ed25519 1.0.0-jruby → 1.1.0-jruby
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +1 -0
- data/CHANGES.md +13 -0
- data/README.md +9 -9
- data/Rakefile +3 -3
- data/ext/ed25519_jruby/LICENSE.txt +123 -0
- data/ext/ed25519_jruby/README.md +77 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAEngine.java +491 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAKey.java +31 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAPrivateKey.java +338 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAPublicKey.java +275 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSASecurityProvider.java +59 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/KeyFactory.java +75 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/KeyPairGenerator.java +97 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/Utils.java +103 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Constants.java +23 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Curve.java +100 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Encoding.java +54 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Field.java +99 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/FieldElement.java +76 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/GroupElement.java +1034 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ScalarOps.java +34 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerFieldElement.java +131 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerLittleEndianEncoding.java +102 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerScalarOps.java +37 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/package.html +6 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519FieldElement.java +988 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519LittleEndianEncoding.java +256 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519ScalarOps.java +693 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAGenParameterSpec.java +32 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSANamedCurveSpec.java +35 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSANamedCurveTable.java +71 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAParameterSpec.java +97 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAPrivateKeySpec.java +133 -0
- data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAPublicKeySpec.java +61 -0
- data/ext/ed25519_jruby/org/cryptosphere/Ed25519Provider.java +95 -0
- data/lib/ed25519.rb +8 -8
- data/lib/ed25519/signing_key.rb +9 -0
- data/lib/ed25519/version.rb +1 -1
- data/lib/ed25519_java.jar +0 -0
- metadata +32 -3
- data/ext/ed25519_java/org/cryptosphere/ed25519.java +0 -228
- data/lib/ed25519/provider/jruby.rb +0 -39
@@ -0,0 +1,54 @@
|
|
1
|
+
/**
|
2
|
+
* EdDSA-Java by str4d
|
3
|
+
*
|
4
|
+
* To the extent possible under law, the person who associated CC0 with
|
5
|
+
* EdDSA-Java has waived all copyright and related or neighboring rights
|
6
|
+
* to EdDSA-Java.
|
7
|
+
*
|
8
|
+
* You should have received a copy of the CC0 legalcode along with this
|
9
|
+
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
|
10
|
+
*
|
11
|
+
*/
|
12
|
+
package net.i2p.crypto.eddsa.math;
|
13
|
+
|
14
|
+
/**
|
15
|
+
* Common interface for all $(b-1)$-bit encodings of elements
|
16
|
+
* of EdDSA finite fields.
|
17
|
+
* @author str4d
|
18
|
+
*
|
19
|
+
*/
|
20
|
+
public abstract class Encoding {
|
21
|
+
protected Field f;
|
22
|
+
|
23
|
+
public synchronized void setField(Field f) {
|
24
|
+
if (this.f != null)
|
25
|
+
throw new IllegalStateException("already set");
|
26
|
+
this.f = f;
|
27
|
+
}
|
28
|
+
|
29
|
+
/**
|
30
|
+
* Encode a FieldElement in its $(b-1)$-bit encoding.
|
31
|
+
* @param x the FieldElement to encode
|
32
|
+
* @return the $(b-1)$-bit encoding of this FieldElement.
|
33
|
+
*/
|
34
|
+
public abstract byte[] encode(FieldElement x);
|
35
|
+
|
36
|
+
/**
|
37
|
+
* Decode a FieldElement from its $(b-1)$-bit encoding.
|
38
|
+
* The highest bit is masked out.
|
39
|
+
* @param in the $(b-1)$-bit encoding of a FieldElement.
|
40
|
+
* @return the FieldElement represented by 'val'.
|
41
|
+
*/
|
42
|
+
public abstract FieldElement decode(byte[] in);
|
43
|
+
|
44
|
+
/**
|
45
|
+
* From the Ed25519 paper:<br>
|
46
|
+
* $x$ is negative if the $(b-1)$-bit encoding of $x$ is lexicographically larger
|
47
|
+
* than the $(b-1)$-bit encoding of -x. If $q$ is an odd prime and the encoding
|
48
|
+
* is the little-endian representation of $\{0, 1,\dots, q-1\}$ then the negative
|
49
|
+
* elements of $F_q$ are $\{1, 3, 5,\dots, q-2\}$.
|
50
|
+
* @param x the FieldElement to check
|
51
|
+
* @return true if negative
|
52
|
+
*/
|
53
|
+
public abstract boolean isNegative(FieldElement x);
|
54
|
+
}
|
@@ -0,0 +1,99 @@
|
|
1
|
+
/**
|
2
|
+
* EdDSA-Java by str4d
|
3
|
+
*
|
4
|
+
* To the extent possible under law, the person who associated CC0 with
|
5
|
+
* EdDSA-Java has waived all copyright and related or neighboring rights
|
6
|
+
* to EdDSA-Java.
|
7
|
+
*
|
8
|
+
* You should have received a copy of the CC0 legalcode along with this
|
9
|
+
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
|
10
|
+
*
|
11
|
+
*/
|
12
|
+
package net.i2p.crypto.eddsa.math;
|
13
|
+
|
14
|
+
import java.io.Serializable;
|
15
|
+
|
16
|
+
/**
|
17
|
+
* An EdDSA finite field. Includes several pre-computed values.
|
18
|
+
* @author str4d
|
19
|
+
*
|
20
|
+
*/
|
21
|
+
public class Field implements Serializable {
|
22
|
+
private static final long serialVersionUID = 8746587465875676L;
|
23
|
+
|
24
|
+
public final FieldElement ZERO;
|
25
|
+
public final FieldElement ONE;
|
26
|
+
public final FieldElement TWO;
|
27
|
+
public final FieldElement FOUR;
|
28
|
+
public final FieldElement FIVE;
|
29
|
+
public final FieldElement EIGHT;
|
30
|
+
|
31
|
+
private final int b;
|
32
|
+
private final FieldElement q;
|
33
|
+
/**
|
34
|
+
* q-2
|
35
|
+
*/
|
36
|
+
private final FieldElement qm2;
|
37
|
+
/**
|
38
|
+
* (q-5) / 8
|
39
|
+
*/
|
40
|
+
private final FieldElement qm5d8;
|
41
|
+
private final Encoding enc;
|
42
|
+
|
43
|
+
public Field(int b, byte[] q, Encoding enc) {
|
44
|
+
this.b = b;
|
45
|
+
this.enc = enc;
|
46
|
+
this.enc.setField(this);
|
47
|
+
|
48
|
+
this.q = fromByteArray(q);
|
49
|
+
|
50
|
+
// Set up constants
|
51
|
+
ZERO = fromByteArray(Constants.ZERO);
|
52
|
+
ONE = fromByteArray(Constants.ONE);
|
53
|
+
TWO = fromByteArray(Constants.TWO);
|
54
|
+
FOUR = fromByteArray(Constants.FOUR);
|
55
|
+
FIVE = fromByteArray(Constants.FIVE);
|
56
|
+
EIGHT = fromByteArray(Constants.EIGHT);
|
57
|
+
|
58
|
+
// Precompute values
|
59
|
+
qm2 = this.q.subtract(TWO);
|
60
|
+
qm5d8 = this.q.subtract(FIVE).divide(EIGHT);
|
61
|
+
}
|
62
|
+
|
63
|
+
public FieldElement fromByteArray(byte[] x) {
|
64
|
+
return enc.decode(x);
|
65
|
+
}
|
66
|
+
|
67
|
+
public int getb() {
|
68
|
+
return b;
|
69
|
+
}
|
70
|
+
|
71
|
+
public FieldElement getQ() {
|
72
|
+
return q;
|
73
|
+
}
|
74
|
+
|
75
|
+
public FieldElement getQm2() {
|
76
|
+
return qm2;
|
77
|
+
}
|
78
|
+
|
79
|
+
public FieldElement getQm5d8() {
|
80
|
+
return qm5d8;
|
81
|
+
}
|
82
|
+
|
83
|
+
public Encoding getEncoding(){
|
84
|
+
return enc;
|
85
|
+
}
|
86
|
+
|
87
|
+
@Override
|
88
|
+
public int hashCode() {
|
89
|
+
return q.hashCode();
|
90
|
+
}
|
91
|
+
|
92
|
+
@Override
|
93
|
+
public boolean equals(Object obj) {
|
94
|
+
if (!(obj instanceof Field))
|
95
|
+
return false;
|
96
|
+
Field f = (Field) obj;
|
97
|
+
return b == f.b && q.equals(f.q);
|
98
|
+
}
|
99
|
+
}
|
@@ -0,0 +1,76 @@
|
|
1
|
+
/**
|
2
|
+
* EdDSA-Java by str4d
|
3
|
+
*
|
4
|
+
* To the extent possible under law, the person who associated CC0 with
|
5
|
+
* EdDSA-Java has waived all copyright and related or neighboring rights
|
6
|
+
* to EdDSA-Java.
