ed25519 1.0.0-jruby → 1.1.0-jruby

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +1 -0
  3. data/CHANGES.md +13 -0
  4. data/README.md +9 -9
  5. data/Rakefile +3 -3
  6. data/ext/ed25519_jruby/LICENSE.txt +123 -0
  7. data/ext/ed25519_jruby/README.md +77 -0
  8. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAEngine.java +491 -0
  9. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAKey.java +31 -0
  10. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAPrivateKey.java +338 -0
  11. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAPublicKey.java +275 -0
  12. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSASecurityProvider.java +59 -0
  13. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/KeyFactory.java +75 -0
  14. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/KeyPairGenerator.java +97 -0
  15. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/Utils.java +103 -0
  16. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Constants.java +23 -0
  17. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Curve.java +100 -0
  18. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Encoding.java +54 -0
  19. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Field.java +99 -0
  20. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/FieldElement.java +76 -0
  21. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/GroupElement.java +1034 -0
  22. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ScalarOps.java +34 -0
  23. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerFieldElement.java +131 -0
  24. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerLittleEndianEncoding.java +102 -0
  25. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerScalarOps.java +37 -0
  26. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/package.html +6 -0
  27. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519FieldElement.java +988 -0
  28. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519LittleEndianEncoding.java +256 -0
  29. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519ScalarOps.java +693 -0
  30. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAGenParameterSpec.java +32 -0
  31. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSANamedCurveSpec.java +35 -0
  32. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSANamedCurveTable.java +71 -0
  33. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAParameterSpec.java +97 -0
  34. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAPrivateKeySpec.java +133 -0
  35. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAPublicKeySpec.java +61 -0
  36. data/ext/ed25519_jruby/org/cryptosphere/Ed25519Provider.java +95 -0
  37. data/lib/ed25519.rb +8 -8
  38. data/lib/ed25519/signing_key.rb +9 -0
  39. data/lib/ed25519/version.rb +1 -1
  40. data/lib/ed25519_java.jar +0 -0
  41. metadata +32 -3
  42. data/ext/ed25519_java/org/cryptosphere/ed25519.java +0 -228
  43. data/lib/ed25519/provider/jruby.rb +0 -39
@@ -0,0 +1,54 @@
1
+ /**
2
+ * EdDSA-Java by str4d
3
+ *
4
+ * To the extent possible under law, the person who associated CC0 with
5
+ * EdDSA-Java has waived all copyright and related or neighboring rights
6
+ * to EdDSA-Java.
7
+ *
8
+ * You should have received a copy of the CC0 legalcode along with this
9
+ * work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
10
+ *
11
+ */
12
+ package net.i2p.crypto.eddsa.math;
13
+
14
+ /**
15
+ * Common interface for all $(b-1)$-bit encodings of elements
16
+ * of EdDSA finite fields.
17
+ * @author str4d
18
+ *
19
+ */
20
+ public abstract class Encoding {
21
+ protected Field f;
22
+
23
+ public synchronized void setField(Field f) {
24
+ if (this.f != null)
25
+ throw new IllegalStateException("already set");
26
+ this.f = f;
27
+ }
28
+
29
+ /**
30
+ * Encode a FieldElement in its $(b-1)$-bit encoding.
31
+ * @param x the FieldElement to encode
32
+ * @return the $(b-1)$-bit encoding of this FieldElement.
33
+ */
34
+ public abstract byte[] encode(FieldElement x);
35
+
36
+ /**
37
+ * Decode a FieldElement from its $(b-1)$-bit encoding.
38
+ * The highest bit is masked out.
39
+ * @param in the $(b-1)$-bit encoding of a FieldElement.
40
+ * @return the FieldElement represented by 'val'.
41
+ */
42
+ public abstract FieldElement decode(byte[] in);
43
+
44
+ /**
45
+ * From the Ed25519 paper:<br>
46
+ * $x$ is negative if the $(b-1)$-bit encoding of $x$ is lexicographically larger
47
+ * than the $(b-1)$-bit encoding of -x. If $q$ is an odd prime and the encoding
48
+ * is the little-endian representation of $\{0, 1,\dots, q-1\}$ then the negative
49
+ * elements of $F_q$ are $\{1, 3, 5,\dots, q-2\}$.
50
+ * @param x the FieldElement to check
51
+ * @return true if negative
52
+ */
53
+ public abstract boolean isNegative(FieldElement x);
54
+ }
@@ -0,0 +1,99 @@
1
+ /**
2
+ * EdDSA-Java by str4d
3
+ *
4
+ * To the extent possible under law, the person who associated CC0 with
5
+ * EdDSA-Java has waived all copyright and related or neighboring rights
6
+ * to EdDSA-Java.
7
+ *
8
+ * You should have received a copy of the CC0 legalcode along with this
9
+ * work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
10
+ *
11
+ */
12
+ package net.i2p.crypto.eddsa.math;
13
+
14
+ import java.io.Serializable;
15
+
16
+ /**
17
+ * An EdDSA finite field. Includes several pre-computed values.
18
+ * @author str4d
19
+ *
20
+ */
21
+ public class Field implements Serializable {
22
+ private static final long serialVersionUID = 8746587465875676L;
23
+
24
+ public final FieldElement ZERO;
25
+ public final FieldElement ONE;
26
+ public final FieldElement TWO;
27
+ public final FieldElement FOUR;
28
+ public final FieldElement FIVE;
29
+ public final FieldElement EIGHT;
30
+
31
+ private final int b;
32
+ private final FieldElement q;
33
+ /**
34
+ * q-2
35
+ */
36
+ private final FieldElement qm2;
37
+ /**
38
+ * (q-5) / 8
39
+ */
40
+ private final FieldElement qm5d8;
41
+ private final Encoding enc;
42
+
43
+ public Field(int b, byte[] q, Encoding enc) {
44
+ this.b = b;
45
+ this.enc = enc;
46
+ this.enc.setField(this);
47
+
48
+ this.q = fromByteArray(q);
49
+
50
+ // Set up constants
51
+ ZERO = fromByteArray(Constants.ZERO);
52
+ ONE = fromByteArray(Constants.ONE);
53
+ TWO = fromByteArray(Constants.TWO);
54
+ FOUR = fromByteArray(Constants.FOUR);
55
+ FIVE = fromByteArray(Constants.FIVE);
56
+ EIGHT = fromByteArray(Constants.EIGHT);
57
+
58
+ // Precompute values
59
+ qm2 = this.q.subtract(TWO);
60
+ qm5d8 = this.q.subtract(FIVE).divide(EIGHT);
61
+ }
62
+
63
+ public FieldElement fromByteArray(byte[] x) {
64
+ return enc.decode(x);
65
+ }
66
+
67
+ public int getb() {
68
+ return b;
69
+ }
70
+
71
+ public FieldElement getQ() {
72
+ return q;
73
+ }
74
+
75
+ public FieldElement getQm2() {
76
+ return qm2;
77
+ }
78
+
79
+ public FieldElement getQm5d8() {
80
+ return qm5d8;
81
+ }
82
+
83
+ public Encoding getEncoding(){
84
+ return enc;
85
+ }
86
+
87
+ @Override
88
+ public int hashCode() {
89
+ return q.hashCode();
90
+ }
91
+
92
+ @Override
93
+ public boolean equals(Object obj) {
94
+ if (!(obj instanceof Field))
95
+ return false;
96
+ Field f = (Field) obj;
97
+ return b == f.b && q.equals(f.q);
98
+ }
99
+ }
@@ -0,0 +1,76 @@
1
+ /**
2
+ * EdDSA-Java by str4d
3
+ *
4
+ * To the extent possible under law, the person who associated CC0 with
5
+ * EdDSA-Java has waived all copyright and related or neighboring rights
6
+ * to EdDSA-Java.
