somg2 = this._salp0 * ssig2; comg2 = csig2; // No need to normalize
2788
+ E = m.copysign(1, this._salp0);
2789
+ // omg12 = omg2 - omg1
2790
+ omg12 = outmask & g.LONG_UNROLL ?
2791
+ E * (sig12 -
2792
+ (Math.atan2(ssig2, csig2) -
2793
+ Math.atan2(this._ssig1, this._csig1)) +
2794
+ (Math.atan2(E * somg2, comg2) -
2795
+ Math.atan2(E * this._somg1, this._comg1))) :
2796
+ Math.atan2(somg2 * this._comg1 - comg2 * this._somg1,
2797
+ comg2 * this._comg1 + somg2 * this._somg1);
2798
+ lam12 = omg12 + this._A3c *
2799
+ ( sig12 + (g.SinCosSeries(true, ssig2, csig2, this._C3a) -
2800
+ this._B31));
2801
+ lon12 = lam12 / m.degree;
2802
+ vals.lon2 = outmask & g.LONG_UNROLL ? this.lon1 + lon12 :
2803
+ m.AngNormalize(m.AngNormalize(this.lon1) + m.AngNormalize(lon12));
2804
+ }
2805
+
2806
+ if (outmask & g.LATITUDE)
2807
+ vals.lat2 = m.atan2d(sbet2, this._f1 * cbet2);
2808
+
2809
+ if (outmask & g.AZIMUTH)
2810
+ vals.azi2 = m.atan2d(salp2, calp2);
2811
+
2812
+ if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
2813
+ B22 = g.SinCosSeries(true, ssig2, csig2, this._C2a);
2814
+ AB2 = (1 + this._A2m1) * (B22 - this._B21);
2815
+ J12 = (this._A1m1 - this._A2m1) * sig12 + (AB1 - AB2);
2816
+ if (outmask & g.REDUCEDLENGTH)
2817
+ // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
2818
+ // accurate cancellation in the case of coincident points.
2819
+ vals.m12 = this._b * (( dn2 * (this._csig1 * ssig2) -
2820
+ this._dn1 * (this._ssig1 * csig2)) -
2821
+ this._csig1 * csig2 * J12);
2822
+ if (outmask & g.GEODESICSCALE) {
2823
+ t = this._k2 * (ssig2 - this._ssig1) * (ssig2 + this._ssig1) /
2824
+ (this._dn1 + dn2);
2825
+ vals.M12 = csig12 +
2826
+ (t * ssig2 - csig2 * J12) * this._ssig1 / this._dn1;
2827
+ vals.M21 = csig12 -
2828
+ (t * this._ssig1 - this._csig1 * J12) * ssig2 / dn2;
2829
+ }
2830
+ }
2831
+
2832
+ if (outmask & g.AREA) {
2833
+ B42 = g.SinCosSeries(false, ssig2, csig2, this._C4a);
2834
+ if (this._calp0 === 0 || this._salp0 === 0) {
2835
+ // alp12 = alp2 - alp1, used in atan2 so no need to normalize
2836
+ salp12 = salp2 * this.calp1 - calp2 * this.salp1;
2837
+ calp12 = calp2 * this.calp1 + salp2 * this.salp1;
2838
+ } else {
2839
+ // tan(alp) = tan(alp0) * sec(sig)
2840
+ // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
2841
+ // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
2842
+ // If csig12 > 0, write
2843
+ // csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
2844
+ // else
2845
+ // csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
2846
+ // No need to normalize
2847
+ salp12 = this._calp0 * this._salp0 *
2848
+ (csig12 <= 0 ? this._csig1 * (1 - csig12) + ssig12 * this._ssig1 :
2849
+ ssig12 * (this._csig1 * ssig12 / (1 + csig12) + this._ssig1));
2850
+ calp12 = m.sq(this._salp0) + m.sq(this._calp0) * this._csig1 * csig2;
2851
+ }
2852
+ vals.S12 = this._c2 * Math.atan2(salp12, calp12) +
2853
+ this._A4 * (B42 - this._B41);
2854
+ }
2855
+
2856
+ if (!arcmode)
2857
+ vals.a12 = sig12 / m.degree;
2858
+ return vals;
2859
+ };
2860
+
2861
+ /**
2862
+ * @summary Find the position on the line given s12.
2863
+ * @param {number} s12 the distance from the first point to the second in
2864
+ * meters.
2865
+ * @param {bitmask} [outmask = STANDARD] which results to include; this is
2866
+ * subject to the capabilities of the object.
2867
+ * @returns {object} the requested results.
2868
+ * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
2869
+ * always set; s12 is included if arcmode is false. For details on the
2870
+ * outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
2871
+ * parameters".
2872
+ */
2873
+ l.GeodesicLine.prototype.Position = function(s12, outmask) {
2874
+ return this.GenPosition(false, s12, outmask);
2875
+ };
2876
+
2877
+ /**
2878
+ * @summary Find the position on the line given a12.
2879
+ * @param {number} a12 the arc length from the first point to the second in
2880
+ * degrees.
2881
+ * @param {bitmask} [outmask = STANDARD] which results to include; this is
2882
+ * subject to the capabilities of the object.
2883
+ * @returns {object} the requested results.
2884
+ * @description The lat1, lon1, azi1, and a12 fields of the result are
2885
+ * always set. For details on the outmask parameter, see {@tutorial
2886
+ * 2-interface}, "The outmask and caps parameters".
2887
+ */
2888
+ l.GeodesicLine.prototype.ArcPosition = function(a12, outmask) {
2889
+ return this.GenPosition(true, a12, outmask);
2890
+ };
2891
+
2892
+ /**
2893
+ * @summary Specify position of point 3 in terms of either distance or arc
2894
+ * length.
2895
+ * @param {bool} arcmode boolean flag determining the meaning of the second
2896
+ * parameter; if arcmode is false, then the GeodesicLine object must have
2897
+ * been constructed with caps |= DISTANCE_IN.