|
7
|
+
*
|
8
|
+
* You should have received a copy of the CC0 legalcode along with this
|
9
|
+
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
|
10
|
+
*
|
11
|
+
*/
|
12
|
+
package net.i2p.crypto.eddsa.math;
|
13
|
+
|
14
|
+
import java.io.Serializable;
|
15
|
+
|
16
|
+
/**
|
17
|
+
* Note: concrete subclasses must implement hashCode() and equals()
|
18
|
+
*/
|
19
|
+
public abstract class FieldElement implements Serializable {
|
20
|
+
private static final long serialVersionUID = 1239527465875676L;
|
21
|
+
|
22
|
+
protected final Field f;
|
23
|
+
|
24
|
+
public FieldElement(Field f) {
|
25
|
+
if (null == f) {
|
26
|
+
throw new IllegalArgumentException("field cannot be null");
|
27
|
+
}
|
28
|
+
this.f = f;
|
29
|
+
}
|
30
|
+
|
31
|
+
/**
|
32
|
+
* Encode a FieldElement in its $(b-1)$-bit encoding.
|
33
|
+
* @return the $(b-1)$-bit encoding of this FieldElement.
|
34
|
+
*/
|
35
|
+
public byte[] toByteArray() {
|
36
|
+
return f.getEncoding().encode(this);
|
37
|
+
}
|
38
|
+
|
39
|
+
public abstract boolean isNonZero();
|
40
|
+
|
41
|
+
public boolean isNegative() {
|
42
|
+
return f.getEncoding().isNegative(this);
|
43
|
+
}
|
44
|
+
|
45
|
+
public abstract FieldElement add(FieldElement val);
|
46
|
+
|
47
|
+
public FieldElement addOne() {
|
48
|
+
return add(f.ONE);
|
49
|
+
}
|
50
|
+
|
51
|
+
public abstract FieldElement subtract(FieldElement val);
|
52
|
+
|
53
|
+
public FieldElement subtractOne() {
|
54
|
+
return subtract(f.ONE);
|
55
|
+
}
|
56
|
+
|
57
|
+
public abstract FieldElement negate();
|
58
|
+
|
59
|
+
public FieldElement divide(FieldElement val) {
|
60
|
+
return multiply(val.invert());
|
61
|
+
}
|
62
|
+
|
63
|
+
public abstract FieldElement multiply(FieldElement val);
|
64
|
+
|
65
|
+
public abstract FieldElement square();
|
66
|
+
|
67
|
+
public abstract FieldElement squareAndDouble();
|
68
|
+
|
69
|
+
public abstract FieldElement invert();
|
70
|
+
|
71
|
+
public abstract FieldElement pow22523();
|
72
|
+
|
73
|
+
public abstract FieldElement cmov(FieldElement val, final int b);
|
74
|
+
|
75
|
+
// Note: concrete subclasses must implement hashCode() and equals()
|
76
|
+
}
|
@@ -0,0 +1,1034 @@
|
|
1
|
+
/**
|
2
|
+
* EdDSA-Java by str4d
|
3
|
+
*
|
4
|
+
* To the extent possible under law, the person who associated CC0 with
|
5
|
+
* EdDSA-Java has waived all copyright and related or neighboring rights
|
6
|
+
* to EdDSA-Java.
|
7
|
+
*
|
8
|
+
* You should have received a copy of the CC0 legalcode along with this
|
9
|
+
* work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
|
10
|
+
*
|
11
|
+
*/
|
12
|
+
package net.i2p.crypto.eddsa.math;
|
13
|
+
|
14
|
+
import net.i2p.crypto.eddsa.Utils;
|
15
|
+
|
16
|
+
import java.io.Serializable;
|
17
|
+
import java.util.Arrays;
|
18
|
+
|
19
|
+
/**
|
20
|
+
* A point $(x,y)$ on an EdDSA curve.
|
21
|
+
* <p>
|
22
|
+
* Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
|
23
|
+
* <p>
|
24
|
+
* Literature:<br>
|
25
|
+
* [1] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe and Bo-Yin Yang : High-speed high-security signatures<br>
|
26
|
+
* [2] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson: Twisted Edwards Curves Revisited<br>
|
27
|
+
* [3] Daniel J. Bernsteina, Tanja Lange: A complete set of addition laws for incomplete Edwards curves<br>
|
28
|
+
* [4] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange and Christiane Peters: Twisted Edwards Curves<br>
|
29
|
+
* [5] Christiane Pascale Peters: Curves, Codes, and Cryptography (PhD thesis)<br>
|
30
|
+
* [6] Daniel J. Bernstein, Peter Birkner, Tanja Lange and Christiane Peters: Optimizing double-base elliptic-curve single-scalar multiplication<br>
|
31
|
+
*
|
32
|
+
* @author str4d
|
33
|
+
*/
|
34
|
+
public class GroupElement implements Serializable {
|
35
|
+
private static final long serialVersionUID = 2395879087349587L;
|
36
|
+
|
37
|
+
/**
|
38
|
+
* Available representations for a group element.
|
39
|
+
* <ul>
|
40
|
+
* <li>P2: Projective representation $(X:Y:Z)$ satisfying $x=X/Z, y=Y/Z$.
|
41
|
+
* <li>P3: Extended projective representation $(X:Y:Z:T)$ satisfying $x=X/Z, y=Y/Z, XY=ZT$.
|
42
|
+
* <li>P1P1: Completed representation $((X:Z), (Y:T))$ satisfying $x=X/Z, y=Y/T$.
|
43
|
+
* <li>PRECOMP: Precomputed representation $(y+x, y-x, 2dxy)$.
|
44
|
+
* <li>CACHED: Cached representation $(Y+X, Y-X, Z, 2dT)$
|
45
|
+
* </ul>
|
46
|
+
*/
|
47
|
+
public enum Representation {
|
48
|
+
/** Projective ($P^2$): $(X:Y:Z)$ satisfying $x=X/Z, y=Y/Z$ */
|
49
|
+
P2,
|
50
|
+
/** Extended ($P^3$): $(X:Y:Z:T)$ satisfying $x=X/Z, y=Y/Z, XY=ZT$ */
|
51
|
+
P3,
|
52
|
+
/** Completed ($P \times P$): $((X:Z),(Y:T))$ satisfying $x=X/Z, y=Y/T$ */
|
53
|
+
P1P1,
|
54
|
+
/** Precomputed (Duif): $(y+x,y-x,2dxy)$ */
|
55
|
+
PRECOMP,
|
56
|
+
/** Cached: $(Y+X,Y-X,Z,2dT)$ */
|
57
|
+
CACHED
|
58
|
+
}
|
59
|
+
|
60
|
+
/**
|
61
|
+
* Creates a new group element in P2 representation.
|
62
|
+
*
|
63
|
+
* @param curve The curve.
|
64
|
+
* @param X The $X$ coordinate.
|
65
|
+
* @param Y The $Y$ coordinate.
|
66
|
+
* @param Z The $Z$ coordinate.
|
67
|
+
* @return The group element in P2 representation.
|
68
|
+
*/
|
69
|
+
public static GroupElement p2(
|
70
|
+
final Curve curve,
|
71
|
+
final FieldElement X,
|
72
|
+
final FieldElement Y,
|
73
|
+
final FieldElement Z) {
|
74
|
+
return new GroupElement(curve, Representation.P2, X, Y, Z, null);
|
75
|
+
}
|
76
|
+
|
77
|
+
/**
|
78
|
+
* Creates a new group element in P3 representation.
|
79
|
+
*
|
80
|
+
* @param curve The curve.
|
81
|
+
* @param X The $X$ coordinate.
|
82
|
+
* @param Y The $Y$ coordinate.
|
83
|
+
* @param Z The $Z$ coordinate.
|
84
|
+
* @param T The $T$ coordinate.
|
85
|
+
* @return The group element in P3 representation.