7
+ *
8
+ * You should have received a copy of the CC0 legalcode along with this
9
+ * work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
10
+ *
11
+ */
12
+ package net.i2p.crypto.eddsa.math;
13
+
14
+ import java.io.Serializable;
15
+
16
+ /**
17
+ * Note: concrete subclasses must implement hashCode() and equals()
18
+ */
19
+ public abstract class FieldElement implements Serializable {
20
+ private static final long serialVersionUID = 1239527465875676L;
21
+
22
+ protected final Field f;
23
+
24
+ public FieldElement(Field f) {
25
+ if (null == f) {
26
+ throw new IllegalArgumentException("field cannot be null");
27
+ }
28
+ this.f = f;
29
+ }
30
+
31
+ /**
32
+ * Encode a FieldElement in its $(b-1)$-bit encoding.
33
+ * @return the $(b-1)$-bit encoding of this FieldElement.
34
+ */
35
+ public byte[] toByteArray() {
36
+ return f.getEncoding().encode(this);
37
+ }
38
+
39
+ public abstract boolean isNonZero();
40
+
41
+ public boolean isNegative() {
42
+ return f.getEncoding().isNegative(this);
43
+ }
44
+
45
+ public abstract FieldElement add(FieldElement val);
46
+
47
+ public FieldElement addOne() {
48
+ return add(f.ONE);
49
+ }
50
+
51
+ public abstract FieldElement subtract(FieldElement val);
52
+
53
+ public FieldElement subtractOne() {
54
+ return subtract(f.ONE);
55
+ }
56
+
57
+ public abstract FieldElement negate();
58
+
59
+ public FieldElement divide(FieldElement val) {
60
+ return multiply(val.invert());
61
+ }
62
+
63
+ public abstract FieldElement multiply(FieldElement val);
64
+
65
+ public abstract FieldElement square();
66
+
67
+ public abstract FieldElement squareAndDouble();
68
+
69
+ public abstract FieldElement invert();
70
+
71
+ public abstract FieldElement pow22523();
72
+
73
+ public abstract FieldElement cmov(FieldElement val, final int b);
74
+
75
+ // Note: concrete subclasses must implement hashCode() and equals()
76
+ }
@@ -0,0 +1,1034 @@
1
+ /**
2
+ * EdDSA-Java by str4d
3
+ *
4
+ * To the extent possible under law, the person who associated CC0 with
5
+ * EdDSA-Java has waived all copyright and related or neighboring rights
6
+ * to EdDSA-Java.
7
+ *
8
+ * You should have received a copy of the CC0 legalcode along with this
9
+ * work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
10
+ *
11
+ */
12
+ package net.i2p.crypto.eddsa.math;
13
+
14
+ import net.i2p.crypto.eddsa.Utils;
15
+
16
+ import java.io.Serializable;
17
+ import java.util.Arrays;
18
+
19
+ /**
20
+ * A point $(x,y)$ on an EdDSA curve.
21
+ * <p>
22
+ * Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
23
+ * <p>
24
+ * Literature:<br>
25
+ * [1] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe and Bo-Yin Yang : High-speed high-security signatures<br>
26
+ * [2] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson: Twisted Edwards Curves Revisited<br>
27
+ * [3] Daniel J. Bernsteina, Tanja Lange: A complete set of addition laws for incomplete Edwards curves<br>
28
+ * [4] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange and Christiane Peters: Twisted Edwards Curves<br>
29
+ * [5] Christiane Pascale Peters: Curves, Codes, and Cryptography (PhD thesis)<br>
30
+ * [6] Daniel J. Bernstein, Peter Birkner, Tanja Lange and Christiane Peters: Optimizing double-base elliptic-curve single-scalar multiplication<br>
31
+ *
32
+ * @author str4d
33
+ */
34
+ public class GroupElement implements Serializable {
35
+ private static final long serialVersionUID = 2395879087349587L;
36
+
37
+ /**
38
+ * Available representations for a group element.
39
+ * <ul>
40
+ * <li>P2: Projective representation $(X:Y:Z)$ satisfying $x=X/Z, y=Y/Z$.
41
+ * <li>P3: Extended projective representation $(X:Y:Z:T)$ satisfying $x=X/Z, y=Y/Z, XY=ZT$.
42
+ * <li>P1P1: Completed representation $((X:Z), (Y:T))$ satisfying $x=X/Z, y=Y/T$.
43
+ * <li>PRECOMP: Precomputed representation $(y+x, y-x, 2dxy)$.
44
+ * <li>CACHED: Cached representation $(Y+X, Y-X, Z, 2dT)$
45
+ * </ul>
46
+ */
47
+ public enum Representation {
48
+ /** Projective ($P^2$): $(X:Y:Z)$ satisfying $x=X/Z, y=Y/Z$ */
49
+ P2,
50
+ /** Extended ($P^3$): $(X:Y:Z:T)$ satisfying $x=X/Z, y=Y/Z, XY=ZT$ */
51
+ P3,
52
+ /** Completed ($P \times P$): $((X:Z),(Y:T))$ satisfying $x=X/Z, y=Y/T$ */
53
+ P1P1,
54
+ /** Precomputed (Duif): $(y+x,y-x,2dxy)$ */
55
+ PRECOMP,
56
+ /** Cached: $(Y+X,Y-X,Z,2dT)$ */
57
+ CACHED
58
+ }
59
+
60
+ /**
61
+ * Creates a new group element in P2 representation.
62
+ *
63
+ * @param curve The curve.
64
+ * @param X The $X$ coordinate.
65
+ * @param Y The $Y$ coordinate.
66
+ * @param Z The $Z$ coordinate.
67
+ * @return The group element in P2 representation.
68
+ */
69
+ public static GroupElement p2(
70
+ final Curve curve,
71
+ final FieldElement X,
72
+ final FieldElement Y,
73
+ final FieldElement Z) {
74
+ return new GroupElement(curve, Representation.P2, X, Y, Z, null);
75
+ }
76
+
77
+ /**
78
+ * Creates a new group element in P3 representation.
79
+ *
80
+ * @param curve The curve.