2898
+ * @param {number} s13_a13 if arcmode is false, this is the distance from
2899
+ * point 1 to point 3 (meters); otherwise it is the arc length from
2900
+ * point 1 to point 3 (degrees); it can be negative.
2901
+ **********************************************************************/
2902
+ l.GeodesicLine.prototype.GenSetDistance = function(arcmode, s13_a13) {
2903
+ if (arcmode)
2904
+ this.SetArc(s13_a13);
2905
+ else
2906
+ this.SetDistance(s13_a13);
2907
+ };
2908
+
2909
+ /**
2910
+ * @summary Specify position of point 3 in terms distance.
2911
+ * @param {number} s13 the distance from point 1 to point 3 (meters); it
2912
+ * can be negative.
2913
+ **********************************************************************/
2914
+ l.GeodesicLine.prototype.SetDistance = function(s13) {
2915
+ var r;
2916
+ this.s13 = s13;
2917
+ r = this.GenPosition(false, this.s13, g.ARC);
2918
+ this.a13 = 0 + r.a12; // the 0+ converts undefined into NaN
2919
+ };
2920
+
2921
+ /**
2922
+ * @summary Specify position of point 3 in terms of arc length.
2923
+ * @param {number} a13 the arc length from point 1 to point 3 (degrees);
2924
+ * it can be negative.
2925
+ **********************************************************************/
2926
+ l.GeodesicLine.prototype.SetArc = function(a13) {
2927
+ var r;
2928
+ this.a13 = a13;
2929
+ r = this.GenPosition(true, this.a13, g.DISTANCE);
2930
+ this.s13 = 0 + r.s12; // the 0+ converts undefined into NaN
2931
+ };
2932
+
2933
+ })(GeographicLib.Geodesic, GeographicLib.GeodesicLine, GeographicLib.Math);
2934
+
2935
+ /**************** PolygonArea.js ****************/
2936
+ /*
2937
+ * PolygonArea.js
2938
+ * Transcription of PolygonArea.[ch]pp into JavaScript.
2939
+ *
2940
+ * See the documentation for the C++ class. The conversion is a literal
2941
+ * conversion from C++.
2942
+ *
2943
+ * The algorithms are derived in
2944
+ *
2945
+ * Charles F. F. Karney,
2946
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
2947
+ * https://doi.org/10.1007/s00190-012-0578-z
2948
+ * Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
2949
+ *
2950
+ * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
2951
+ * under the MIT/X11 License. For more information, see
2952
+ * https://geographiclib.sourceforge.io/
2953
+ */
2954
+
2955
+ // Load AFTER GeographicLib/Math.js and GeographicLib/Geodesic.js
2956
+
2957
+ (function(
2958
+ /**
2959
+ * @exports GeographicLib/PolygonArea
2960
+ * @description Compute the area of geodesic polygons via the
2961
+ * {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
2962
+ * class.
2963
+ */
2964
+ p, g, m, a) {
2965
+
2966
+ var transit, transitdirect;
2967
+ transit = function(lon1, lon2) {
2968
+ // Return 1 or -1 if crossing prime meridian in east or west direction.
2969
+ // Otherwise return zero.
2970
+ var lon12, cross;
2971
+ // Compute lon12 the same way as Geodesic::Inverse.
2972
+ lon1 = m.AngNormalize(lon1);
2973
+ lon2 = m.AngNormalize(lon2);
2974
+ lon12 = m.AngDiff(lon1, lon2).s;
2975
+ cross = lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
2976
+ (lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
2977
+ return cross;
2978
+ };
2979
+
2980
+ // an alternate version of transit to deal with longitudes in the direct
2981
+ // problem.
2982
+ transitdirect = function(lon1, lon2) {
2983
+ // We want to compute exactly
2984
+ // int(floor(lon2 / 360)) - int(floor(lon1 / 360))
2985
+ // Since we only need the parity of the result we can use std::remquo but
2986
+ // this is buggy with g++ 4.8.3 and requires C++11. So instead we do
2987
+ lon1 = lon1 % 720.0; lon2 = lon2 % 720.0;
2988
+ return ( ((lon2 >= 0 && lon2 < 360) || lon2 < -360 ? 0 : 1) -
2989
+ ((lon1 >= 0 && lon1 < 360) || lon1 < -360 ? 0 : 1) );
2990
+ };
2991
+
2992
+ /**
2993
+ * @class
2994
+ * @property {number} a the equatorial radius (meters).
2995
+ * @property {number} f the flattening.
2996
+ * @property {bool} polyline whether the PolygonArea object describes a
2997
+ * polyline or a polygon.
2998
+ * @property {number} num the number of vertices so far.
2999
+ * @property {number} lat the current latitude (degrees).
3000
+ * @property {number} lon the current longitude (degrees).
3001
+ * @summary Initialize a PolygonArea object.
3002
+ * @classdesc Computes the area and perimeter of a geodesic polygon.
3003
+ * This object is usually instantiated by
3004
+ * {@link module:GeographicLib/Geodesic.Geodesic#Polygon Geodesic.Polygon}.
3005
+ * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
3006
+ * Geodesic} object.
3007
+ * @param {bool} [polyline = false] if true the new PolygonArea object
3008
+ * describes a polyline instead of a polygon.
3009
+ */
3010
+ p.PolygonArea = function(geod, polyline) {
3011
+ this._geod = geod;
3012
+ this.a = this._geod.a;
3013
+ this.f = this._geod.f;
3014
+ this._area0 = 4 * Math.PI * geod._c2;
3015
+ this.polyline = !polyline ? false : polyline;
3016
+ this._mask = g.LATITUDE | g.LONGITUDE | g.DISTANCE |
3017
+ (this.polyline ? g.NONE : g.AREA | g.LONG_UNROLL);
3018
+ if (!this.polyline)
3019
+ this._areasum = new a.Accumulator(0);
3020
+ this._perimetersum = new a.Accumulator(0);
3021
+ this.Clear();
3022
+ };
3023
+
3024
+ /**
3025
+ * @summary Clear the PolygonArea object, setting the number of vertices to
3026
+ * 0.
