ed25519 1.0.0-jruby → 1.1.0-jruby
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +1 -0
- data/CHANGES.md +13 -0
- data/README.md +9 -9
- data/Rakefile +3 -3
- data/ext/ed25519_jruby/LICENSE.txt +123 -0
- data/ext/ed25519_jruby/README.md +77 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAEngine.java +491 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAKey.java +31 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAPrivateKey.java +338 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAPublicKey.java +275 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSASecurityProvider.java +59 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/KeyFactory.java +75 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/KeyPairGenerator.java +97 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/Utils.java +103 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Constants.java +23 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Curve.java +100 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Encoding.java +54 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Field.java +99 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/FieldElement.java +76 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/GroupElement.java +1034 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ScalarOps.java +34 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerFieldElement.java +131 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerLittleEndianEncoding.java +102 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerScalarOps.java +37 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/package.html +6 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519FieldElement.java +988 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519LittleEndianEncoding.java +256 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519ScalarOps.java +693 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAGenParameterSpec.java +32 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSANamedCurveSpec.java +35 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSANamedCurveTable.java +71 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAParameterSpec.java +97 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAPrivateKeySpec.java +133 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAPublicKeySpec.java +61 -0
- data/ext/ed25519_jruby/org/cryptosphere/Ed25519Provider.java +95 -0
- data/lib/ed25519.rb +8 -8
- data/lib/ed25519/signing_key.rb +9 -0
- data/lib/ed25519/version.rb +1 -1
- data/lib/ed25519_java.jar +0 -0
- metadata +32 -3
- data/ext/ed25519_java/org/cryptosphere/ed25519.java +0 -228
- data/lib/ed25519/provider/jruby.rb +0 -39
@@ -0,0 +1,34 @@
|
|
1
|
+
/**
|
2
|
+
* EdDSA-Java by str4d
|
3
|
+
*
|
4
|
+
* To the extent possible under law, the person who associated CC0 with
|
5
|
+
* EdDSA-Java has waived all copyright and related or neighboring rights
|
6
|
+
* to EdDSA-Java.
|
7
|
+
*
|
8
|
+
* You should have received a copy of the CC0 legalcode along with this
|
9
|
+
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
|
10
|
+
*
|
11
|
+
*/
|
12
|
+
package net.i2p.crypto.eddsa.math;
|
13
|
+
|
14
|
+
public interface ScalarOps {
|
15
|
+
/**
|
16
|
+
* Reduce the given scalar mod $l$.
|
17
|
+
* <p>
|
18
|
+
* From the Ed25519 paper:<br>
|
19
|
+
* Here we interpret $2b$-bit strings in little-endian form as integers in
|
20
|
+
* $\{0, 1,..., 2^{(2b)}-1\}$.
|
21
|
+
* @param s the scalar to reduce
|
22
|
+
* @return $s \bmod l$
|
23
|
+
*/
|
24
|
+
public byte[] reduce(byte[] s);
|
25
|
+
|
26
|
+
/**
|
27
|
+
* $r = (a * b + c) \bmod l$
|
28
|
+
* @param a a scalar
|
29
|
+
* @param b a scalar
|
30
|
+
* @param c a scalar
|
31
|
+
* @return $(a*b + c) \bmod l$
|
32
|
+
*/
|
33
|
+
public byte[] multiplyAndAdd(byte[] a, byte[] b, byte[] c);
|
34
|
+
}
|
@@ -0,0 +1,131 @@
|
|
1
|
+
/**
|
2
|
+
* EdDSA-Java by str4d
|
3
|
+
*
|
4
|
+
* To the extent possible under law, the person who associated CC0 with
|
5
|
+
* EdDSA-Java has waived all copyright and related or neighboring rights
|
6
|
+
* to EdDSA-Java.
|
7
|
+
*
|
8
|
+
* You should have received a copy of the CC0 legalcode along with this
|
9
|
+
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
|
10
|
+
*
|
11
|
+
*/
|
12
|
+
package net.i2p.crypto.eddsa.math.bigint;
|
13
|
+
|
14
|
+
import java.io.Serializable;
|
15
|
+
import java.math.BigInteger;
|
16
|
+
|
17
|
+
import net.i2p.crypto.eddsa.math.Field;
|
18
|
+
import net.i2p.crypto.eddsa.math.FieldElement;
|
19
|
+
|
20
|
+
/**
|
21
|
+
* A particular element of the field \Z/(2^255-19).
|
22
|
+
* @author str4d
|
23
|
+
*
|
24
|
+
*/
|
25
|
+
public class BigIntegerFieldElement extends FieldElement implements Serializable {
|
26
|
+
private static final long serialVersionUID = 4890398908392808L;
|
27
|
+
/**
|
28
|
+
* Variable is package private for encoding.
|
29
|
+
*/
|
30
|
+
final BigInteger bi;
|
31
|
+
|
32
|
+
public BigIntegerFieldElement(Field f, BigInteger bi) {
|
33
|
+
super(f);
|
34
|
+
this.bi = bi;
|
35
|
+
}
|
36
|
+
|
37
|
+
public boolean isNonZero() {
|
38
|
+
return !bi.equals(BigInteger.ZERO);
|
39
|
+
}
|
40
|
+
|
41
|
+
public FieldElement add(FieldElement val) {
|
42
|
+
return new BigIntegerFieldElement(f, bi.add(((BigIntegerFieldElement)val).bi)).mod(f.getQ());
|
43
|
+
}
|
44
|
+
|
45
|
+
@Override
|
46
|
+
public FieldElement addOne() {
|
47
|
+
return new BigIntegerFieldElement(f, bi.add(BigInteger.ONE)).mod(f.getQ());
|
48
|
+
}
|
49
|
+
|
50
|
+
public FieldElement subtract(FieldElement val) {
|
51
|
+
return new BigIntegerFieldElement(f, bi.subtract(((BigIntegerFieldElement)val).bi)).mod(f.getQ());
|
52
|
+
}
|
53
|
+
|
54
|
+
@Override
|
55
|
+
public FieldElement subtractOne() {
|
56
|
+
return new BigIntegerFieldElement(f, bi.subtract(BigInteger.ONE)).mod(f.getQ());
|
57
|
+
}
|
58
|
+
|
59
|
+
public FieldElement negate() {
|
60
|
+
return f.getQ().subtract(this);
|
61
|
+
}
|
62
|
+
|
63
|
+
@Override
|
64
|
+
public FieldElement divide(FieldElement val) {
|
65
|
+
return divide(((BigIntegerFieldElement)val).bi);
|
66
|
+
}
|
67
|
+
|
68
|
+
public FieldElement divide(BigInteger val) {
|
69
|
+
return new BigIntegerFieldElement(f, bi.divide(val)).mod(f.getQ());
|
70
|
+
}
|
71
|
+
|
72
|
+
public FieldElement multiply(FieldElement val) {
|
73
|
+
return new BigIntegerFieldElement(f, bi.multiply(((BigIntegerFieldElement)val).bi)).mod(f.getQ());
|
74
|
+
}
|
75
|
+
|
76
|
+
public FieldElement square() {
|
77
|
+
return multiply(this);
|
78
|
+
}
|
79
|
+
|
80
|
+
public FieldElement squareAndDouble() {
|
81
|
+
FieldElement sq = square();
|
82
|
+
return sq.add(sq);
|
83
|
+
}
|
84
|
+
|
85
|
+
public FieldElement invert() {
|
86
|
+
// Euler's theorem
|
87
|
+
//return modPow(f.getQm2(), f.getQ());
|
88
|
+
return new BigIntegerFieldElement(f, bi.modInverse(((BigIntegerFieldElement)f.getQ()).bi));
|
89
|
+
}
|
90
|
+
|
91
|
+
public FieldElement mod(FieldElement m) {
|
92
|
+
return new BigIntegerFieldElement(f, bi.mod(((BigIntegerFieldElement)m).bi));
|
93
|
+
}
|
94
|
+
|
95
|
+
public FieldElement modPow(FieldElement e, FieldElement m) {
|
96
|
+
return new BigIntegerFieldElement(f, bi.modPow(((BigIntegerFieldElement)e).bi, ((BigIntegerFieldElement)m).bi));
|
97
|
+
}
|
98
|
+
|
99
|
+
public FieldElement pow(FieldElement e){
|
100
|
+
return modPow(e, f.getQ());
|
101
|
+
}
|
102
|
+
|
103
|
+
public FieldElement pow22523(){
|
104
|
+
return pow(f.getQm5d8());
|
105
|
+
}
|
106
|
+
|
107
|
+
@Override
|
108
|
+
public FieldElement cmov(FieldElement val, int b) {
|
109
|
+
// Not constant-time, but it doesn't really matter because none of the underlying BigInteger operations
|
110
|
+
// are either, so there's not much point in trying hard here ...