81
+ * @param X The $X$ coordinate.
82
+ * @param Y The $Y$ coordinate.
83
+ * @param Z The $Z$ coordinate.
84
+ * @param T The $T$ coordinate.
85
+ * @return The group element in P3 representation.
86
+ */
87
+ public static GroupElement p3(
88
+ final Curve curve,
89
+ final FieldElement X,
90
+ final FieldElement Y,
91
+ final FieldElement Z,
92
+ final FieldElement T) {
93
+ return new GroupElement(curve, Representation.P3, X, Y, Z, T);
94
+ }
95
+
96
+ /**
97
+ * Creates a new group element in P1P1 representation.
98
+ *
99
+ * @param curve The curve.
100
+ * @param X The $X$ coordinate.
101
+ * @param Y The $Y$ coordinate.
102
+ * @param Z The $Z$ coordinate.
103
+ * @param T The $T$ coordinate.
104
+ * @return The group element in P1P1 representation.
105
+ */
106
+ public static GroupElement p1p1(
107
+ final Curve curve,
108
+ final FieldElement X,
109
+ final FieldElement Y,
110
+ final FieldElement Z,
111
+ final FieldElement T) {
112
+ return new GroupElement(curve, Representation.P1P1, X, Y, Z, T);
113
+ }
114
+
115
+ /**
116
+ * Creates a new group element in PRECOMP representation.
117
+ *
118
+ * @param curve The curve.
119
+ * @param ypx The $y + x$ value.
120
+ * @param ymx The $y - x$ value.
121
+ * @param xy2d The $2 * d * x * y$ value.
122
+ * @return The group element in PRECOMP representation.
123
+ */
124
+ public static GroupElement precomp(
125
+ final Curve curve,
126
+ final FieldElement ypx,
127
+ final FieldElement ymx,
128
+ final FieldElement xy2d) {
129
+ return new GroupElement(curve, Representation.PRECOMP, ypx, ymx, xy2d, null);
130
+ }
131
+
132
+ /**
133
+ * Creates a new group element in CACHED representation.
134
+ *
135
+ * @param curve The curve.
136
+ * @param YpX The $Y + X$ value.
137
+ * @param YmX The $Y - X$ value.
138
+ * @param Z The $Z$ coordinate.
139
+ * @param T2d The $2 * d * T$ value.
140
+ * @return The group element in CACHED representation.
141
+ */
142
+ public static GroupElement cached(
143
+ final Curve curve,
144
+ final FieldElement YpX,
145
+ final FieldElement YmX,
146
+ final FieldElement Z,
147
+ final FieldElement T2d) {
148
+ return new GroupElement(curve, Representation.CACHED, YpX, YmX, Z, T2d);
149
+ }
150
+
151
+ /**
152
+ * Variable is package private only so that tests run.
153
+ */
154
+ final Curve curve;
155
+
156
+ /**
157
+ * Variable is package private only so that tests run.
158
+ */
159
+ final Representation repr;
160
+
161
+ /**
162
+ * Variable is package private only so that tests run.
163
+ */
164
+ final FieldElement X;
165
+
166
+ /**
167
+ * Variable is package private only so that tests run.
168
+ */
169
+ final FieldElement Y;
170
+
171
+ /**
172
+ * Variable is package private only so that tests run.
173
+ */
174
+ final FieldElement Z;
175
+
176
+ /**
177
+ * Variable is package private only so that tests run.
178
+ */
179
+ final FieldElement T;
180
+
181
+ /**
182
+ * Precomputed table for {@link #scalarMultiply(byte[])},
183
+ * filled if necessary.
184
+ * <p>
185
+ * Variable is package private only so that tests run.
186
+ */
187
+ GroupElement[][] precmp;
188
+
189
+ /**
190
+ * Precomputed table for {@link #doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])},
191
+ * filled if necessary.
192
+ * <p>
193
+ * Variable is package private only so that tests run.
194
+ */
195
+ GroupElement[] dblPrecmp;
196
+
197
+ /**
198
+ * Creates a group element for a curve.
199
+ *
200
+ * @param curve The curve.
201
+ * @param repr The representation used to represent the group element.
202
+ * @param X The $X$ coordinate.
203
+ * @param Y The $Y$ coordinate.
204
+ * @param Z The $Z$ coordinate.
205
+ * @param T The $T$ coordinate.
206
+ */
207
+ public GroupElement(
208
+ final Curve curve,
209
+ final Representation repr,
210
+ final FieldElement X,
211
+ final FieldElement Y,
212
+ final FieldElement Z,
213
+ final FieldElement T) {
214
+ this.curve = curve;
215
+ this.repr = repr;
216
+ this.X = X;
217
+ this.Y = Y;
218
+ this.Z = Z;
219
+ this.T = T;
220
+ }
221
+
222
+ /**
223
+ * Creates a group element for a curve from a given encoded point.
224
+ * <p>
225
+ * A point $(x,y)$ is encoded by storing $y$ in bit 0 to bit 254 and the sign of $x$ in bit 255.
226
+ * $x$ is recovered in the following way:
227
+ * </p><ul>
228
+ * <li>$x = sign(x) * \sqrt{(y^2 - 1) / (d * y^2 + 1)} = sign(x) * \sqrt{u / v}$ with $u = y^2 - 1$ and $v = d * y^2 + 1$.
229
+ * <li>Setting $β = (u * v^3) * (u * v^7)^{((q - 5) / 8)}$ one has $β^2 = \pm(u / v)$.
230
+ * <li>If $v * β = -u$ multiply $β$ with $i=\sqrt{-1}$.
231
+ * <li>Set $x := β$.
232
+ * <li>If $sign(x) \ne$ bit 255 of $s$ then negate $x$.
233
+ * </ul>
234
+ *
235
+ * @param curve The curve.
236
+ * @param s The encoded point.
237
+ */
238
+ public GroupElement(final Curve curve, final byte[] s) {
239
+ FieldElement x, y, yy, u, v, v3, vxx, check;
240
+ y = curve.getField().fromByteArray(s);
241
+ yy = y.square();
242
+
243
+ // u = y^2-1
244
+ u = yy.subtractOne();
245
+
246
+ // v = dy^2+1
247
+ v = yy.multiply(curve.getD()).addOne();
248
+
249
+ // v3 = v^3
250
+ v3 = v.square().multiply(v);
251
+
252
+ // x = (v3^2)vu, aka x = uv^7
253
+ x = v3.square().multiply(v).multiply(u);
254
+
255
+ // x = (uv^7)^((q-5)/8)
256
+ x = x.pow22523();
257
+
258
+ // x = uv^3(uv^7)^((q-5)/8)
259
+ x = v3.multiply(u).multiply(x);
260
+
261
+ vxx = x.square().multiply(v);
262
+ check = vxx.subtract(u); // vx^2-u
263
+ if (check.isNonZero()) {
264
+ check = vxx.add(u); // vx^2+u
265
+
266
+ if (check.isNonZero())
267
+ throw new IllegalArgumentException("not a valid GroupElement");
268
+ x = x.multiply(curve.getI());
269
+ }
270
+
271
+ if ((x.isNegative() ? 1 : 0) != Utils.bit(s, curve.getField().getb()-1)) {
272
+ x = x.negate();
273
+ }
274
+
275
+ this.curve = curve;
276
+ this.repr = Representation.P3;
277
+ this.X = x;
278
+ this.Y = y;
279
+ this.Z = curve.getField().ONE;
280
+ this.T = this.X.multiply(this.Y);
281
+ }
282
+
283
+ /**
284
+ * Gets the curve of the group element.