3027
+ */
3028
+ p.PolygonArea.prototype.Clear = function() {
3029
+ this.num = 0;
3030
+ this._crossings = 0;
3031
+ if (!this.polyline)
3032
+ this._areasum.Set(0);
3033
+ this._perimetersum.Set(0);
3034
+ this._lat0 = this._lon0 = this.lat = this.lon = Number.NaN;
3035
+ };
3036
+
3037
+ /**
3038
+ * @summary Add the next vertex to the polygon.
3039
+ * @param {number} lat the latitude of the point (degrees).
3040
+ * @param {number} lon the longitude of the point (degrees).
3041
+ * @description This adds an edge from the current vertex to the new vertex.
3042
+ */
3043
+ p.PolygonArea.prototype.AddPoint = function(lat, lon) {
3044
+ var t;
3045
+ if (this.num === 0) {
3046
+ this._lat0 = this.lat = lat;
3047
+ this._lon0 = this.lon = lon;
3048
+ } else {
3049
+ t = this._geod.Inverse(this.lat, this.lon, lat, lon, this._mask);
3050
+ this._perimetersum.Add(t.s12);
3051
+ if (!this.polyline) {
3052
+ this._areasum.Add(t.S12);
3053
+ this._crossings += transit(this.lon, lon);
3054
+ }
3055
+ this.lat = lat;
3056
+ this.lon = lon;
3057
+ }
3058
+ ++this.num;
3059
+ };
3060
+
3061
+ /**
3062
+ * @summary Add the next edge to the polygon.
3063
+ * @param {number} azi the azimuth at the current the point (degrees).
3064
+ * @param {number} s the length of the edge (meters).
3065
+ * @description This specifies the new vertex in terms of the edge from the
3066
+ * current vertex.
3067
+ */
3068
+ p.PolygonArea.prototype.AddEdge = function(azi, s) {
3069
+ var t;
3070
+ if (this.num) {
3071
+ t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
3072
+ this._perimetersum.Add(s);
3073
+ if (!this.polyline) {
3074
+ this._areasum.Add(t.S12);
3075
+ this._crossings += transitdirect(this.lon, t.lon2);
3076
+ }
3077
+ this.lat = t.lat2;
3078
+ this.lon = t.lon2;
3079
+ }
3080
+ ++this.num;
3081
+ };
3082
+
3083
+ /**
3084
+ * @summary Compute the perimeter and area of the polygon.
3085
+ * @param {bool} reverse if true then clockwise (instead of
3086
+ * counter-clockwise) traversal counts as a positive area.
3087
+ * @param {bool} sign if true then return a signed result for the area if the
3088
+ * polygon is traversed in the "wrong" direction instead of returning the
3089
+ * area for the rest of the earth.
3090
+ * @returns {object} r where r.number is the number of vertices, r.perimeter
3091
+ * is the perimeter (meters), and r.area (only returned if polyline is
3092
+ * false) is the area (meters<sup>2</sup>).
3093
+ * @description If the object is a polygon (and not a polygon), the perimeter
3094
+ * includes the length of a final edge connecting the current point to the
3095
+ * initial point. If the object is a polyline, then area is nan. More
3096
+ * points can be added to the polygon after this call.
3097
+ */
3098
+ p.PolygonArea.prototype.Compute = function(reverse, sign) {
3099
+ var vals = {number: this.num}, t, tempsum, crossings;
3100
+ if (this.num < 2) {
3101
+ vals.perimeter = 0;
3102
+ if (!this.polyline)
3103
+ vals.area = 0;
3104
+ return vals;
3105
+ }
3106
+ if (this.polyline) {
3107
+ vals.perimeter = this._perimetersum.Sum();
3108
+ return vals;
3109
+ }
3110
+ t = this._geod.Inverse(this.lat, this.lon, this._lat0, this._lon0,
3111
+ this._mask);
3112
+ vals.perimeter = this._perimetersum.Sum(t.s12);
3113
+ tempsum = new a.Accumulator(this._areasum);
3114
+ tempsum.Add(t.S12);
3115
+ crossings = this._crossings + transit(this.lon, this._lon0);
3116
+ if (crossings & 1)
3117
+ tempsum.Add( (tempsum.Sum() < 0 ? 1 : -1) * this._area0/2 );
3118
+ // area is with the clockwise sense. If !reverse convert to
3119
+ // counter-clockwise convention.
3120
+ if (!reverse)
3121
+ tempsum.Negate();
3122
+ // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
3123
+ if (sign) {
3124
+ if (tempsum.Sum() > this._area0/2)
3125
+ tempsum.Add( -this._area0 );
3126
+ else if (tempsum.Sum() <= -this._area0/2)
3127
+ tempsum.Add( +this._area0 );
3128
+ } else {
3129
+ if (tempsum.Sum() >= this._area0)
3130
+ tempsum.Add( -this._area0 );
3131
+ else if (tempsum < 0)
3132
+ tempsum.Add( -this._area0 );
3133
+ }
3134
+ vals.area = tempsum.Sum();
3135
+ return vals;
3136
+ };
3137
+
3138
+ /**
3139
+ * @summary Compute the perimeter and area of the polygon with a tentative
3140
+ * new vertex.
3141
+ * @param {number} lat the latitude of the point (degrees).
3142
+ * @param {number} lon the longitude of the point (degrees).
3143
+ * @param {bool} reverse if true then clockwise (instead of
3144
+ * counter-clockwise) traversal counts as a positive area.
