ddtrace 0.50.0 → 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.editorconfig +22 -0
- data/.gitignore +10 -0
- data/CHANGELOG.md +430 -11
- data/CONTRIBUTING.md +1 -5
- data/LICENSE-3rdparty.csv +2 -1
- data/README.md +4 -0
- data/bin/ddtracerb +5 -5
- data/ddtrace.gemspec +20 -5
- data/docs/0.x-trace.png +0 -0
- data/docs/1.0-trace.png +0 -0
- data/docs/AutoInstrumentation.md +36 -0
- data/docs/Deprecation.md +8 -0
- data/docs/DevelopmentGuide.md +17 -7
- data/docs/GettingStarted.md +660 -486
- data/docs/ProfilingDevelopment.md +45 -23
- data/docs/PublicApi.md +14 -0
- data/docs/UpgradeGuide.md +736 -0
- data/ext/ddtrace_profiling_native_extension/NativeExtensionDesign.md +86 -0
- data/ext/ddtrace_profiling_native_extension/clock_id.h +4 -0
- data/ext/ddtrace_profiling_native_extension/clock_id_from_pthread.c +52 -0
- data/ext/ddtrace_profiling_native_extension/clock_id_noop.c +14 -0
- data/ext/ddtrace_profiling_native_extension/extconf.rb +206 -0
- data/ext/ddtrace_profiling_native_extension/private_vm_api_access.c +35 -0
- data/ext/ddtrace_profiling_native_extension/private_vm_api_access.h +3 -0
- data/ext/ddtrace_profiling_native_extension/profiling.c +24 -0
- data/lib/datadog/appsec/assets/blocked.html +4 -0
- data/lib/datadog/appsec/assets/waf_rules/README.md +7 -0
- data/lib/datadog/appsec/assets/waf_rules/recommended.json +5638 -0
- data/lib/datadog/appsec/assets/waf_rules/risky.json +1499 -0
- data/lib/datadog/appsec/assets/waf_rules/strict.json +1298 -0
- data/lib/datadog/appsec/assets.rb +38 -0
- data/lib/datadog/appsec/autoload.rb +16 -0
- data/lib/datadog/appsec/configuration/settings.rb +175 -0
- data/lib/datadog/appsec/configuration.rb +72 -0
- data/lib/datadog/appsec/contrib/auto_instrument.rb +29 -0
- data/lib/datadog/appsec/contrib/configuration/settings.rb +20 -0
- data/lib/datadog/appsec/contrib/integration.rb +37 -0
- data/lib/datadog/appsec/contrib/patcher.rb +12 -0
- data/lib/datadog/appsec/contrib/rack/configuration/settings.rb +22 -0
- data/lib/datadog/appsec/contrib/rack/ext.rb +15 -0
- data/lib/datadog/appsec/contrib/rack/gateway/watcher.rb +126 -0
- data/lib/datadog/appsec/contrib/rack/integration.rb +48 -0
- data/lib/datadog/appsec/contrib/rack/patcher.rb +33 -0
- data/lib/datadog/appsec/contrib/rack/reactive/request.rb +87 -0
- data/lib/datadog/appsec/contrib/rack/reactive/response.rb +64 -0
- data/lib/datadog/appsec/contrib/rack/request.rb +52 -0
- data/lib/datadog/appsec/contrib/rack/request_middleware.rb +57 -0
- data/lib/datadog/appsec/contrib/rack/response.rb +24 -0
- data/lib/datadog/appsec/contrib/rails/configuration/settings.rb +22 -0
- data/lib/datadog/appsec/contrib/rails/ext.rb +15 -0
- data/lib/datadog/appsec/contrib/rails/framework.rb +30 -0
- data/lib/datadog/appsec/contrib/rails/integration.rb +48 -0
- data/lib/datadog/appsec/contrib/rails/patcher.rb +125 -0
- data/lib/datadog/appsec/contrib/rails/request_middleware.rb +20 -0
- data/lib/datadog/appsec/contrib/sinatra/configuration/settings.rb +22 -0
- data/lib/datadog/appsec/contrib/sinatra/ext.rb +15 -0
- data/lib/datadog/appsec/contrib/sinatra/framework.rb +34 -0
- data/lib/datadog/appsec/contrib/sinatra/integration.rb +48 -0
- data/lib/datadog/appsec/contrib/sinatra/patcher.rb +77 -0
- data/lib/datadog/appsec/contrib/sinatra/request_middleware.rb +20 -0
- data/lib/datadog/appsec/event.rb +106 -0
- data/lib/datadog/appsec/extensions.rb +121 -0
- data/lib/datadog/appsec/instrumentation/gateway.rb +44 -0
- data/lib/datadog/appsec/processor.rb +121 -0
- data/lib/datadog/appsec/rate_limiter.rb +55 -0
- data/lib/datadog/appsec/reactive/address_hash.rb +18 -0
- data/lib/datadog/appsec/reactive/engine.rb +44 -0
- data/lib/datadog/appsec/reactive/operation.rb +52 -0
- data/lib/datadog/appsec/reactive/subscriber.rb +18 -0
- data/lib/datadog/appsec.rb +23 -0
- data/lib/datadog/ci/configuration/components.rb +10 -8
- data/lib/datadog/ci/configuration/settings.rb +20 -3
- data/lib/datadog/ci/contrib/cucumber/configuration/settings.rb +6 -3
- data/lib/datadog/ci/contrib/cucumber/ext.rb +3 -0
- data/lib/datadog/ci/contrib/cucumber/formatter.rb +5 -8
- data/lib/datadog/ci/contrib/cucumber/instrumentation.rb +3 -1
- data/lib/datadog/ci/contrib/cucumber/integration.rb +4 -2
- data/lib/datadog/ci/contrib/cucumber/patcher.rb +4 -2
- data/lib/datadog/ci/contrib/rspec/configuration/settings.rb +6 -3
- data/lib/datadog/ci/contrib/rspec/example.rb +5 -8
- data/lib/datadog/ci/contrib/rspec/ext.rb +3 -0
- data/lib/datadog/ci/contrib/rspec/integration.rb +6 -4
- data/lib/datadog/ci/contrib/rspec/patcher.rb +4 -2
- data/lib/datadog/ci/ext/app_types.rb +3 -1
- data/lib/datadog/ci/ext/environment.rb +312 -126
- data/lib/datadog/ci/ext/settings.rb +3 -1
- data/lib/datadog/ci/ext/test.rb +10 -1
- data/lib/datadog/ci/extensions.rb +6 -4
- data/lib/datadog/ci/flush.rb +38 -0
- data/lib/datadog/ci/test.rb +33 -13
- data/lib/datadog/ci.rb +5 -1
- data/lib/datadog/core/buffer/cruby.rb +55 -0
- data/lib/datadog/core/buffer/random.rb +134 -0
- data/lib/datadog/core/buffer/thread_safe.rb +58 -0
- data/lib/datadog/core/chunker.rb +35 -0
- data/lib/datadog/core/configuration/agent_settings_resolver.rb +365 -0
- data/lib/datadog/core/configuration/base.rb +89 -0
- data/lib/datadog/core/configuration/components.rb +393 -0
- data/lib/datadog/core/configuration/dependency_resolver.rb +28 -0
- data/lib/datadog/core/configuration/option.rb +69 -0
- data/lib/datadog/core/configuration/option_definition.rb +126 -0
- data/lib/datadog/core/configuration/option_definition_set.rb +22 -0
- data/lib/datadog/core/configuration/option_set.rb +10 -0
- data/lib/datadog/core/configuration/options.rb +118 -0
- data/lib/datadog/core/configuration/settings.rb +618 -0
- data/lib/datadog/core/configuration.rb +284 -0
- data/lib/datadog/core/diagnostics/environment_logger.rb +283 -0
- data/lib/datadog/core/diagnostics/ext.rb +41 -0
- data/lib/datadog/core/diagnostics/health.rb +37 -0
- data/lib/datadog/core/encoding.rb +76 -0
- data/lib/datadog/core/environment/cgroup.rb +53 -0
- data/lib/datadog/core/environment/class_count.rb +21 -0
- data/lib/datadog/core/environment/container.rb +92 -0
- data/lib/datadog/core/environment/ext.rb +46 -0
- data/lib/datadog/core/environment/gc.rb +20 -0
- data/lib/datadog/core/environment/identity.rb +58 -0
- data/lib/datadog/core/environment/socket.rb +24 -0
- data/lib/datadog/core/environment/thread_count.rb +20 -0
- data/lib/datadog/core/environment/variable_helpers.rb +44 -0
- data/lib/datadog/core/environment/vm_cache.rb +47 -0
- data/lib/datadog/core/error.rb +101 -0
- data/lib/datadog/core/extensions.rb +16 -0
- data/lib/datadog/core/git/ext.rb +35 -0
- data/lib/datadog/core/logger.rb +46 -0
- data/lib/datadog/core/metrics/client.rb +188 -0
- data/lib/datadog/core/metrics/ext.rb +20 -0
- data/lib/datadog/core/metrics/helpers.rb +25 -0
- data/lib/datadog/core/metrics/logging.rb +44 -0
- data/lib/datadog/core/metrics/metric.rb +14 -0
- data/lib/datadog/core/metrics/options.rb +50 -0
- data/lib/datadog/core/pin.rb +75 -0
- data/lib/datadog/core/runtime/ext.rb +28 -0
- data/lib/datadog/core/runtime/metrics.rb +126 -0
- data/lib/datadog/core/utils/compression.rb +32 -0
- data/lib/datadog/core/utils/forking.rb +63 -0
- data/lib/datadog/core/utils/object_set.rb +43 -0
- data/lib/datadog/core/utils/only_once.rb +44 -0
- data/lib/datadog/core/utils/safe_dup.rb +27 -0
- data/lib/datadog/core/utils/sequence.rb +21 -0
- data/lib/datadog/core/utils/string_table.rb +49 -0
- data/lib/datadog/core/utils/time.rb +54 -0
- data/lib/datadog/core/utils.rb +115 -0
- data/lib/datadog/core/vendor/multipart-post/multipart/post/composite_read_io.rb +120 -0
- data/lib/datadog/core/vendor/multipart-post/multipart/post/multipartable.rb +61 -0
- data/lib/datadog/core/vendor/multipart-post/multipart/post/parts.rb +139 -0
- data/lib/datadog/core/vendor/multipart-post/multipart/post/version.rb +13 -0
- data/lib/datadog/core/vendor/multipart-post/multipart/post.rb +12 -0
- data/lib/datadog/core/vendor/multipart-post/multipart.rb +16 -0
- data/lib/datadog/core/vendor/multipart-post/net/http/post/multipart.rb +36 -0
- data/lib/datadog/core/worker.rb +24 -0
- data/lib/datadog/core/workers/async.rb +180 -0
- data/lib/datadog/core/workers/interval_loop.rb +119 -0
- data/lib/datadog/core/workers/polling.rb +59 -0
- data/lib/datadog/core/workers/queue.rb +44 -0
- data/lib/datadog/core/workers/runtime_metrics.rb +65 -0
- data/lib/datadog/core.rb +74 -0
- data/lib/datadog/opentracer/binary_propagator.rb +26 -0
- data/lib/datadog/opentracer/carrier.rb +9 -0
- data/lib/datadog/opentracer/distributed_headers.rb +58 -0
- data/lib/datadog/opentracer/global_tracer.rb +17 -0
- data/lib/datadog/opentracer/propagator.rb +26 -0
- data/lib/datadog/opentracer/rack_propagator.rb +72 -0
- data/lib/datadog/opentracer/scope.rb +18 -0
- data/lib/datadog/opentracer/scope_manager.rb +9 -0
- data/lib/datadog/opentracer/span.rb +101 -0
- data/lib/datadog/opentracer/span_context.rb +19 -0
- data/lib/datadog/opentracer/span_context_factory.rb +27 -0
- data/lib/datadog/opentracer/text_map_propagator.rb +87 -0
- data/lib/datadog/opentracer/thread_local_scope.rb +34 -0
- data/lib/datadog/opentracer/thread_local_scope_manager.rb +43 -0
- data/lib/datadog/opentracer/tracer.rb +214 -0
- data/lib/datadog/opentracer.rb +24 -0
- data/lib/datadog/profiling/backtrace_location.rb +34 -0
- data/lib/datadog/profiling/buffer.rb +43 -0
- data/lib/datadog/profiling/collectors/code_provenance.rb +114 -0
- data/lib/datadog/profiling/collectors/stack.rb +297 -0
- data/lib/datadog/profiling/encoding/profile.rb +48 -0
- data/lib/datadog/profiling/event.rb +15 -0
- data/lib/datadog/profiling/events/stack.rb +82 -0
- data/lib/datadog/profiling/exporter.rb +25 -0
- data/lib/datadog/profiling/ext/forking.rb +99 -0
- data/lib/datadog/profiling/ext.rb +57 -0
- data/lib/datadog/profiling/flush.rb +69 -0
- data/lib/datadog/profiling/native_extension.rb +41 -0
- data/lib/datadog/profiling/pprof/builder.rb +127 -0
- data/lib/datadog/profiling/pprof/converter.rb +104 -0
- data/lib/datadog/profiling/pprof/message_set.rb +16 -0
- data/lib/datadog/profiling/pprof/payload.rb +20 -0
- data/lib/datadog/profiling/pprof/pprof_pb.rb +83 -0
- data/lib/datadog/profiling/pprof/stack_sample.rb +141 -0
- data/lib/datadog/profiling/pprof/string_table.rb +12 -0
- data/lib/datadog/profiling/pprof/template.rb +120 -0