|
111
|
+
return b == 0 ? this : val;
|
112
|
+
}
|
113
|
+
|
114
|
+
@Override
|
115
|
+
public int hashCode() {
|
116
|
+
return bi.hashCode();
|
117
|
+
}
|
118
|
+
|
119
|
+
@Override
|
120
|
+
public boolean equals(Object obj) {
|
121
|
+
if (!(obj instanceof BigIntegerFieldElement))
|
122
|
+
return false;
|
123
|
+
BigIntegerFieldElement fe = (BigIntegerFieldElement) obj;
|
124
|
+
return bi.equals(fe.bi);
|
125
|
+
}
|
126
|
+
|
127
|
+
@Override
|
128
|
+
public String toString() {
|
129
|
+
return "[BigIntegerFieldElement val="+bi+"]";
|
130
|
+
}
|
131
|
+
}
|
@@ -0,0 +1,102 @@
|
|
1
|
+
/**
|
2
|
+
* EdDSA-Java by str4d
|
3
|
+
*
|
4
|
+
* To the extent possible under law, the person who associated CC0 with
|
5
|
+
* EdDSA-Java has waived all copyright and related or neighboring rights
|
6
|
+
* to EdDSA-Java.
|
7
|
+
*
|
8
|
+
* You should have received a copy of the CC0 legalcode along with this
|
9
|
+
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
|
10
|
+
*
|
11
|
+
*/
|
12
|
+
package net.i2p.crypto.eddsa.math.bigint;
|
13
|
+
|
14
|
+
import java.io.Serializable;
|
15
|
+
import java.math.BigInteger;
|
16
|
+
|
17
|
+
import net.i2p.crypto.eddsa.math.Encoding;
|
18
|
+
import net.i2p.crypto.eddsa.math.Field;
|
19
|
+
import net.i2p.crypto.eddsa.math.FieldElement;
|
20
|
+
|
21
|
+
public class BigIntegerLittleEndianEncoding extends Encoding implements Serializable {
|
22
|
+
private static final long serialVersionUID = 3984579843759837L;
|
23
|
+
/**
|
24
|
+
* Mask where only the first b-1 bits are set.
|
25
|
+
*/
|
26
|
+
private BigInteger mask;
|
27
|
+
|
28
|
+
@Override
|
29
|
+
public synchronized void setField(Field f) {
|
30
|
+
super.setField(f);
|
31
|
+
mask = BigInteger.ONE.shiftLeft(f.getb()-1).subtract(BigInteger.ONE);
|
32
|
+
}
|
33
|
+
|
34
|
+
public byte[] encode(FieldElement x) {
|
35
|
+
return encode(((BigIntegerFieldElement)x).bi.and(mask));
|
36
|
+
}
|
37
|
+
|
38
|
+
/**
|
39
|
+
* Convert $x$ to little endian.
|
40
|
+
* Constant time.
|
41
|
+
*
|
42
|
+
* @param x the BigInteger value to encode
|
43
|
+
* @return array of length $b/8$
|
44
|
+
* @throws IllegalStateException if field not set
|
45
|
+
*/
|
46
|
+
public byte[] encode(BigInteger x) {
|
47
|
+
if (f == null)
|
48
|
+
throw new IllegalStateException("field not set");
|
49
|
+
byte[] in = x.toByteArray();
|
50
|
+
byte[] out = new byte[f.getb()/8];
|
51
|
+
for (int i = 0; i < in.length; i++) {
|
52
|
+
out[i] = in[in.length-1-i];
|
53
|
+
}
|
54
|
+
for (int i = in.length; i < out.length; i++) {
|
55
|
+
out[i] = 0;
|
56
|
+
}
|
57
|
+
return out;
|
58
|
+
}
|
59
|
+
|
60
|
+
/**
|
61
|
+
* Decode a FieldElement from its $(b-1)$-bit encoding.
|
62
|
+
* The highest bit is masked out.
|
63
|
+
*
|
64
|
+
* @param in the $(b-1)$-bit encoding of a FieldElement.
|
65
|
+
* @return the FieldElement represented by 'val'.
|
66
|
+
* @throws IllegalStateException if field not set
|
67
|
+
* @throws IllegalArgumentException if encoding is invalid
|
68
|
+
*/
|
69
|
+
public FieldElement decode(byte[] in) {
|
70
|
+
if (f == null)
|
71
|
+
throw new IllegalStateException("field not set");
|
72
|
+
if (in.length != f.getb()/8)
|
73
|
+
throw new IllegalArgumentException("Not a valid encoding");
|
74
|
+
return new BigIntegerFieldElement(f, toBigInteger(in).and(mask));
|
75
|
+
}
|
76
|
+
|
77
|
+
/**
|
78
|
+
* Convert in to big endian
|
79
|
+
*
|
80
|
+
* @param in the $(b-1)$-bit encoding of a FieldElement.
|
81
|
+
* @return the decoded value as a BigInteger
|
82
|
+
*/
|
83
|
+
public BigInteger toBigInteger(byte[] in) {
|
84
|
+
byte[] out = new byte[in.length];
|
85
|
+
for (int i = 0; i < in.length; i++) {
|
86
|
+
out[i] = in[in.length-1-i];
|
87
|
+
}
|
88
|
+
return new BigInteger(1, out);
|
89
|
+
}
|
90
|
+
|
91
|
+
/**
|
92
|
+
* From the Ed25519 paper:<br>
|
93
|
+
* $x$ is negative if the $(b-1)$-bit encoding of $x$ is lexicographically larger
|
94
|
+
* than the $(b-1)$-bit encoding of $-x$. If $q$ is an odd prime and the encoding
|
95
|
+
* is the little-endian representation of $\{0, 1,\dots, q-1\}$ then the negative
|
96
|
+
* elements of $F_q$ are $\{1, 3, 5,\dots, q-2\}$.
|
97
|
+
* @return true if negative
|
98
|
+
*/
|
99
|
+
public boolean isNegative(FieldElement x) {
|
100
|
+
return ((BigIntegerFieldElement)x).bi.testBit(0);
|
101
|
+
}
|
102
|
+
}
|
@@ -0,0 +1,37 @@
|
|
1
|
+
/**
|
2
|
+
* EdDSA-Java by str4d
|
3
|
+
*
|
4
|
+
* To the extent possible under law, the person who associated CC0 with
|
5
|
+
* EdDSA-Java has waived all copyright and related or neighboring rights
|
6
|
+
* to EdDSA-Java.
|
7
|
+
*
|
8
|
+
* You should have received a copy of the CC0 legalcode along with this
|
9
|
+
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
|
10
|
+
*
|
11
|
+
*/
|
12
|
+
package net.i2p.crypto.eddsa.math.bigint;
|
13
|
+
|
14
|
+
import java.math.BigInteger;
|
15
|
+
|
16
|
+
import net.i2p.crypto.eddsa.math.Field;
|
17
|
+
import net.i2p.crypto.eddsa.math.ScalarOps;
|
18
|
+
|
19
|
+
public class BigIntegerScalarOps implements ScalarOps {
|
20
|
+
private final BigInteger l;
|
21
|
+
private final BigIntegerLittleEndianEncoding enc;
|
22
|
+
|
23
|
+
public BigIntegerScalarOps(Field f, BigInteger l) {
|
24
|
+
this.l = l;
|
25
|
+
enc = new BigIntegerLittleEndianEncoding();
|
26
|
+
enc.setField(f);
|
27
|
+
}
|
28
|
+
|
29
|
+
public byte[] reduce(byte[] s) {
|
30
|
+
return enc.encode(enc.toBigInteger(s).mod(l));
|
31
|
+
}
|
32
|
+
|
33
|
+
public byte[] multiplyAndAdd(byte[] a, byte[] b, byte[] c) {
|
34
|
+
return enc.encode(enc.toBigInteger(a).multiply(enc.toBigInteger(b)).add(enc.toBigInteger(c)).mod(l));
|
35
|
+
}
|
36
|
+
|
37
|
+
}
|
@@ -0,0 +1,988 @@
|
|
1
|
+
/**
|
2
|
+
* EdDSA-Java by str4d
|
3
|
+
*
|
4
|
+
* To the extent possible under law, the person who associated CC0 with
|
5
|
+
* EdDSA-Java has waived all copyright and related or neighboring rights
|
6
|
+
* to EdDSA-Java.