3145
+ * @param {bool} sign if true then return a signed result for the area if the
3146
+ * polygon is traversed in the "wrong" direction instead of returning the
3147
+ * @returns {object} r where r.number is the number of vertices, r.perimeter
3148
+ * is the perimeter (meters), and r.area (only returned if polyline is
3149
+ * false) is the area (meters<sup>2</sup>).
3150
+ * @description A new vertex is *not* added to the polygon.
3151
+ */
3152
+ p.PolygonArea.prototype.TestPoint = function(lat, lon, reverse, sign) {
3153
+ var vals = {number: this.num + 1}, t, tempsum, crossings, i;
3154
+ if (this.num === 0) {
3155
+ vals.perimeter = 0;
3156
+ if (!this.polyline)
3157
+ vals.area = 0;
3158
+ return vals;
3159
+ }
3160
+ vals.perimeter = this._perimetersum.Sum();
3161
+ tempsum = this.polyline ? 0 : this._areasum.Sum();
3162
+ crossings = this._crossings;
3163
+ for (i = 0; i < (this.polyline ? 1 : 2); ++i) {
3164
+ t = this._geod.Inverse(
3165
+ i === 0 ? this.lat : lat, i === 0 ? this.lon : lon,
3166
+ i !== 0 ? this._lat0 : lat, i !== 0 ? this._lon0 : lon,
3167
+ this._mask);
3168
+ vals.perimeter += t.s12;
3169
+ if (!this.polyline) {
3170
+ tempsum += t.S12;
3171
+ crossings += transit(i === 0 ? this.lon : lon,
3172
+ i !== 0 ? this._lon0 : lon);
3173
+ }
3174
+ }
3175
+
3176
+ if (this.polyline)
3177
+ return vals;
3178
+
3179
+ if (crossings & 1)
3180
+ tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
3181
+ // area is with the clockwise sense. If !reverse convert to
3182
+ // counter-clockwise convention.
3183
+ if (!reverse)
3184
+ tempsum *= -1;
3185
+ // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
3186
+ if (sign) {
3187
+ if (tempsum > this._area0/2)
3188
+ tempsum -= this._area0;
3189
+ else if (tempsum <= -this._area0/2)
3190
+ tempsum += this._area0;
3191
+ } else {
3192
+ if (tempsum >= this._area0)
3193
+ tempsum -= this._area0;
3194
+ else if (tempsum < 0)
3195
+ tempsum += this._area0;
3196
+ }
3197
+ vals.area = tempsum;
3198
+ return vals;
3199
+ };
3200
+
3201
+ /**
3202
+ * @summary Compute the perimeter and area of the polygon with a tentative
3203
+ * new edge.
3204
+ * @param {number} azi the azimuth of the edge (degrees).
3205
+ * @param {number} s the length of the edge (meters).
3206
+ * @param {bool} reverse if true then clockwise (instead of
3207
+ * counter-clockwise) traversal counts as a positive area.
3208
+ * @param {bool} sign if true then return a signed result for the area if the
3209
+ * polygon is traversed in the "wrong" direction instead of returning the
3210
+ * @returns {object} r where r.number is the number of vertices, r.perimeter
3211
+ * is the perimeter (meters), and r.area (only returned if polyline is
3212
+ * false) is the area (meters<sup>2</sup>).
3213
+ * @description A new vertex is *not* added to the polygon.
3214
+ */
3215
+ p.PolygonArea.prototype.TestEdge = function(azi, s, reverse, sign) {
3216
+ var vals = {number: this.num ? this.num + 1 : 0}, t, tempsum, crossings;
3217
+ if (this.num === 0)
3218
+ return vals;
3219
+ vals.perimeter = this._perimetersum.Sum() + s;
3220
+ if (this.polyline)
3221
+ return vals;
3222
+
3223
+ tempsum = this._areasum.Sum();
3224
+ crossings = this._crossings;
3225
+ t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
3226
+ tempsum += t.S12;
3227
+ crossings += transitdirect(this.lon, t.lon2);
3228
+ t = this._geod.Inverse(t.lat2, t.lon2, this._lat0, this._lon0, this._mask);
3229
+ vals.perimeter += t.s12;
3230
+ tempsum += t.S12;
3231
+ crossings += transit(t.lon2, this._lon0);
3232
+
3233
+ if (crossings & 1)
3234
+ tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
3235
+ // area is with the clockwise sense. If !reverse convert to
3236
+ // counter-clockwise convention.
3237
+ if (!reverse)
3238
+ tempsum *= -1;
3239
+ // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
3240
+ if (sign) {
3241
+ if (tempsum > this._area0/2)
3242
+ tempsum -= this._area0;
3243
+ else if (tempsum <= -this._area0/2)
3244
+ tempsum += this._area0;
3245
+ } else {
3246
+ if (tempsum >= this._area0)
3247
+ tempsum -= this._area0;
3248
+ else if (tempsum < 0)
3249
+ tempsum += this._area0;
3250
+ }
3251
+ vals.area = tempsum;
3252
+ return vals;
3253
+ };
3254
+
3255
+ })(GeographicLib.PolygonArea, GeographicLib.Geodesic,
3256
+ GeographicLib.Math, GeographicLib.Accumulator);
3257
+
3258
+ /**************** DMS.js ****************/
3259
+ /*
3260
+ * DMS.js
3261
+ * Transcription of DMS.[ch]pp into JavaScript.
3262
+ *
3263
+ * See the documentation for the C++ class. The conversion is a literal
3264
+ * conversion from C++.