- data/lib/datadog/profiling/preload.rb +5 -0
- data/lib/datadog/profiling/profiler.rb +34 -0
- data/lib/datadog/profiling/recorder.rb +117 -0
- data/lib/datadog/profiling/scheduler.rb +151 -0
- data/lib/datadog/profiling/tasks/exec.rb +50 -0
- data/lib/datadog/profiling/tasks/help.rb +18 -0
- data/lib/datadog/profiling/tasks/setup.rb +91 -0
- data/lib/datadog/profiling/trace_identifiers/ddtrace.rb +45 -0
- data/lib/datadog/profiling/trace_identifiers/helper.rb +47 -0
- data/lib/datadog/profiling/transport/client.rb +16 -0
- data/lib/datadog/profiling/transport/http/api/endpoint.rb +107 -0
- data/lib/datadog/profiling/transport/http/api/instance.rb +38 -0
- data/lib/datadog/profiling/transport/http/api/spec.rb +42 -0
- data/lib/datadog/profiling/transport/http/api.rb +45 -0
- data/lib/datadog/profiling/transport/http/builder.rb +30 -0
- data/lib/datadog/profiling/transport/http/client.rb +35 -0
- data/lib/datadog/profiling/transport/http/response.rb +23 -0
- data/lib/datadog/profiling/transport/http.rb +112 -0
- data/lib/datadog/profiling/transport/io/client.rb +29 -0
- data/lib/datadog/profiling/transport/io/response.rb +18 -0
- data/lib/datadog/profiling/transport/io.rb +32 -0
- data/lib/datadog/profiling/transport/parcel.rb +19 -0
- data/lib/datadog/profiling/transport/request.rb +17 -0
- data/lib/datadog/profiling/transport/response.rb +10 -0
- data/lib/datadog/profiling.rb +168 -0
- data/lib/datadog/tracing/analytics.rb +25 -0
- data/lib/datadog/tracing/buffer.rb +126 -0
- data/lib/datadog/tracing/configuration/ext.rb +51 -0
- data/lib/datadog/tracing/context.rb +68 -0
- data/lib/datadog/tracing/context_provider.rb +66 -0
- data/lib/datadog/tracing/contrib/action_cable/configuration/settings.rb +35 -0
- data/lib/datadog/tracing/contrib/action_cable/event.rb +72 -0
- data/lib/datadog/tracing/contrib/action_cable/events/broadcast.rb +58 -0
- data/lib/datadog/tracing/contrib/action_cable/events/perform_action.rb +63 -0
- data/lib/datadog/tracing/contrib/action_cable/events/transmit.rb +59 -0
- data/lib/datadog/tracing/contrib/action_cable/events.rb +37 -0
- data/lib/datadog/tracing/contrib/action_cable/ext.rb +32 -0
- data/lib/datadog/tracing/contrib/action_cable/instrumentation.rb +91 -0
- data/lib/datadog/tracing/contrib/action_cable/integration.rb +50 -0
- data/lib/datadog/tracing/contrib/action_cable/patcher.rb +31 -0
- data/lib/datadog/tracing/contrib/action_mailer/configuration/settings.rb +36 -0
- data/lib/datadog/tracing/contrib/action_mailer/event.rb +52 -0
- data/lib/datadog/tracing/contrib/action_mailer/events/deliver.rb +60 -0
- data/lib/datadog/tracing/contrib/action_mailer/events/process.rb +47 -0
- data/lib/datadog/tracing/contrib/action_mailer/events.rb +34 -0
- data/lib/datadog/tracing/contrib/action_mailer/ext.rb +33 -0
- data/lib/datadog/tracing/contrib/action_mailer/integration.rb +50 -0
- data/lib/datadog/tracing/contrib/action_mailer/patcher.rb +29 -0
- data/lib/datadog/tracing/contrib/action_pack/action_controller/instrumentation.rb +156 -0
- data/lib/datadog/tracing/contrib/action_pack/action_controller/patcher.rb +29 -0
- data/lib/datadog/tracing/contrib/action_pack/configuration/settings.rb +36 -0
- data/lib/datadog/tracing/contrib/action_pack/ext.rb +22 -0
- data/lib/datadog/tracing/contrib/action_pack/integration.rb +50 -0
- data/lib/datadog/tracing/contrib/action_pack/patcher.rb +27 -0
- data/lib/datadog/tracing/contrib/action_pack/utils.rb +40 -0
- data/lib/datadog/tracing/contrib/action_view/configuration/settings.rb +36 -0
- data/lib/datadog/tracing/contrib/action_view/event.rb +35 -0
- data/lib/datadog/tracing/contrib/action_view/events/render_partial.rb +54 -0
- data/lib/datadog/tracing/contrib/action_view/events/render_template.rb +57 -0
- data/lib/datadog/tracing/contrib/action_view/events.rb +34 -0
- data/lib/datadog/tracing/contrib/action_view/ext.rb +24 -0
- data/lib/datadog/tracing/contrib/action_view/instrumentation/partial_renderer.rb +78 -0
- data/lib/datadog/tracing/contrib/action_view/instrumentation/template_renderer.rb +91 -0
- data/lib/datadog/tracing/contrib/action_view/integration.rb +57 -0
- data/lib/datadog/tracing/contrib/action_view/patcher.rb +48 -0
- data/lib/datadog/tracing/contrib/action_view/utils.rb +36 -0
- data/lib/datadog/tracing/contrib/active_job/configuration/settings.rb +37 -0
- data/lib/datadog/tracing/contrib/active_job/event.rb +58 -0
- data/lib/datadog/tracing/contrib/active_job/events/discard.rb +50 -0
- data/lib/datadog/tracing/contrib/active_job/events/enqueue.rb +49 -0
- data/lib/datadog/tracing/contrib/active_job/events/enqueue_at.rb +49 -0
- data/lib/datadog/tracing/contrib/active_job/events/enqueue_retry.rb +51 -0
- data/lib/datadog/tracing/contrib/active_job/events/perform.rb +49 -0
- data/lib/datadog/tracing/contrib/active_job/events/retry_stopped.rb +50 -0
- data/lib/datadog/tracing/contrib/active_job/events.rb +42 -0
- data/lib/datadog/tracing/contrib/active_job/ext.rb +39 -0
- data/lib/datadog/tracing/contrib/active_job/integration.rb +50 -0
- data/lib/datadog/tracing/contrib/active_job/log_injection.rb +26 -0
- data/lib/datadog/tracing/contrib/active_job/patcher.rb +36 -0
- data/lib/datadog/tracing/contrib/active_model_serializers/configuration/settings.rb +33 -0
- data/lib/datadog/tracing/contrib/active_model_serializers/event.rb +69 -0
- data/lib/datadog/tracing/contrib/active_model_serializers/events/render.rb +45 -0
- data/lib/datadog/tracing/contrib/active_model_serializers/events/serialize.rb +47 -0
- data/lib/datadog/tracing/contrib/active_model_serializers/events.rb +34 -0
- data/lib/datadog/tracing/contrib/active_model_serializers/ext.rb +24 -0
- data/lib/datadog/tracing/contrib/active_model_serializers/integration.rb +45 -0
- data/lib/datadog/tracing/contrib/active_model_serializers/patcher.rb +33 -0
- data/lib/datadog/tracing/contrib/active_record/configuration/makara_resolver.rb +36 -0
- data/lib/datadog/tracing/contrib/active_record/configuration/resolver.rb +138 -0
- data/lib/datadog/tracing/contrib/active_record/configuration/settings.rb +39 -0
- data/lib/datadog/tracing/contrib/active_record/event.rb +30 -0
- data/lib/datadog/tracing/contrib/active_record/events/instantiation.rb +58 -0
- data/lib/datadog/tracing/contrib/active_record/events/sql.rb +78 -0
- data/lib/datadog/tracing/contrib/active_record/events.rb +34 -0
- data/lib/datadog/tracing/contrib/active_record/ext.rb +29 -0
- data/lib/datadog/tracing/contrib/active_record/integration.rb +56 -0
- data/lib/datadog/tracing/contrib/active_record/patcher.rb +27 -0
- data/lib/datadog/tracing/contrib/active_record/utils.rb +128 -0
- data/lib/datadog/tracing/contrib/active_record/vendor/connection_specification.rb +307 -0
- data/lib/datadog/tracing/contrib/active_support/cache/instrumentation.rb +270 -0
- data/lib/datadog/tracing/contrib/active_support/cache/patcher.rb +73 -0
- data/lib/datadog/tracing/contrib/active_support/cache/redis.rb +47 -0
- data/lib/datadog/tracing/contrib/active_support/configuration/settings.rb +35 -0
- data/lib/datadog/tracing/contrib/active_support/ext.rb +31 -0
- data/lib/datadog/tracing/contrib/active_support/integration.rb +51 -0
- data/lib/datadog/tracing/contrib/active_support/notifications/event.rb +71 -0
- data/lib/datadog/tracing/contrib/active_support/notifications/subscriber.rb +71 -0
- data/lib/datadog/tracing/contrib/active_support/notifications/subscription.rb +162 -0
- data/lib/datadog/tracing/contrib/active_support/patcher.rb +27 -0
- data/lib/datadog/tracing/contrib/analytics.rb +29 -0
- data/lib/datadog/tracing/contrib/auto_instrument.rb +53 -0
- data/lib/datadog/tracing/contrib/aws/configuration/settings.rb +35 -0
- data/lib/datadog/tracing/contrib/aws/ext.rb +27 -0
- data/lib/datadog/tracing/contrib/aws/instrumentation.rb +95 -0
- data/lib/datadog/tracing/contrib/aws/integration.rb +47 -0
- data/lib/datadog/tracing/contrib/aws/parsed_context.rb +60 -0
- data/lib/datadog/tracing/contrib/aws/patcher.rb +57 -0
- data/lib/datadog/tracing/contrib/aws/services.rb +123 -0
- data/lib/datadog/tracing/contrib/concurrent_ruby/configuration/settings.rb +23 -0
- data/lib/datadog/tracing/contrib/concurrent_ruby/context_composite_executor_service.rb +46 -0
- data/lib/datadog/tracing/contrib/concurrent_ruby/ext.rb +16 -0
- data/lib/datadog/tracing/contrib/concurrent_ruby/future_patch.rb +27 -0
- data/lib/datadog/tracing/contrib/concurrent_ruby/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/concurrent_ruby/patcher.rb +33 -0
- data/lib/datadog/tracing/contrib/configurable.rb +102 -0
- data/lib/datadog/tracing/contrib/configuration/resolver.rb +85 -0
- data/lib/datadog/tracing/contrib/configuration/resolvers/pattern_resolver.rb +43 -0
- data/lib/datadog/tracing/contrib/configuration/settings.rb +43 -0
- data/lib/datadog/tracing/contrib/dalli/configuration/settings.rb +35 -0
- data/lib/datadog/tracing/contrib/dalli/ext.rb +24 -0
- data/lib/datadog/tracing/contrib/dalli/instrumentation.rb +58 -0
- data/lib/datadog/tracing/contrib/dalli/integration.rb +52 -0
- data/lib/datadog/tracing/contrib/dalli/patcher.rb +29 -0
- data/lib/datadog/tracing/contrib/dalli/quantize.rb +26 -0
- data/lib/datadog/tracing/contrib/delayed_job/configuration/settings.rb +38 -0
- data/lib/datadog/tracing/contrib/delayed_job/ext.rb +26 -0
- data/lib/datadog/tracing/contrib/delayed_job/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/delayed_job/patcher.rb +32 -0
- data/lib/datadog/tracing/contrib/delayed_job/plugin.rb +101 -0
- data/lib/datadog/tracing/contrib/elasticsearch/configuration/settings.rb +36 -0
- data/lib/datadog/tracing/contrib/elasticsearch/ext.rb +26 -0
- data/lib/datadog/tracing/contrib/elasticsearch/integration.rb +44 -0
- data/lib/datadog/tracing/contrib/elasticsearch/patcher.rb +115 -0
- data/lib/datadog/tracing/contrib/elasticsearch/quantize.rb +89 -0
- data/lib/datadog/tracing/contrib/ethon/configuration/settings.rb +37 -0
- data/lib/datadog/tracing/contrib/ethon/easy_patch.rb +177 -0
- data/lib/datadog/tracing/contrib/ethon/ext.rb +24 -0
- data/lib/datadog/tracing/contrib/ethon/integration.rb +48 -0
- data/lib/datadog/tracing/contrib/ethon/multi_patch.rb +96 -0
- data/lib/datadog/tracing/contrib/ethon/patcher.rb +32 -0
- data/lib/datadog/tracing/contrib/excon/configuration/settings.rb +38 -0
- data/lib/datadog/tracing/contrib/excon/ext.rb +21 -0
- data/lib/datadog/tracing/contrib/excon/integration.rb +48 -0