|
7
|
+
*
|
8
|
+
* You should have received a copy of the CC0 legalcode along with this
|
9
|
+
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
|
10
|
+
*
|
11
|
+
*/
|
12
|
+
package net.i2p.crypto.eddsa.math.ed25519;
|
13
|
+
|
14
|
+
import net.i2p.crypto.eddsa.Utils;
|
15
|
+
import net.i2p.crypto.eddsa.math.*;
|
16
|
+
|
17
|
+
import java.util.Arrays;
|
18
|
+
|
19
|
+
/**
|
20
|
+
* Class to represent a field element of the finite field $p = 2^{255} - 19$ elements.
|
21
|
+
* <p>
|
22
|
+
* An element $t$, entries $t[0] \dots t[9]$, represents the integer
|
23
|
+
* $t[0]+2^{26} t[1]+2^{51} t[2]+2^{77} t[3]+2^{102} t[4]+\dots+2^{230} t[9]$.
|
24
|
+
* Bounds on each $t[i]$ vary depending on context.
|
25
|
+
* <p>
|
26
|
+
* Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
|
27
|
+
*/
|
28
|
+
public class Ed25519FieldElement extends FieldElement {
|
29
|
+
/**
|
30
|
+
* Variable is package private for encoding.
|
31
|
+
*/
|
32
|
+
final int[] t;
|
33
|
+
|
34
|
+
/**
|
35
|
+
* Creates a field element.
|
36
|
+
*
|
37
|
+
* @param f The underlying field, must be the finite field with $p = 2^{255} - 19$ elements
|
38
|
+
* @param t The $2^{25.5}$ bit representation of the field element.
|
39
|
+
*/
|
40
|
+
public Ed25519FieldElement(Field f, int[] t) {
|
41
|
+
super(f);
|
42
|
+
if (t.length != 10)
|
43
|
+
throw new IllegalArgumentException("Invalid radix-2^51 representation");
|
44
|
+
this.t = t;
|
45
|
+
}
|
46
|
+
|
47
|
+
private static final byte[] ZERO = new byte[32];
|
48
|
+
|
49
|
+
/**
|
50
|
+
* Gets a value indicating whether or not the field element is non-zero.
|
51
|
+
*
|
52
|
+
* @return 1 if it is non-zero, 0 otherwise.
|
53
|
+
*/
|
54
|
+
public boolean isNonZero() {
|
55
|
+
final byte[] s = toByteArray();
|
56
|
+
return Utils.equal(s, ZERO) == 0;
|
57
|
+
}
|
58
|
+
|
59
|
+
/**
|
60
|
+
* $h = f + g$
|
61
|
+
* <p>
|
62
|
+
* TODO-CR BR: $h$ is allocated via new, probably not a good idea. Do we need the copying into temp variables if we do that?
|
63
|
+
* <p>
|
64
|
+
* Preconditions:
|
65
|
+
* </p><ul>
|
66
|
+
* <li>$|f|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
|
67
|
+
* <li>$|g|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
|
68
|
+
* </ul><p>
|
69
|
+
* Postconditions:
|
70
|
+
* </p><ul>
|
71
|
+
* <li>$|h|$ bounded by $1.1*2^{26},1.1*2^{25},1.1*2^{26},1.1*2^{25},$ etc.
|
72
|
+
* </ul>
|
73
|
+
*
|
74
|
+
* @param val The field element to add.
|
75
|
+
* @return The field element this + val.
|
76
|
+
*/
|
77
|
+
public FieldElement add(FieldElement val) {
|
78
|
+
int[] g = ((Ed25519FieldElement)val).t;
|
79
|
+
int[] h = new int[10];
|
80
|
+
for (int i = 0; i < 10; i++) {
|
81
|
+
h[i] = t[i] + g[i];
|
82
|
+
}
|
83
|
+
return new Ed25519FieldElement(f, h);
|
84
|
+
}
|
85
|
+
|
86
|
+
/**
|
87
|
+
* $h = f - g$
|
88
|
+
* <p>
|
89
|
+
* Can overlap $h$ with $f$ or $g$.
|
90
|
+
* <p>
|
91
|
+
* TODO-CR BR: See above.
|
92
|
+
* <p>
|
93
|
+
* Preconditions:
|
94
|
+
* </p><ul>
|
95
|
+
* <li>$|f|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
|
96
|
+
* <li>$|g|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
|
97
|
+
* </ul><p>
|
98
|
+
* Postconditions:
|
99
|
+
* </p><ul>
|
100
|
+
* <li>$|h|$ bounded by $1.1*2^{26},1.1*2^{25},1.1*2^{26},1.1*2^{25},$ etc.
|
101
|
+
* </ul>
|
102
|
+
*
|
103
|
+
* @param val The field element to subtract.
|
104
|
+
* @return The field element this - val.
|
105
|
+
**/
|
106
|
+
public FieldElement subtract(FieldElement val) {
|
107
|
+
int[] g = ((Ed25519FieldElement)val).t;
|
108
|
+
int[] h = new int[10];
|
109
|
+
for (int i = 0; i < 10; i++) {
|
110
|
+
h[i] = t[i] - g[i];
|
111
|
+
}
|
112
|
+
return new Ed25519FieldElement(f, h);
|
113
|
+
}
|
114
|
+
|
115
|
+
/**
|
116
|
+
* $h = -f$
|
117
|
+
* <p>
|
118
|
+
* TODO-CR BR: see above.
|
119
|
+
* <p>
|
120
|
+
* Preconditions:
|
121
|
+
* </p><ul>
|
122
|
+
* <li>$|f|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
|
123
|
+
* </ul><p>
|
124
|
+
* Postconditions:
|
125
|
+
* </p><ul>
|
126
|
+
* <li>$|h|$ bounded by $1.1*2^{25},1.1*2^{24},1.1*2^{25},1.1*2^{24},$ etc.
|
127
|
+
* </ul>
|
128
|
+
*
|
129
|
+
* @return The field element (-1) * this.
|
130
|
+
*/
|
131
|
+
public FieldElement negate() {
|
132
|
+
int[] h = new int[10];
|
133
|
+
for (int i = 0; i < 10; i++) {
|
134
|
+
h[i] = - t[i];
|
135
|
+
}
|
136
|
+
return new Ed25519FieldElement(f, h);
|
137
|
+
}
|
138
|
+
|
139
|
+
/**
|
140
|
+
* $h = f * g$
|
141
|
+
* <p>
|
142
|
+
* Can overlap $h$ with $f$ or $g$.
|
143
|
+
* <p>
|
144
|
+
* Preconditions:
|
145
|
+
* </p><ul>
|
146
|
+
* <li>$|f|$ bounded by
|
147
|
+
* $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
|
148
|
+
* <li>$|g|$ bounded by
|
149
|
+
* $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
|
150
|
+
* </ul><p>
|
151
|
+
* Postconditions:
|
152
|
+
* </p><ul>
|
153
|
+
* <li>$|h|$ bounded by
|
154
|
+
* $1.01*2^{25},1.01*2^{24},1.01*2^{25},1.01*2^{24},$ etc.
|
155
|
+
* </ul><p>
|
156
|
+
* Notes on implementation strategy:
|
157
|
+
* <p>
|
158
|
+
* Using schoolbook multiplication. Karatsuba would save a little in some
|
159
|
+
* cost models.
|
160
|
+
* <p>
|
161
|
+
* Most multiplications by 2 and 19 are 32-bit precomputations; cheaper than
|
162
|
+
* 64-bit postcomputations.
|
163
|
+
* <p>
|
164
|
+
* There is one remaining multiplication by 19 in the carry chain; one *19
|
165
|
+
* precomputation can be merged into this, but the resulting data flow is
|
166
|
+
* considerably less clean.
|
167
|
+
* <p>
|
168
|
+
* There are 12 carries below. 10 of them are 2-way parallelizable and
|
169
|
+
* vectorizable. Can get away with 11 carries, but then data flow is much
|
170
|
+
* deeper.
|
171
|
+
* <p>
|
172
|
+
* With tighter constraints on inputs can squeeze carries into int32.
|
173
|
+
*
|
174
|
+
* @param val The field element to multiply.
|
175
|
+
* @return The (reasonably reduced) field element this * val.