|
86
|
+
*/
|
87
|
+
public static GroupElement p3(
|
88
|
+
final Curve curve,
|
89
|
+
final FieldElement X,
|
90
|
+
final FieldElement Y,
|
91
|
+
final FieldElement Z,
|
92
|
+
final FieldElement T) {
|
93
|
+
return new GroupElement(curve, Representation.P3, X, Y, Z, T);
|
94
|
+
}
|
95
|
+
|
96
|
+
/**
|
97
|
+
* Creates a new group element in P1P1 representation.
|
98
|
+
*
|
99
|
+
* @param curve The curve.
|
100
|
+
* @param X The $X$ coordinate.
|
101
|
+
* @param Y The $Y$ coordinate.
|
102
|
+
* @param Z The $Z$ coordinate.
|
103
|
+
* @param T The $T$ coordinate.
|
104
|
+
* @return The group element in P1P1 representation.
|
105
|
+
*/
|
106
|
+
public static GroupElement p1p1(
|
107
|
+
final Curve curve,
|
108
|
+
final FieldElement X,
|
109
|
+
final FieldElement Y,
|
110
|
+
final FieldElement Z,
|
111
|
+
final FieldElement T) {
|
112
|
+
return new GroupElement(curve, Representation.P1P1, X, Y, Z, T);
|
113
|
+
}
|
114
|
+
|
115
|
+
/**
|
116
|
+
* Creates a new group element in PRECOMP representation.
|
117
|
+
*
|
118
|
+
* @param curve The curve.
|
119
|
+
* @param ypx The $y + x$ value.
|
120
|
+
* @param ymx The $y - x$ value.
|
121
|
+
* @param xy2d The $2 * d * x * y$ value.
|
122
|
+
* @return The group element in PRECOMP representation.
|
123
|
+
*/
|
124
|
+
public static GroupElement precomp(
|
125
|
+
final Curve curve,
|
126
|
+
final FieldElement ypx,
|
127
|
+
final FieldElement ymx,
|
128
|
+
final FieldElement xy2d) {
|
129
|
+
return new GroupElement(curve, Representation.PRECOMP, ypx, ymx, xy2d, null);
|
130
|
+
}
|
131
|
+
|
132
|
+
/**
|
133
|
+
* Creates a new group element in CACHED representation.
|
134
|
+
*
|
135
|
+
* @param curve The curve.
|
136
|
+
* @param YpX The $Y + X$ value.
|
137
|
+
* @param YmX The $Y - X$ value.
|
138
|
+
* @param Z The $Z$ coordinate.
|
139
|
+
* @param T2d The $2 * d * T$ value.
|
140
|
+
* @return The group element in CACHED representation.
|
141
|
+
*/
|
142
|
+
public static GroupElement cached(
|
143
|
+
final Curve curve,
|
144
|
+
final FieldElement YpX,
|
145
|
+
final FieldElement YmX,
|
146
|
+
final FieldElement Z,
|
147
|
+
final FieldElement T2d) {
|
148
|
+
return new GroupElement(curve, Representation.CACHED, YpX, YmX, Z, T2d);
|
149
|
+
}
|
150
|
+
|
151
|
+
/**
|
152
|
+
* Variable is package private only so that tests run.
|
153
|
+
*/
|
154
|
+
final Curve curve;
|
155
|
+
|
156
|
+
/**
|
157
|
+
* Variable is package private only so that tests run.
|
158
|
+
*/
|
159
|
+
final Representation repr;
|
160
|
+
|
161
|
+
/**
|
162
|
+
* Variable is package private only so that tests run.
|
163
|
+
*/
|
164
|
+
final FieldElement X;
|
165
|
+
|
166
|
+
/**
|
167
|
+
* Variable is package private only so that tests run.
|
168
|
+
*/
|
169
|
+
final FieldElement Y;
|
170
|
+
|
171
|
+
/**
|
172
|
+
* Variable is package private only so that tests run.
|
173
|
+
*/
|
174
|
+
final FieldElement Z;
|
175
|
+
|
176
|
+
/**
|
177
|
+
* Variable is package private only so that tests run.
|
178
|
+
*/
|
179
|
+
final FieldElement T;
|
180
|
+
|
181
|
+
/**
|
182
|
+
* Precomputed table for {@link #scalarMultiply(byte[])},
|
183
|
+
* filled if necessary.
|
184
|
+
* <p>
|
185
|
+
* Variable is package private only so that tests run.
|
186
|
+
*/
|
187
|
+
GroupElement[][] precmp;
|
188
|
+
|
189
|
+
/**
|
190
|
+
* Precomputed table for {@link #doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])},
|
191
|
+
* filled if necessary.
|
192
|
+
* <p>
|
193
|
+
* Variable is package private only so that tests run.
|
194
|
+
*/
|
195
|
+
GroupElement[] dblPrecmp;
|
196
|
+
|
197
|
+
/**
|
198
|
+
* Creates a group element for a curve.
|
199
|
+
*
|
200
|
+
* @param curve The curve.
|
201
|
+
* @param repr The representation used to represent the group element.
|
202
|
+
* @param X The $X$ coordinate.
|
203
|
+
* @param Y The $Y$ coordinate.
|
204
|
+
* @param Z The $Z$ coordinate.
|
205
|
+
* @param T The $T$ coordinate.
|
206
|
+
*/
|
207
|
+
public GroupElement(
|
208
|
+
final Curve curve,
|
209
|
+
final Representation repr,
|
210
|
+
final FieldElement X,
|
211
|
+
final FieldElement Y,
|
212
|
+
final FieldElement Z,
|
213
|
+
final FieldElement T) {
|
214
|
+
this.curve = curve;
|
215
|
+
this.repr = repr;
|
216
|
+
this.X = X;
|
217
|
+
this.Y = Y;
|
218
|
+
this.Z = Z;
|
219
|
+
this.T = T;
|
220
|
+
}
|
221
|
+
|
222
|
+
/**
|
223
|
+
* Creates a group element for a curve from a given encoded point.
|
224
|
+
* <p>
|
225
|
+
* A point $(x,y)$ is encoded by storing $y$ in bit 0 to bit 254 and the sign of $x$ in bit 255.
|
226
|
+
* $x$ is recovered in the following way:
|
227
|
+
* </p><ul>
|
228
|
+
* <li>$x = sign(x) * \sqrt{(y^2 - 1) / (d * y^2 + 1)} = sign(x) * \sqrt{u / v}$ with $u = y^2 - 1$ and $v = d * y^2 + 1$.
|
229
|
+
* <li>Setting $β = (u * v^3) * (u * v^7)^{((q - 5) / 8)}$ one has $β^2 = \pm(u / v)$.
|
230
|
+
* <li>If $v * β = -u$ multiply $β$ with $i=\sqrt{-1}$.
|
231
|
+
* <li>Set $x := β$.
|
232
|
+
* <li>If $sign(x) \ne$ bit 255 of $s$ then negate $x$.
|
233
|
+
* </ul>
|
234
|
+
*
|
235
|
+
* @param curve The curve.
|
236
|
+
* @param s The encoded point.
|
237
|
+
*/
|
238
|
+
public GroupElement(final Curve curve, final byte[] s) {
|
239
|
+
FieldElement x, y, yy, u, v, v3, vxx, check;
|
240
|
+
y = curve.getField().fromByteArray(s);
|
241
|
+
yy = y.square();
|
242
|
+
|
243
|
+
// u = y^2-1
|
244
|
+
u = yy.subtractOne();
|
245
|
+
|
246
|
+
// v = dy^2+1
|
247
|
+
v = yy.multiply(curve.getD()).addOne();
|
248
|
+
|
249
|
+
// v3 = v^3
|
250
|
+
v3 = v.square().multiply(v);
|
251
|
+
|
252
|
+
// x = (v3^2)vu, aka x = uv^7
|
253
|
+
x = v3.square().multiply(v).multiply(u);
|
254
|
+
|
255
|
+
// x = (uv^7)^((q-5)/8)
|
256
|
+
x = x.pow22523();
|
257
|
+
|
258
|
+
// x = uv^3(uv^7)^((q-5)/8)
|
259
|
+
x = v3.multiply(u).multiply(x);
|
260
|
+
|
261
|
+
vxx = x.square().multiply(v);
|
262
|
+
check = vxx.subtract(u); // vx^2-u
|
263
|
+
if (check.isNonZero()) {
|
264
|
+
check = vxx.add(u); // vx^2+u
|
265
|
+
|
266
|
+
if (check.isNonZero())
|
267
|
+
throw new IllegalArgumentException("not a valid GroupElement");
|
268
|
+
x = x.multiply(curve.getI());
|
269
|
+
}
|
270
|
+
|
271
|
+
if ((x.isNegative() ? 1 : 0) != Utils.bit(s, curve.getField().getb()-1)) {
|
272
|
+
x = x.negate();
|
273
|
+
}
|
274
|
+
|
275
|
+
this.curve = curve;
|
276
|
+
this.repr = Representation.P3;
|
277
|
+
this.X = x;
|
278
|
+
this.Y = y;
|
279
|
+
this.Z = curve.getField().ONE;
|
280
|
+
this.T = this.X.multiply(this.Y);
|
281
|
+
}
|
282
|
+
|
283
|
+
/**
|
284
|
+
* Gets the curve of the group element.