- data/lib/datadog/tracing/contrib/excon/middleware.rb +170 -0
- data/lib/datadog/tracing/contrib/excon/patcher.rb +31 -0
- data/lib/datadog/tracing/contrib/extensions.rb +199 -0
- data/lib/datadog/tracing/contrib/faraday/configuration/settings.rb +42 -0
- data/lib/datadog/tracing/contrib/faraday/connection.rb +22 -0
- data/lib/datadog/tracing/contrib/faraday/ext.rb +21 -0
- data/lib/datadog/tracing/contrib/faraday/integration.rb +48 -0
- data/lib/datadog/tracing/contrib/faraday/middleware.rb +93 -0
- data/lib/datadog/tracing/contrib/faraday/patcher.rb +57 -0
- data/lib/datadog/tracing/contrib/faraday/rack_builder.rb +22 -0
- data/lib/datadog/tracing/contrib/grape/configuration/settings.rb +42 -0
- data/lib/datadog/tracing/contrib/grape/endpoint.rb +253 -0
- data/lib/datadog/tracing/contrib/grape/ext.rb +28 -0
- data/lib/datadog/tracing/contrib/grape/instrumentation.rb +37 -0
- data/lib/datadog/tracing/contrib/grape/integration.rb +44 -0
- data/lib/datadog/tracing/contrib/grape/patcher.rb +34 -0
- data/lib/datadog/tracing/contrib/graphql/configuration/settings.rb +36 -0
- data/lib/datadog/tracing/contrib/graphql/ext.rb +19 -0
- data/lib/datadog/tracing/contrib/graphql/integration.rb +44 -0
- data/lib/datadog/tracing/contrib/graphql/patcher.rb +92 -0
- data/lib/datadog/tracing/contrib/grpc/configuration/settings.rb +37 -0
- data/lib/datadog/tracing/contrib/grpc/datadog_interceptor/client.rb +84 -0
- data/lib/datadog/tracing/contrib/grpc/datadog_interceptor/server.rb +90 -0
- data/lib/datadog/tracing/contrib/grpc/datadog_interceptor.rb +104 -0
- data/lib/datadog/tracing/contrib/grpc/ext.rb +23 -0
- data/lib/datadog/tracing/contrib/grpc/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/grpc/intercept_with_datadog.rb +53 -0
- data/lib/datadog/tracing/contrib/grpc/patcher.rb +38 -0
- data/lib/datadog/tracing/contrib/http/circuit_breaker.rb +44 -0
- data/lib/datadog/tracing/contrib/http/configuration/settings.rb +37 -0
- data/lib/datadog/tracing/contrib/http/ext.rb +21 -0
- data/lib/datadog/tracing/contrib/http/instrumentation.rb +139 -0
- data/lib/datadog/tracing/contrib/http/integration.rb +49 -0
- data/lib/datadog/tracing/contrib/http/patcher.rb +30 -0
- data/lib/datadog/tracing/contrib/http_annotation_helper.rb +17 -0
- data/lib/datadog/tracing/contrib/httpclient/configuration/settings.rb +37 -0
- data/lib/datadog/tracing/contrib/httpclient/ext.rb +21 -0
- data/lib/datadog/tracing/contrib/httpclient/instrumentation.rb +117 -0
- data/lib/datadog/tracing/contrib/httpclient/integration.rb +48 -0
- data/lib/datadog/tracing/contrib/httpclient/patcher.rb +42 -0
- data/lib/datadog/tracing/contrib/httprb/configuration/settings.rb +37 -0
- data/lib/datadog/tracing/contrib/httprb/ext.rb +21 -0
- data/lib/datadog/tracing/contrib/httprb/instrumentation.rb +128 -0
- data/lib/datadog/tracing/contrib/httprb/integration.rb +48 -0
- data/lib/datadog/tracing/contrib/httprb/patcher.rb +42 -0
- data/lib/datadog/tracing/contrib/integration.rb +78 -0
- data/lib/datadog/tracing/contrib/kafka/configuration/settings.rb +35 -0
- data/lib/datadog/tracing/contrib/kafka/consumer_event.rb +18 -0
- data/lib/datadog/tracing/contrib/kafka/consumer_group_event.rb +18 -0
- data/lib/datadog/tracing/contrib/kafka/event.rb +52 -0
- data/lib/datadog/tracing/contrib/kafka/events/connection/request.rb +42 -0
- data/lib/datadog/tracing/contrib/kafka/events/consumer/process_batch.rb +49 -0
- data/lib/datadog/tracing/contrib/kafka/events/consumer/process_message.rb +47 -0
- data/lib/datadog/tracing/contrib/kafka/events/consumer_group/heartbeat.rb +47 -0
- data/lib/datadog/tracing/contrib/kafka/events/consumer_group/join_group.rb +37 -0
- data/lib/datadog/tracing/contrib/kafka/events/consumer_group/leave_group.rb +37 -0
- data/lib/datadog/tracing/contrib/kafka/events/consumer_group/sync_group.rb +37 -0
- data/lib/datadog/tracing/contrib/kafka/events/produce_operation/send_messages.rb +40 -0
- data/lib/datadog/tracing/contrib/kafka/events/producer/deliver_messages.rb +43 -0
- data/lib/datadog/tracing/contrib/kafka/events.rb +48 -0
- data/lib/datadog/tracing/contrib/kafka/ext.rb +52 -0
- data/lib/datadog/tracing/contrib/kafka/integration.rb +44 -0
- data/lib/datadog/tracing/contrib/kafka/patcher.rb +30 -0
- data/lib/datadog/tracing/contrib/lograge/configuration/settings.rb +23 -0
- data/lib/datadog/tracing/contrib/lograge/ext.rb +15 -0
- data/lib/datadog/tracing/contrib/lograge/instrumentation.rb +46 -0
- data/lib/datadog/tracing/contrib/lograge/integration.rb +50 -0
- data/lib/datadog/tracing/contrib/lograge/patcher.rb +29 -0
- data/lib/datadog/tracing/contrib/mongodb/configuration/settings.rb +38 -0
- data/lib/datadog/tracing/contrib/mongodb/ext.rb +27 -0
- data/lib/datadog/tracing/contrib/mongodb/instrumentation.rb +47 -0
- data/lib/datadog/tracing/contrib/mongodb/integration.rb +48 -0
- data/lib/datadog/tracing/contrib/mongodb/parsers.rb +49 -0
- data/lib/datadog/tracing/contrib/mongodb/patcher.rb +34 -0
- data/lib/datadog/tracing/contrib/mongodb/subscribers.rb +121 -0
- data/lib/datadog/tracing/contrib/mysql2/configuration/settings.rb +35 -0
- data/lib/datadog/tracing/contrib/mysql2/ext.rb +22 -0
- data/lib/datadog/tracing/contrib/mysql2/instrumentation.rb +62 -0
- data/lib/datadog/tracing/contrib/mysql2/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/mysql2/patcher.rb +31 -0
- data/lib/datadog/tracing/contrib/patchable.rb +109 -0
- data/lib/datadog/tracing/contrib/patcher.rb +74 -0
- data/lib/datadog/tracing/contrib/presto/configuration/settings.rb +35 -0
- data/lib/datadog/tracing/contrib/presto/ext.rb +32 -0
- data/lib/datadog/tracing/contrib/presto/instrumentation.rb +125 -0
- data/lib/datadog/tracing/contrib/presto/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/presto/patcher.rb +37 -0
- data/lib/datadog/tracing/contrib/qless/configuration/settings.rb +40 -0
- data/lib/datadog/tracing/contrib/qless/ext.rb +26 -0
- data/lib/datadog/tracing/contrib/qless/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/qless/patcher.rb +39 -0
- data/lib/datadog/tracing/contrib/qless/qless_job.rb +75 -0
- data/lib/datadog/tracing/contrib/qless/tracer_cleaner.rb +32 -0
- data/lib/datadog/tracing/contrib/que/configuration/settings.rb +49 -0
- data/lib/datadog/tracing/contrib/que/ext.rb +34 -0
- data/lib/datadog/tracing/contrib/que/integration.rb +46 -0
- data/lib/datadog/tracing/contrib/que/patcher.rb +29 -0
- data/lib/datadog/tracing/contrib/que/tracer.rb +61 -0
- data/lib/datadog/tracing/contrib/racecar/configuration/settings.rb +35 -0
- data/lib/datadog/tracing/contrib/racecar/event.rb +79 -0
- data/lib/datadog/tracing/contrib/racecar/events/batch.rb +35 -0
- data/lib/datadog/tracing/contrib/racecar/events/consume.rb +35 -0
- data/lib/datadog/tracing/contrib/racecar/events/message.rb +35 -0
- data/lib/datadog/tracing/contrib/racecar/events.rb +36 -0
- data/lib/datadog/tracing/contrib/racecar/ext.rb +31 -0
- data/lib/datadog/tracing/contrib/racecar/integration.rb +44 -0
- data/lib/datadog/tracing/contrib/racecar/patcher.rb +30 -0
- data/lib/datadog/tracing/contrib/rack/configuration/settings.rb +51 -0
- data/lib/datadog/tracing/contrib/rack/ext.rb +25 -0
- data/lib/datadog/tracing/contrib/rack/integration.rb +50 -0
- data/lib/datadog/tracing/contrib/rack/middlewares.rb +255 -0
- data/lib/datadog/tracing/contrib/rack/patcher.rb +109 -0
- data/lib/datadog/tracing/contrib/rack/request_queue.rb +48 -0
- data/lib/datadog/tracing/contrib/rails/auto_instrument_railtie.rb +12 -0
- data/lib/datadog/tracing/contrib/rails/configuration/settings.rb +71 -0
- data/lib/datadog/tracing/contrib/rails/ext.rb +19 -0
- data/lib/datadog/tracing/contrib/rails/framework.rb +152 -0
- data/lib/datadog/tracing/contrib/rails/integration.rb +49 -0
- data/lib/datadog/tracing/contrib/rails/log_injection.rb +47 -0
- data/lib/datadog/tracing/contrib/rails/middlewares.rb +47 -0
- data/lib/datadog/tracing/contrib/rails/patcher.rb +121 -0
- data/lib/datadog/tracing/contrib/rails/railtie.rb +19 -0
- data/lib/datadog/tracing/contrib/rails/utils.rb +28 -0
- data/lib/datadog/tracing/contrib/rake/configuration/settings.rb +36 -0
- data/lib/datadog/tracing/contrib/rake/ext.rb +26 -0
- data/lib/datadog/tracing/contrib/rake/instrumentation.rb +98 -0
- data/lib/datadog/tracing/contrib/rake/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/rake/patcher.rb +35 -0
- data/lib/datadog/tracing/contrib/redis/configuration/resolver.rb +49 -0
- data/lib/datadog/tracing/contrib/redis/configuration/settings.rb +40 -0
- data/lib/datadog/tracing/contrib/redis/ext.rb +26 -0
- data/lib/datadog/tracing/contrib/redis/instrumentation.rb +78 -0
- data/lib/datadog/tracing/contrib/redis/integration.rb +47 -0
- data/lib/datadog/tracing/contrib/redis/patcher.rb +36 -0
- data/lib/datadog/tracing/contrib/redis/quantize.rb +79 -0
- data/lib/datadog/tracing/contrib/redis/tags.rb +54 -0
- data/lib/datadog/tracing/contrib/redis/vendor/resolver.rb +162 -0
- data/lib/datadog/tracing/contrib/registerable.rb +50 -0
- data/lib/datadog/tracing/contrib/registry.rb +52 -0
- data/lib/datadog/tracing/contrib/resque/configuration/settings.rb +37 -0
- data/lib/datadog/tracing/contrib/resque/ext.rb +21 -0
- data/lib/datadog/tracing/contrib/resque/integration.rb +48 -0
- data/lib/datadog/tracing/contrib/resque/patcher.rb +30 -0
- data/lib/datadog/tracing/contrib/resque/resque_job.rb +103 -0
- data/lib/datadog/tracing/contrib/rest_client/configuration/settings.rb +36 -0
- data/lib/datadog/tracing/contrib/rest_client/ext.rb +21 -0
- data/lib/datadog/tracing/contrib/rest_client/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/rest_client/patcher.rb +30 -0
- data/lib/datadog/tracing/contrib/rest_client/request_patch.rb +105 -0
- data/lib/datadog/tracing/contrib/semantic_logger/configuration/settings.rb +23 -0
- data/lib/datadog/tracing/contrib/semantic_logger/ext.rb +15 -0
- data/lib/datadog/tracing/contrib/semantic_logger/instrumentation.rb +50 -0
- data/lib/datadog/tracing/contrib/semantic_logger/integration.rb +52 -0
- data/lib/datadog/tracing/contrib/semantic_logger/patcher.rb +29 -0
- data/lib/datadog/tracing/contrib/sequel/configuration/settings.rb +33 -0
- data/lib/datadog/tracing/contrib/sequel/database.rb +60 -0
- data/lib/datadog/tracing/contrib/sequel/dataset.rb +65 -0
- data/lib/datadog/tracing/contrib/sequel/ext.rb +22 -0
- data/lib/datadog/tracing/contrib/sequel/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/sequel/patcher.rb +37 -0