|
176
|
+
*/
|
177
|
+
public FieldElement multiply(FieldElement val) {
|
178
|
+
int[] g = ((Ed25519FieldElement)val).t;
|
179
|
+
int g1_19 = 19 * g[1]; /* 1.959375*2^29 */
|
180
|
+
int g2_19 = 19 * g[2]; /* 1.959375*2^30; still ok */
|
181
|
+
int g3_19 = 19 * g[3];
|
182
|
+
int g4_19 = 19 * g[4];
|
183
|
+
int g5_19 = 19 * g[5];
|
184
|
+
int g6_19 = 19 * g[6];
|
185
|
+
int g7_19 = 19 * g[7];
|
186
|
+
int g8_19 = 19 * g[8];
|
187
|
+
int g9_19 = 19 * g[9];
|
188
|
+
int f1_2 = 2 * t[1];
|
189
|
+
int f3_2 = 2 * t[3];
|
190
|
+
int f5_2 = 2 * t[5];
|
191
|
+
int f7_2 = 2 * t[7];
|
192
|
+
int f9_2 = 2 * t[9];
|
193
|
+
long f0g0 = t[0] * (long) g[0];
|
194
|
+
long f0g1 = t[0] * (long) g[1];
|
195
|
+
long f0g2 = t[0] * (long) g[2];
|
196
|
+
long f0g3 = t[0] * (long) g[3];
|
197
|
+
long f0g4 = t[0] * (long) g[4];
|
198
|
+
long f0g5 = t[0] * (long) g[5];
|
199
|
+
long f0g6 = t[0] * (long) g[6];
|
200
|
+
long f0g7 = t[0] * (long) g[7];
|
201
|
+
long f0g8 = t[0] * (long) g[8];
|
202
|
+
long f0g9 = t[0] * (long) g[9];
|
203
|
+
long f1g0 = t[1] * (long) g[0];
|
204
|
+
long f1g1_2 = f1_2 * (long) g[1];
|
205
|
+
long f1g2 = t[1] * (long) g[2];
|
206
|
+
long f1g3_2 = f1_2 * (long) g[3];
|
207
|
+
long f1g4 = t[1] * (long) g[4];
|
208
|
+
long f1g5_2 = f1_2 * (long) g[5];
|
209
|
+
long f1g6 = t[1] * (long) g[6];
|
210
|
+
long f1g7_2 = f1_2 * (long) g[7];
|
211
|
+
long f1g8 = t[1] * (long) g[8];
|
212
|
+
long f1g9_38 = f1_2 * (long) g9_19;
|
213
|
+
long f2g0 = t[2] * (long) g[0];
|
214
|
+
long f2g1 = t[2] * (long) g[1];
|
215
|
+
long f2g2 = t[2] * (long) g[2];
|
216
|
+
long f2g3 = t[2] * (long) g[3];
|
217
|
+
long f2g4 = t[2] * (long) g[4];
|
218
|
+
long f2g5 = t[2] * (long) g[5];
|
219
|
+
long f2g6 = t[2] * (long) g[6];
|
220
|
+
long f2g7 = t[2] * (long) g[7];
|
221
|
+
long f2g8_19 = t[2] * (long) g8_19;
|
222
|
+
long f2g9_19 = t[2] * (long) g9_19;
|
223
|
+
long f3g0 = t[3] * (long) g[0];
|
224
|
+
long f3g1_2 = f3_2 * (long) g[1];
|
225
|
+
long f3g2 = t[3] * (long) g[2];
|
226
|
+
long f3g3_2 = f3_2 * (long) g[3];
|
227
|
+
long f3g4 = t[3] * (long) g[4];
|
228
|
+
long f3g5_2 = f3_2 * (long) g[5];
|
229
|
+
long f3g6 = t[3] * (long) g[6];
|
230
|
+
long f3g7_38 = f3_2 * (long) g7_19;
|
231
|
+
long f3g8_19 = t[3] * (long) g8_19;
|
232
|
+
long f3g9_38 = f3_2 * (long) g9_19;
|
233
|
+
long f4g0 = t[4] * (long) g[0];
|
234
|
+
long f4g1 = t[4] * (long) g[1];
|
235
|
+
long f4g2 = t[4] * (long) g[2];
|
236
|
+
long f4g3 = t[4] * (long) g[3];
|
237
|
+
long f4g4 = t[4] * (long) g[4];
|
238
|
+
long f4g5 = t[4] * (long) g[5];
|
239
|
+
long f4g6_19 = t[4] * (long) g6_19;
|
240
|
+
long f4g7_19 = t[4] * (long) g7_19;
|
241
|
+
long f4g8_19 = t[4] * (long) g8_19;
|
242
|
+
long f4g9_19 = t[4] * (long) g9_19;
|
243
|
+
long f5g0 = t[5] * (long) g[0];
|
244
|
+
long f5g1_2 = f5_2 * (long) g[1];
|
245
|
+
long f5g2 = t[5] * (long) g[2];
|
246
|
+
long f5g3_2 = f5_2 * (long) g[3];
|
247
|
+
long f5g4 = t[5] * (long) g[4];
|
248
|
+
long f5g5_38 = f5_2 * (long) g5_19;
|
249
|
+
long f5g6_19 = t[5] * (long) g6_19;
|
250
|
+
long f5g7_38 = f5_2 * (long) g7_19;
|
251
|
+
long f5g8_19 = t[5] * (long) g8_19;
|
252
|
+
long f5g9_38 = f5_2 * (long) g9_19;
|
253
|
+
long f6g0 = t[6] * (long) g[0];
|
254
|
+
long f6g1 = t[6] * (long) g[1];
|
255
|
+
long f6g2 = t[6] * (long) g[2];
|
256
|
+
long f6g3 = t[6] * (long) g[3];
|
257
|
+
long f6g4_19 = t[6] * (long) g4_19;
|
258
|
+
long f6g5_19 = t[6] * (long) g5_19;
|
259
|
+
long f6g6_19 = t[6] * (long) g6_19;
|
260
|
+
long f6g7_19 = t[6] * (long) g7_19;
|
261
|
+
long f6g8_19 = t[6] * (long) g8_19;
|
262
|
+
long f6g9_19 = t[6] * (long) g9_19;
|
263
|
+
long f7g0 = t[7] * (long) g[0];
|
264
|
+
long f7g1_2 = f7_2 * (long) g[1];
|
265
|
+
long f7g2 = t[7] * (long) g[2];
|
266
|
+
long f7g3_38 = f7_2 * (long) g3_19;
|
267
|
+
long f7g4_19 = t[7] * (long) g4_19;
|
268
|
+
long f7g5_38 = f7_2 * (long) g5_19;
|
269
|
+
long f7g6_19 = t[7] * (long) g6_19;
|
270
|
+
long f7g7_38 = f7_2 * (long) g7_19;
|
271
|
+
long f7g8_19 = t[7] * (long) g8_19;
|
272
|
+
long f7g9_38 = f7_2 * (long) g9_19;
|
273
|
+
long f8g0 = t[8] * (long) g[0];
|
274
|
+
long f8g1 = t[8] * (long) g[1];
|
275
|
+
long f8g2_19 = t[8] * (long) g2_19;
|
276
|
+
long f8g3_19 = t[8] * (long) g3_19;
|
277
|
+
long f8g4_19 = t[8] * (long) g4_19;
|
278
|
+
long f8g5_19 = t[8] * (long) g5_19;
|
279
|
+
long f8g6_19 = t[8] * (long) g6_19;
|
280
|
+
long f8g7_19 = t[8] * (long) g7_19;
|
281
|
+
long f8g8_19 = t[8] * (long) g8_19;
|
282
|
+
long f8g9_19 = t[8] * (long) g9_19;
|
283
|
+
long f9g0 = t[9] * (long) g[0];
|
284
|
+
long f9g1_38 = f9_2 * (long) g1_19;
|
285
|
+
long f9g2_19 = t[9] * (long) g2_19;
|
286
|
+
long f9g3_38 = f9_2 * (long) g3_19;
|
287
|
+
long f9g4_19 = t[9] * (long) g4_19;
|
288
|
+
long f9g5_38 = f9_2 * (long) g5_19;
|
289
|
+
long f9g6_19 = t[9] * (long) g6_19;
|
290
|
+
long f9g7_38 = f9_2 * (long) g7_19;
|
291
|
+
long f9g8_19 = t[9] * (long) g8_19;
|
292
|
+
long f9g9_38 = f9_2 * (long) g9_19;
|
293
|
+
|
294
|
+
/**
|
295
|
+
* Remember: 2^255 congruent 19 modulo p.
|
296
|
+
* h = h0 * 2^0 + h1 * 2^26 + h2 * 2^(26+25) + h3 * 2^(26+25+26) + ... + h9 * 2^(5*26+5*25).
|
297
|
+
* So to get the real number we would have to multiply the coefficients with the corresponding powers of 2.
|
298
|
+
* To get an idea what is going on below, look at the calculation of h0:
|
299
|
+
* h0 is the coefficient to the power 2^0 so it collects (sums) all products that have the power 2^0.