|
285
|
+
*
|
286
|
+
* @return The curve.
|
287
|
+
*/
|
288
|
+
public Curve getCurve() {
|
289
|
+
return this.curve;
|
290
|
+
}
|
291
|
+
|
292
|
+
/**
|
293
|
+
* Gets the representation of the group element.
|
294
|
+
*
|
295
|
+
* @return The representation.
|
296
|
+
*/
|
297
|
+
public Representation getRepresentation() {
|
298
|
+
return this.repr;
|
299
|
+
}
|
300
|
+
|
301
|
+
/**
|
302
|
+
* Gets the $X$ value of the group element.
|
303
|
+
* This is for most representation the projective $X$ coordinate.
|
304
|
+
*
|
305
|
+
* @return The $X$ value.
|
306
|
+
*/
|
307
|
+
public FieldElement getX() {
|
308
|
+
return this.X;
|
309
|
+
}
|
310
|
+
|
311
|
+
/**
|
312
|
+
* Gets the $Y$ value of the group element.
|
313
|
+
* This is for most representation the projective $Y$ coordinate.
|
314
|
+
*
|
315
|
+
* @return The $Y$ value.
|
316
|
+
*/
|
317
|
+
public FieldElement getY() {
|
318
|
+
return this.Y;
|
319
|
+
}
|
320
|
+
|
321
|
+
/**
|
322
|
+
* Gets the $Z$ value of the group element.
|
323
|
+
* This is for most representation the projective $Z$ coordinate.
|
324
|
+
*
|
325
|
+
* @return The $Z$ value.
|
326
|
+
*/
|
327
|
+
public FieldElement getZ() {
|
328
|
+
return this.Z;
|
329
|
+
}
|
330
|
+
|
331
|
+
/**
|
332
|
+
* Gets the $T$ value of the group element.
|
333
|
+
* This is for most representation the projective $T$ coordinate.
|
334
|
+
*
|
335
|
+
* @return The $T$ value.
|
336
|
+
*/
|
337
|
+
public FieldElement getT() {
|
338
|
+
return this.T;
|
339
|
+
}
|
340
|
+
|
341
|
+
/**
|
342
|
+
* Converts the group element to an encoded point on the curve.
|
343
|
+
*
|
344
|
+
* @return The encoded point as byte array.
|
345
|
+
*/
|
346
|
+
public byte[] toByteArray() {
|
347
|
+
switch (this.repr) {
|
348
|
+
case P2:
|
349
|
+
case P3:
|
350
|
+
FieldElement recip = Z.invert();
|
351
|
+
FieldElement x = X.multiply(recip);
|
352
|
+
FieldElement y = Y.multiply(recip);
|
353
|
+
byte[] s = y.toByteArray();
|
354
|
+
s[s.length-1] |= (x.isNegative() ? (byte) 0x80 : 0);
|
355
|
+
return s;
|
356
|
+
default:
|
357
|
+
return toP2().toByteArray();
|
358
|
+
}
|
359
|
+
}
|
360
|
+
|
361
|
+
/**
|
362
|
+
* Converts the group element to the P2 representation.
|
363
|
+
*
|
364
|
+
* @return The group element in the P2 representation.
|
365
|
+
*/
|
366
|
+
public GroupElement toP2() {
|
367
|
+
return toRep(Representation.P2);
|
368
|
+
}
|
369
|
+
|
370
|
+
/**
|
371
|
+
* Converts the group element to the P3 representation.
|
372
|
+
*
|
373
|
+
* @return The group element in the P3 representation.
|
374
|
+
*/
|
375
|
+
public GroupElement toP3() {
|
376
|
+
return toRep(Representation.P3);
|
377
|
+
}
|
378
|
+
|
379
|
+
/**
|
380
|
+
* Converts the group element to the CACHED representation.
|
381
|
+
*
|
382
|
+
* @return The group element in the CACHED representation.
|
383
|
+
*/
|
384
|
+
public GroupElement toCached() {
|
385
|
+
return toRep(Representation.CACHED);
|
386
|
+
}
|
387
|
+
|
388
|
+
/**
|
389
|
+
* Convert a GroupElement from one Representation to another.
|
390
|
+
* TODO-CR: Add additional conversion?
|
391
|
+
* $r = p$
|
392
|
+
* <p>
|
393
|
+
* Supported conversions:
|
394
|
+
* <p><ul>
|
395
|
+
* <li>P3 $\rightarrow$ P2
|
396
|
+
* <li>P3 $\rightarrow$ CACHED (1 multiply, 1 add, 1 subtract)
|
397
|
+
* <li>P1P1 $\rightarrow$ P2 (3 multiply)
|
398
|
+
* <li>P1P1 $\rightarrow$ P3 (4 multiply)
|
399
|
+
*
|
400
|
+
* @param repr The representation to convert to.
|
401
|
+
* @return A new group element in the given representation.
|
402
|
+
*/
|
403
|
+
private GroupElement toRep(final Representation repr) {
|
404
|
+
switch (this.repr) {
|
405
|
+
case P2:
|
406
|
+
switch (repr) {
|
407
|
+
case P2:
|
408
|
+
return p2(this.curve, this.X, this.Y, this.Z);
|
409
|
+
default:
|
410
|
+
throw new IllegalArgumentException();
|
411
|
+
}
|
412
|
+
case P3:
|
413
|
+
switch (repr) {
|
414
|
+
case P2:
|
415
|
+
return p2(this.curve, this.X, this.Y, this.Z);
|
416
|
+
case P3:
|
417
|
+
return p3(this.curve, this.X, this.Y, this.Z, this.T);
|
418
|
+
case CACHED:
|
419
|
+
return cached(this.curve, this.Y.add(this.X), this.Y.subtract(this.X), this.Z, this.T.multiply(this.curve.get2D()));
|
420
|
+
default:
|
421
|
+
throw new IllegalArgumentException();
|
422
|
+
}
|
423
|
+
case P1P1:
|
424
|
+
switch (repr) {
|
425
|
+
case P2:
|
426
|
+
return p2(this.curve, this.X.multiply(this.T), Y.multiply(this.Z), this.Z.multiply(this.T));
|
427
|
+
case P3:
|
428
|
+
return p3(this.curve, this.X.multiply(this.T), Y.multiply(this.Z), this.Z.multiply(this.T), this.X.multiply(this.Y));
|
429
|
+
case P1P1:
|
430
|
+
return p1p1(this.curve, this.X, this.Y, this.Z, this.T);
|
431
|
+
default:
|
432
|
+
throw new IllegalArgumentException();
|
433
|
+
}
|
434
|
+
case PRECOMP:
|
435
|
+
switch (repr) {
|
436
|
+
case PRECOMP:
|
437
|
+
return precomp(this.curve, this.X, this.Y, this.Z);
|
438
|
+
default:
|
439
|
+
throw new IllegalArgumentException();
|
440
|
+
}
|
441
|
+
case CACHED:
|
442
|
+
switch (repr) {
|
443
|
+
case CACHED:
|
444
|
+
return cached(this.curve, this.X, this.Y, this.Z, this.T);
|
445
|
+
default:
|
446
|
+
throw new IllegalArgumentException();
|
447
|
+
}
|
448
|
+
default:
|
449
|
+
throw new UnsupportedOperationException();
|
450
|
+
}
|
451
|
+
}
|
452
|
+
|
453
|
+
/**
|
454
|
+
* Precomputes several tables.
|
455
|
+
* <p>
|
456
|
+
* The precomputed tables are used for {@link #scalarMultiply(byte[])}
|
457
|
+
* and {@link #doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])}.