285
+ *
286
+ * @return The curve.
287
+ */
288
+ public Curve getCurve() {
289
+ return this.curve;
290
+ }
291
+
292
+ /**
293
+ * Gets the representation of the group element.
294
+ *
295
+ * @return The representation.
296
+ */
297
+ public Representation getRepresentation() {
298
+ return this.repr;
299
+ }
300
+
301
+ /**
302
+ * Gets the $X$ value of the group element.
303
+ * This is for most representation the projective $X$ coordinate.
304
+ *
305
+ * @return The $X$ value.
306
+ */
307
+ public FieldElement getX() {
308
+ return this.X;
309
+ }
310
+
311
+ /**
312
+ * Gets the $Y$ value of the group element.
313
+ * This is for most representation the projective $Y$ coordinate.
314
+ *
315
+ * @return The $Y$ value.
316
+ */
317
+ public FieldElement getY() {
318
+ return this.Y;
319
+ }
320
+
321
+ /**
322
+ * Gets the $Z$ value of the group element.
323
+ * This is for most representation the projective $Z$ coordinate.
324
+ *
325
+ * @return The $Z$ value.
326
+ */
327
+ public FieldElement getZ() {
328
+ return this.Z;
329
+ }
330
+
331
+ /**
332
+ * Gets the $T$ value of the group element.
333
+ * This is for most representation the projective $T$ coordinate.
334
+ *
335
+ * @return The $T$ value.
336
+ */
337
+ public FieldElement getT() {
338
+ return this.T;
339
+ }
340
+
341
+ /**
342
+ * Converts the group element to an encoded point on the curve.
343
+ *
344
+ * @return The encoded point as byte array.
345
+ */
346
+ public byte[] toByteArray() {
347
+ switch (this.repr) {
348
+ case P2:
349
+ case P3:
350
+ FieldElement recip = Z.invert();
351
+ FieldElement x = X.multiply(recip);
352
+ FieldElement y = Y.multiply(recip);
353
+ byte[] s = y.toByteArray();
354
+ s[s.length-1] |= (x.isNegative() ? (byte) 0x80 : 0);
355
+ return s;
356
+ default:
357
+ return toP2().toByteArray();
358
+ }
359
+ }
360
+
361
+ /**
362
+ * Converts the group element to the P2 representation.
363
+ *
364
+ * @return The group element in the P2 representation.
365
+ */
366
+ public GroupElement toP2() {
367
+ return toRep(Representation.P2);
368
+ }
369
+
370
+ /**
371
+ * Converts the group element to the P3 representation.
372
+ *
373
+ * @return The group element in the P3 representation.
374
+ */
375
+ public GroupElement toP3() {
376
+ return toRep(Representation.P3);
377
+ }
378
+
379
+ /**
380
+ * Converts the group element to the CACHED representation.
381
+ *
382
+ * @return The group element in the CACHED representation.
383
+ */
384
+ public GroupElement toCached() {
385
+ return toRep(Representation.CACHED);
386
+ }
387
+
388
+ /**
389
+ * Convert a GroupElement from one Representation to another.
390
+ * TODO-CR: Add additional conversion?
391
+ * $r = p$
392
+ * <p>
393
+ * Supported conversions:
394
+ * <p><ul>
395
+ * <li>P3 $\rightarrow$ P2
396
+ * <li>P3 $\rightarrow$ CACHED (1 multiply, 1 add, 1 subtract)
397
+ * <li>P1P1 $\rightarrow$ P2 (3 multiply)
398
+ * <li>P1P1 $\rightarrow$ P3 (4 multiply)
399
+ *
400
+ * @param repr The representation to convert to.
401
+ * @return A new group element in the given representation.
402
+ */
403
+ private GroupElement toRep(final Representation repr) {
404
+ switch (this.repr) {
405
+ case P2:
406
+ switch (repr) {
407
+ case P2:
408
+ return p2(this.curve, this.X, this.Y, this.Z);
409
+ default:
410
+ throw new IllegalArgumentException();
411
+ }
412
+ case P3:
413
+ switch (repr) {
414
+ case P2:
415
+ return p2(this.curve, this.X, this.Y, this.Z);
416
+ case P3:
417
+ return p3(this.curve, this.X, this.Y, this.Z, this.T);
418
+ case CACHED:
419
+ return cached(this.curve, this.Y.add(this.X), this.Y.subtract(this.X), this.Z, this.T.multiply(this.curve.get2D()));
420
+ default:
421
+ throw new IllegalArgumentException();
422
+ }
423
+ case P1P1:
424
+ switch (repr) {
425
+ case P2:
426
+ return p2(this.curve, this.X.multiply(this.T), Y.multiply(this.Z), this.Z.multiply(this.T));
427
+ case P3:
428
+ return p3(this.curve, this.X.multiply(this.T), Y.multiply(this.Z), this.Z.multiply(this.T), this.X.multiply(this.Y));
429
+ case P1P1:
430
+ return p1p1(this.curve, this.X, this.Y, this.Z, this.T);
431
+ default:
432
+ throw new IllegalArgumentException();
433
+ }
434
+ case PRECOMP:
435
+ switch (repr) {
436
+ case PRECOMP:
437
+ return precomp(this.curve, this.X, this.Y, this.Z);
438
+ default:
439
+ throw new IllegalArgumentException();
440
+ }
441
+ case CACHED:
442
+ switch (repr) {
443
+ case CACHED:
444
+ return cached(this.curve, this.X, this.Y, this.Z, this.T);
445
+ default:
446
+ throw new IllegalArgumentException();
447
+ }
448
+ default:
449
+ throw new UnsupportedOperationException();
450
+ }
451
+ }
452
+
453
+ /**
454
+ * Precomputes several tables.
455
+ * <p>
456
+ * The precomputed tables are used for {@link #scalarMultiply(byte[])}
457
+ * and {@link #doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])}.
458
+ *
459
+ * @param precomputeSingle should the matrix for scalarMultiply() be precomputed?
460
+ */
461
+ public synchronized void precompute(final boolean precomputeSingle) {
462
+ GroupElement Bi;
463
+
464
+ if (precomputeSingle && this.precmp == null) {
465
+ // Precomputation for single scalar multiplication.
466
+ this.precmp = new GroupElement[32][8];
467
+ // TODO-CR BR: check that this == base point when the method is called.