- data/lib/datadog/tracing/contrib/sequel/utils.rb +87 -0
- data/lib/datadog/tracing/contrib/shoryuken/configuration/settings.rb +38 -0
- data/lib/datadog/tracing/contrib/shoryuken/ext.rb +25 -0
- data/lib/datadog/tracing/contrib/shoryuken/integration.rb +44 -0
- data/lib/datadog/tracing/contrib/shoryuken/patcher.rb +28 -0
- data/lib/datadog/tracing/contrib/shoryuken/tracer.rb +61 -0
- data/lib/datadog/tracing/contrib/sidekiq/client_tracer.rb +53 -0
- data/lib/datadog/tracing/contrib/sidekiq/configuration/settings.rb +43 -0
- data/lib/datadog/tracing/contrib/sidekiq/ext.rb +38 -0
- data/lib/datadog/tracing/contrib/sidekiq/integration.rb +53 -0
- data/lib/datadog/tracing/contrib/sidekiq/patcher.rb +71 -0
- data/lib/datadog/tracing/contrib/sidekiq/server_internal_tracer/heartbeat.rb +34 -0
- data/lib/datadog/tracing/contrib/sidekiq/server_internal_tracer/job_fetch.rb +34 -0
- data/lib/datadog/tracing/contrib/sidekiq/server_internal_tracer/scheduled_push.rb +33 -0
- data/lib/datadog/tracing/contrib/sidekiq/server_tracer.rb +79 -0
- data/lib/datadog/tracing/contrib/sidekiq/tracing.rb +44 -0
- data/lib/datadog/tracing/contrib/sinatra/configuration/settings.rb +43 -0
- data/lib/datadog/tracing/contrib/sinatra/env.rb +66 -0
- data/lib/datadog/tracing/contrib/sinatra/ext.rb +32 -0
- data/lib/datadog/tracing/contrib/sinatra/framework.rb +107 -0
- data/lib/datadog/tracing/contrib/sinatra/headers.rb +35 -0
- data/lib/datadog/tracing/contrib/sinatra/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/sinatra/patcher.rb +77 -0
- data/lib/datadog/tracing/contrib/sinatra/tracer.rb +159 -0
- data/lib/datadog/tracing/contrib/sinatra/tracer_middleware.rb +123 -0
- data/lib/datadog/tracing/contrib/sneakers/configuration/settings.rb +38 -0
- data/lib/datadog/tracing/contrib/sneakers/ext.rb +26 -0
- data/lib/datadog/tracing/contrib/sneakers/integration.rb +46 -0
- data/lib/datadog/tracing/contrib/sneakers/patcher.rb +30 -0
- data/lib/datadog/tracing/contrib/sneakers/tracer.rb +58 -0
- data/lib/datadog/tracing/contrib/status_code_matcher.rb +75 -0
- data/lib/datadog/tracing/contrib/sucker_punch/configuration/settings.rb +35 -0
- data/lib/datadog/tracing/contrib/sucker_punch/exception_handler.rb +28 -0
- data/lib/datadog/tracing/contrib/sucker_punch/ext.rb +27 -0
- data/lib/datadog/tracing/contrib/sucker_punch/instrumentation.rb +105 -0
- data/lib/datadog/tracing/contrib/sucker_punch/integration.rb +43 -0
- data/lib/datadog/tracing/contrib/sucker_punch/patcher.rb +38 -0
- data/lib/datadog/tracing/contrib/utils/database.rb +31 -0
- data/lib/datadog/tracing/contrib/utils/quantization/hash.rb +111 -0
- data/lib/datadog/tracing/contrib/utils/quantization/http.rb +99 -0
- data/lib/datadog/tracing/contrib.rb +76 -0
- data/lib/datadog/tracing/correlation.rb +100 -0
- data/lib/datadog/tracing/distributed/headers/b3.rb +55 -0
- data/lib/datadog/tracing/distributed/headers/b3_single.rb +67 -0
- data/lib/datadog/tracing/distributed/headers/datadog.rb +52 -0
- data/lib/datadog/tracing/distributed/headers/ext.rb +31 -0
- data/lib/datadog/tracing/distributed/helpers.rb +44 -0
- data/lib/datadog/tracing/distributed/parser.rb +70 -0
- data/lib/datadog/tracing/event.rb +77 -0
- data/lib/datadog/tracing/flush.rb +74 -0
- data/lib/datadog/tracing/metadata/analytics.rb +26 -0
- data/lib/datadog/tracing/metadata/errors.rb +24 -0
- data/lib/datadog/tracing/metadata/ext.rb +151 -0
- data/lib/datadog/tracing/metadata/tagging.rb +110 -0
- data/lib/datadog/tracing/metadata.rb +20 -0
- data/lib/datadog/tracing/pipeline/span_filter.rb +42 -0
- data/lib/datadog/tracing/pipeline/span_processor.rb +39 -0
- data/lib/datadog/tracing/pipeline.rb +65 -0
- data/lib/datadog/tracing/propagation/grpc.rb +88 -0
- data/lib/datadog/tracing/propagation/http.rb +109 -0
- data/lib/datadog/tracing/runtime/metrics.rb +19 -0
- data/lib/datadog/tracing/sampling/all_sampler.rb +25 -0
- data/lib/datadog/tracing/sampling/ext.rb +27 -0
- data/lib/datadog/tracing/sampling/matcher.rb +68 -0
- data/lib/datadog/tracing/sampling/priority_sampler.rb +113 -0
- data/lib/datadog/tracing/sampling/rate_by_key_sampler.rb +97 -0
- data/lib/datadog/tracing/sampling/rate_by_service_sampler.rb +41 -0
- data/lib/datadog/tracing/sampling/rate_limiter.rb +185 -0
- data/lib/datadog/tracing/sampling/rate_sampler.rb +55 -0
- data/lib/datadog/tracing/sampling/rule.rb +70 -0
- data/lib/datadog/tracing/sampling/rule_sampler.rb +133 -0
- data/lib/datadog/tracing/sampling/sampler.rb +44 -0
- data/lib/datadog/tracing/span.rb +212 -0
- data/lib/datadog/tracing/span_operation.rb +521 -0
- data/lib/datadog/tracing/sync_writer.rb +69 -0
- data/lib/datadog/tracing/trace_digest.rb +60 -0
- data/lib/datadog/tracing/trace_operation.rb +432 -0
- data/lib/datadog/tracing/trace_segment.rb +207 -0
- data/lib/datadog/tracing/tracer.rb +505 -0
- data/lib/datadog/tracing/workers/trace_writer.rb +195 -0
- data/lib/datadog/tracing/workers.rb +125 -0
- data/lib/datadog/tracing/writer.rb +180 -0
- data/lib/datadog/tracing.rb +142 -0
- data/lib/ddtrace/auto_instrument.rb +7 -1
- data/lib/ddtrace/auto_instrument_base.rb +2 -0
- data/lib/ddtrace/profiling/preload.rb +3 -2
- data/lib/ddtrace/transport/ext.rb +35 -0
- data/lib/ddtrace/transport/http/adapters/net.rb +17 -5
- data/lib/ddtrace/transport/http/adapters/registry.rb +2 -0
- data/lib/ddtrace/transport/http/adapters/test.rb +6 -2
- data/lib/ddtrace/transport/http/adapters/unix_socket.rb +25 -12
- data/lib/ddtrace/transport/http/api/endpoint.rb +2 -0
- data/lib/ddtrace/transport/http/api/fallbacks.rb +2 -0
- data/lib/ddtrace/transport/http/api/instance.rb +2 -0
- data/lib/ddtrace/transport/http/api/map.rb +2 -0
- data/lib/ddtrace/transport/http/api/spec.rb +2 -0
- data/lib/ddtrace/transport/http/api.rb +6 -11
- data/lib/ddtrace/transport/http/builder.rb +15 -6
- data/lib/ddtrace/transport/http/client.rb +4 -1
- data/lib/ddtrace/transport/http/env.rb +2 -0
- data/lib/ddtrace/transport/http/response.rb +2 -0
- data/lib/ddtrace/transport/http/statistics.rb +2 -0
- data/lib/ddtrace/transport/http/traces.rb +4 -0
- data/lib/ddtrace/transport/http.rb +38 -36
- data/lib/ddtrace/transport/io/client.rb +3 -1
- data/lib/ddtrace/transport/io/response.rb +2 -0
- data/lib/ddtrace/transport/io/traces.rb +5 -1
- data/lib/ddtrace/transport/io.rb +4 -2
- data/lib/ddtrace/transport/parcel.rb +5 -0
- data/lib/ddtrace/transport/request.rb +2 -0
- data/lib/ddtrace/transport/response.rb +2 -0
- data/lib/ddtrace/transport/serializable_trace.rb +118 -0
- data/lib/ddtrace/transport/statistics.rb +7 -4
- data/lib/ddtrace/transport/trace_formatter.rb +187 -0
- data/lib/ddtrace/transport/traces.rb +18 -7
- data/lib/ddtrace/version.rb +15 -12
- data/lib/ddtrace.rb +9 -79
- metadata +591 -1012
- data/.circleci/config.yml +0 -870
- data/.circleci/images/primary/Dockerfile-2.1.10 +0 -83
- data/.circleci/images/primary/Dockerfile-2.2.10 +0 -83
- data/.circleci/images/primary/Dockerfile-2.3.8 +0 -85
- data/.circleci/images/primary/Dockerfile-2.4.6 +0 -83
- data/.circleci/images/primary/Dockerfile-2.5.6 +0 -83
- data/.circleci/images/primary/Dockerfile-2.6.4 +0 -83
- data/.circleci/images/primary/Dockerfile-2.7.0 +0 -83
- data/.circleci/images/primary/Dockerfile-3.0.0 +0 -73
- data/.circleci/images/primary/Dockerfile-jruby-9.2-latest +0 -88
- data/.circleci/images/primary/Dockerfile-jruby-9.2.0.0 +0 -73
- data/.circleci/images/primary/Dockerfile-truffleruby-21.1.0 +0 -73
- data/.dockerignore +0 -0
- data/.env +0 -26
- data/.github/CODEOWNERS +0 -1
- data/.github/workflows/add-milestone-to-pull-requests.yml +0 -42
- data/.github/workflows/create-next-milestone.yml +0 -20
- data/.gitlab-ci.yml +0 -27
- data/.rspec +0 -1
- data/.rubocop.yml +0 -351
- data/.rubocop_todo.yml +0 -438
- data/.simplecov +0 -47
- data/.yardopts +0 -5
- data/Appraisals +0 -1323
- data/Gemfile +0 -69
- data/Rakefile +0 -939
- data/benchmarks/data/profiler-submission-marshal.gz +0 -0
- data/benchmarks/postgres_database.yml +0 -9
- data/benchmarks/profiler_sample_loop.rb +0 -69
- data/benchmarks/profiler_submission.rb +0 -93
- data/benchmarks/sidekiq_test.rb +0 -154
- data/docker-compose.yml +0 -414
- data/gemfiles/jruby_9.2.0.0_contrib.gemfile +0 -79
- data/gemfiles/jruby_9.2.0.0_contrib.gemfile.lock +0 -1518
- data/gemfiles/jruby_9.2.0.0_contrib_old.gemfile +0 -35
- data/gemfiles/jruby_9.2.0.0_contrib_old.gemfile.lock +0 -157
- data/gemfiles/jruby_9.2.0.0_core_old.gemfile +0 -34
- data/gemfiles/jruby_9.2.0.0_core_old.gemfile.lock +0 -153
- data/gemfiles/jruby_9.2.0.0_cucumber3.gemfile +0 -35
- data/gemfiles/jruby_9.2.0.0_cucumber3.gemfile.lock +0 -174
- data/gemfiles/jruby_9.2.0.0_cucumber4.gemfile +0 -35
- data/gemfiles/jruby_9.2.0.0_cucumber4.gemfile.lock +0 -206
- data/gemfiles/jruby_9.2.0.0_cucumber5.gemfile +0 -35
- data/gemfiles/jruby_9.2.0.0_cucumber5.gemfile.lock +0 -206
- data/gemfiles/jruby_9.2.0.0_rails5_mysql2.gemfile +0 -40
- data/gemfiles/jruby_9.2.0.0_rails5_mysql2.gemfile.lock +0 -271
- data/gemfiles/jruby_9.2.0.0_rails5_postgres.gemfile +0 -40
- data/gemfiles/jruby_9.2.0.0_rails5_postgres.gemfile.lock +0 -271
- data/gemfiles/jruby_9.2.0.0_rails5_postgres_redis.gemfile +0 -41
- data/gemfiles/jruby_9.2.0.0_rails5_postgres_redis.gemfile.lock +0 -273
- data/gemfiles/jruby_9.2.0.0_rails5_postgres_redis_activesupport.gemfile +0 -41
- data/gemfiles/jruby_9.2.0.0_rails5_postgres_redis_activesupport.gemfile.lock +0 -273
- data/gemfiles/jruby_9.2.0.0_rails5_postgres_sidekiq.gemfile +0 -42
- data/gemfiles/jruby_9.2.0.0_rails5_postgres_sidekiq.gemfile.lock +0 -279
- data/gemfiles/jruby_9.2.0.0_rails61_mysql2.gemfile +0 -40
- data/gemfiles/jruby_9.2.0.0_rails61_mysql2.gemfile.lock +0 -290
- data/gemfiles/jruby_9.2.0.0_rails61_postgres.gemfile +0 -40
- data/gemfiles/jruby_9.2.0.0_rails61_postgres.gemfile.lock +0 -290
- data/gemfiles/jruby_9.2.0.0_rails61_postgres_redis.gemfile +0 -41
- data/gemfiles/jruby_9.2.0.0_rails61_postgres_redis.gemfile.lock +0 -292
- data/gemfiles/jruby_9.2.0.0_rails61_postgres_sidekiq.gemfile +0 -41
- data/gemfiles/jruby_9.2.0.0_rails61_postgres_sidekiq.gemfile.lock +0 -297
- data/gemfiles/jruby_9.2.0.0_rails6_mysql2.gemfile +0 -40
- data/gemfiles/jruby_9.2.0.0_rails6_mysql2.gemfile.lock +0 -287
- data/gemfiles/jruby_9.2.0.0_rails6_postgres.gemfile +0 -40
- data/gemfiles/jruby_9.2.0.0_rails6_postgres.gemfile.lock +0 -287