|
300
|
+
* f0 * g0 really is f0 * 2^0 * g0 * 2^0 = (f0 * g0) * 2^0.
|
301
|
+
* f1 * g9 really is f1 * 2^26 * g9 * 2^230 = f1 * g9 * 2^256 = 2 * f1 * g9 * 2^255 congruent 2 * 19 * f1 * g9 * 2^0 modulo p.
|
302
|
+
* f2 * g8 really is f2 * 2^51 * g8 * 2^204 = f2 * g8 * 2^255 congruent 19 * f2 * g8 * 2^0 modulo p.
|
303
|
+
* and so on...
|
304
|
+
*/
|
305
|
+
long h0 = f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38;
|
306
|
+
long h1 = f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19;
|
307
|
+
long h2 = f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38;
|
308
|
+
long h3 = f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19;
|
309
|
+
long h4 = f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38;
|
310
|
+
long h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19;
|
311
|
+
long h6 = f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38;
|
312
|
+
long h7 = f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19;
|
313
|
+
long h8 = f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38;
|
314
|
+
long h9 = f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0;
|
315
|
+
long carry0;
|
316
|
+
long carry1;
|
317
|
+
long carry2;
|
318
|
+
long carry3;
|
319
|
+
long carry4;
|
320
|
+
long carry5;
|
321
|
+
long carry6;
|
322
|
+
long carry7;
|
323
|
+
long carry8;
|
324
|
+
long carry9;
|
325
|
+
|
326
|
+
/*
|
327
|
+
|h0| <= (1.65*1.65*2^52*(1+19+19+19+19)+1.65*1.65*2^50*(38+38+38+38+38))
|
328
|
+
i.e. |h0| <= 1.4*2^60; narrower ranges for h2, h4, h6, h8
|
329
|
+
|h1| <= (1.65*1.65*2^51*(1+1+19+19+19+19+19+19+19+19))
|
330
|
+
i.e. |h1| <= 1.7*2^59; narrower ranges for h3, h5, h7, h9
|
331
|
+
*/
|
332
|
+
|
333
|
+
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
|
334
|
+
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
|
335
|
+
/* |h0| <= 2^25 */
|
336
|
+
/* |h4| <= 2^25 */
|
337
|
+
/* |h1| <= 1.71*2^59 */
|
338
|
+
/* |h5| <= 1.71*2^59 */
|
339
|
+
|
340
|
+
carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
|
341
|
+
carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
|
342
|
+
/* |h1| <= 2^24; from now on fits into int32 */
|
343
|
+
/* |h5| <= 2^24; from now on fits into int32 */
|
344
|
+
/* |h2| <= 1.41*2^60 */
|
345
|
+
/* |h6| <= 1.41*2^60 */
|
346
|
+
|
347
|
+
carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
|
348
|
+
carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
|
349
|
+
/* |h2| <= 2^25; from now on fits into int32 unchanged */
|
350
|
+
/* |h6| <= 2^25; from now on fits into int32 unchanged */
|
351
|
+
/* |h3| <= 1.71*2^59 */
|
352
|
+
/* |h7| <= 1.71*2^59 */
|
353
|
+
|
354
|
+
carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
|
355
|
+
carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
|
356
|
+
/* |h3| <= 2^24; from now on fits into int32 unchanged */
|
357
|
+
/* |h7| <= 2^24; from now on fits into int32 unchanged */
|
358
|
+
/* |h4| <= 1.72*2^34 */
|
359
|
+
/* |h8| <= 1.41*2^60 */
|
360
|
+
|
361
|
+
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
|
362
|
+
carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
|
363
|
+
/* |h4| <= 2^25; from now on fits into int32 unchanged */
|
364
|
+
/* |h8| <= 2^25; from now on fits into int32 unchanged */
|
365
|
+
/* |h5| <= 1.01*2^24 */
|
366
|
+
/* |h9| <= 1.71*2^59 */
|
367
|
+
|
368
|
+
carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
|
369
|
+
/* |h9| <= 2^24; from now on fits into int32 unchanged */
|
370
|
+
/* |h0| <= 1.1*2^39 */
|
371
|
+
|
372
|
+
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
|
373
|
+
/* |h0| <= 2^25; from now on fits into int32 unchanged */
|
374
|
+
/* |h1| <= 1.01*2^24 */
|
375
|
+
|
376
|
+
int[] h = new int[10];
|
377
|
+
h[0] = (int) h0;
|
378
|
+
h[1] = (int) h1;
|
379
|
+
h[2] = (int) h2;
|
380
|
+
h[3] = (int) h3;
|
381
|
+
h[4] = (int) h4;
|
382
|
+
h[5] = (int) h5;
|
383
|
+
h[6] = (int) h6;
|
384
|
+
h[7] = (int) h7;
|
385
|
+
h[8] = (int) h8;
|
386
|
+
h[9] = (int) h9;
|
387
|
+
return new Ed25519FieldElement(f, h);
|
388
|
+
}
|
389
|
+
|
390
|
+
/**
|
391
|
+
* $h = f * f$
|
392
|
+
* <p>
|
393
|
+
* Can overlap $h$ with $f$.
|
394
|
+
* <p>
|
395
|
+
* Preconditions:
|
396
|
+
* </p><ul>
|
397
|
+
* <li>$|f|$ bounded by $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
|
398
|
+
* </ul><p>
|
399
|
+
* Postconditions:
|
400
|
+
* </p><ul>
|
401
|
+
* <li>$|h|$ bounded by $1.01*2^{25},1.01*2^{24},1.01*2^{25},1.01*2^{24},$ etc.
|
402
|
+
* </ul><p>
|
403
|
+
* See {@link #multiply(FieldElement)} for discussion
|
404
|
+
* of implementation strategy.
|
405
|
+
*
|
406
|
+
* @return The (reasonably reduced) square of this field element.
|
407
|
+
*/
|
408
|
+
public FieldElement square() {
|
409
|
+
int f0 = t[0];
|
410
|
+
int f1 = t[1];
|
411
|
+
int f2 = t[2];
|
412
|
+
int f3 = t[3];
|
413
|
+
int f4 = t[4];
|
414
|
+
int f5 = t[5];
|
415
|
+
int f6 = t[6];
|
416
|
+
int f7 = t[7];
|
417
|
+
int f8 = t[8];
|
418
|
+
int f9 = t[9];
|
419
|
+
int f0_2 = 2 * f0;
|
420
|
+
int f1_2 = 2 * f1;
|
421
|
+
int f2_2 = 2 * f2;
|
422
|
+
int f3_2 = 2 * f3;
|
423
|
+
int f4_2 = 2 * f4;
|
424
|
+
int f5_2 = 2 * f5;
|
425
|
+
int f6_2 = 2 * f6;
|
426
|
+
int f7_2 = 2 * f7;
|
427
|
+
int f5_38 = 38 * f5; /* 1.959375*2^30 */
|
428
|
+
int f6_19 = 19 * f6; /* 1.959375*2^30 */
|
429
|
+
int f7_38 = 38 * f7; /* 1.959375*2^30 */
|
430
|
+
int f8_19 = 19 * f8; /* 1.959375*2^30 */
|
431
|
+
int f9_38 = 38 * f9; /* 1.959375*2^30 */
|
432
|
+
long f0f0 = f0 * (long) f0;
|
433
|
+
long f0f1_2 = f0_2 * (long) f1;
|
434
|
+
long f0f2_2 = f0_2 * (long) f2;
|
435
|
+
long f0f3_2 = f0_2 * (long) f3;
|
436
|
+
long f0f4_2 = f0_2 * (long) f4;
|
437
|
+
long f0f5_2 = f0_2 * (long) f5;
|
438
|
+
long f0f6_2 = f0_2 * (long) f6;
|
439
|
+
long f0f7_2 = f0_2 * (long) f7;
|
440
|
+
long f0f8_2 = f0_2 * (long) f8;
|
441
|
+
long f0f9_2 = f0_2 * (long) f9;
|
442
|
+
long f1f1_2 = f1_2 * (long) f1;
|
443
|
+
long f1f2_2 = f1_2 * (long) f2;
|
444
|
+
long f1f3_4 = f1_2 * (long) f3_2;
|
445
|
+
long f1f4_2 = f1_2 * (long) f4;
|
446
|
+
long f1f5_4 = f1_2 * (long) f5_2;
|
447
|
+
long f1f6_2 = f1_2 * (long) f6;
|
448
|
+
long f1f7_4 = f1_2 * (long) f7_2;
|
449
|
+
long f1f8_2 = f1_2 * (long) f8;
|
450
|
+
long f1f9_76 = f1_2 * (long) f9_38;
|
451
|
+
long f2f2 = f2 * (long) f2;
|
452
|
+
long f2f3_2 = f2_2 * (long) f3;
|
453
|
+
long f2f4_2 = f2_2 * (long) f4;
|
454
|
+
long f2f5_2 = f2_2 * (long) f5;
|
455
|
+
long f2f6_2 = f2_2 * (long) f6;
|
456
|
+
long f2f7_2 = f2_2 * (long) f7;
|
457
|