|
458
|
+
*
|
459
|
+
* @param precomputeSingle should the matrix for scalarMultiply() be precomputed?
|
460
|
+
*/
|
461
|
+
public synchronized void precompute(final boolean precomputeSingle) {
|
462
|
+
GroupElement Bi;
|
463
|
+
|
464
|
+
if (precomputeSingle && this.precmp == null) {
|
465
|
+
// Precomputation for single scalar multiplication.
|
466
|
+
this.precmp = new GroupElement[32][8];
|
467
|
+
// TODO-CR BR: check that this == base point when the method is called.
|
468
|
+
Bi = this;
|
469
|
+
for (int i = 0; i < 32; i++) {
|
470
|
+
GroupElement Bij = Bi;
|
471
|
+
for (int j = 0; j < 8; j++) {
|
472
|
+
final FieldElement recip = Bij.Z.invert();
|
473
|
+
final FieldElement x = Bij.X.multiply(recip);
|
474
|
+
final FieldElement y = Bij.Y.multiply(recip);
|
475
|
+
this.precmp[i][j] = precomp(this.curve, y.add(x), y.subtract(x), x.multiply(y).multiply(this.curve.get2D()));
|
476
|
+
Bij = Bij.add(Bi.toCached()).toP3();
|
477
|
+
}
|
478
|
+
// Only every second summand is precomputed (16^2 = 256)
|
479
|
+
for (int k = 0; k < 8; k++) {
|
480
|
+
Bi = Bi.add(Bi.toCached()).toP3();
|
481
|
+
}
|
482
|
+
}
|
483
|
+
}
|
484
|
+
|
485
|
+
// Precomputation for double scalar multiplication.
|
486
|
+
// P,3P,5P,7P,9P,11P,13P,15P
|
487
|
+
if (this.dblPrecmp != null)
|
488
|
+
return;
|
489
|
+
this.dblPrecmp = new GroupElement[8];
|
490
|
+
Bi = this;
|
491
|
+
for (int i = 0; i < 8; i++) {
|
492
|
+
final FieldElement recip = Bi.Z.invert();
|
493
|
+
final FieldElement x = Bi.X.multiply(recip);
|
494
|
+
final FieldElement y = Bi.Y.multiply(recip);
|
495
|
+
this.dblPrecmp[i] = precomp(this.curve, y.add(x), y.subtract(x), x.multiply(y).multiply(this.curve.get2D()));
|
496
|
+
// Bi = edwards(B,edwards(B,Bi))
|
497
|
+
Bi = this.add(this.add(Bi.toCached()).toP3().toCached()).toP3();
|
498
|
+
}
|
499
|
+
}
|
500
|
+
|
501
|
+
/**
|
502
|
+
* Doubles a given group element $p$ in $P^2$ or $P^3$ representation and returns the result in $P \times P$ representation.
|
503
|
+
* $r = 2 * p$ where $p = (X : Y : Z)$ or $p = (X : Y : Z : T)$
|
504
|
+
* <p>
|
505
|
+
* $r$ in $P \times P$ representation:
|
506
|
+
* <p>
|
507
|
+
* $r = ((X' : Z'), (Y' : T'))$ where
|
508
|
+
* </p><ul>
|
509
|
+
* <li>$X' = (X + Y)^2 - (Y^2 + X^2)$
|
510
|
+
* <li>$Y' = Y^2 + X^2$
|
511
|
+
* <li>$Z' = y^2 - X^2$
|
512
|
+
* <li>$T' = 2 * Z^2 - (y^2 - X^2)$
|
513
|
+
* </ul><p>
|
514
|
+
* $r$ converted from $P \times P$ to $P^2$ representation:
|
515
|
+
* <p>
|
516
|
+
* $r = (X'' : Y'' : Z'')$ where
|
517
|
+
* </p><ul>
|
518
|
+
* <li>$X'' = X' * Z' = ((X + Y)^2 - Y^2 - X^2) * (2 * Z^2 - (y^2 - X^2))$
|
519
|
+
* <li>$Y'' = Y' * T' = (Y^2 + X^2) * (2 * Z^2 - (y^2 - X^2))$
|
520
|
+
* <li>$Z'' = Z' * T' = (y^2 - X^2) * (2 * Z^2 - (y^2 - X^2))$
|
521
|
+
* </ul><p>
|
522
|
+
* Formula for the $P^2$ representation is in agreement with the formula given in [4] page 12 (with $a = -1$)
|
523
|
+
* up to a common factor -1 which does not matter:
|
524
|
+
* <p>
|
525
|
+
* $$
|
526
|
+
* B = (X + Y)^2; C = X^2; D = Y^2; E = -C = -X^2; F := E + D = Y^2 - X^2; H = Z^2; J = F − 2 * H; \\
|
527
|
+
* X3 = (B − C − D) · J = X' * (-T'); \\
|
528
|
+
* Y3 = F · (E − D) = Z' * (-Y'); \\
|
529
|
+
* Z3 = F · J = Z' * (-T').
|
530
|
+
* $$
|
531
|
+
*
|
532
|
+
* @return The P1P1 representation
|
533
|
+
*/
|
534
|
+
public GroupElement dbl() {
|
535
|
+
switch (this.repr) {
|
536
|
+
case P2:
|
537
|
+
case P3: // Ignore T for P3 representation
|
538
|
+
FieldElement XX, YY, B, A, AA, Yn, Zn;
|
539
|
+
XX = this.X.square();
|
540
|
+
YY = this.Y.square();
|
541
|
+
B = this.Z.squareAndDouble();
|
542
|
+
A = this.X.add(this.Y);
|
543
|
+
AA = A.square();
|
544
|
+
Yn = YY.add(XX);
|
545
|
+
Zn = YY.subtract(XX);
|
546
|
+
return p1p1(this.curve, AA.subtract(Yn), Yn, Zn, B.subtract(Zn));
|
547
|
+
default:
|
548
|
+
throw new UnsupportedOperationException();
|
549
|
+
}
|
550
|
+
}
|
551
|
+
|
552
|
+
/**
|
553
|
+
* GroupElement addition using the twisted Edwards addition law with
|
554
|
+
* extended coordinates (Hisil2008).
|
555
|
+
* <p>
|
556
|
+
* this must be in $P^3$ representation and $q$ in PRECOMP representation.
|
557
|
+
* $r = p + q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z) = (Y2/Z2 + X2/Z2, Y2/Z2 - X2/Z2, 2 * d * X2/Z2 * Y2/Z2)$
|
558
|
+
* <p>
|
559
|
+
* $r$ in $P \times P$ representation:
|
560
|
+
* <p>
|
561
|
+
* $r = ((X' : Z'), (Y' : T'))$ where
|
562
|
+
* <p><ul>
|
563
|
+
* <li>$X' = (Y1 + X1) * q.X - (Y1 - X1) * q.Y = ((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) * 1/Z2$
|
564
|
+
* <li>$Y' = (Y1 + X1) * q.X + (Y1 - X1) * q.Y = ((Y1 + X1) * (Y2 + X2) + (Y1 - X1) * (Y2 - X2)) * 1/Z2$
|
565
|
+
* <li>$Z' = 2 * Z1 + T1 * q.Z = 2 * Z1 + T1 * 2 * d * X2 * Y2 * 1/Z2^2 = (2 * Z1 * Z2 + 2 * d * T1 * T2) * 1/Z2$
|
566
|
+
* <li>$T' = 2 * Z1 - T1 * q.Z = 2 * Z1 - T1 * 2 * d * X2 * Y2 * 1/Z2^2 = (2 * Z1 * Z2 - 2 * d * T1 * T2) * 1/Z2$
|
567
|
+
* </ul><p>
|
568
|
+
* Setting $A = (Y1 - X1) * (Y2 - X2), B = (Y1 + X1) * (Y2 + X2), C = 2 * d * T1 * T2, D = 2 * Z1 * Z2$ we get
|
569
|
+
* <p><ul>
|
570
|
+
* <li>$X' = (B - A) * 1/Z2$
|
571
|
+
* <li>$Y' = (B + A) * 1/Z2$
|
572
|
+
* <li>$Z' = (D + C) * 1/Z2$
|
573
|
+
* <li>$T' = (D - C) * 1/Z2$
|
574
|
+
* </ul><p>
|
575
|
+
* $r$ converted from $P \times P$ to $P^2$ representation:
|
576
|
+
* <p>
|
577
|
+
* $r = (X'' : Y'' : Z'' : T'')$ where
|
578
|
+
* <p><ul>
|
579
|
+
* <li>$X'' = X' * Z' = (B - A) * (D + C) * 1/Z2^2$
|
580
|
+
* <li>$Y'' = Y' * T' = (B + A) * (D - C) * 1/Z2^2$
|
581
|
+
* <li>$Z'' = Z' * T' = (D + C) * (D - C) * 1/Z2^2$
|
582
|
+
* <li>$T'' = X' * Y' = (B - A) * (B + A) * 1/Z2^2$
|
583
|
+
* </ul><p>
|
584
|
+
* TODO-CR BR: Formula for the $P^2$ representation is not in agreement with the formula given in [2] page 6<br>
|
585
|
+
* TODO-CR BR: (the common factor $1/Z2^2$ does not matter):<br>
|
586
|
+
* $$
|
587
|
+
* E = B - A, F = D - C, G = D + C, H = B + A \\
|
588
|
+
* X3 = E * F = (B - A) * (D - C); \\
|
589
|
+
* Y3 = G * H = (D + C) * (B + A); \\
|
590
|
+
* Z3 = F * G = (D - C) * (D + C); \\
|
591
|
+
* T3 = E * H = (B - A) * (B + A);
|
592
|
+
* $$
|
593
|
+
*
|
594
|
+
* @param q the PRECOMP representation of the GroupElement to add.