468
+ Bi = this;
469
+ for (int i = 0; i < 32; i++) {
470
+ GroupElement Bij = Bi;
471
+ for (int j = 0; j < 8; j++) {
472
+ final FieldElement recip = Bij.Z.invert();
473
+ final FieldElement x = Bij.X.multiply(recip);
474
+ final FieldElement y = Bij.Y.multiply(recip);
475
+ this.precmp[i][j] = precomp(this.curve, y.add(x), y.subtract(x), x.multiply(y).multiply(this.curve.get2D()));
476
+ Bij = Bij.add(Bi.toCached()).toP3();
477
+ }
478
+ // Only every second summand is precomputed (16^2 = 256)
479
+ for (int k = 0; k < 8; k++) {
480
+ Bi = Bi.add(Bi.toCached()).toP3();
481
+ }
482
+ }
483
+ }
484
+
485
+ // Precomputation for double scalar multiplication.
486
+ // P,3P,5P,7P,9P,11P,13P,15P
487
+ if (this.dblPrecmp != null)
488
+ return;
489
+ this.dblPrecmp = new GroupElement[8];
490
+ Bi = this;
491
+ for (int i = 0; i < 8; i++) {
492
+ final FieldElement recip = Bi.Z.invert();
493
+ final FieldElement x = Bi.X.multiply(recip);
494
+ final FieldElement y = Bi.Y.multiply(recip);
495
+ this.dblPrecmp[i] = precomp(this.curve, y.add(x), y.subtract(x), x.multiply(y).multiply(this.curve.get2D()));
496
+ // Bi = edwards(B,edwards(B,Bi))
497
+ Bi = this.add(this.add(Bi.toCached()).toP3().toCached()).toP3();
498
+ }
499
+ }
500
+
501
+ /**
502
+ * Doubles a given group element $p$ in $P^2$ or $P^3$ representation and returns the result in $P \times P$ representation.
503
+ * $r = 2 * p$ where $p = (X : Y : Z)$ or $p = (X : Y : Z : T)$
504
+ * <p>
505
+ * $r$ in $P \times P$ representation:
506
+ * <p>
507
+ * $r = ((X' : Z'), (Y' : T'))$ where
508
+ * </p><ul>
509
+ * <li>$X' = (X + Y)^2 - (Y^2 + X^2)$
510
+ * <li>$Y' = Y^2 + X^2$
511
+ * <li>$Z' = y^2 - X^2$
512
+ * <li>$T' = 2 * Z^2 - (y^2 - X^2)$
513
+ * </ul><p>
514
+ * $r$ converted from $P \times P$ to $P^2$ representation:
515
+ * <p>
516
+ * $r = (X'' : Y'' : Z'')$ where
517
+ * </p><ul>
518
+ * <li>$X'' = X' * Z' = ((X + Y)^2 - Y^2 - X^2) * (2 * Z^2 - (y^2 - X^2))$
519
+ * <li>$Y'' = Y' * T' = (Y^2 + X^2) * (2 * Z^2 - (y^2 - X^2))$
520
+ * <li>$Z'' = Z' * T' = (y^2 - X^2) * (2 * Z^2 - (y^2 - X^2))$
521
+ * </ul><p>
522
+ * Formula for the $P^2$ representation is in agreement with the formula given in [4] page 12 (with $a = -1$)
523
+ * up to a common factor -1 which does not matter:
524
+ * <p>
525
+ * $$
526
+ * B = (X + Y)^2; C = X^2; D = Y^2; E = -C = -X^2; F := E + D = Y^2 - X^2; H = Z^2; J = F − 2 * H; \\
527
+ * X3 = (B − C − D) · J = X' * (-T'); \\
528
+ * Y3 = F · (E − D) = Z' * (-Y'); \\
529
+ * Z3 = F · J = Z' * (-T').
530
+ * $$
531
+ *
532
+ * @return The P1P1 representation
533
+ */
534
+ public GroupElement dbl() {
535
+ switch (this.repr) {
536
+ case P2:
537
+ case P3: // Ignore T for P3 representation
538
+ FieldElement XX, YY, B, A, AA, Yn, Zn;
539
+ XX = this.X.square();
540
+ YY = this.Y.square();
541
+ B = this.Z.squareAndDouble();
542
+ A = this.X.add(this.Y);
543
+ AA = A.square();
544
+ Yn = YY.add(XX);
545
+ Zn = YY.subtract(XX);
546
+ return p1p1(this.curve, AA.subtract(Yn), Yn, Zn, B.subtract(Zn));
547
+ default:
548
+ throw new UnsupportedOperationException();
549
+ }
550
+ }
551
+
552
+ /**
553
+ * GroupElement addition using the twisted Edwards addition law with
554
+ * extended coordinates (Hisil2008).
555
+ * <p>
556
+ * this must be in $P^3$ representation and $q$ in PRECOMP representation.
557
+ * $r = p + q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z) = (Y2/Z2 + X2/Z2, Y2/Z2 - X2/Z2, 2 * d * X2/Z2 * Y2/Z2)$
558
+ * <p>
559
+ * $r$ in $P \times P$ representation:
560
+ * <p>
561
+ * $r = ((X' : Z'), (Y' : T'))$ where
562
+ * <p><ul>
563
+ * <li>$X' = (Y1 + X1) * q.X - (Y1 - X1) * q.Y = ((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) * 1/Z2$
564
+ * <li>$Y' = (Y1 + X1) * q.X + (Y1 - X1) * q.Y = ((Y1 + X1) * (Y2 + X2) + (Y1 - X1) * (Y2 - X2)) * 1/Z2$
565
+ * <li>$Z' = 2 * Z1 + T1 * q.Z = 2 * Z1 + T1 * 2 * d * X2 * Y2 * 1/Z2^2 = (2 * Z1 * Z2 + 2 * d * T1 * T2) * 1/Z2$
566
+ * <li>$T' = 2 * Z1 - T1 * q.Z = 2 * Z1 - T1 * 2 * d * X2 * Y2 * 1/Z2^2 = (2 * Z1 * Z2 - 2 * d * T1 * T2) * 1/Z2$
567
+ * </ul><p>
568
+ * Setting $A = (Y1 - X1) * (Y2 - X2), B = (Y1 + X1) * (Y2 + X2), C = 2 * d * T1 * T2, D = 2 * Z1 * Z2$ we get
569
+ * <p><ul>
570
+ * <li>$X' = (B - A) * 1/Z2$
571
+ * <li>$Y' = (B + A) * 1/Z2$
572
+ * <li>$Z' = (D + C) * 1/Z2$
573
+ * <li>$T' = (D - C) * 1/Z2$
574
+ * </ul><p>
575
+ * $r$ converted from $P \times P$ to $P^2$ representation:
576
+ * <p>
577
+ * $r = (X'' : Y'' : Z'' : T'')$ where
578
+ * <p><ul>
579
+ * <li>$X'' = X' * Z' = (B - A) * (D + C) * 1/Z2^2$
580
+ * <li>$Y'' = Y' * T' = (B + A) * (D - C) * 1/Z2^2$
581
+ * <li>$Z'' = Z' * T' = (D + C) * (D - C) * 1/Z2^2$
582
+ * <li>$T'' = X' * Y' = (B - A) * (B + A) * 1/Z2^2$
583
+ * </ul><p>
584
+ * TODO-CR BR: Formula for the $P^2$ representation is not in agreement with the formula given in [2] page 6<br>
585
+ * TODO-CR BR: (the common factor $1/Z2^2$ does not matter):<br>
586
+ * $$
587
+ * E = B - A, F = D - C, G = D + C, H = B + A \\
588
+ * X3 = E * F = (B - A) * (D - C); \\
589
+ * Y3 = G * H = (D + C) * (B + A); \\
590
+ * Z3 = F * G = (D - C) * (D + C); \\
591
+ * T3 = E * H = (B - A) * (B + A);
592
+ * $$
593
+ *
594
+ * @param q the PRECOMP representation of the GroupElement to add.