+
long f2f8_38 = f2_2 * (long) f8_19;
|
458
|
+
long f2f9_38 = f2 * (long) f9_38;
|
459
|
+
long f3f3_2 = f3_2 * (long) f3;
|
460
|
+
long f3f4_2 = f3_2 * (long) f4;
|
461
|
+
long f3f5_4 = f3_2 * (long) f5_2;
|
462
|
+
long f3f6_2 = f3_2 * (long) f6;
|
463
|
+
long f3f7_76 = f3_2 * (long) f7_38;
|
464
|
+
long f3f8_38 = f3_2 * (long) f8_19;
|
465
|
+
long f3f9_76 = f3_2 * (long) f9_38;
|
466
|
+
long f4f4 = f4 * (long) f4;
|
467
|
+
long f4f5_2 = f4_2 * (long) f5;
|
468
|
+
long f4f6_38 = f4_2 * (long) f6_19;
|
469
|
+
long f4f7_38 = f4 * (long) f7_38;
|
470
|
+
long f4f8_38 = f4_2 * (long) f8_19;
|
471
|
+
long f4f9_38 = f4 * (long) f9_38;
|
472
|
+
long f5f5_38 = f5 * (long) f5_38;
|
473
|
+
long f5f6_38 = f5_2 * (long) f6_19;
|
474
|
+
long f5f7_76 = f5_2 * (long) f7_38;
|
475
|
+
long f5f8_38 = f5_2 * (long) f8_19;
|
476
|
+
long f5f9_76 = f5_2 * (long) f9_38;
|
477
|
+
long f6f6_19 = f6 * (long) f6_19;
|
478
|
+
long f6f7_38 = f6 * (long) f7_38;
|
479
|
+
long f6f8_38 = f6_2 * (long) f8_19;
|
480
|
+
long f6f9_38 = f6 * (long) f9_38;
|
481
|
+
long f7f7_38 = f7 * (long) f7_38;
|
482
|
+
long f7f8_38 = f7_2 * (long) f8_19;
|
483
|
+
long f7f9_76 = f7_2 * (long) f9_38;
|
484
|
+
long f8f8_19 = f8 * (long) f8_19;
|
485
|
+
long f8f9_38 = f8 * (long) f9_38;
|
486
|
+
long f9f9_38 = f9 * (long) f9_38;
|
487
|
+
|
488
|
+
/**
|
489
|
+
* Same procedure as in multiply, but this time we have a higher symmetry leading to less summands.
|
490
|
+
* e.g. f1f9_76 really stands for f1 * 2^26 * f9 * 2^230 + f9 * 2^230 + f1 * 2^26 congruent 2 * 2 * 19 * f1 * f9 2^0 modulo p.
|
491
|
+
*/
|
492
|
+
long h0 = f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38;
|
493
|
+
long h1 = f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38;
|
494
|
+
long h2 = f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19;
|
495
|
+
long h3 = f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38;
|
496
|
+
long h4 = f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38;
|
497
|
+
long h5 = f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38;
|
498
|
+
long h6 = f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19;
|
499
|
+
long h7 = f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38;
|
500
|
+
long h8 = f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38;
|
501
|
+
long h9 = f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2;
|
502
|
+
long carry0;
|
503
|
+
long carry1;
|
504
|
+
long carry2;
|
505
|
+
long carry3;
|
506
|
+
long carry4;
|
507
|
+
long carry5;
|
508
|
+
long carry6;
|
509
|
+
long carry7;
|
510
|
+
long carry8;
|
511
|
+
long carry9;
|
512
|
+
|
513
|
+
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
|
514
|
+
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
|
515
|
+
|
516
|
+
carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
|
517
|
+
carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
|
518
|
+
|
519
|
+
carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
|
520
|
+
carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
|
521
|
+
|
522
|
+
carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
|
523
|
+
carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
|
524
|
+
|
525
|
+
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
|
526
|
+
carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
|
527
|
+
|
528
|
+
carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
|
529
|
+
|
530
|
+
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
|
531
|
+
|
532
|
+
int[] h = new int[10];
|
533
|
+
h[0] = (int) h0;
|
534
|
+
h[1] = (int) h1;
|
535
|
+
h[2] = (int) h2;
|
536
|
+
h[3] = (int) h3;
|
537
|
+
h[4] = (int) h4;
|
538
|
+
h[5] = (int) h5;
|
539
|
+
h[6] = (int) h6;
|
540
|
+
h[7] = (int) h7;
|
541
|
+
h[8] = (int) h8;
|
542
|
+
h[9] = (int) h9;
|
543
|
+
return new Ed25519FieldElement(f, h);
|
544
|
+
}
|
545
|
+
|
546
|
+
/**
|
547
|
+
* $h = 2 * f * f$
|
548
|
+
* <p>
|
549
|
+
* Can overlap $h$ with $f$.
|
550
|
+
* <p>
|
551
|
+
* Preconditions:
|
552
|
+
* </p><ul>
|
553
|
+
* <li>$|f|$ bounded by $1.65*2^{26},1.65*2^{25},1.65*2^{26},1.65*2^{25},$ etc.
|
554
|
+
* </ul><p>
|
555
|
+
* Postconditions:
|
556
|
+
* </p><ul>
|
557
|
+
* <li>$|h|$ bounded by $1.01*2^{25},1.01*2^{24},1.01*2^{25},1.01*2^{24},$ etc.
|
558
|
+
* </ul><p>
|
559
|
+
* See {@link #multiply(FieldElement)} for discussion
|
560
|
+
* of implementation strategy.
|
561
|
+
*
|
562
|
+
* @return The (reasonably reduced) square of this field element times 2.
|
563
|
+
*/
|
564
|
+
public FieldElement squareAndDouble() {
|
565
|
+
int f0 = t[0];
|
566
|
+
int f1 = t[1];
|
567
|
+
int f2 = t[2];
|
568
|
+
int f3 = t[3];
|
569
|
+
int f4 = t[4];
|
570
|
+
int f5 = t[5];
|
571
|
+
int f6 = t[6];
|
572
|
+
int f7 = t[7];
|
573
|
+
int f8 = t[8];
|
574
|
+
int f9 = t[9];
|
575
|
+
int f0_2 = 2 * f0;
|
576
|
+
int f1_2 = 2 * f1;
|
577
|
+
int f2_2 = 2 * f2;
|
578
|
+
int f3_2 = 2 * f3;
|
579
|
+
int f4_2 = 2 * f4;
|
580
|
+
int f5_2 = 2 * f5;
|
581
|
+
int f6_2 = 2 * f6;
|
582
|
+
int f7_2 = 2 * f7;
|
583
|
+
int f5_38 = 38 * f5; /* 1.959375*2^30 */
|
584
|
+
int f6_19 = 19 * f6; /* 1.959375*2^30 */
|
585
|
+
int f7_38 = 38 * f7; /* 1.959375*2^30 */
|
586
|
+
int f8_19 = 19 * f8; /* 1.959375*2^30 */
|
587
|
+
int f9_38 = 38 * f9; /* 1.959375*2^30 */
|
588
|
+
long f0f0 = f0 * (long) f0;
|
589
|
+
long f0f1_2 = f0_2 * (long) f1;
|
590
|
+
long f0f2_2 = f0_2 * (long) f2;
|
591
|
+
long f0f3_2 = f0_2 * (long) f3;
|
592
|
+
long f0f4_2 = f0_2 * (long) f4;
|
593
|
+
long f0f5_2 = f0_2 * (long) f5;
|
594
|
+
long f0f6_2 = f0_2 * (long) f6;
|
595
|
+
long f0f7_2 = f0_2 * (long) f7;
|
596
|
+
long f0f8_2 = f0_2 * (long) f8;
|
597
|
+
long f0f9_2 = f0_2 * (long) f9;
|
598
|
+
long f1f1_2 = f1_2 * (long) f1;
|
599
|
+
long f1f2_2 = f1_2 * (long) f2;
|
600
|
+
long f1f3_4 = f1_2 * (long) f3_2;
|
601
|
+
long f1f4_2 = f1_2 * (long) f4;
|
602
|
+
long f1f5_4 = f1_2 * (long) f5_2;
|
603
|
+
long f1f6_2 = f1_2 * (long) f6;
|
604
|
+
long f1f7_4 = f1_2 * (long) f7_2;
|
605
|
+
long f1f8_2 = f1_2 * (long) f8;
|
606
|
+
long f1f9_76 = f1_2 * (long) f9_38;
|
607
|
+
long f2f2 = f2 * (long) f2;
|
608
|
+
long f2f3_2 = f2_2 * (long) f3;
|
609
|
+
long f2f4_2 = f2_2 * (long) f4;
|
610
|
+
long f2f5_2 = f2_2 * (long) f5;
|
611
|
+
long f2f6_2 = f2_2 * (long) f6;
|
612
|
+
long f2f7_2 = f2_2 * (long) f7;
|
613
|
+
long f2f8_38 = f2_2 * (long) f8_19;
|
614
|
+
long f2f9_38 = f2 * (long) f9_38;
|
615
|
+
long f3f3_2 = f3_2 * (long) f3;
|
616
|
+
long f3f4_2 = f3_2 * (long) f4;