3265
+ *
3266
+ * Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and licensed
3267
+ * under the MIT/X11 License. For more information, see
3268
+ * https://geographiclib.sourceforge.io/
3269
+ */
3270
+
3271
+ GeographicLib.DMS = {};
3272
+
3273
+ (function(
3274
+ /**
3275
+ * @exports GeographicLib/DMS
3276
+ * @description Decode/Encode angles expressed as degrees, minutes, and
3277
+ * seconds. This module defines several constants:
3278
+ * - hemisphere indicator (returned by
3279
+ * {@link module:GeographicLib/DMS.Decode Decode}) and a formatting
3280
+ * indicator (used by
3281
+ * {@link module:GeographicLib/DMS.Encode Encode})
3282
+ * - NONE = 0, no designator and format as plain angle;
3283
+ * - LATITUDE = 1, a N/S designator and format as latitude;
3284
+ * - LONGITUDE = 2, an E/W designator and format as longitude;
3285
+ * - AZIMUTH = 3, format as azimuth;
3286
+ * - the specification of the trailing component in
3287
+ * {@link module:GeographicLib/DMS.Encode Encode}
3288
+ * - DEGREE;
3289
+ * - MINUTE;
3290
+ * - SECOND.
3291
+ */
3292
+ d) {
3293
+
3294
+ var lookup, zerofill, internalDecode, numMatch,
3295
+ hemispheres_ = "SNWE",
3296
+ signs_ = "-+",
3297
+ digits_ = "0123456789",
3298
+ dmsindicators_ = "D'\":",
3299
+ // dmsindicatorsu_ = "\u00b0\u2032\u2033"; // Unicode variants
3300
+ dmsindicatorsu_ = "\u00b0'\"", // Use degree symbol
3301
+ components_ = ["degrees", "minutes", "seconds"];
3302
+ lookup = function(s, c) {
3303
+ return s.indexOf(c.toUpperCase());
3304
+ };
3305
+ zerofill = function(s, n) {
3306
+ return String("0000").substr(0, Math.max(0, Math.min(4, n-s.length))) +
3307
+ s;
3308
+ };
3309
+ d.NONE = 0;
3310
+ d.LATITUDE = 1;
3311
+ d.LONGITUDE = 2;
3312
+ d.AZIMUTH = 3;
3313
+ d.DEGREE = 0;
3314
+ d.MINUTE = 1;
3315
+ d.SECOND = 2;
3316
+
3317
+ /**
3318
+ * @summary Decode a DMS string.
3319
+ * @description The interpretation of the string is given in the
3320
+ * documentation of the corresponding function, Decode(string&, flag&)
3321
+ * in the {@link
3322
+ * https://geographiclib.sourceforge.io/html/classGeographicLib_1_1DMS.html
3323
+ * C++ DMS class}
3324
+ * @param {string} dms the string.
3325
+ * @returns {object} r where r.val is the decoded value (degrees) and r.ind
3326
+ * is a hemisphere designator, one of NONE, LATITUDE, LONGITUDE.
3327
+ * @throws an error if the string is illegal.
3328
+ */
3329
+ d.Decode = function(dms) {
3330
+ var dmsa = dms, end,
3331
+ v = 0, i = 0, mi, pi, vals,
3332
+ ind1 = d.NONE, ind2, p, pa, pb;
3333
+ dmsa = dmsa.replace(/\u00b0/g, 'd')
3334
+ .replace(/\u00ba/g, 'd')
3335
+ .replace(/\u2070/g, 'd')
3336
+ .replace(/\u02da/g, 'd')
3337
+ .replace(/\u2032/g, '\'')
3338
+ .replace(/\u00b4/g, '\'')
3339
+ .replace(/\u2019/g, '\'')
3340
+ .replace(/\u2033/g, '"')
3341
+ .replace(/\u201d/g, '"')
3342
+ .replace(/\u2212/g, '-')
3343
+ .replace(/''/g, '"')
3344
+ .trim();
3345
+ end = dmsa.length;
3346
+ // p is pointer to the next piece that needs decoding
3347
+ for (p = 0; p < end; p = pb, ++i) {
3348
+ pa = p;
3349
+ // Skip over initial hemisphere letter (for i == 0)
3350
+ if (i === 0 && lookup(hemispheres_, dmsa.charAt(pa)) >= 0)
3351
+ ++pa;
3352
+ // Skip over initial sign (checking for it if i == 0)
3353
+ if (i > 0 || (pa < end && lookup(signs_, dmsa.charAt(pa)) >= 0))
3354
+ ++pa;
3355
+ // Find next sign
3356
+ mi = dmsa.substr(pa, end - pa).indexOf('-');
3357
+ pi = dmsa.substr(pa, end - pa).indexOf('+');
3358
+ if (mi < 0) mi = end; else mi += pa;
3359
+ if (pi < 0) pi = end; else pi += pa;
3360
+ pb = Math.min(mi, pi);
3361
+ vals = internalDecode(dmsa.substr(p, pb - p));
3362
+ v += vals.val; ind2 = vals.ind;
3363
+ if (ind1 === d.NONE)
3364
+ ind1 = ind2;
3365
+ else if (!(ind2 === d.NONE || ind1 === ind2))
3366
+ throw new Error("Incompatible hemisphere specifies in " +
3367
+ dmsa.substr(0, pb));
3368
+ }
3369
+ if (i === 0)
3370
+ throw new Error("Empty or incomplete DMS string " + dmsa);
3371
+ return {val: v, ind: ind1};
3372
+ };
3373
+
3374
+ internalDecode = function(dmsa) {
3375
+ var vals = {}, errormsg = "",
3376
+ sign, beg, end, ind1, k,
3377
+ ipieces, fpieces, npiece,
3378
+ icurrent, fcurrent, ncurrent, p,
3379
+ pointseen,
3380
+ digcount, intcount,
3381
+ x;
3382