|
595
|
+
* @return the P1P1 representation of the result.
|
596
|
+
*/
|
597
|
+
private GroupElement madd(GroupElement q) {
|
598
|
+
if (this.repr != Representation.P3)
|
599
|
+
throw new UnsupportedOperationException();
|
600
|
+
if (q.repr != Representation.PRECOMP)
|
601
|
+
throw new IllegalArgumentException();
|
602
|
+
|
603
|
+
FieldElement YpX, YmX, A, B, C, D;
|
604
|
+
YpX = this.Y.add(this.X);
|
605
|
+
YmX = this.Y.subtract(this.X);
|
606
|
+
A = YpX.multiply(q.X); // q->y+x
|
607
|
+
B = YmX.multiply(q.Y); // q->y-x
|
608
|
+
C = q.Z.multiply(this.T); // q->2dxy
|
609
|
+
D = this.Z.add(this.Z);
|
610
|
+
return p1p1(this.curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
|
611
|
+
}
|
612
|
+
|
613
|
+
/**
|
614
|
+
* GroupElement subtraction using the twisted Edwards addition law with
|
615
|
+
* extended coordinates (Hisil2008).
|
616
|
+
* <p>
|
617
|
+
* this must be in $P^3$ representation and $q$ in PRECOMP representation.
|
618
|
+
* $r = p - q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z) = (Y2/Z2 + X2/Z2, Y2/Z2 - X2/Z2, 2 * d * X2/Z2 * Y2/Z2)$
|
619
|
+
* <p>
|
620
|
+
* Negating $q$ means negating the value of $X2$ and $T2$ (the latter is irrelevant here).
|
621
|
+
* The formula is in accordance to {@link #madd the above addition}.
|
622
|
+
*
|
623
|
+
* @param q the PRECOMP representation of the GroupElement to subtract.
|
624
|
+
* @return the P1P1 representation of the result.
|
625
|
+
*/
|
626
|
+
private GroupElement msub(GroupElement q) {
|
627
|
+
if (this.repr != Representation.P3)
|
628
|
+
throw new UnsupportedOperationException();
|
629
|
+
if (q.repr != Representation.PRECOMP)
|
630
|
+
throw new IllegalArgumentException();
|
631
|
+
|
632
|
+
FieldElement YpX, YmX, A, B, C, D;
|
633
|
+
YpX = this.Y.add(this.X);
|
634
|
+
YmX = this.Y.subtract(this.X);
|
635
|
+
A = YpX.multiply(q.Y); // q->y-x
|
636
|
+
B = YmX.multiply(q.X); // q->y+x
|
637
|
+
C = q.Z.multiply(this.T); // q->2dxy
|
638
|
+
D = this.Z.add(this.Z);
|
639
|
+
return p1p1(this.curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
|
640
|
+
}
|
641
|
+
|
642
|
+
/**
|
643
|
+
* GroupElement addition using the twisted Edwards addition law with
|
644
|
+
* extended coordinates (Hisil2008).
|
645
|
+
* <p>
|
646
|
+
* this must be in $P^3$ representation and $q$ in CACHED representation.
|
647
|
+
* $r = p + q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z, q.T) = (Y2 + X2, Y2 - X2, Z2, 2 * d * T2)$
|
648
|
+
* <p>
|
649
|
+
* $r$ in $P \times P$ representation:
|
650
|
+
* </p><ul>
|
651
|
+
* <li>$X' = (Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)$
|
652
|
+
* <li>$Y' = (Y1 + X1) * (Y2 + X2) + (Y1 - X1) * (Y2 - X2)$
|
653
|
+
* <li>$Z' = 2 * Z1 * Z2 + 2 * d * T1 * T2$
|
654
|
+
* <li>$T' = 2 * Z1 * T2 - 2 * d * T1 * T2$
|
655
|
+
* </ul><p>
|
656
|
+
* Setting $A = (Y1 - X1) * (Y2 - X2), B = (Y1 + X1) * (Y2 + X2), C = 2 * d * T1 * T2, D = 2 * Z1 * Z2$ we get
|
657
|
+
* </p><ul>
|
658
|
+
* <li>$X' = (B - A)$
|
659
|
+
* <li>$Y' = (B + A)$
|
660
|
+
* <li>$Z' = (D + C)$
|
661
|
+
* <li>$T' = (D - C)$
|
662
|
+
* </ul><p>
|
663
|
+
* Same result as in {@link #madd} (up to a common factor which does not matter).
|
664
|
+
*
|
665
|
+
* @param q the CACHED representation of the GroupElement to add.
|
666
|
+
* @return the P1P1 representation of the result.
|
667
|
+
*/
|
668
|
+
public GroupElement add(GroupElement q) {
|
669
|
+
if (this.repr != Representation.P3)
|
670
|
+
throw new UnsupportedOperationException();
|
671
|
+
if (q.repr != Representation.CACHED)
|
672
|
+
throw new IllegalArgumentException();
|
673
|
+
|
674
|
+
FieldElement YpX, YmX, A, B, C, ZZ, D;
|
675
|
+
YpX = this.Y.add(this.X);
|
676
|
+
YmX = this.Y.subtract(this.X);
|
677
|
+
A = YpX.multiply(q.X); // q->Y+X
|
678
|
+
B = YmX.multiply(q.Y); // q->Y-X
|
679
|
+
C = q.T.multiply(this.T); // q->2dT
|
680
|
+
ZZ = this.Z.multiply(q.Z);
|
681
|
+
D = ZZ.add(ZZ);
|
682
|
+
return p1p1(this.curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
|
683
|
+
}
|
684
|
+
|
685
|
+
/**
|
686
|
+
* GroupElement subtraction using the twisted Edwards addition law with
|
687
|
+
* extended coordinates (Hisil2008).
|
688
|
+
* <p>
|
689
|
+
* $r = p - q$
|
690
|
+
* <p>
|
691
|
+
* Negating $q$ means negating the value of the coordinate $X2$ and $T2$.
|
692
|
+
* The formula is in accordance to {@link #add the above addition}.
|
693
|
+
*
|
694
|
+
* @param q the PRECOMP representation of the GroupElement to subtract.
|
695
|
+
* @return the P1P1 representation of the result.
|
696
|
+
*/
|
697
|
+
public GroupElement sub(GroupElement q) {
|
698
|
+
if (this.repr != Representation.P3)
|
699
|
+
throw new UnsupportedOperationException();
|
700
|
+
if (q.repr != Representation.CACHED)
|
701
|
+
throw new IllegalArgumentException();
|
702
|
+
|
703
|
+
FieldElement YpX, YmX, A, B, C, ZZ, D;
|
704
|
+
YpX = Y.add(X);
|
705
|
+
YmX = Y.subtract(X);
|
706
|
+
A = YpX.multiply(q.Y); // q->Y-X
|
707
|
+
B = YmX.multiply(q.X); // q->Y+X
|
708
|
+
C = q.T.multiply(T); // q->2dT
|
709
|
+
ZZ = Z.multiply(q.Z);
|
710
|
+
D = ZZ.add(ZZ);
|
711
|
+
return p1p1(curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
|
712
|
+
}
|
713
|
+
|
714
|
+
/**
|
715
|
+
* Negates this group element by subtracting it from the neutral group element.