|
617
|
+
long f3f5_4 = f3_2 * (long) f5_2;
|
618
|
+
long f3f6_2 = f3_2 * (long) f6;
|
619
|
+
long f3f7_76 = f3_2 * (long) f7_38;
|
620
|
+
long f3f8_38 = f3_2 * (long) f8_19;
|
621
|
+
long f3f9_76 = f3_2 * (long) f9_38;
|
622
|
+
long f4f4 = f4 * (long) f4;
|
623
|
+
long f4f5_2 = f4_2 * (long) f5;
|
624
|
+
long f4f6_38 = f4_2 * (long) f6_19;
|
625
|
+
long f4f7_38 = f4 * (long) f7_38;
|
626
|
+
long f4f8_38 = f4_2 * (long) f8_19;
|
627
|
+
long f4f9_38 = f4 * (long) f9_38;
|
628
|
+
long f5f5_38 = f5 * (long) f5_38;
|
629
|
+
long f5f6_38 = f5_2 * (long) f6_19;
|
630
|
+
long f5f7_76 = f5_2 * (long) f7_38;
|
631
|
+
long f5f8_38 = f5_2 * (long) f8_19;
|
632
|
+
long f5f9_76 = f5_2 * (long) f9_38;
|
633
|
+
long f6f6_19 = f6 * (long) f6_19;
|
634
|
+
long f6f7_38 = f6 * (long) f7_38;
|
635
|
+
long f6f8_38 = f6_2 * (long) f8_19;
|
636
|
+
long f6f9_38 = f6 * (long) f9_38;
|
637
|
+
long f7f7_38 = f7 * (long) f7_38;
|
638
|
+
long f7f8_38 = f7_2 * (long) f8_19;
|
639
|
+
long f7f9_76 = f7_2 * (long) f9_38;
|
640
|
+
long f8f8_19 = f8 * (long) f8_19;
|
641
|
+
long f8f9_38 = f8 * (long) f9_38;
|
642
|
+
long f9f9_38 = f9 * (long) f9_38;
|
643
|
+
long h0 = f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38;
|
644
|
+
long h1 = f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38;
|
645
|
+
long h2 = f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19;
|
646
|
+
long h3 = f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38;
|
647
|
+
long h4 = f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38;
|
648
|
+
long h5 = f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38;
|
649
|
+
long h6 = f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19;
|
650
|
+
long h7 = f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38;
|
651
|
+
long h8 = f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38;
|
652
|
+
long h9 = f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2;
|
653
|
+
long carry0;
|
654
|
+
long carry1;
|
655
|
+
long carry2;
|
656
|
+
long carry3;
|
657
|
+
long carry4;
|
658
|
+
long carry5;
|
659
|
+
long carry6;
|
660
|
+
long carry7;
|
661
|
+
long carry8;
|
662
|
+
long carry9;
|
663
|
+
|
664
|
+
h0 += h0;
|
665
|
+
h1 += h1;
|
666
|
+
h2 += h2;
|
667
|
+
h3 += h3;
|
668
|
+
h4 += h4;
|
669
|
+
h5 += h5;
|
670
|
+
h6 += h6;
|
671
|
+
h7 += h7;
|
672
|
+
h8 += h8;
|
673
|
+
h9 += h9;
|
674
|
+
|
675
|
+
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
|
676
|
+
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
|
677
|
+
|
678
|
+
carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
|
679
|
+
carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
|
680
|
+
|
681
|
+
carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
|
682
|
+
carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
|
683
|
+
|
684
|
+
carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
|
685
|
+
carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
|
686
|
+
|
687
|
+
carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
|
688
|
+
carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
|
689
|
+
|
690
|
+
carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
|
691
|
+
|
692
|
+
carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
|
693
|
+
|
694
|
+
int[] h = new int[10];
|
695
|
+
h[0] = (int) h0;
|
696
|
+
h[1] = (int) h1;
|
697
|
+
h[2] = (int) h2;
|
698
|
+
h[3] = (int) h3;
|
699
|
+
h[4] = (int) h4;
|
700
|
+
h[5] = (int) h5;
|
701
|
+
h[6] = (int) h6;
|
702
|
+
h[7] = (int) h7;
|
703
|
+
h[8] = (int) h8;
|
704
|
+
h[9] = (int) h9;
|
705
|
+
return new Ed25519FieldElement(f, h);
|
706
|
+
}
|
707
|
+
|
708
|
+
/**
|
709
|
+
* Invert this field element.
|
710
|
+
* <p>
|
711
|
+
* The inverse is found via Fermat's little theorem:<br>
|
712
|
+
* $a^p \cong a \mod p$ and therefore $a^{(p-2)} \cong a^{-1} \mod p$
|
713
|
+
*
|
714
|
+
* @return The inverse of this field element.
|
715
|
+
*/
|
716
|
+
public FieldElement invert() {
|
717
|
+
FieldElement t0, t1, t2, t3;
|
718
|
+
|
719
|
+
// 2 == 2 * 1
|
720
|
+
t0 = square();
|
721
|
+
|
722
|
+
// 4 == 2 * 2
|
723
|
+
t1 = t0.square();
|
724
|
+
|
725
|
+
// 8 == 2 * 4
|
726
|
+
t1 = t1.square();
|
727
|
+
|
728
|
+
// 9 == 8 + 1
|
729
|
+
t1 = multiply(t1);
|
730
|
+
|
731
|
+
// 11 == 9 + 2
|
732
|
+
t0 = t0.multiply(t1);
|
733
|
+
|
734
|
+
// 22 == 2 * 11
|
735
|
+
t2 = t0.square();
|
736
|
+
|
737
|
+
// 31 == 22 + 9
|
738
|
+
t1 = t1.multiply(t2);
|
739
|
+
|
740
|
+
// 2^6 - 2^1
|
741
|
+
t2 = t1.square();
|
742
|
+
|
743
|
+
// 2^10 - 2^5
|
744
|
+
for (int i = 1; i < 5; ++i) {
|
745
|
+
t2 = t2.square();
|
746
|
+
}
|
747
|
+
|
748
|
+
// 2^10 - 2^0
|
749
|
+
t1 = t2.multiply(t1);
|
750
|
+
|
751
|
+
// 2^11 - 2^1
|
752
|
+
t2 = t1.square();
|
753
|
+
|
754
|
+
// 2^20 - 2^10
|
755
|
+
for (int i = 1; i < 10; ++i) {
|
756
|
+
t2 = t2.square();
|
757
|
+
}
|
758
|
+
|
759
|
+
// 2^20 - 2^0
|
760
|
+
t2 = t2.multiply(t1);
|
761
|
+
|
762
|
+
// 2^21 - 2^1
|
763
|
+
t3 = t2.square();
|
764
|
+
|
765
|
+
// 2^40 - 2^20
|
766
|
+
for (int i = 1; i < 20; ++i) {
|
767
|
+
t3 = t3.square();
|
768
|
+
}
|
769
|
+
|
770
|
+
// 2^40 - 2^0
|
771
|
+
t2 = t3.multiply(t2);
|
772
|
+
|
773
|
+
// 2^41 - 2^1
|
774
|
+
t2 = t2.square();
|
775
|
+
|
776
|
+
// 2^50 - 2^10
|
777
|
+
for (int i = 1; i < 10; ++i) {
|
778
|
+
t2 = t2.square();
|
779
|
+
}
|
780
|
+
|
781
|
+
// 2^50 - 2^0
|
782
|
+
t1 = t2.multiply(t1);
|
783
|
+
|
784
|
+
// 2^51 - 2^1
|
785
|
+
t2 = t1.square();
|
786
|
+
|
787
|
+
// 2^100 - 2^50
|
788
|
+
for (int i = 1; i < 50; ++i) {
|
789
|
+
t2 = t2.square();
|
790
|
+
}
|
791
|
+
|
792
|
+
// 2^100 - 2^0
|
793
|
+
t2 = t2.multiply(t1);
|
794
|
+
|
795
|
+
// 2^101 - 2^1
|
796
|
+
t3 = t2.square();
|
797
|
+
|
798
|
+
// 2^200 - 2^100
|
799
|
+
for (int i = 1; i < 100; ++i) {
|
800
|
+
t3 = t3.square();
|
801
|
+
}
|
802
|
+
|
803
|
+
// 2^200 - 2^0
|
804
|
+
t2 = t3.multiply(t2);
|
805
|
+
|
806
|
+
// 2^201 - 2^1
|
807
|
+
t2 = t2.square();
|
808
|
+
|
809
|
+
// 2^250 - 2^50
|
810
|
+
for (int i = 1; i < 50; ++i) {
|
811
|
+
t2 = t2.square();
|
812
|
+
}
|
813
|
+
|
814
|
+
// 2^250 - 2^0
|
815
|
+
t1 = t2.multiply(t1);
|
816
|
+
|
817
|
+
// 2^251 - 2^1
|
818
|
+
t1 = t1.square();
|
819
|
+
|
820
|
+
// 2^255 - 2^5
|
821
|
+
for (int i = 1; i < 5; ++i) {
|
822
|
+
t1 = t1.square();
|
823
|
+
}
|
824
|
+
|
825
|
+
// 2^255 - 21
|
826
|
+
return t1.multiply(t0);
|
827
|
+
}
|
828
|
+
|
829
|
+
/**
|
830
|
+
* Gets this field element to the power of $(2^{252} - 3)$.