595
+ * @return the P1P1 representation of the result.
596
+ */
597
+ private GroupElement madd(GroupElement q) {
598
+ if (this.repr != Representation.P3)
599
+ throw new UnsupportedOperationException();
600
+ if (q.repr != Representation.PRECOMP)
601
+ throw new IllegalArgumentException();
602
+
603
+ FieldElement YpX, YmX, A, B, C, D;
604
+ YpX = this.Y.add(this.X);
605
+ YmX = this.Y.subtract(this.X);
606
+ A = YpX.multiply(q.X); // q->y+x
607
+ B = YmX.multiply(q.Y); // q->y-x
608
+ C = q.Z.multiply(this.T); // q->2dxy
609
+ D = this.Z.add(this.Z);
610
+ return p1p1(this.curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
611
+ }
612
+
613
+ /**
614
+ * GroupElement subtraction using the twisted Edwards addition law with
615
+ * extended coordinates (Hisil2008).
616
+ * <p>
617
+ * this must be in $P^3$ representation and $q$ in PRECOMP representation.
618
+ * $r = p - q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z) = (Y2/Z2 + X2/Z2, Y2/Z2 - X2/Z2, 2 * d * X2/Z2 * Y2/Z2)$
619
+ * <p>
620
+ * Negating $q$ means negating the value of $X2$ and $T2$ (the latter is irrelevant here).
621
+ * The formula is in accordance to {@link #madd the above addition}.
622
+ *
623
+ * @param q the PRECOMP representation of the GroupElement to subtract.
624
+ * @return the P1P1 representation of the result.
625
+ */
626
+ private GroupElement msub(GroupElement q) {
627
+ if (this.repr != Representation.P3)
628
+ throw new UnsupportedOperationException();
629
+ if (q.repr != Representation.PRECOMP)
630
+ throw new IllegalArgumentException();
631
+
632
+ FieldElement YpX, YmX, A, B, C, D;
633
+ YpX = this.Y.add(this.X);
634
+ YmX = this.Y.subtract(this.X);
635
+ A = YpX.multiply(q.Y); // q->y-x
636
+ B = YmX.multiply(q.X); // q->y+x
637
+ C = q.Z.multiply(this.T); // q->2dxy
638
+ D = this.Z.add(this.Z);
639
+ return p1p1(this.curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
640
+ }
641
+
642
+ /**
643
+ * GroupElement addition using the twisted Edwards addition law with
644
+ * extended coordinates (Hisil2008).
645
+ * <p>
646
+ * this must be in $P^3$ representation and $q$ in CACHED representation.
647
+ * $r = p + q$ where $p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z, q.T) = (Y2 + X2, Y2 - X2, Z2, 2 * d * T2)$
648
+ * <p>
649
+ * $r$ in $P \times P$ representation:
650
+ * </p><ul>
651
+ * <li>$X' = (Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)$
652
+ * <li>$Y' = (Y1 + X1) * (Y2 + X2) + (Y1 - X1) * (Y2 - X2)$
653
+ * <li>$Z' = 2 * Z1 * Z2 + 2 * d * T1 * T2$
654
+ * <li>$T' = 2 * Z1 * T2 - 2 * d * T1 * T2$
655
+ * </ul><p>
656
+ * Setting $A = (Y1 - X1) * (Y2 - X2), B = (Y1 + X1) * (Y2 + X2), C = 2 * d * T1 * T2, D = 2 * Z1 * Z2$ we get
657
+ * </p><ul>
658
+ * <li>$X' = (B - A)$
659
+ * <li>$Y' = (B + A)$
660
+ * <li>$Z' = (D + C)$
661
+ * <li>$T' = (D - C)$
662
+ * </ul><p>
663
+ * Same result as in {@link #madd} (up to a common factor which does not matter).
664
+ *
665
+ * @param q the CACHED representation of the GroupElement to add.
666
+ * @return the P1P1 representation of the result.
667
+ */
668
+ public GroupElement add(GroupElement q) {
669
+ if (this.repr != Representation.P3)
670
+ throw new UnsupportedOperationException();
671
+ if (q.repr != Representation.CACHED)
672
+ throw new IllegalArgumentException();
673
+
674
+ FieldElement YpX, YmX, A, B, C, ZZ, D;
675
+ YpX = this.Y.add(this.X);
676
+ YmX = this.Y.subtract(this.X);
677
+ A = YpX.multiply(q.X); // q->Y+X
678
+ B = YmX.multiply(q.Y); // q->Y-X
679
+ C = q.T.multiply(this.T); // q->2dT
680
+ ZZ = this.Z.multiply(q.Z);
681
+ D = ZZ.add(ZZ);
682
+ return p1p1(this.curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
683
+ }
684
+
685
+ /**
686
+ * GroupElement subtraction using the twisted Edwards addition law with
687
+ * extended coordinates (Hisil2008).
688
+ * <p>
689
+ * $r = p - q$
690
+ * <p>
691
+ * Negating $q$ means negating the value of the coordinate $X2$ and $T2$.
692
+ * The formula is in accordance to {@link #add the above addition}.
693
+ *
694
+ * @param q the PRECOMP representation of the GroupElement to subtract.
695
+ * @return the P1P1 representation of the result.
696
+ */
697
+ public GroupElement sub(GroupElement q) {
698
+ if (this.repr != Representation.P3)
699
+ throw new UnsupportedOperationException();
700
+ if (q.repr != Representation.CACHED)
701
+ throw new IllegalArgumentException();
702
+
703
+ FieldElement YpX, YmX, A, B, C, ZZ, D;
704
+ YpX = Y.add(X);
705
+ YmX = Y.subtract(X);
706
+ A = YpX.multiply(q.Y); // q->Y-X
707
+ B = YmX.multiply(q.X); // q->Y+X
708
+ C = q.T.multiply(T); // q->2dT
709
+ ZZ = Z.multiply(q.Z);
710
+ D = ZZ.add(ZZ);
711
+ return p1p1(curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
712
+ }
713
+
714
+ /**
715
+ * Negates this group element by subtracting it from the neutral group element.