+ do { // Executed once (provides the ability to break)
3383
+ sign = 1;
3384
+ beg = 0; end = dmsa.length;
3385
+ ind1 = d.NONE;
3386
+ k = -1;
3387
+ if (end > beg && (k = lookup(hemispheres_, dmsa.charAt(beg))) >= 0) {
3388
+ ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
3389
+ sign = (k & 1) ? 1 : -1;
3390
+ ++beg;
3391
+ }
3392
+ if (end > beg &&
3393
+ (k = lookup(hemispheres_, dmsa.charAt(end-1))) >= 0) {
3394
+ if (k >= 0) {
3395
+ if (ind1 !== d.NONE) {
3396
+ if (dmsa.charAt(beg - 1).toUpperCase() ===
3397
+ dmsa.charAt(end - 1).toUpperCase())
3398
+ errormsg = "Repeated hemisphere indicators " +
3399
+ dmsa.charAt(beg - 1) + " in " +
3400
+ dmsa.substr(beg - 1, end - beg + 1);
3401
+ else
3402
+ errormsg = "Contradictory hemisphere indicators " +
3403
+ dmsa.charAt(beg - 1) + " and " + dmsa.charAt(end - 1) + " in " +
3404
+ dmsa.substr(beg - 1, end - beg + 1);
3405
+ break;
3406
+ }
3407
+ ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
3408
+ sign = (k & 1) ? 1 : -1;
3409
+ --end;
3410
+ }
3411
+ }
3412
+ if (end > beg && (k = lookup(signs_, dmsa.charAt(beg))) >= 0) {
3413
+ if (k >= 0) {
3414
+ sign *= k ? 1 : -1;
3415
+ ++beg;
3416
+ }
3417
+ }
3418
+ if (end === beg) {
3419
+ errormsg = "Empty or incomplete DMS string " + dmsa;
3420
+ break;
3421
+ }
3422
+ ipieces = [0, 0, 0];
3423
+ fpieces = [0, 0, 0];
3424
+ npiece = 0;
3425
+ icurrent = 0;
3426
+ fcurrent = 0;
3427
+ ncurrent = 0;
3428
+ p = beg;
3429
+ pointseen = false;
3430
+ digcount = 0;
3431
+ intcount = 0;
3432
+ while (p < end) {
3433
+ x = dmsa.charAt(p++);
3434
+ if ((k = lookup(digits_, x)) >= 0) {
3435
+ ++ncurrent;
3436
+ if (digcount > 0) {
3437
+ ++digcount; // Count of decimal digits
3438
+ } else {
3439
+ icurrent = 10 * icurrent + k;
3440
+ ++intcount;
3441
+ }
3442
+ } else if (x === '.') {
3443
+ if (pointseen) {
3444
+ errormsg = "Multiple decimal points in " +
3445
+ dmsa.substr(beg, end - beg);
3446
+ break;
3447
+ }
3448
+ pointseen = true;
3449
+ digcount = 1;
3450
+ } else if ((k = lookup(dmsindicators_, x)) >= 0) {
3451
+ if (k >= 3) {
3452
+ if (p === end) {
3453
+ errormsg = "Illegal for colon to appear at the end of " +
3454
+ dmsa.substr(beg, end - beg);
3455
+ break;
3456
+ }
3457
+ k = npiece;
3458
+ }
3459
+ if (k === npiece - 1) {
3460
+ errormsg = "Repeated " + components_[k] +
3461
+ " component in " + dmsa.substr(beg, end - beg);
3462
+ break;
3463
+ } else if (k < npiece) {
3464
+ errormsg = components_[k] + " component follows " +
3465
+ components_[npiece - 1] + " component in " +
3466
+ dmsa.substr(beg, end - beg);
3467
+ break;
3468
+ }
3469
+ if (ncurrent === 0) {
3470
+ errormsg = "Missing numbers in " + components_[k] +
3471
+ " component of " + dmsa.substr(beg, end - beg);
3472
+ break;
3473
+ }
3474
+ if (digcount > 0) {
3475
+ fcurrent = parseFloat(dmsa.substr(p - intcount - digcount - 1,
3476
+ intcount + digcount));
3477
+ icurrent = 0;
3478
+ }
3479
+ ipieces[k] = icurrent;
3480
+ fpieces[k] = icurrent + fcurrent;
3481
+ if (p < end) {
3482
+ npiece = k + 1;
3483
+ icurrent = fcurrent = 0;
3484
+ ncurrent = digcount = intcount = 0;
3485
+ }
3486
+ } else if (lookup(signs_, x) >= 0) {
3487
+ errormsg = "Internal sign in DMS string " +
3488
+ dmsa.substr(beg, end - beg);
3489
+ break;
3490
+ } else {
3491
+ errormsg = "Illegal character " + x + " in DMS string " +
3492
+ dmsa.substr(beg, end - beg);
3493
+ break;
3494
+ }
3495
+ }
3496
+ if (errormsg.length)
3497
+ break;
3498
+ if (lookup(dmsindicators_, dmsa.charAt(p - 1)) < 0) {
3499
+ if (npiece >= 3) {
3500
+ errormsg = "Extra text following seconds in DMS string " +
3501
+ dmsa.substr(beg, end - beg);
3502
+ break;
3503
+ }
3504
+ if (ncurrent === 0) {
3505
+ errormsg = "Missing numbers in trailing component of " +
3506
+ dmsa.substr(beg, end - beg);
3507
+ break;
3508
+ }
3509
+ if (digcount > 0) {
3510
+ fcurrent = parseFloat(dmsa.substr(p - intcount - digcount,
3511
+ intcount + digcount));
3512
+ icurrent = 0;
3513
+ }
3514
+ ipieces[npiece] = icurrent;
3515
+ fpieces[npiece] = icurrent + fcurrent;
3516
+ }
3517
+ if (pointseen && digcount === 0) {
3518
+ errormsg = "Decimal point in non-terminal component of " +
3519
+ dmsa.substr(beg, end - beg);
3520
+ break;
3521
+ }
3522
+ // Note that we accept 59.999999... even though it rounds to 60.