|
831
|
+
* This is a helper function for calculating the square root.
|
832
|
+
* <p>
|
833
|
+
* TODO-CR BR: I think it makes sense to have a sqrt function.
|
834
|
+
*
|
835
|
+
* @return This field element to the power of $(2^{252} - 3)$.
|
836
|
+
*/
|
837
|
+
public FieldElement pow22523() {
|
838
|
+
FieldElement t0, t1, t2;
|
839
|
+
|
840
|
+
// 2 == 2 * 1
|
841
|
+
t0 = square();
|
842
|
+
|
843
|
+
// 4 == 2 * 2
|
844
|
+
t1 = t0.square();
|
845
|
+
|
846
|
+
// 8 == 2 * 4
|
847
|
+
t1 = t1.square();
|
848
|
+
|
849
|
+
// z9 = z1*z8
|
850
|
+
t1 = multiply(t1);
|
851
|
+
|
852
|
+
// 11 == 9 + 2
|
853
|
+
t0 = t0.multiply(t1);
|
854
|
+
|
855
|
+
// 22 == 2 * 11
|
856
|
+
t0 = t0.square();
|
857
|
+
|
858
|
+
// 31 == 22 + 9
|
859
|
+
t0 = t1.multiply(t0);
|
860
|
+
|
861
|
+
// 2^6 - 2^1
|
862
|
+
t1 = t0.square();
|
863
|
+
|
864
|
+
// 2^10 - 2^5
|
865
|
+
for (int i = 1; i < 5; ++i) {
|
866
|
+
t1 = t1.square();
|
867
|
+
}
|
868
|
+
|
869
|
+
// 2^10 - 2^0
|
870
|
+
t0 = t1.multiply(t0);
|
871
|
+
|
872
|
+
// 2^11 - 2^1
|
873
|
+
t1 = t0.square();
|
874
|
+
|
875
|
+
// 2^20 - 2^10
|
876
|
+
for (int i = 1; i < 10; ++i) {
|
877
|
+
t1 = t1.square();
|
878
|
+
}
|
879
|
+
|
880
|
+
// 2^20 - 2^0
|
881
|
+
t1 = t1.multiply(t0);
|
882
|
+
|
883
|
+
// 2^21 - 2^1
|
884
|
+
t2 = t1.square();
|
885
|
+
|
886
|
+
// 2^40 - 2^20
|
887
|
+
for (int i = 1; i < 20; ++i) {
|
888
|
+
t2 = t2.square();
|
889
|
+
}
|
890
|
+
|
891
|
+
// 2^40 - 2^0
|
892
|
+
t1 = t2.multiply(t1);
|
893
|
+
|
894
|
+
// 2^41 - 2^1
|
895
|
+
t1 = t1.square();
|
896
|
+
|
897
|
+
// 2^50 - 2^10
|
898
|
+
for (int i = 1; i < 10; ++i) {
|
899
|
+
t1 = t1.square();
|
900
|
+
}
|
901
|
+
|
902
|
+
// 2^50 - 2^0
|
903
|
+
t0 = t1.multiply(t0);
|
904
|
+
|
905
|
+
// 2^51 - 2^1
|
906
|
+
t1 = t0.square();
|
907
|
+
|
908
|
+
// 2^100 - 2^50
|
909
|
+
for (int i = 1; i < 50; ++i) {
|
910
|
+
t1 = t1.square();
|
911
|
+
}
|
912
|
+
|
913
|
+
// 2^100 - 2^0
|
914
|
+
t1 = t1.multiply(t0);
|
915
|
+
|
916
|
+
// 2^101 - 2^1
|
917
|
+
t2 = t1.square();
|
918
|
+
|
919
|
+
// 2^200 - 2^100
|
920
|
+
for (int i = 1; i < 100; ++i) {
|
921
|
+
t2 = t2.square();
|
922
|
+
}
|
923
|
+
|
924
|
+
// 2^200 - 2^0
|
925
|
+
t1 = t2.multiply(t1);
|
926
|
+
|
927
|
+
// 2^201 - 2^1
|
928
|
+
t1 = t1.square();
|
929
|
+
|
930
|
+
// 2^250 - 2^50
|
931
|
+
for (int i = 1; i < 50; ++i) {
|
932
|
+
t1 = t1.square();
|
933
|
+
}
|
934
|
+
|
935
|
+
// 2^250 - 2^0
|
936
|
+
t0 = t1.multiply(t0);
|
937
|
+
|
938
|
+
// 2^251 - 2^1
|
939
|
+
t0 = t0.square();
|
940
|
+
|
941
|
+
// 2^252 - 2^2
|
942
|
+
t0 = t0.square();
|
943
|
+
|
944
|
+
// 2^252 - 3
|
945
|
+
return multiply(t0);
|
946
|
+
}
|
947
|
+
|
948
|
+
/**
|
949
|
+
* Constant-time conditional move. Well, actually it is a conditional copy.
|
950
|
+
* Logic is inspired by the SUPERCOP implementation at:
|
951
|
+
* https://github.com/floodyberry/supercop/blob/master/crypto_sign/ed25519/ref10/fe_cmov.c
|
952
|
+
*
|
953
|
+
* @param val the other field element.
|
954
|
+
* @param b must be 0 or 1, otherwise results are undefined.
|
955
|
+
* @return a copy of this if $b == 0$, or a copy of val if $b == 1$.
|
956
|
+
*/
|
957
|
+
@Override
|
958
|
+
public FieldElement cmov(FieldElement val, int b) {
|
959
|
+
Ed25519FieldElement that = (Ed25519FieldElement) val;
|
960
|
+
b = -b;
|
961
|
+
int[] result = new int[10];
|
962
|
+
for (int i = 0; i < 10; i++) {
|
963
|
+
result[i] = this.t[i];
|
964
|
+
int x = this.t[i] ^ that.t[i];
|
965
|
+
x &= b;
|
966
|
+
result[i] ^= x;
|
967
|
+
}
|
968
|
+
return new Ed25519FieldElement(this.f, result);
|
969
|
+
}
|
970
|
+
|
971
|
+
@Override
|
972
|
+
public int hashCode() {
|
973
|
+
return Arrays.hashCode(t);
|
974
|
+
}
|
975
|
+
|
976
|
+
@Override
|
977
|
+
public boolean equals(Object obj) {
|
978
|
+
if (!(obj instanceof Ed25519FieldElement))
|
979
|
+
return false;
|
980
|
+
Ed25519FieldElement fe = (Ed25519FieldElement) obj;
|
981
|
+
return 1==Utils.equal(toByteArray(), fe.toByteArray());
|
982
|
+
}
|
983
|
+
|
984
|
+
@Override
|
985
|
+
public String toString() {
|
986
|
+
return "[Ed25519FieldElement val="+Utils.bytesToHex(toByteArray())+"]";
|
987
|
+
}
|
988
|
+
}
|