716
+ * <p>
717
+ * TODO-CR BR: why not simply negate the coordinates $X$ and $T$?
718
+ *
719
+ * @return The negative of this group element.
720
+ */
721
+ public GroupElement negate() {
722
+ if (this.repr != Representation.P3)
723
+ throw new UnsupportedOperationException();
724
+ return this.curve.getZero(Representation.P3).sub(toCached()).toP3();
725
+ }
726
+
727
+ @Override
728
+ public int hashCode() {
729
+ return Arrays.hashCode(this.toByteArray());
730
+ }
731
+
732
+ @Override
733
+ public boolean equals(Object obj) {
734
+ if (obj == this)
735
+ return true;
736
+ if (!(obj instanceof GroupElement))
737
+ return false;
738
+ GroupElement ge = (GroupElement) obj;
739
+ if (!this.repr.equals(ge.repr)) {
740
+ try {
741
+ ge = ge.toRep(this.repr);
742
+ } catch (RuntimeException e) {
743
+ return false;
744
+ }
745
+ }
746
+ switch (this.repr) {
747
+ case P2:
748
+ case P3:
749
+ // Try easy way first
750
+ if (this.Z.equals(ge.Z))
751
+ return this.X.equals(ge.X) && this.Y.equals(ge.Y);
752
+ // X1/Z1 = X2/Z2 --> X1*Z2 = X2*Z1
753
+ final FieldElement x1 = this.X.multiply(ge.Z);
754
+ final FieldElement y1 = this.Y.multiply(ge.Z);
755
+ final FieldElement x2 = ge.X.multiply(this.Z);
756
+ final FieldElement y2 = ge.Y.multiply(this.Z);
757
+ return x1.equals(x2) && y1.equals(y2);
758
+ case P1P1:
759
+ return toP2().equals(ge);
760
+ case PRECOMP:
761
+ // Compare directly, PRECOMP is derived directly from x and y
762
+ return this.X.equals(ge.X) && this.Y.equals(ge.Y) && this.Z.equals(ge.Z);
763
+ case CACHED:
764
+ // Try easy way first
765
+ if (this.Z.equals(ge.Z))
766
+ return this.X.equals(ge.X) && this.Y.equals(ge.Y) && this.T.equals(ge.T);
767
+ // (Y+X)/Z = y+x etc.
768
+ final FieldElement x3 = this.X.multiply(ge.Z);
769
+ final FieldElement y3 = this.Y.multiply(ge.Z);
770
+ final FieldElement t3 = this.T.multiply(ge.Z);
771
+ final FieldElement x4 = ge.X.multiply(this.Z);
772
+ final FieldElement y4 = ge.Y.multiply(this.Z);
773
+ final FieldElement t4 = ge.T.multiply(this.Z);
774
+ return x3.equals(x4) && y3.equals(y4) && t3.equals(t4);
775
+ default:
776
+ return false;
777
+ }
778
+ }
779
+
780
+ /**
781
+ * Convert a to radix 16.
782
+ * <p>
783
+ * Method is package private only so that tests run.
784
+ *
785
+ * @param a $= a[0]+256*a[1]+...+256^{31} a[31]$
786
+ * @return 64 bytes, each between -8 and 7
787
+ */
788
+ static byte[] toRadix16(final byte[] a) {
789
+ final byte[] e = new byte[64];
790
+ int i;
791
+ // Radix 16 notation
792
+ for (i = 0; i < 32; i++) {
793
+ e[2*i+0] = (byte) (a[i] & 15);
794
+ e[2*i+1] = (byte) ((a[i] >> 4) & 15);
795
+ }
796
+ /* each e[i] is between 0 and 15 */
797
+ /* e[63] is between 0 and 7 */
798
+ int carry = 0;
799
+ for (i = 0; i < 63; i++) {
800
+ e[i] += carry;
801
+ carry = e[i] + 8;
802
+ carry >>= 4;
803
+ e[i] -= carry << 4;
804
+ }
805
+ e[63] += carry;
806
+ /* each e[i] is between -8 and 7 */
807
+ return e;
808
+ }
809
+
810
+ /**
811
+ * Constant-time conditional move.
812
+ * <p>
813
+ * Replaces this with $u$ if $b == 1$.<br>
814
+ * Replaces this with this if $b == 0$.
815
+ * <p>
816
+ * Method is package private only so that tests run.
817
+ *
818
+ * @param u The group element to return if $b == 1$.
819
+ * @param b in $\{0, 1\}$
820
+ * @return $u$ if $b == 1$; this if $b == 0$. Results undefined if $b$ is not in $\{0, 1\}$.
821
+ */
822
+ GroupElement cmov(final GroupElement u, final int b) {
823
+ return precomp(curve, X.cmov(u.X, b), Y.cmov(u.Y, b), Z.cmov(u.Z, b));
824
+ }
825
+
826
+ /**
827
+ * Look up $16^i r_i B$ in the precomputed table.
828
+ * <p>
829
+ * No secret array indices, no secret branching.
830
+ * Constant time.
831
+ * <p>
832
+ * Must have previously precomputed.
833
+ * <p>
834
+ * Method is package private only so that tests run.
835
+ *
836
+ * @param pos $= i/2$ for $i$ in $\{0, 2, 4,..., 62\}$
837
+ * @param b $= r_i$
838
+ * @return the GroupElement
839
+ */
840
+ GroupElement select(final int pos, final int b) {
841
+ // Is r_i negative?
842
+ final int bnegative = Utils.negative(b);
843
+ // |r_i|
844
+ final int babs = b - (((-bnegative) & b) << 1);
845
+
846
+ // 16^i |r_i| B
847
+ final GroupElement t = this.curve.getZero(Representation.PRECOMP)
848
+ .cmov(this.precmp[pos][0], Utils.equal(babs, 1))
849
+ .cmov(this.precmp[pos][1], Utils.equal(babs, 2))
850
+ .cmov(this.precmp[pos][2], Utils.equal(babs, 3))
851
+ .cmov(this.precmp[pos][3], Utils.equal(babs, 4))
852
+ .cmov(this.precmp[pos][4], Utils.equal(babs, 5))
853
+ .cmov(this.precmp[pos][5], Utils.equal(babs, 6))
854
+ .cmov(this.precmp[pos][6], Utils.equal(babs, 7))
855
+ .cmov(this.precmp[pos][7], Utils.equal(babs, 8));
856
+ // -16^i |r_i| B
857
+ final GroupElement tminus = precomp(curve, t.Y, t.X, t.Z.negate());
858
+ // 16^i r_i B
859
+ return t.cmov(tminus, bnegative);
860
+ }
861
+
862
+ /**
863
+ * $h = a * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$ and
864
+ * $B$ is this point. If its lookup table has not been precomputed, it
865
+ * will be at the start of the method (and cached for later calls).