|
716
|
+
* <p>
|
717
|
+
* TODO-CR BR: why not simply negate the coordinates $X$ and $T$?
|
718
|
+
*
|
719
|
+
* @return The negative of this group element.
|
720
|
+
*/
|
721
|
+
public GroupElement negate() {
|
722
|
+
if (this.repr != Representation.P3)
|
723
|
+
throw new UnsupportedOperationException();
|
724
|
+
return this.curve.getZero(Representation.P3).sub(toCached()).toP3();
|
725
|
+
}
|
726
|
+
|
727
|
+
@Override
|
728
|
+
public int hashCode() {
|
729
|
+
return Arrays.hashCode(this.toByteArray());
|
730
|
+
}
|
731
|
+
|
732
|
+
@Override
|
733
|
+
public boolean equals(Object obj) {
|
734
|
+
if (obj == this)
|
735
|
+
return true;
|
736
|
+
if (!(obj instanceof GroupElement))
|
737
|
+
return false;
|
738
|
+
GroupElement ge = (GroupElement) obj;
|
739
|
+
if (!this.repr.equals(ge.repr)) {
|
740
|
+
try {
|
741
|
+
ge = ge.toRep(this.repr);
|
742
|
+
} catch (RuntimeException e) {
|
743
|
+
return false;
|
744
|
+
}
|
745
|
+
}
|
746
|
+
switch (this.repr) {
|
747
|
+
case P2:
|
748
|
+
case P3:
|
749
|
+
// Try easy way first
|
750
|
+
if (this.Z.equals(ge.Z))
|
751
|
+
return this.X.equals(ge.X) && this.Y.equals(ge.Y);
|
752
|
+
// X1/Z1 = X2/Z2 --> X1*Z2 = X2*Z1
|
753
|
+
final FieldElement x1 = this.X.multiply(ge.Z);
|
754
|
+
final FieldElement y1 = this.Y.multiply(ge.Z);
|
755
|
+
final FieldElement x2 = ge.X.multiply(this.Z);
|
756
|
+
final FieldElement y2 = ge.Y.multiply(this.Z);
|
757
|
+
return x1.equals(x2) && y1.equals(y2);
|
758
|
+
case P1P1:
|
759
|
+
return toP2().equals(ge);
|
760
|
+
case PRECOMP:
|
761
|
+
// Compare directly, PRECOMP is derived directly from x and y
|
762
|
+
return this.X.equals(ge.X) && this.Y.equals(ge.Y) && this.Z.equals(ge.Z);
|
763
|
+
case CACHED:
|
764
|
+
// Try easy way first
|
765
|
+
if (this.Z.equals(ge.Z))
|
766
|
+
return this.X.equals(ge.X) && this.Y.equals(ge.Y) && this.T.equals(ge.T);
|
767
|
+
// (Y+X)/Z = y+x etc.
|
768
|
+
final FieldElement x3 = this.X.multiply(ge.Z);
|
769
|
+
final FieldElement y3 = this.Y.multiply(ge.Z);
|
770
|
+
final FieldElement t3 = this.T.multiply(ge.Z);
|
771
|
+
final FieldElement x4 = ge.X.multiply(this.Z);
|
772
|
+
final FieldElement y4 = ge.Y.multiply(this.Z);
|
773
|
+
final FieldElement t4 = ge.T.multiply(this.Z);
|
774
|
+
return x3.equals(x4) && y3.equals(y4) && t3.equals(t4);
|
775
|
+
default:
|
776
|
+
return false;
|
777
|
+
}
|
778
|
+
}
|
779
|
+
|
780
|
+
/**
|
781
|
+
* Convert a to radix 16.
|
782
|
+
* <p>
|
783
|
+
* Method is package private only so that tests run.
|
784
|
+
*
|
785
|
+
* @param a $= a[0]+256*a[1]+...+256^{31} a[31]$
|
786
|
+
* @return 64 bytes, each between -8 and 7
|
787
|
+
*/
|
788
|
+
static byte[] toRadix16(final byte[] a) {
|
789
|
+
final byte[] e = new byte[64];
|
790
|
+
int i;
|
791
|
+
// Radix 16 notation
|
792
|
+
for (i = 0; i < 32; i++) {
|
793
|
+
e[2*i+0] = (byte) (a[i] & 15);
|
794
|
+
e[2*i+1] = (byte) ((a[i] >> 4) & 15);
|
795
|
+
}
|
796
|
+
/* each e[i] is between 0 and 15 */
|
797
|
+
/* e[63] is between 0 and 7 */
|
798
|
+
int carry = 0;
|
799
|
+
for (i = 0; i < 63; i++) {
|
800
|
+
e[i] += carry;
|
801
|
+
carry = e[i] + 8;
|
802
|
+
carry >>= 4;
|
803
|
+
e[i] -= carry << 4;
|
804
|
+
}
|
805
|
+
e[63] += carry;
|
806
|
+
/* each e[i] is between -8 and 7 */
|
807
|
+
return e;
|
808
|
+
}
|
809
|
+
|
810
|
+
/**
|
811
|
+
* Constant-time conditional move.
|
812
|
+
* <p>
|
813
|
+
* Replaces this with $u$ if $b == 1$.<br>
|
814
|
+
* Replaces this with this if $b == 0$.
|
815
|
+
* <p>
|
816
|
+
* Method is package private only so that tests run.
|
817
|
+
*
|
818
|
+
* @param u The group element to return if $b == 1$.
|
819
|
+
* @param b in $\{0, 1\}$
|
820
|
+
* @return $u$ if $b == 1$; this if $b == 0$. Results undefined if $b$ is not in $\{0, 1\}$.
|
821
|
+
*/
|
822
|
+
GroupElement cmov(final GroupElement u, final int b) {
|
823
|
+
return precomp(curve, X.cmov(u.X, b), Y.cmov(u.Y, b), Z.cmov(u.Z, b));
|
824
|
+
}
|
825
|
+
|
826
|
+
/**
|
827
|
+
* Look up $16^i r_i B$ in the precomputed table.
|
828
|
+
* <p>
|
829
|
+
* No secret array indices, no secret branching.
|
830
|
+
* Constant time.
|
831
|
+
* <p>
|
832
|
+
* Must have previously precomputed.
|
833
|
+
* <p>
|
834
|
+
* Method is package private only so that tests run.
|
835
|
+
*
|
836
|
+
* @param pos $= i/2$ for $i$ in $\{0, 2, 4,..., 62\}$
|
837
|
+
* @param b $= r_i$
|
838
|
+
* @return the GroupElement
|
839
|
+
*/
|
840
|
+
GroupElement select(final int pos, final int b) {
|
841
|
+
// Is r_i negative?
|
842
|
+
final int bnegative = Utils.negative(b);
|
843
|
+
// |r_i|
|
844
|
+
final int babs = b - (((-bnegative) & b) << 1);
|
845
|
+
|
846
|
+
// 16^i |r_i| B
|
847
|
+
final GroupElement t = this.curve.getZero(Representation.PRECOMP)
|
848
|
+
.cmov(this.precmp[pos][0], Utils.equal(babs, 1))
|
849
|
+
.cmov(this.precmp[pos][1], Utils.equal(babs, 2))
|
850
|
+
.cmov(this.precmp[pos][2], Utils.equal(babs, 3))
|
851
|
+
.cmov(this.precmp[pos][3], Utils.equal(babs, 4))
|
852
|
+
.cmov(this.precmp[pos][4], Utils.equal(babs, 5))
|
853
|
+
.cmov(this.precmp[pos][5], Utils.equal(babs, 6))
|
854
|
+
.cmov(this.precmp[pos][6], Utils.equal(babs, 7))
|
855
|
+
.cmov(this.precmp[pos][7], Utils.equal(babs, 8));
|
856
|
+
// -16^i |r_i| B
|
857
|
+
final GroupElement tminus = precomp(curve, t.Y, t.X, t.Z.negate());
|
858
|
+
// 16^i r_i B
|
859
|
+
return t.cmov(tminus, bnegative);
|
860
|
+
}
|
861
|
+
|
862
|
+
/**
|
863
|
+
* $h = a * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$ and
|
864
|
+
* $B$ is this point. If its lookup table has not been precomputed, it
|
865
|
+
* will be at the start of the method (and cached for later calls).