- data/gemfiles/jruby_9.2.0.0_rails6_postgres_redis.gemfile +0 -41
- data/gemfiles/jruby_9.2.0.0_rails6_postgres_redis.gemfile.lock +0 -289
- data/gemfiles/jruby_9.2.0.0_rails6_postgres_redis_activesupport.gemfile +0 -41
- data/gemfiles/jruby_9.2.0.0_rails6_postgres_redis_activesupport.gemfile.lock +0 -289
- data/gemfiles/jruby_9.2.0.0_rails6_postgres_sidekiq.gemfile +0 -42
- data/gemfiles/jruby_9.2.0.0_rails6_postgres_sidekiq.gemfile.lock +0 -295
- data/gemfiles/jruby_9.2.0.0_resque2_redis3.gemfile +0 -36
- data/gemfiles/jruby_9.2.0.0_resque2_redis3.gemfile.lock +0 -180
- data/gemfiles/jruby_9.2.0.0_resque2_redis4.gemfile +0 -36
- data/gemfiles/jruby_9.2.0.0_resque2_redis4.gemfile.lock +0 -180
- data/gemfiles/jruby_9.2.11.1_contrib.gemfile +0 -79
- data/gemfiles/jruby_9.2.11.1_contrib.gemfile.lock +0 -1518
- data/gemfiles/jruby_9.2.11.1_contrib_old.gemfile +0 -35
- data/gemfiles/jruby_9.2.11.1_contrib_old.gemfile.lock +0 -157
- data/gemfiles/jruby_9.2.11.1_core_old.gemfile +0 -34
- data/gemfiles/jruby_9.2.11.1_core_old.gemfile.lock +0 -153
- data/gemfiles/jruby_9.2.11.1_cucumber3.gemfile +0 -35
- data/gemfiles/jruby_9.2.11.1_cucumber3.gemfile.lock +0 -174
- data/gemfiles/jruby_9.2.11.1_cucumber4.gemfile +0 -35
- data/gemfiles/jruby_9.2.11.1_cucumber4.gemfile.lock +0 -206
- data/gemfiles/jruby_9.2.11.1_cucumber5.gemfile +0 -35
- data/gemfiles/jruby_9.2.11.1_cucumber5.gemfile.lock +0 -206
- data/gemfiles/jruby_9.2.11.1_rails5_mysql2.gemfile +0 -40
- data/gemfiles/jruby_9.2.11.1_rails5_mysql2.gemfile.lock +0 -271
- data/gemfiles/jruby_9.2.11.1_rails5_postgres.gemfile +0 -40
- data/gemfiles/jruby_9.2.11.1_rails5_postgres.gemfile.lock +0 -271
- data/gemfiles/jruby_9.2.11.1_rails5_postgres_redis.gemfile +0 -41
- data/gemfiles/jruby_9.2.11.1_rails5_postgres_redis.gemfile.lock +0 -273
- data/gemfiles/jruby_9.2.11.1_rails5_postgres_redis_activesupport.gemfile +0 -41
- data/gemfiles/jruby_9.2.11.1_rails5_postgres_redis_activesupport.gemfile.lock +0 -273
- data/gemfiles/jruby_9.2.11.1_rails5_postgres_sidekiq.gemfile +0 -42
- data/gemfiles/jruby_9.2.11.1_rails5_postgres_sidekiq.gemfile.lock +0 -279
- data/gemfiles/jruby_9.2.11.1_rails61_mysql2.gemfile +0 -40
- data/gemfiles/jruby_9.2.11.1_rails61_mysql2.gemfile.lock +0 -290
- data/gemfiles/jruby_9.2.11.1_rails61_postgres.gemfile +0 -40
- data/gemfiles/jruby_9.2.11.1_rails61_postgres.gemfile.lock +0 -290
- data/gemfiles/jruby_9.2.11.1_rails61_postgres_redis.gemfile +0 -41
- data/gemfiles/jruby_9.2.11.1_rails61_postgres_redis.gemfile.lock +0 -292
- data/gemfiles/jruby_9.2.11.1_rails61_postgres_sidekiq.gemfile +0 -41
- data/gemfiles/jruby_9.2.11.1_rails61_postgres_sidekiq.gemfile.lock +0 -297
- data/gemfiles/jruby_9.2.11.1_rails6_mysql2.gemfile +0 -40
- data/gemfiles/jruby_9.2.11.1_rails6_mysql2.gemfile.lock +0 -287
- data/gemfiles/jruby_9.2.11.1_rails6_postgres.gemfile +0 -40
- data/gemfiles/jruby_9.2.11.1_rails6_postgres.gemfile.lock +0 -287
- data/gemfiles/jruby_9.2.11.1_rails6_postgres_redis.gemfile +0 -41
- data/gemfiles/jruby_9.2.11.1_rails6_postgres_redis.gemfile.lock +0 -289
- data/gemfiles/jruby_9.2.11.1_rails6_postgres_redis_activesupport.gemfile +0 -41
- data/gemfiles/jruby_9.2.11.1_rails6_postgres_redis_activesupport.gemfile.lock +0 -289
- data/gemfiles/jruby_9.2.11.1_rails6_postgres_sidekiq.gemfile +0 -42
- data/gemfiles/jruby_9.2.11.1_rails6_postgres_sidekiq.gemfile.lock +0 -295
- data/gemfiles/jruby_9.2.11.1_resque2_redis3.gemfile +0 -36
- data/gemfiles/jruby_9.2.11.1_resque2_redis3.gemfile.lock +0 -180
- data/gemfiles/jruby_9.2.11.1_resque2_redis4.gemfile +0 -36
- data/gemfiles/jruby_9.2.11.1_resque2_redis4.gemfile.lock +0 -180
- data/gemfiles/ruby_2.1.10_contrib_old.gemfile +0 -66
- data/gemfiles/ruby_2.1.10_contrib_old.gemfile.lock +0 -305
- data/gemfiles/ruby_2.1.10_core_old.gemfile +0 -33
- data/gemfiles/ruby_2.1.10_core_old.gemfile.lock +0 -118
- data/gemfiles/ruby_2.1.10_rails30_postgres.gemfile +0 -39
- data/gemfiles/ruby_2.1.10_rails30_postgres.gemfile.lock +0 -196
- data/gemfiles/ruby_2.1.10_rails30_postgres_sidekiq.gemfile +0 -40
- data/gemfiles/ruby_2.1.10_rails30_postgres_sidekiq.gemfile.lock +0 -205
- data/gemfiles/ruby_2.1.10_rails32_mysql2.gemfile +0 -42
- data/gemfiles/ruby_2.1.10_rails32_mysql2.gemfile.lock +0 -215
- data/gemfiles/ruby_2.1.10_rails32_postgres.gemfile +0 -39
- data/gemfiles/ruby_2.1.10_rails32_postgres.gemfile.lock +0 -204
- data/gemfiles/ruby_2.1.10_rails32_postgres_redis.gemfile +0 -41
- data/gemfiles/ruby_2.1.10_rails32_postgres_redis.gemfile.lock +0 -223
- data/gemfiles/ruby_2.1.10_rails32_postgres_sidekiq.gemfile +0 -40
- data/gemfiles/ruby_2.1.10_rails32_postgres_sidekiq.gemfile.lock +0 -213
- data/gemfiles/ruby_2.1.10_rails4_mysql2.gemfile +0 -38
- data/gemfiles/ruby_2.1.10_rails4_mysql2.gemfile.lock +0 -218
- data/gemfiles/ruby_2.1.10_rails4_postgres.gemfile +0 -38
- data/gemfiles/ruby_2.1.10_rails4_postgres.gemfile.lock +0 -218
- data/gemfiles/ruby_2.1.10_rails4_postgres_redis.gemfile +0 -40
- data/gemfiles/ruby_2.1.10_rails4_postgres_redis.gemfile.lock +0 -237
- data/gemfiles/ruby_2.2.10_contrib.gemfile +0 -73
- data/gemfiles/ruby_2.2.10_contrib.gemfile.lock +0 -1450
- data/gemfiles/ruby_2.2.10_core_old.gemfile +0 -33
- data/gemfiles/ruby_2.2.10_core_old.gemfile.lock +0 -118
- data/gemfiles/ruby_2.2.10_rails30_postgres.gemfile +0 -39
- data/gemfiles/ruby_2.2.10_rails30_postgres.gemfile.lock +0 -196
- data/gemfiles/ruby_2.2.10_rails30_postgres_sidekiq.gemfile +0 -40
- data/gemfiles/ruby_2.2.10_rails30_postgres_sidekiq.gemfile.lock +0 -205
- data/gemfiles/ruby_2.2.10_rails32_mysql2.gemfile +0 -41
- data/gemfiles/ruby_2.2.10_rails32_mysql2.gemfile.lock +0 -212
- data/gemfiles/ruby_2.2.10_rails32_postgres.gemfile +0 -39
- data/gemfiles/ruby_2.2.10_rails32_postgres.gemfile.lock +0 -204
- data/gemfiles/ruby_2.2.10_rails32_postgres_redis.gemfile +0 -41
- data/gemfiles/ruby_2.2.10_rails32_postgres_redis.gemfile.lock +0 -223
- data/gemfiles/ruby_2.2.10_rails32_postgres_sidekiq.gemfile +0 -40
- data/gemfiles/ruby_2.2.10_rails32_postgres_sidekiq.gemfile.lock +0 -213
- data/gemfiles/ruby_2.2.10_rails4_mysql2.gemfile +0 -38
- data/gemfiles/ruby_2.2.10_rails4_mysql2.gemfile.lock +0 -218
- data/gemfiles/ruby_2.2.10_rails4_postgres.gemfile +0 -38
- data/gemfiles/ruby_2.2.10_rails4_postgres.gemfile.lock +0 -218
- data/gemfiles/ruby_2.2.10_rails4_postgres_redis.gemfile +0 -40
- data/gemfiles/ruby_2.2.10_rails4_postgres_redis.gemfile.lock +0 -237
- data/gemfiles/ruby_2.2.10_rails4_postgres_sidekiq.gemfile +0 -40
- data/gemfiles/ruby_2.2.10_rails4_postgres_sidekiq.gemfile.lock +0 -229
- data/gemfiles/ruby_2.2.10_rails5_mysql2.gemfile +0 -38
- data/gemfiles/ruby_2.2.10_rails5_mysql2.gemfile.lock +0 -234
- data/gemfiles/ruby_2.2.10_rails5_postgres.gemfile +0 -38
- data/gemfiles/ruby_2.2.10_rails5_postgres.gemfile.lock +0 -234
- data/gemfiles/ruby_2.2.10_rails5_postgres_redis.gemfile +0 -39
- data/gemfiles/ruby_2.2.10_rails5_postgres_redis.gemfile.lock +0 -236
- data/gemfiles/ruby_2.2.10_rails5_postgres_redis_activesupport.gemfile +0 -39
- data/gemfiles/ruby_2.2.10_rails5_postgres_redis_activesupport.gemfile.lock +0 -236
- data/gemfiles/ruby_2.2.10_rails5_postgres_sidekiq.gemfile +0 -40
- data/gemfiles/ruby_2.2.10_rails5_postgres_sidekiq.gemfile.lock +0 -245
- data/gemfiles/ruby_2.3.8_contrib.gemfile +0 -73
- data/gemfiles/ruby_2.3.8_contrib.gemfile.lock +0 -1459
- data/gemfiles/ruby_2.3.8_contrib_old.gemfile +0 -34
- data/gemfiles/ruby_2.3.8_contrib_old.gemfile.lock +0 -127
- data/gemfiles/ruby_2.3.8_core_old.gemfile +0 -33
- data/gemfiles/ruby_2.3.8_core_old.gemfile.lock +0 -123
- data/gemfiles/ruby_2.3.8_cucumber3.gemfile +0 -34
- data/gemfiles/ruby_2.3.8_cucumber3.gemfile.lock +0 -144
- data/gemfiles/ruby_2.3.8_cucumber4.gemfile +0 -34
- data/gemfiles/ruby_2.3.8_cucumber4.gemfile.lock +0 -174
- data/gemfiles/ruby_2.3.8_rails30_postgres.gemfile +0 -39
- data/gemfiles/ruby_2.3.8_rails30_postgres.gemfile.lock +0 -201
- data/gemfiles/ruby_2.3.8_rails30_postgres_sidekiq.gemfile +0 -40
- data/gemfiles/ruby_2.3.8_rails30_postgres_sidekiq.gemfile.lock +0 -210
- data/gemfiles/ruby_2.3.8_rails32_mysql2.gemfile +0 -41
- data/gemfiles/ruby_2.3.8_rails32_mysql2.gemfile.lock +0 -217
- data/gemfiles/ruby_2.3.8_rails32_postgres.gemfile +0 -39
- data/gemfiles/ruby_2.3.8_rails32_postgres.gemfile.lock +0 -209
- data/gemfiles/ruby_2.3.8_rails32_postgres_redis.gemfile +0 -41
- data/gemfiles/ruby_2.3.8_rails32_postgres_redis.gemfile.lock +0 -228
- data/gemfiles/ruby_2.3.8_rails32_postgres_sidekiq.gemfile +0 -40
- data/gemfiles/ruby_2.3.8_rails32_postgres_sidekiq.gemfile.lock +0 -218
- data/gemfiles/ruby_2.3.8_rails4_mysql2.gemfile +0 -38
- data/gemfiles/ruby_2.3.8_rails4_mysql2.gemfile.lock +0 -223
- data/gemfiles/ruby_2.3.8_rails4_postgres.gemfile +0 -38
- data/gemfiles/ruby_2.3.8_rails4_postgres.gemfile.lock +0 -223
- data/gemfiles/ruby_2.3.8_rails4_postgres_redis.gemfile +0 -40
- data/gemfiles/ruby_2.3.8_rails4_postgres_redis.gemfile.lock +0 -242
- data/gemfiles/ruby_2.3.8_rails4_postgres_sidekiq.gemfile +0 -40
- data/gemfiles/ruby_2.3.8_rails4_postgres_sidekiq.gemfile.lock +0 -234
- data/gemfiles/ruby_2.3.8_rails5_mysql2.gemfile +0 -37
- data/gemfiles/ruby_2.3.8_rails5_mysql2.gemfile.lock +0 -234
- data/gemfiles/ruby_2.3.8_rails5_postgres.gemfile +0 -37
- data/gemfiles/ruby_2.3.8_rails5_postgres.gemfile.lock +0 -234
- data/gemfiles/ruby_2.3.8_rails5_postgres_redis.gemfile +0 -38
- data/gemfiles/ruby_2.3.8_rails5_postgres_redis.gemfile.lock +0 -236
- data/gemfiles/ruby_2.3.8_rails5_postgres_redis_activesupport.gemfile +0 -38
- data/gemfiles/ruby_2.3.8_rails5_postgres_redis_activesupport.gemfile.lock +0 -236
- data/gemfiles/ruby_2.3.8_rails5_postgres_sidekiq.gemfile +0 -39
- data/gemfiles/ruby_2.3.8_rails5_postgres_sidekiq.gemfile.lock +0 -245
- data/gemfiles/ruby_2.3.8_resque2_redis3.gemfile +0 -35
- data/gemfiles/ruby_2.3.8_resque2_redis3.gemfile.lock +0 -150
- data/gemfiles/ruby_2.3.8_resque2_redis4.gemfile +0 -35
- data/gemfiles/ruby_2.3.8_resque2_redis4.gemfile.lock +0 -150
- data/gemfiles/ruby_2.4.6_contrib.gemfile +0 -78
- data/gemfiles/ruby_2.4.6_contrib.gemfile.lock +0 -1513
- data/gemfiles/ruby_2.4.6_contrib_old.gemfile +0 -38
- data/gemfiles/ruby_2.4.6_contrib_old.gemfile.lock +0 -155
- data/gemfiles/ruby_2.4.6_core_old.gemfile +0 -37
- data/gemfiles/ruby_2.4.6_core_old.gemfile.lock +0 -151
- data/gemfiles/ruby_2.4.6_cucumber3.gemfile +0 -38