3523
+ if (ipieces[1] >= 60 || fpieces[1] > 60) {
3524
+ errormsg = "Minutes " + fpieces[1] + " not in range [0,60)";
3525
+ break;
3526
+ }
3527
+ if (ipieces[2] >= 60 || fpieces[2] > 60) {
3528
+ errormsg = "Seconds " + fpieces[2] + " not in range [0,60)";
3529
+ break;
3530
+ }
3531
+ vals.ind = ind1;
3532
+ // Assume check on range of result is made by calling routine (which
3533
+ // might be able to offer a better diagnostic).
3534
+ vals.val = sign *
3535
+ ( fpieces[2] ? (60*(60*fpieces[0] + fpieces[1]) + fpieces[2]) / 3600 :
3536
+ ( fpieces[1] ? (60*fpieces[0] + fpieces[1]) / 60 : fpieces[0] ) );
3537
+ return vals;
3538
+ } while (false);
3539
+ vals.val = numMatch(dmsa);
3540
+ if (vals.val === 0)
3541
+ throw new Error(errormsg);
3542
+ else
3543
+ vals.ind = d.NONE;
3544
+ return vals;
3545
+ };
3546
+
3547
+ numMatch = function(s) {
3548
+ var t, sign, p0, p1;
3549
+ if (s.length < 3)
3550
+ return 0;
3551
+ t = s.toUpperCase().replace(/0+$/, "");
3552
+ sign = t.charAt(0) === '-' ? -1 : 1;
3553
+ p0 = t.charAt(0) === '-' || t.charAt(0) === '+' ? 1 : 0;
3554
+ p1 = t.length - 1;
3555
+ if (p1 + 1 < p0 + 3)
3556
+ return 0;
3557
+ // Strip off sign and trailing 0s
3558
+ t = t.substr(p0, p1 + 1 - p0); // Length at least 3
3559
+ if (t === "NAN" || t === "1.#QNAN" || t === "1.#SNAN" || t === "1.#IND" ||
3560
+ t === "1.#R")
3561
+ return Number.NaN;
3562
+ else if (t === "INF" || t === "1.#INF")
3563
+ return sign * Number.POSITIVE_INFINITY;
3564
+ return 0;
3565
+ };
3566
+
3567
+ /**
3568
+ * @summary Decode two DMS strings interpreting them as a latitude/longitude
3569
+ * pair.
3570
+ * @param {string} stra the first string.
3571
+ * @param {string} strb the first string.
3572
+ * @param {bool} [longfirst = false] if true assume then longitude is given
3573
+ * first (in the absense of any hemisphere indicators).
3574
+ * @returns {object} r where r.lat is the decoded latitude and r.lon is the
3575
+ * decoded longitude (both in degrees).
3576
+ * @throws an error if the strings are illegal.
3577
+ */
3578
+ d.DecodeLatLon = function(stra, strb, longfirst) {
3579
+ var vals = {},
3580
+ valsa = d.Decode(stra),
3581
+ valsb = d.Decode(strb),
3582
+ a = valsa.val, ia = valsa.ind,
3583
+ b = valsb.val, ib = valsb.ind,
3584
+ lat, lon;
3585
+ if (!longfirst) longfirst = false;
3586
+ if (ia === d.NONE && ib === d.NONE) {
3587
+ // Default to lat, long unless longfirst
3588
+ ia = longfirst ? d.LONGITUDE : d.LATITUDE;
3589
+ ib = longfirst ? d.LATITUDE : d.LONGITUDE;
3590
+ } else if (ia === d.NONE)
3591
+ ia = d.LATITUDE + d.LONGITUDE - ib;
3592
+ else if (ib === d.NONE)
3593
+ ib = d.LATITUDE + d.LONGITUDE - ia;
3594
+ if (ia === ib)
3595
+ throw new Error("Both " + stra + " and " + strb + " interpreted as " +
3596
+ (ia === d.LATITUDE ? "latitudes" : "longitudes"));
3597
+ lat = ia === d.LATITUDE ? a : b;
3598
+ lon = ia === d.LATITUDE ? b : a;
3599
+ if (Math.abs(lat) > 90)
3600
+ throw new Error("Latitude " + lat + " not in [-90,90]");
3601
+ vals.lat = lat;
3602
+ vals.lon = lon;
3603
+ return vals;
3604
+ };
3605
+
3606
+ /**
3607
+ * @summary Decode a DMS string interpreting it as an arc length.
3608
+ * @param {string} angstr the string (this must not include a hemisphere
3609
+ * indicator).
3610
+ * @returns {number} the arc length (degrees).
3611
+ * @throws an error if the string is illegal.
3612
+ */
3613
+ d.DecodeAngle = function(angstr) {
3614
+ var vals = d.Decode(angstr),
3615
+ ang = vals.val, ind = vals.ind;
3616
+ if (ind !== d.NONE)
3617
+ throw new Error("Arc angle " + angstr +
3618
+ " includes a hemisphere N/E/W/S");
3619
+ return ang;
3620
+ };
3621
+
3622
+ /**
3623
+ * @summary Decode a DMS string interpreting it as an azimuth.
3624
+ * @param {string} azistr the string (this may include an E/W hemisphere
3625
+ * indicator).
3626
+ * @returns {number} the azimuth (degrees).
3627
+ * @throws an error if the string is illegal.
3628
+ */
3629
+ d.DecodeAzimuth = function(azistr) {
3630
+ var vals = d.Decode(azistr),
3631
+ azi = vals.val, ind = vals.ind;
3632
+ if (ind === d.LATITUDE)
3633
+ throw new Error("Azimuth " + azistr + " has a latitude hemisphere N/S");
3634
+ return azi;
3635
+ };
3636
+
3637
+ /**
3638
+ * @summary Convert angle (in degrees) into a DMS string (using &deg;, ',
3639
+ * and &quot;).
3640
+ * @param {number} angle input angle (degrees).
3641
+ * @param {number} trailing one of DEGREE, MINUTE, or SECOND to indicate
3642
+ * the trailing component of the string (this component is given as a
3643
+ * decimal number if necessary).