866
+ * Constant time.
867
+ * <p>
868
+ * Preconditions: (TODO: Check this applies here)
869
+ * $a[31] \le 127$
870
+ * @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$
871
+ * @return the GroupElement
872
+ */
873
+ public GroupElement scalarMultiply(final byte[] a) {
874
+ GroupElement t;
875
+ int i;
876
+
877
+ final byte[] e = toRadix16(a);
878
+
879
+ GroupElement h = this.curve.getZero(Representation.P3);
880
+ synchronized(this) {
881
+ // TODO: Get opinion from a crypto professional.
882
+ // This should in practice never be necessary, the only point that
883
+ // this should get called on is EdDSA's B.
884
+ //precompute();
885
+ for (i = 1; i < 64; i += 2) {
886
+ t = select(i/2, e[i]);
887
+ h = h.madd(t).toP3();
888
+ }
889
+
890
+ h = h.dbl().toP2().dbl().toP2().dbl().toP2().dbl().toP3();
891
+
892
+ for (i = 0; i < 64; i += 2) {
893
+ t = select(i/2, e[i]);
894
+ h = h.madd(t).toP3();
895
+ }
896
+ }
897
+
898
+ return h;
899
+ }
900
+
901
+ /**
902
+ * Calculates a sliding-windows base 2 representation for a given value $a$.
903
+ * To learn more about it see [6] page 8.
904
+ * <p>
905
+ * Output: $r$ which satisfies
906
+ * $a = r0 * 2^0 + r1 * 2^1 + \dots + r255 * 2^{255}$ with $ri$ in $\{-15, -13, -11, -9, -7, -5, -3, -1, 0, 1, 3, 5, 7, 9, 11, 13, 15\}$
907
+ * <p>
908
+ * Method is package private only so that tests run.
909
+ *
910
+ * @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$.
911
+ * @return The byte array $r$ in the above described form.
912
+ */
913
+ static byte[] slide(final byte[] a) {
914
+ byte[] r = new byte[256];
915
+
916
+ // Put each bit of 'a' into a separate byte, 0 or 1
917
+ for (int i = 0; i < 256; ++i) {
918
+ r[i] = (byte) (1 & (a[i >> 3] >> (i & 7)));
919
+ }
920
+
921
+ // Note: r[i] will always be odd.
922
+ for (int i = 0; i < 256; ++i) {
923
+ if (r[i] != 0) {
924
+ for (int b = 1; b <= 6 && i + b < 256; ++b) {
925
+ // Accumulate bits if possible
926
+ if (r[i + b] != 0) {
927
+ if (r[i] + (r[i + b] << b) <= 15) {
928
+ r[i] += r[i + b] << b;
929
+ r[i + b] = 0;
930
+ } else if (r[i] - (r[i + b] << b) >= -15) {
931
+ r[i] -= r[i + b] << b;
932
+ for (int k = i + b; k < 256; ++k) {
933
+ if (r[k] == 0) {
934
+ r[k] = 1;
935
+ break;
936
+ }
937
+ r[k] = 0;
938
+ }
939
+ } else
940
+ break;
941
+ }
942
+ }
943
+ }
944
+ }
945
+
946
+ return r;
947
+ }
948
+
949
+ /**
950
+ * $r = a * A + b * B$ where $a = a[0]+256*a[1]+\dots+256^{31} a[31]$,
951
+ * $b = b[0]+256*b[1]+\dots+256^{31} b[31]$ and $B$ is this point.
952
+ * <p>
953
+ * $A$ must have been previously precomputed.
954
+ *
955
+ * @param A in P3 representation.
956
+ * @param a $= a[0]+256*a[1]+\dots+256^{31} a[31]$
957
+ * @param b $= b[0]+256*b[1]+\dots+256^{31} b[31]$
958
+ * @return the GroupElement
959
+ */
960
+ public GroupElement doubleScalarMultiplyVariableTime(final GroupElement A, final byte[] a, final byte[] b) {
961
+ // TODO-CR BR: A check that this is the base point is needed.
962
+ final byte[] aslide = slide(a);
963
+ final byte[] bslide = slide(b);
964
+
965
+ GroupElement r = this.curve.getZero(Representation.P2);
966
+
967
+ int i;
968
+ for (i = 255; i >= 0; --i) {
969
+ if (aslide[i] != 0 || bslide[i] != 0) break;
970
+ }
971
+
972
+ synchronized(this) {
973
+ // TODO-CR BR strange comment below.
974
+ // TODO: Get opinion from a crypto professional.
975
+ // This should in practice never be necessary, the only point that
976
+ // this should get called on is EdDSA's B.
977
+ //precompute();
978
+ for (; i >= 0; --i) {
979
+ GroupElement t = r.dbl();
980
+
981
+ if (aslide[i] > 0) {
982
+ t = t.toP3().madd(A.dblPrecmp[aslide[i]/2]);
983
+ } else if(aslide[i] < 0) {
984
+ t = t.toP3().msub(A.dblPrecmp[(-aslide[i])/2]);
985
+ }
986
+
987
+ if (bslide[i] > 0) {
988
+ t = t.toP3().madd(this.dblPrecmp[bslide[i]/2]);
989
+ } else if(bslide[i] < 0) {
990
+ t = t.toP3().msub(this.dblPrecmp[(-bslide[i])/2]);
991
+ }
992
+
993
+ r = t.toP2();
994
+ }
995
+ }
996
+
997
+ return r;
998
+ }
999
+
1000
+ /**
1001
+ * Verify that a point is on its curve.
1002
+ * @return true if the point lies on its curve.
1003
+ */
1004
+ public boolean isOnCurve() {
1005
+ return isOnCurve(curve);
1006
+ }
1007
+
1008
+ /**
1009
+ * Verify that a point is on the curve.
1010
+ * @param curve The curve to check.
1011
+ * @return true if the point lies on the curve.
1012
+ */
1013
+ public boolean isOnCurve(Curve curve) {
1014
+ switch (repr) {
1015
+ case P2:
1016
+ case P3:
1017
+ FieldElement recip = Z.invert();
1018
+ FieldElement x = X.multiply(recip);
1019
+ FieldElement y = Y.multiply(recip);
1020
+ FieldElement xx = x.square();
1021
+ FieldElement yy = y.square();
1022
+ FieldElement dxxyy = curve.getD().multiply(xx).multiply(yy);
1023
+ return curve.getField().ONE.add(dxxyy).add(xx).equals(yy);
1024
+
1025
+ default:
1026
+ return toP2().isOnCurve(curve);
1027
+ }
1028
+ }
1029
+
1030
+ @Override
1031
+ public String toString() {
1032
+ return "[GroupElement\nX="+X+"\nY="+Y+"\nZ="+Z+"\nT="+T+"\n]";
1033
+ }
1034
+ }