- data/gemfiles/ruby_2.4.6_cucumber3.gemfile.lock +0 -172
- data/gemfiles/ruby_2.4.6_cucumber4.gemfile +0 -38
- data/gemfiles/ruby_2.4.6_cucumber4.gemfile.lock +0 -202
- data/gemfiles/ruby_2.4.6_rails5_mysql2.gemfile +0 -41
- data/gemfiles/ruby_2.4.6_rails5_mysql2.gemfile.lock +0 -262
- data/gemfiles/ruby_2.4.6_rails5_postgres.gemfile +0 -41
- data/gemfiles/ruby_2.4.6_rails5_postgres.gemfile.lock +0 -262
- data/gemfiles/ruby_2.4.6_rails5_postgres_redis.gemfile +0 -42
- data/gemfiles/ruby_2.4.6_rails5_postgres_redis.gemfile.lock +0 -264
- data/gemfiles/ruby_2.4.6_rails5_postgres_redis_activesupport.gemfile +0 -42
- data/gemfiles/ruby_2.4.6_rails5_postgres_redis_activesupport.gemfile.lock +0 -264
- data/gemfiles/ruby_2.4.6_rails5_postgres_sidekiq.gemfile +0 -43
- data/gemfiles/ruby_2.4.6_rails5_postgres_sidekiq.gemfile.lock +0 -273
- data/gemfiles/ruby_2.4.6_resque2_redis3.gemfile +0 -39
- data/gemfiles/ruby_2.4.6_resque2_redis3.gemfile.lock +0 -178
- data/gemfiles/ruby_2.4.6_resque2_redis4.gemfile +0 -39
- data/gemfiles/ruby_2.4.6_resque2_redis4.gemfile.lock +0 -178
- data/gemfiles/ruby_2.5.6_contrib.gemfile +0 -83
- data/gemfiles/ruby_2.5.6_contrib.gemfile.lock +0 -1526
- data/gemfiles/ruby_2.5.6_contrib_old.gemfile +0 -39
- data/gemfiles/ruby_2.5.6_contrib_old.gemfile.lock +0 -165
- data/gemfiles/ruby_2.5.6_core_old.gemfile +0 -38
- data/gemfiles/ruby_2.5.6_core_old.gemfile.lock +0 -161
- data/gemfiles/ruby_2.5.6_cucumber3.gemfile +0 -39
- data/gemfiles/ruby_2.5.6_cucumber3.gemfile.lock +0 -182
- data/gemfiles/ruby_2.5.6_cucumber4.gemfile +0 -39
- data/gemfiles/ruby_2.5.6_cucumber4.gemfile.lock +0 -214
- data/gemfiles/ruby_2.5.6_cucumber5.gemfile +0 -39
- data/gemfiles/ruby_2.5.6_cucumber5.gemfile.lock +0 -214
- data/gemfiles/ruby_2.5.6_rails5_mysql2.gemfile +0 -44
- data/gemfiles/ruby_2.5.6_rails5_mysql2.gemfile.lock +0 -276
- data/gemfiles/ruby_2.5.6_rails5_postgres.gemfile +0 -44
- data/gemfiles/ruby_2.5.6_rails5_postgres.gemfile.lock +0 -276
- data/gemfiles/ruby_2.5.6_rails5_postgres_redis.gemfile +0 -45
- data/gemfiles/ruby_2.5.6_rails5_postgres_redis.gemfile.lock +0 -278
- data/gemfiles/ruby_2.5.6_rails5_postgres_redis_activesupport.gemfile +0 -45
- data/gemfiles/ruby_2.5.6_rails5_postgres_redis_activesupport.gemfile.lock +0 -278
- data/gemfiles/ruby_2.5.6_rails5_postgres_sidekiq.gemfile +0 -46
- data/gemfiles/ruby_2.5.6_rails5_postgres_sidekiq.gemfile.lock +0 -284
- data/gemfiles/ruby_2.5.6_rails61_mysql2.gemfile +0 -44
- data/gemfiles/ruby_2.5.6_rails61_mysql2.gemfile.lock +0 -295
- data/gemfiles/ruby_2.5.6_rails61_postgres.gemfile +0 -44
- data/gemfiles/ruby_2.5.6_rails61_postgres.gemfile.lock +0 -295
- data/gemfiles/ruby_2.5.6_rails61_postgres_redis.gemfile +0 -45
- data/gemfiles/ruby_2.5.6_rails61_postgres_redis.gemfile.lock +0 -297
- data/gemfiles/ruby_2.5.6_rails61_postgres_sidekiq.gemfile +0 -45
- data/gemfiles/ruby_2.5.6_rails61_postgres_sidekiq.gemfile.lock +0 -302
- data/gemfiles/ruby_2.5.6_rails6_mysql2.gemfile +0 -44
- data/gemfiles/ruby_2.5.6_rails6_mysql2.gemfile.lock +0 -292
- data/gemfiles/ruby_2.5.6_rails6_postgres.gemfile +0 -44
- data/gemfiles/ruby_2.5.6_rails6_postgres.gemfile.lock +0 -292
- data/gemfiles/ruby_2.5.6_rails6_postgres_redis.gemfile +0 -45
- data/gemfiles/ruby_2.5.6_rails6_postgres_redis.gemfile.lock +0 -294
- data/gemfiles/ruby_2.5.6_rails6_postgres_redis_activesupport.gemfile +0 -45
- data/gemfiles/ruby_2.5.6_rails6_postgres_redis_activesupport.gemfile.lock +0 -294
- data/gemfiles/ruby_2.5.6_rails6_postgres_sidekiq.gemfile +0 -46
- data/gemfiles/ruby_2.5.6_rails6_postgres_sidekiq.gemfile.lock +0 -300
- data/gemfiles/ruby_2.5.6_resque2_redis3.gemfile +0 -40
- data/gemfiles/ruby_2.5.6_resque2_redis3.gemfile.lock +0 -188
- data/gemfiles/ruby_2.5.6_resque2_redis4.gemfile +0 -40
- data/gemfiles/ruby_2.5.6_resque2_redis4.gemfile.lock +0 -188
- data/gemfiles/ruby_2.6.4_contrib.gemfile +0 -79
- data/gemfiles/ruby_2.6.4_contrib.gemfile.lock +0 -1524
- data/gemfiles/ruby_2.6.4_contrib_old.gemfile +0 -39
- data/gemfiles/ruby_2.6.4_contrib_old.gemfile.lock +0 -167
- data/gemfiles/ruby_2.6.4_core_old.gemfile +0 -38
- data/gemfiles/ruby_2.6.4_core_old.gemfile.lock +0 -163
- data/gemfiles/ruby_2.6.4_cucumber3.gemfile +0 -39
- data/gemfiles/ruby_2.6.4_cucumber3.gemfile.lock +0 -184
- data/gemfiles/ruby_2.6.4_cucumber4.gemfile +0 -39
- data/gemfiles/ruby_2.6.4_cucumber4.gemfile.lock +0 -216
- data/gemfiles/ruby_2.6.4_cucumber5.gemfile +0 -39
- data/gemfiles/ruby_2.6.4_cucumber5.gemfile.lock +0 -216
- data/gemfiles/ruby_2.6.4_rails5_mysql2.gemfile +0 -42
- data/gemfiles/ruby_2.6.4_rails5_mysql2.gemfile.lock +0 -276
- data/gemfiles/ruby_2.6.4_rails5_postgres.gemfile +0 -42
- data/gemfiles/ruby_2.6.4_rails5_postgres.gemfile.lock +0 -276
- data/gemfiles/ruby_2.6.4_rails5_postgres_redis.gemfile +0 -43
- data/gemfiles/ruby_2.6.4_rails5_postgres_redis.gemfile.lock +0 -278
- data/gemfiles/ruby_2.6.4_rails5_postgres_redis_activesupport.gemfile +0 -43
- data/gemfiles/ruby_2.6.4_rails5_postgres_redis_activesupport.gemfile.lock +0 -278
- data/gemfiles/ruby_2.6.4_rails5_postgres_sidekiq.gemfile +0 -44
- data/gemfiles/ruby_2.6.4_rails5_postgres_sidekiq.gemfile.lock +0 -284
- data/gemfiles/ruby_2.6.4_rails61_mysql2.gemfile +0 -42
- data/gemfiles/ruby_2.6.4_rails61_mysql2.gemfile.lock +0 -295
- data/gemfiles/ruby_2.6.4_rails61_postgres.gemfile +0 -42
- data/gemfiles/ruby_2.6.4_rails61_postgres.gemfile.lock +0 -295
- data/gemfiles/ruby_2.6.4_rails61_postgres_redis.gemfile +0 -43
- data/gemfiles/ruby_2.6.4_rails61_postgres_redis.gemfile.lock +0 -297
- data/gemfiles/ruby_2.6.4_rails61_postgres_sidekiq.gemfile +0 -43
- data/gemfiles/ruby_2.6.4_rails61_postgres_sidekiq.gemfile.lock +0 -302
- data/gemfiles/ruby_2.6.4_rails6_mysql2.gemfile +0 -42
- data/gemfiles/ruby_2.6.4_rails6_mysql2.gemfile.lock +0 -292
- data/gemfiles/ruby_2.6.4_rails6_postgres.gemfile +0 -42
- data/gemfiles/ruby_2.6.4_rails6_postgres.gemfile.lock +0 -292
- data/gemfiles/ruby_2.6.4_rails6_postgres_redis.gemfile +0 -43
- data/gemfiles/ruby_2.6.4_rails6_postgres_redis.gemfile.lock +0 -294
- data/gemfiles/ruby_2.6.4_rails6_postgres_redis_activesupport.gemfile +0 -43
- data/gemfiles/ruby_2.6.4_rails6_postgres_redis_activesupport.gemfile.lock +0 -294
- data/gemfiles/ruby_2.6.4_rails6_postgres_sidekiq.gemfile +0 -44
- data/gemfiles/ruby_2.6.4_rails6_postgres_sidekiq.gemfile.lock +0 -300
- data/gemfiles/ruby_2.6.4_resque2_redis3.gemfile +0 -40
- data/gemfiles/ruby_2.6.4_resque2_redis3.gemfile.lock +0 -190
- data/gemfiles/ruby_2.6.4_resque2_redis4.gemfile +0 -40
- data/gemfiles/ruby_2.6.4_resque2_redis4.gemfile.lock +0 -190
- data/gemfiles/ruby_2.7.0_contrib.gemfile +0 -78
- data/gemfiles/ruby_2.7.0_contrib.gemfile.lock +0 -1523
- data/gemfiles/ruby_2.7.0_contrib_old.gemfile +0 -39
- data/gemfiles/ruby_2.7.0_contrib_old.gemfile.lock +0 -167
- data/gemfiles/ruby_2.7.0_core_old.gemfile +0 -38
- data/gemfiles/ruby_2.7.0_core_old.gemfile.lock +0 -163
- data/gemfiles/ruby_2.7.0_cucumber3.gemfile +0 -39
- data/gemfiles/ruby_2.7.0_cucumber3.gemfile.lock +0 -184
- data/gemfiles/ruby_2.7.0_cucumber4.gemfile +0 -39
- data/gemfiles/ruby_2.7.0_cucumber4.gemfile.lock +0 -216
- data/gemfiles/ruby_2.7.0_cucumber5.gemfile +0 -39
- data/gemfiles/ruby_2.7.0_cucumber5.gemfile.lock +0 -216
- data/gemfiles/ruby_2.7.0_rails5_mysql2.gemfile +0 -42
- data/gemfiles/ruby_2.7.0_rails5_mysql2.gemfile.lock +0 -276
- data/gemfiles/ruby_2.7.0_rails5_postgres.gemfile +0 -42
- data/gemfiles/ruby_2.7.0_rails5_postgres.gemfile.lock +0 -276
- data/gemfiles/ruby_2.7.0_rails5_postgres_redis.gemfile +0 -44
- data/gemfiles/ruby_2.7.0_rails5_postgres_redis.gemfile.lock +0 -295
- data/gemfiles/ruby_2.7.0_rails5_postgres_redis_activesupport.gemfile +0 -44
- data/gemfiles/ruby_2.7.0_rails5_postgres_redis_activesupport.gemfile.lock +0 -295
- data/gemfiles/ruby_2.7.0_rails5_postgres_sidekiq.gemfile +0 -44
- data/gemfiles/ruby_2.7.0_rails5_postgres_sidekiq.gemfile.lock +0 -284
- data/gemfiles/ruby_2.7.0_rails61_mysql2.gemfile +0 -42
- data/gemfiles/ruby_2.7.0_rails61_mysql2.gemfile.lock +0 -295
- data/gemfiles/ruby_2.7.0_rails61_postgres.gemfile +0 -42
- data/gemfiles/ruby_2.7.0_rails61_postgres.gemfile.lock +0 -295
- data/gemfiles/ruby_2.7.0_rails61_postgres_redis.gemfile +0 -43
- data/gemfiles/ruby_2.7.0_rails61_postgres_redis.gemfile.lock +0 -297
- data/gemfiles/ruby_2.7.0_rails61_postgres_sidekiq.gemfile +0 -43
- data/gemfiles/ruby_2.7.0_rails61_postgres_sidekiq.gemfile.lock +0 -302
- data/gemfiles/ruby_2.7.0_rails6_mysql2.gemfile +0 -42
- data/gemfiles/ruby_2.7.0_rails6_mysql2.gemfile.lock +0 -292
- data/gemfiles/ruby_2.7.0_rails6_postgres.gemfile +0 -42
- data/gemfiles/ruby_2.7.0_rails6_postgres.gemfile.lock +0 -292
- data/gemfiles/ruby_2.7.0_rails6_postgres_redis.gemfile +0 -44
- data/gemfiles/ruby_2.7.0_rails6_postgres_redis.gemfile.lock +0 -311
- data/gemfiles/ruby_2.7.0_rails6_postgres_redis_activesupport.gemfile +0 -44
- data/gemfiles/ruby_2.7.0_rails6_postgres_redis_activesupport.gemfile.lock +0 -311
- data/gemfiles/ruby_2.7.0_rails6_postgres_sidekiq.gemfile +0 -44
- data/gemfiles/ruby_2.7.0_rails6_postgres_sidekiq.gemfile.lock +0 -300
- data/gemfiles/ruby_2.7.0_resque2_redis3.gemfile +0 -40
- data/gemfiles/ruby_2.7.0_resque2_redis3.gemfile.lock +0 -190
- data/gemfiles/ruby_2.7.0_resque2_redis4.gemfile +0 -40
- data/gemfiles/ruby_2.7.0_resque2_redis4.gemfile.lock +0 -190
- data/gemfiles/ruby_3.0.0_contrib.gemfile +0 -78
- data/gemfiles/ruby_3.0.0_contrib.gemfile.lock +0 -1540
- data/gemfiles/ruby_3.0.0_core_old.gemfile +0 -39
- data/gemfiles/ruby_3.0.0_core_old.gemfile.lock +0 -165
- data/gemfiles/ruby_3.0.0_cucumber3.gemfile +0 -40
- data/gemfiles/ruby_3.0.0_cucumber3.gemfile.lock +0 -186
- data/gemfiles/ruby_3.0.0_cucumber4.gemfile +0 -40
- data/gemfiles/ruby_3.0.0_cucumber4.gemfile.lock +0 -218
- data/gemfiles/ruby_3.0.0_cucumber5.gemfile +0 -40
- data/gemfiles/ruby_3.0.0_cucumber5.gemfile.lock +0 -218
- data/gemfiles/ruby_3.0.0_rails61_mysql2.gemfile +0 -43
- data/gemfiles/ruby_3.0.0_rails61_mysql2.gemfile.lock +0 -295
- data/gemfiles/ruby_3.0.0_rails61_postgres.gemfile +0 -43
- data/gemfiles/ruby_3.0.0_rails61_postgres.gemfile.lock +0 -295
- data/gemfiles/ruby_3.0.0_rails61_postgres_redis.gemfile +0 -44
- data/gemfiles/ruby_3.0.0_rails61_postgres_redis.gemfile.lock +0 -297
- data/gemfiles/ruby_3.0.0_rails61_postgres_sidekiq.gemfile +0 -44