3644
+ * @param {number} prec the number of digits after the decimal point for
3645
+ * the trailing component.
3646
+ * @param {number} [ind = NONE] a formatting indicator, one of NONE,
3647
+ * LATITUDE, LONGITUDE, AZIMUTH.
3648
+ * @returns {string} the resulting string formatted as follows:
3649
+ * * NONE, signed result no leading zeros on degrees except in the units
3650
+ * place, e.g., -8&deg;03'.
3651
+ * * LATITUDE, trailing N or S hemisphere designator, no sign, pad
3652
+ * degrees to 2 digits, e.g., 08&deg;03'S.
3653
+ * * LONGITUDE, trailing E or W hemisphere designator, no sign, pad
3654
+ * degrees to 3 digits, e.g., 008&deg;03'W.
3655
+ * * AZIMUTH, convert to the range [0, 360&deg;), no sign, pad degrees to
3656
+ * 3 digits, e.g., 351&deg;57'.
3657
+ */
3658
+ d.Encode = function(angle, trailing, prec, ind) {
3659
+ // Assume check on range of input angle has been made by calling
3660
+ // routine (which might be able to offer a better diagnostic).
3661
+ var scale = 1, i, sign,
3662
+ idegree, fdegree, f, pieces, ip, fp, s;
3663
+ if (!ind) ind = d.NONE;
3664
+ if (!isFinite(angle))
3665
+ return angle < 0 ? String("-inf") :
3666
+ (angle > 0 ? String("inf") : String("nan"));
3667
+
3668
+ // 15 - 2 * trailing = ceiling(log10(2^53/90/60^trailing)).
3669
+ // This suffices to give full real precision for numbers in [-90,90]
3670
+ prec = Math.min(15 - 2 * trailing, prec);
3671
+ for (i = 0; i < trailing; ++i)
3672
+ scale *= 60;
3673
+ for (i = 0; i < prec; ++i)
3674
+ scale *= 10;
3675
+ if (ind === d.AZIMUTH)
3676
+ angle -= Math.floor(angle/360) * 360;
3677
+ sign = angle < 0 ? -1 : 1;
3678
+ angle *= sign;
3679
+
3680
+ // Break off integer part to preserve precision in manipulation of
3681
+ // fractional part.
3682
+ idegree = Math.floor(angle);
3683
+ fdegree = (angle - idegree) * scale + 0.5;
3684
+ f = Math.floor(fdegree);
3685
+ // Implement the "round ties to even" rule
3686
+ fdegree = (f === fdegree && (f & 1) === 1) ? f - 1 : f;
3687
+ fdegree /= scale;
3688
+
3689
+ fdegree = Math.floor((angle - idegree) * scale + 0.5) / scale;
3690
+ if (fdegree >= 1) {
3691
+ idegree += 1;
3692
+ fdegree -= 1;
3693
+ }
3694
+ pieces = [fdegree, 0, 0];
3695
+ for (i = 1; i <= trailing; ++i) {
3696
+ ip = Math.floor(pieces[i - 1]);
3697
+ fp = pieces[i - 1] - ip;
3698
+ pieces[i] = fp * 60;
3699
+ pieces[i - 1] = ip;
3700
+ }
3701
+ pieces[0] += idegree;
3702
+ s = "";
3703
+ if (ind === d.NONE && sign < 0)
3704
+ s += '-';
3705
+ switch (trailing) {
3706
+ case d.DEGREE:
3707
+ s += zerofill(pieces[0].toFixed(prec),
3708
+ ind === d.NONE ? 0 :
3709
+ 1 + Math.min(ind, 2) + prec + (prec ? 1 : 0)) +
3710
+ dmsindicatorsu_.charAt(0);
3711
+ break;
3712
+ default:
3713
+ s += zerofill(pieces[0].toFixed(0),
3714
+ ind === d.NONE ? 0 : 1 + Math.min(ind, 2)) +
3715
+ dmsindicatorsu_.charAt(0);
3716
+ switch (trailing) {
3717
+ case d.MINUTE:
3718
+ s += zerofill(pieces[1].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
3719
+ dmsindicatorsu_.charAt(1);
3720
+ break;
3721
+ case d.SECOND:
3722
+ s += zerofill(pieces[1].toFixed(0), 2) + dmsindicatorsu_.charAt(1);
3723
+ s += zerofill(pieces[2].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
3724
+ dmsindicatorsu_.charAt(2);
3725
+ break;
3726
+ default:
3727
+ break;
3728
+ }
3729
+ }
3730
+ if (ind !== d.NONE && ind !== d.AZIMUTH)
3731
+ s += hemispheres_.charAt((ind === d.LATITUDE ? 0 : 2) +
3732
+ (sign < 0 ? 0 : 1));
3733
+ return s;
3734
+ };
3735
+ })(GeographicLib.DMS);
3736
+
3737
+ cb(GeographicLib);
3738
+
3739
+ })(function(geo) {
3740
+ if (typeof module === 'object' && module.exports) {
3741
+ /******** support loading with node's require ********/
3742
+ module.exports = geo;
3743
+ } else if (true) {
3744
+ /******** support loading with AMD ********/
3745
+ !(__WEBPACK_AMD_DEFINE_ARRAY__ = [], __WEBPACK_AMD_DEFINE_RESULT__ = function() { return geo; }.apply(exports, __WEBPACK_AMD_DEFINE_ARRAY__),
3746
+ __WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
3747
+ } else {
3748
+ /******** otherwise just pollute our global namespace ********/
3749
+ window.GeographicLib = geo;
3750
+ }
3751
+ });
3752
+
3753
+
3754
+ /***/ })
3755
+ /******/ ]);
3756
+
3757
+ /***/ }),
3758
+ /* 4 */
3759
+ /***/ (function(module, exports) {
3760
+
3761
+ // removed by extract-text-webpack-plugin
3762
+
3763
+ /***/ })
3764
+ /******/ ]);