|
866
|
+
* Constant time.
|
867
|
+
* <p>
|
868
|
+
* Preconditions: (TODO: Check this applies here)
|
869
|
+
* $a[31] \le 127$
|
870
|
+
* @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$
|
871
|
+
* @return the GroupElement
|
872
|
+
*/
|
873
|
+
public GroupElement scalarMultiply(final byte[] a) {
|
874
|
+
GroupElement t;
|
875
|
+
int i;
|
876
|
+
|
877
|
+
final byte[] e = toRadix16(a);
|
878
|
+
|
879
|
+
GroupElement h = this.curve.getZero(Representation.P3);
|
880
|
+
synchronized(this) {
|
881
|
+
// TODO: Get opinion from a crypto professional.
|
882
|
+
// This should in practice never be necessary, the only point that
|
883
|
+
// this should get called on is EdDSA's B.
|
884
|
+
//precompute();
|
885
|
+
for (i = 1; i < 64; i += 2) {
|
886
|
+
t = select(i/2, e[i]);
|
887
|
+
h = h.madd(t).toP3();
|
888
|
+
}
|
889
|
+
|
890
|
+
h = h.dbl().toP2().dbl().toP2().dbl().toP2().dbl().toP3();
|
891
|
+
|
892
|
+
for (i = 0; i < 64; i += 2) {
|
893
|
+
t = select(i/2, e[i]);
|
894
|
+
h = h.madd(t).toP3();
|
895
|
+
}
|
896
|
+
}
|
897
|
+
|
898
|
+
return h;
|
899
|
+
}
|
900
|
+
|
901
|
+
/**
|
902
|
+
* Calculates a sliding-windows base 2 representation for a given value $a$.
|
903
|
+
* To learn more about it see [6] page 8.
|
904
|
+
* <p>
|
905
|
+
* Output: $r$ which satisfies
|
906
|
+
* $a = r0 * 2^0 + r1 * 2^1 + \dots + r255 * 2^{255}$ with $ri$ in $\{-15, -13, -11, -9, -7, -5, -3, -1, 0, 1, 3, 5, 7, 9, 11, 13, 15\}$
|
907
|
+
* <p>
|
908
|
+
* Method is package private only so that tests run.
|
909
|
+
*
|
910
|
+
* @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$.
|
911
|
+
* @return The byte array $r$ in the above described form.
|
912
|
+
*/
|
913
|
+
static byte[] slide(final byte[] a) {
|
914
|
+
byte[] r = new byte[256];
|
915
|
+
|
916
|
+
// Put each bit of 'a' into a separate byte, 0 or 1
|
917
|
+
for (int i = 0; i < 256; ++i) {
|
918
|
+
r[i] = (byte) (1 & (a[i >> 3] >> (i & 7)));
|
919
|
+
}
|
920
|
+
|
921
|
+
// Note: r[i] will always be odd.
|
922
|
+
for (int i = 0; i < 256; ++i) {
|
923
|
+
if (r[i] != 0) {
|
924
|
+
for (int b = 1; b <= 6 && i + b < 256; ++b) {
|
925
|
+
// Accumulate bits if possible
|
926
|
+
if (r[i + b] != 0) {
|
927
|
+
if (r[i] + (r[i + b] << b) <= 15) {
|
928
|
+
r[i] += r[i + b] << b;
|
929
|
+
r[i + b] = 0;
|
930
|
+
} else if (r[i] - (r[i + b] << b) >= -15) {
|
931
|
+
r[i] -= r[i + b] << b;
|
932
|
+
for (int k = i + b; k < 256; ++k) {
|
933
|
+
if (r[k] == 0) {
|
934
|
+
r[k] = 1;
|
935
|
+
break;
|
936
|
+
}
|
937
|
+
r[k] = 0;
|
938
|
+
}
|
939
|
+
} else
|
940
|
+
break;
|
941
|
+
}
|
942
|
+
}
|
943
|
+
}
|
944
|
+
}
|
945
|
+
|
946
|
+
return r;
|
947
|
+
}
|
948
|
+
|
949
|
+
/**
|
950
|
+
* $r = a * A + b * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$,
|
951
|
+
* $b = b[0]+256*b[1]+\dots+256^{31} b[31]$ and $B$ is this point.
|
952
|
+
* <p>
|
953
|
+
* $A$ must have been previously precomputed.
|
954
|
+
*
|
955
|
+
* @param A in P3 representation.
|
956
|
+
* @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$
|
957
|
+
* @param b $= b[0]+256*b[1]+\dots+256^{31} b[31]$
|
958
|
+
* @return the GroupElement
|
959
|
+
*/
|
960
|
+
public GroupElement doubleScalarMultiplyVariableTime(final GroupElement A, final byte[] a, final byte[] b) {
|
961
|
+
// TODO-CR BR: A check that this is the base point is needed.
|
962
|
+
final byte[] aslide = slide(a);
|
963
|
+
final byte[] bslide = slide(b);
|
964
|
+
|
965
|
+
GroupElement r = this.curve.getZero(Representation.P2);
|
966
|
+
|
967
|
+
int i;
|
968
|
+
for (i = 255; i >= 0; --i) {
|
969
|
+
if (aslide[i] != 0 || bslide[i] != 0) break;
|
970
|
+
}
|
971
|
+
|
972
|
+
synchronized(this) {
|
973
|
+
// TODO-CR BR strange comment below.
|
974
|
+
// TODO: Get opinion from a crypto professional.
|
975
|
+
// This should in practice never be necessary, the only point that
|
976
|
+
// this should get called on is EdDSA's B.
|
977
|
+
//precompute();
|
978
|
+
for (; i >= 0; --i) {
|
979
|
+
GroupElement t = r.dbl();
|
980
|
+
|
981
|
+
if (aslide[i] > 0) {
|
982
|
+
t = t.toP3().madd(A.dblPrecmp[aslide[i]/2]);
|
983
|
+
} else if(aslide[i] < 0) {
|
984
|
+
t = t.toP3().msub(A.dblPrecmp[(-aslide[i])/2]);
|
985
|
+
}
|
986
|
+
|
987
|
+
if (bslide[i] > 0) {
|
988
|
+
t = t.toP3().madd(this.dblPrecmp[bslide[i]/2]);
|
989
|
+
} else if(bslide[i] < 0) {
|
990
|
+
t = t.toP3().msub(this.dblPrecmp[(-bslide[i])/2]);
|
991
|
+
}
|
992
|
+
|
993
|
+
r = t.toP2();
|
994
|
+
}
|
995
|
+
}
|
996
|
+
|
997
|
+
return r;
|
998
|
+
}
|
999
|
+
|
1000
|
+
/**
|
1001
|
+
* Verify that a point is on its curve.
|
1002
|
+
* @return true if the point lies on its curve.
|
1003
|
+
*/
|
1004
|
+
public boolean isOnCurve() {
|
1005
|
+
return isOnCurve(curve);
|
1006
|
+
}
|
1007
|
+
|
1008
|
+
/**
|
1009
|
+
* Verify that a point is on the curve.
|
1010
|
+
* @param curve The curve to check.
|
1011
|
+
* @return true if the point lies on the curve.
|
1012
|
+
*/
|
1013
|
+
public boolean isOnCurve(Curve curve) {
|
1014
|
+
switch (repr) {
|
1015
|
+
case P2:
|
1016
|
+
case P3:
|
1017
|
+
FieldElement recip = Z.invert();
|
1018
|
+
FieldElement x = X.multiply(recip);
|
1019
|
+
FieldElement y = Y.multiply(recip);
|
1020
|
+
FieldElement xx = x.square();
|
1021
|
+
FieldElement yy = y.square();
|
1022
|
+
FieldElement dxxyy = curve.getD().multiply(xx).multiply(yy);
|
1023
|
+
return curve.getField().ONE.add(dxxyy).add(xx).equals(yy);
|
1024
|
+
|
1025
|
+
default:
|
1026
|
+
return toP2().isOnCurve(curve);
|
1027
|
+
}
|
1028
|
+
}
|
1029
|
+
|
1030
|
+
@Override
|
1031
|
+
public String toString() {
|
1032
|
+
return "[GroupElement\nX="+X+"\nY="+Y+"\nZ="+Z+"\nT="+T+"\n]";
|
1033
|
+
}
|
1034
|
+
}
|