- data/gemfiles/ruby_3.0.0_rails61_postgres_sidekiq.gemfile.lock +0 -302
- data/gemfiles/ruby_3.0.0_resque2_redis3.gemfile +0 -41
- data/gemfiles/ruby_3.0.0_resque2_redis3.gemfile.lock +0 -192
- data/gemfiles/ruby_3.0.0_resque2_redis4.gemfile +0 -41
- data/gemfiles/ruby_3.0.0_resque2_redis4.gemfile.lock +0 -192
- data/integration/README.md +0 -67
- data/integration/apps/rack/.dockerignore +0 -1
- data/integration/apps/rack/.envrc.sample +0 -1
- data/integration/apps/rack/.gitignore +0 -4
- data/integration/apps/rack/.rspec +0 -1
- data/integration/apps/rack/Dockerfile +0 -28
- data/integration/apps/rack/Dockerfile-ci +0 -11
- data/integration/apps/rack/Gemfile +0 -24
- data/integration/apps/rack/README.md +0 -93
- data/integration/apps/rack/app/acme.rb +0 -80
- data/integration/apps/rack/app/datadog.rb +0 -17
- data/integration/apps/rack/bin/run +0 -22
- data/integration/apps/rack/bin/setup +0 -17
- data/integration/apps/rack/bin/test +0 -24
- data/integration/apps/rack/config/puma.rb +0 -14
- data/integration/apps/rack/config/unicorn.rb +0 -23
- data/integration/apps/rack/config.ru +0 -6
- data/integration/apps/rack/docker-compose.ci.yml +0 -62
- data/integration/apps/rack/docker-compose.yml +0 -78
- data/integration/apps/rack/script/build-images +0 -38
- data/integration/apps/rack/script/ci +0 -51
- data/integration/apps/rack/spec/integration/basic_spec.rb +0 -10
- data/integration/apps/rack/spec/spec_helper.rb +0 -16
- data/integration/apps/rack/spec/support/integration_helper.rb +0 -22
- data/integration/apps/rails-five/.dockerignore +0 -1
- data/integration/apps/rails-five/.env +0 -3
- data/integration/apps/rails-five/.envrc.sample +0 -1
- data/integration/apps/rails-five/.gitignore +0 -30
- data/integration/apps/rails-five/Dockerfile +0 -25
- data/integration/apps/rails-five/Dockerfile-ci +0 -11
- data/integration/apps/rails-five/Gemfile +0 -104
- data/integration/apps/rails-five/README.md +0 -94
- data/integration/apps/rails-five/Rakefile +0 -6
- data/integration/apps/rails-five/app/channels/application_cable/channel.rb +0 -4
- data/integration/apps/rails-five/app/channels/application_cable/connection.rb +0 -4
- data/integration/apps/rails-five/app/controllers/application_controller.rb +0 -2
- data/integration/apps/rails-five/app/controllers/basic_controller.rb +0 -36
- data/integration/apps/rails-five/app/controllers/concerns/.keep +0 -0
- data/integration/apps/rails-five/app/controllers/health_controller.rb +0 -9
- data/integration/apps/rails-five/app/controllers/jobs_controller.rb +0 -12
- data/integration/apps/rails-five/app/jobs/application_job.rb +0 -2
- data/integration/apps/rails-five/app/jobs/test_job.rb +0 -12
- data/integration/apps/rails-five/app/mailers/application_mailer.rb +0 -4
- data/integration/apps/rails-five/app/models/application_record.rb +0 -3
- data/integration/apps/rails-five/app/models/concerns/.keep +0 -0
- data/integration/apps/rails-five/app/models/test.rb +0 -2
- data/integration/apps/rails-five/app/views/layouts/mailer.html.erb +0 -13
- data/integration/apps/rails-five/app/views/layouts/mailer.text.erb +0 -1
- data/integration/apps/rails-five/bin/bundle +0 -3
- data/integration/apps/rails-five/bin/rails +0 -9
- data/integration/apps/rails-five/bin/rake +0 -9
- data/integration/apps/rails-five/bin/run +0 -24
- data/integration/apps/rails-five/bin/setup +0 -27
- data/integration/apps/rails-five/bin/spring +0 -17
- data/integration/apps/rails-five/bin/test +0 -21
- data/integration/apps/rails-five/bin/update +0 -28
- data/integration/apps/rails-five/config/application.rb +0 -97
- data/integration/apps/rails-five/config/boot.rb +0 -4
- data/integration/apps/rails-five/config/cable.yml +0 -10
- data/integration/apps/rails-five/config/credentials.yml.enc +0 -1
- data/integration/apps/rails-five/config/database.yml +0 -28
- data/integration/apps/rails-five/config/environment.rb +0 -5
- data/integration/apps/rails-five/config/environments/development.rb +0 -51
- data/integration/apps/rails-five/config/environments/production.rb +0 -82
- data/integration/apps/rails-five/config/environments/test.rb +0 -43
- data/integration/apps/rails-five/config/initializers/datadog.rb +0 -18
- data/integration/apps/rails-five/config/initializers/filter_parameter_logging.rb +0 -4
- data/integration/apps/rails-five/config/initializers/resque.rb +0 -4
- data/integration/apps/rails-five/config/initializers/rollbar.rb +0 -5
- data/integration/apps/rails-five/config/initializers/wrap_parameters.rb +0 -14
- data/integration/apps/rails-five/config/locales/en.yml +0 -33
- data/integration/apps/rails-five/config/puma.rb +0 -24
- data/integration/apps/rails-five/config/routes.rb +0 -11
- data/integration/apps/rails-five/config/spring.rb +0 -6
- data/integration/apps/rails-five/config/unicorn.rb +0 -29
- data/integration/apps/rails-five/config.ru +0 -5
- data/integration/apps/rails-five/db/migrate/20190927215052_create_tests.rb +0 -11
- data/integration/apps/rails-five/db/schema.rb +0 -23
- data/integration/apps/rails-five/db/seeds.rb +0 -7
- data/integration/apps/rails-five/docker-compose.ci.yml +0 -98
- data/integration/apps/rails-five/docker-compose.yml +0 -100
- data/integration/apps/rails-five/lib/tasks/.keep +0 -0
- data/integration/apps/rails-five/log/.keep +0 -0
- data/integration/apps/rails-five/public/robots.txt +0 -1
- data/integration/apps/rails-five/script/build-images +0 -35
- data/integration/apps/rails-five/script/ci +0 -51
- data/integration/apps/rails-five/spec/integration/basic_spec.rb +0 -10
- data/integration/apps/rails-five/spec/spec_helper.rb +0 -16
- data/integration/apps/rails-five/spec/support/integration_helper.rb +0 -22
- data/integration/apps/rails-five/storage/.keep +0 -0
- data/integration/apps/rails-five/tmp/.keep +0 -0
- data/integration/apps/rails-five/vendor/.keep +0 -0
- data/integration/apps/rspec/.dockerignore +0 -1
- data/integration/apps/rspec/.envrc.sample +0 -1
- data/integration/apps/rspec/.gitignore +0 -2
- data/integration/apps/rspec/.rspec +0 -1
- data/integration/apps/rspec/Dockerfile +0 -25
- data/integration/apps/rspec/Dockerfile-ci +0 -11
- data/integration/apps/rspec/Gemfile +0 -14
- data/integration/apps/rspec/README.md +0 -70
- data/integration/apps/rspec/agent.yaml +0 -3
- data/integration/apps/rspec/app/datadog.rb +0 -13
- data/integration/apps/rspec/app/fibonacci.rb +0 -30
- data/integration/apps/rspec/bin/run +0 -20
- data/integration/apps/rspec/bin/setup +0 -17
- data/integration/apps/rspec/bin/test +0 -21
- data/integration/apps/rspec/docker-compose.ci.yml +0 -51
- data/integration/apps/rspec/docker-compose.yml +0 -63
- data/integration/apps/rspec/script/build-images +0 -37
- data/integration/apps/rspec/script/ci +0 -53
- data/integration/apps/rspec/spec/fibonacci_spec.rb +0 -16
- data/integration/apps/rspec/spec/rspec_spec.rb +0 -58
- data/integration/apps/rspec/spec/spec_helper.rb +0 -24
- data/integration/apps/ruby/.dockerignore +0 -1
- data/integration/apps/ruby/.envrc.sample +0 -1
- data/integration/apps/ruby/.gitignore +0 -2
- data/integration/apps/ruby/Dockerfile +0 -25
- data/integration/apps/ruby/Dockerfile-ci +0 -11
- data/integration/apps/ruby/Gemfile +0 -11
- data/integration/apps/ruby/README.md +0 -70
- data/integration/apps/ruby/agent.yaml +0 -3
- data/integration/apps/ruby/app/datadog.rb +0 -13
- data/integration/apps/ruby/app/fibonacci.rb +0 -58
- data/integration/apps/ruby/bin/run +0 -20
- data/integration/apps/ruby/bin/setup +0 -17
- data/integration/apps/ruby/bin/test +0 -21
- data/integration/apps/ruby/docker-compose.ci.yml +0 -51
- data/integration/apps/ruby/docker-compose.yml +0 -63
- data/integration/apps/ruby/script/build-images +0 -38
- data/integration/apps/ruby/script/ci +0 -51
- data/integration/images/agent/Dockerfile +0 -2
- data/integration/images/agent/agent.yaml +0 -3
- data/integration/images/include/datadog/analyzer.rb +0 -71
- data/integration/images/include/datadog/demo_env.rb +0 -101
- data/integration/images/include/http-health-check +0 -33
- data/integration/images/ruby/2.1/Dockerfile +0 -54
- data/integration/images/ruby/2.2/Dockerfile +0 -54
- data/integration/images/ruby/2.3/Dockerfile +0 -70
- data/integration/images/ruby/2.4/Dockerfile +0 -54
- data/integration/images/ruby/2.5/Dockerfile +0 -54
- data/integration/images/ruby/2.6/Dockerfile +0 -54
- data/integration/images/ruby/2.7/Dockerfile +0 -54
- data/integration/images/ruby/3.0/Dockerfile +0 -54
- data/integration/images/wrk/Dockerfile +0 -33
- data/integration/images/wrk/scripts/entrypoint.sh +0 -17
- data/integration/images/wrk/scripts/scenarios/basic/default.lua +0 -1
- data/integration/images/wrk/scripts/scenarios/basic/fibonacci.lua +0 -1
- data/integration/script/build-images +0 -43
- data/lib/datadog/ci/context_flush.rb +0 -28
- data/lib/ddtrace/analytics.rb +0 -38
- data/lib/ddtrace/buffer.rb +0 -326
- data/lib/ddtrace/chunker.rb +0 -34
- data/lib/ddtrace/configuration/agent_settings_resolver.rb +0 -230
- data/lib/ddtrace/configuration/base.rb +0 -81
- data/lib/ddtrace/configuration/components.rb +0 -249
- data/lib/ddtrace/configuration/dependency_resolver.rb +0 -24
- data/lib/ddtrace/configuration/option.rb +0 -64
- data/lib/ddtrace/configuration/option_definition.rb +0 -121
- data/lib/ddtrace/configuration/option_definition_set.rb +0 -18
- data/lib/ddtrace/configuration/option_set.rb +0 -6
- data/lib/ddtrace/configuration/options.rb +0 -111
- data/lib/ddtrace/configuration/pin_setup.rb +0 -31
- data/lib/ddtrace/configuration/settings.rb +0 -388
- data/lib/ddtrace/configuration.rb +0 -176
- data/lib/ddtrace/context.rb +0 -325
- data/lib/ddtrace/context_flush.rb +0 -81
- data/lib/ddtrace/context_provider.rb +0 -61
- data/lib/ddtrace/contrib/action_cable/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/action_cable/event.rb +0 -66
- data/lib/ddtrace/contrib/action_cable/events/broadcast.rb +0 -49
- data/lib/ddtrace/contrib/action_cable/events/perform_action.rb +0 -55
- data/lib/ddtrace/contrib/action_cable/events/transmit.rb +0 -50
- data/lib/ddtrace/contrib/action_cable/events.rb +0 -33
- data/lib/ddtrace/contrib/action_cable/ext.rb +0 -26
- data/lib/ddtrace/contrib/action_cable/instrumentation.rb +0 -31
- data/lib/ddtrace/contrib/action_cable/integration.rb +0 -45
- data/lib/ddtrace/contrib/action_cable/patcher.rb +0 -27
- data/lib/ddtrace/contrib/action_pack/action_controller/instrumentation.rb +0 -146
- data/lib/ddtrace/contrib/action_pack/action_controller/patcher.rb +0 -25
- data/lib/ddtrace/contrib/action_pack/configuration/settings.rb +0 -32
- data/lib/ddtrace/contrib/action_pack/ext.rb +0 -19
- data/lib/ddtrace/contrib/action_pack/integration.rb +0 -45
- data/lib/ddtrace/contrib/action_pack/patcher.rb +0 -23
- data/lib/ddtrace/contrib/action_pack/utils.rb +0 -36
- data/lib/ddtrace/contrib/action_view/configuration/settings.rb +0 -31
- data/lib/ddtrace/contrib/action_view/event.rb +0 -35
- data/lib/ddtrace/contrib/action_view/events/render_partial.rb +0 -46
- data/lib/ddtrace/contrib/action_view/events/render_template.rb +0 -49
- data/lib/ddtrace/contrib/action_view/events.rb +0 -30
- data/lib/ddtrace/contrib/action_view/ext.rb +0 -20
- data/lib/ddtrace/contrib/action_view/instrumentation/partial_renderer.rb +0 -74
- data/lib/ddtrace/contrib/action_view/instrumentation/template_renderer.rb +0 -167
- data/lib/ddtrace/contrib/action_view/integration.rb +0 -52
- data/lib/ddtrace/contrib/action_view/patcher.rb +0 -47
- data/lib/ddtrace/contrib/action_view/utils.rb +0 -32
- data/lib/ddtrace/contrib/active_model_serializers/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/active_model_serializers/event.rb +0 -68
- data/lib/ddtrace/contrib/active_model_serializers/events/render.rb +0 -32
- data/lib/ddtrace/contrib/active_model_serializers/events/serialize.rb +0 -35
- data/lib/ddtrace/contrib/active_model_serializers/events.rb +0 -30
- data/lib/ddtrace/contrib/active_model_serializers/ext.rb +0 -20
- data/lib/ddtrace/contrib/active_model_serializers/integration.rb +0 -40
- data/lib/ddtrace/contrib/active_model_serializers/patcher.rb +0 -29
- data/lib/ddtrace/contrib/active_record/configuration/makara_resolver.rb +0 -30
- data/lib/ddtrace/contrib/active_record/configuration/resolver.rb +0 -134
- data/lib/ddtrace/contrib/active_record/configuration/settings.rb +0 -35
- data/lib/ddtrace/contrib/active_record/event.rb +0 -30
- data/lib/ddtrace/contrib/active_record/events/instantiation.rb +0 -60
- data/lib/ddtrace/contrib/active_record/events/sql.rb +0 -68
- data/lib/ddtrace/contrib/active_record/events.rb +0 -30
- data/lib/ddtrace/contrib/active_record/ext.rb +0 -24
- data/lib/ddtrace/contrib/active_record/integration.rb +0 -53
- data/lib/ddtrace/contrib/active_record/patcher.rb +0 -23
- data/lib/ddtrace/contrib/active_record/utils.rb +0 -123
- data/lib/ddtrace/contrib/active_support/cache/instrumentation.rb +0 -258
- data/lib/ddtrace/contrib/active_support/cache/patcher.rb +0 -69
- data/lib/ddtrace/contrib/active_support/cache/redis.rb +0 -43
- data/lib/ddtrace/contrib/active_support/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/active_support/ext.rb +0 -27
- data/lib/ddtrace/contrib/active_support/integration.rb +0 -46
- data/lib/ddtrace/contrib/active_support/notifications/event.rb +0 -75
- data/lib/ddtrace/contrib/active_support/notifications/subscriber.rb +0 -67
- data/lib/ddtrace/contrib/active_support/notifications/subscription.rb +0 -163
- data/lib/ddtrace/contrib/active_support/patcher.rb +0 -23
- data/lib/ddtrace/contrib/analytics.rb +0 -24
- data/lib/ddtrace/contrib/auto_instrument.rb +0 -48
- data/lib/ddtrace/contrib/aws/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/aws/ext.rb +0 -23
- data/lib/ddtrace/contrib/aws/instrumentation.rb +0 -90
- data/lib/ddtrace/contrib/aws/integration.rb +0 -42
- data/lib/ddtrace/contrib/aws/parsed_context.rb +0 -56
- data/lib/ddtrace/contrib/aws/patcher.rb +0 -53
- data/lib/ddtrace/contrib/aws/services.rb +0 -118
- data/lib/ddtrace/contrib/concurrent_ruby/configuration/settings.rb +0 -20
- data/lib/ddtrace/contrib/concurrent_ruby/context_composite_executor_service.rb +0 -41
- data/lib/ddtrace/contrib/concurrent_ruby/ext.rb +0 -12
- data/lib/ddtrace/contrib/concurrent_ruby/future_patch.rb +0 -23
- data/lib/ddtrace/contrib/concurrent_ruby/integration.rb +0 -38
- data/lib/ddtrace/contrib/concurrent_ruby/patcher.rb +0 -28
- data/lib/ddtrace/contrib/configurable.rb +0 -102
- data/lib/ddtrace/contrib/configuration/resolver.rb +0 -81
- data/lib/ddtrace/contrib/configuration/resolvers/pattern_resolver.rb +0 -39
- data/lib/ddtrace/contrib/configuration/settings.rb +0 -55
- data/lib/ddtrace/contrib/dalli/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/dalli/ext.rb +0 -20
- data/lib/ddtrace/contrib/dalli/instrumentation.rb +0 -54
- data/lib/ddtrace/contrib/dalli/integration.rb +0 -38
- data/lib/ddtrace/contrib/dalli/patcher.rb +0 -25
- data/lib/ddtrace/contrib/dalli/quantize.rb +0 -22
- data/lib/ddtrace/contrib/delayed_job/configuration/settings.rb +0 -32
- data/lib/ddtrace/contrib/delayed_job/ext.rb +0 -23
- data/lib/ddtrace/contrib/delayed_job/integration.rb +0 -38
- data/lib/ddtrace/contrib/delayed_job/patcher.rb +0 -28
- data/lib/ddtrace/contrib/delayed_job/plugin.rb +0 -84
- data/lib/ddtrace/contrib/elasticsearch/configuration/settings.rb +0 -31
- data/lib/ddtrace/contrib/elasticsearch/ext.rb +0 -22
- data/lib/ddtrace/contrib/elasticsearch/integration.rb +0 -39
- data/lib/ddtrace/contrib/elasticsearch/patcher.rb +0 -122
- data/lib/ddtrace/contrib/elasticsearch/quantize.rb +0 -81
- data/lib/ddtrace/contrib/ethon/configuration/settings.rb +0 -32
- data/lib/ddtrace/contrib/ethon/easy_patch.rb +0 -151
- data/lib/ddtrace/contrib/ethon/ext.rb +0 -19
- data/lib/ddtrace/contrib/ethon/integration.rb +0 -43
- data/lib/ddtrace/contrib/ethon/multi_patch.rb +0 -84
- data/lib/ddtrace/contrib/ethon/patcher.rb +0 -25
- data/lib/ddtrace/contrib/excon/configuration/settings.rb +0 -33
- data/lib/ddtrace/contrib/excon/ext.rb +0 -17
- data/lib/ddtrace/contrib/excon/integration.rb +0 -43
- data/lib/ddtrace/contrib/excon/middleware.rb +0 -163
- data/lib/ddtrace/contrib/excon/patcher.rb +0 -27
- data/lib/ddtrace/contrib/extensions.rb +0 -143
- data/lib/ddtrace/contrib/faraday/configuration/settings.rb +0 -38
- data/lib/ddtrace/contrib/faraday/connection.rb +0 -18
- data/lib/ddtrace/contrib/faraday/ext.rb +0 -17
- data/lib/ddtrace/contrib/faraday/integration.rb +0 -43
- data/lib/ddtrace/contrib/faraday/middleware.rb +0 -85
- data/lib/ddtrace/contrib/faraday/patcher.rb +0 -53
- data/lib/ddtrace/contrib/faraday/rack_builder.rb +0 -18
- data/lib/ddtrace/contrib/grape/configuration/settings.rb +0 -38
- data/lib/ddtrace/contrib/grape/endpoint.rb +0 -236
- data/lib/ddtrace/contrib/grape/ext.rb +0 -23
- data/lib/ddtrace/contrib/grape/instrumentation.rb +0 -33
- data/lib/ddtrace/contrib/grape/integration.rb +0 -39
- data/lib/ddtrace/contrib/grape/patcher.rb +0 -31
- data/lib/ddtrace/contrib/graphql/configuration/settings.rb +0 -32
- data/lib/ddtrace/contrib/graphql/ext.rb +0 -16
- data/lib/ddtrace/contrib/graphql/integration.rb +0 -39
- data/lib/ddtrace/contrib/graphql/patcher.rb +0 -60
- data/lib/ddtrace/contrib/grpc/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/grpc/datadog_interceptor/client.rb +0 -58
- data/lib/ddtrace/contrib/grpc/datadog_interceptor/server.rb +0 -81
- data/lib/ddtrace/contrib/grpc/datadog_interceptor.rb +0 -74
- data/lib/ddtrace/contrib/grpc/ext.rb +0 -18
- data/lib/ddtrace/contrib/grpc/integration.rb +0 -38
- data/lib/ddtrace/contrib/grpc/intercept_with_datadog.rb +0 -49
- data/lib/ddtrace/contrib/grpc/patcher.rb +0 -32
- data/lib/ddtrace/contrib/http/circuit_breaker.rb +0 -37
- data/lib/ddtrace/contrib/http/configuration/settings.rb +0 -32
- data/lib/ddtrace/contrib/http/ext.rb +0 -17
- data/lib/ddtrace/contrib/http/instrumentation.rb +0 -179
- data/lib/ddtrace/contrib/http/integration.rb +0 -45
- data/lib/ddtrace/contrib/http/patcher.rb +0 -26
- data/lib/ddtrace/contrib/http_annotation_helper.rb +0 -10
- data/lib/ddtrace/contrib/httpclient/configuration/settings.rb +0 -32
- data/lib/ddtrace/contrib/httpclient/ext.rb +0 -17
- data/lib/ddtrace/contrib/httpclient/instrumentation.rb +0 -147
- data/lib/ddtrace/contrib/httpclient/integration.rb +0 -43
- data/lib/ddtrace/contrib/httpclient/patcher.rb +0 -38
- data/lib/ddtrace/contrib/httprb/configuration/settings.rb +0 -32
- data/lib/ddtrace/contrib/httprb/ext.rb +0 -17
- data/lib/ddtrace/contrib/httprb/instrumentation.rb +0 -157
- data/lib/ddtrace/contrib/httprb/integration.rb +0 -43
- data/lib/ddtrace/contrib/httprb/patcher.rb +0 -38
- data/lib/ddtrace/contrib/integration.rb +0 -16
- data/lib/ddtrace/contrib/kafka/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/kafka/consumer_event.rb +0 -14
- data/lib/ddtrace/contrib/kafka/consumer_group_event.rb +0 -14
- data/lib/ddtrace/contrib/kafka/event.rb +0 -51
- data/lib/ddtrace/contrib/kafka/events/connection/request.rb +0 -34
- data/lib/ddtrace/contrib/kafka/events/consumer/process_batch.rb +0 -41
- data/lib/ddtrace/contrib/kafka/events/consumer/process_message.rb +0 -39
- data/lib/ddtrace/contrib/kafka/events/consumer_group/heartbeat.rb +0 -39
- data/lib/ddtrace/contrib/kafka/events/consumer_group/join_group.rb +0 -29
- data/lib/ddtrace/contrib/kafka/events/consumer_group/leave_group.rb +0 -29
- data/lib/ddtrace/contrib/kafka/events/consumer_group/sync_group.rb +0 -29
- data/lib/ddtrace/contrib/kafka/events/produce_operation/send_messages.rb +0 -32
- data/lib/ddtrace/contrib/kafka/events/producer/deliver_messages.rb +0 -35
- data/lib/ddtrace/contrib/kafka/events.rb +0 -44
- data/lib/ddtrace/contrib/kafka/ext.rb +0 -41
- data/lib/ddtrace/contrib/kafka/integration.rb +0 -39
- data/lib/ddtrace/contrib/kafka/patcher.rb +0 -26
- data/lib/ddtrace/contrib/mongodb/configuration/settings.rb +0 -33
- data/lib/ddtrace/contrib/mongodb/ext.rb +0 -23
- data/lib/ddtrace/contrib/mongodb/instrumentation.rb +0 -69
- data/lib/ddtrace/contrib/mongodb/integration.rb +0 -38
- data/lib/ddtrace/contrib/mongodb/parsers.rb +0 -68
- data/lib/ddtrace/contrib/mongodb/patcher.rb +0 -31
- data/lib/ddtrace/contrib/mongodb/subscribers.rb +0 -111
- data/lib/ddtrace/contrib/mysql2/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/mysql2/ext.rb +0 -18
- data/lib/ddtrace/contrib/mysql2/instrumentation.rb +0 -64
- data/lib/ddtrace/contrib/mysql2/integration.rb +0 -38
- data/lib/ddtrace/contrib/mysql2/patcher.rb +0 -27
- data/lib/ddtrace/contrib/patchable.rb +0 -70
- data/lib/ddtrace/contrib/patcher.rb +0 -65
- data/lib/ddtrace/contrib/presto/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/presto/ext.rb +0 -28
- data/lib/ddtrace/contrib/presto/instrumentation.rb +0 -110
- data/lib/ddtrace/contrib/presto/integration.rb +0 -38
- data/lib/ddtrace/contrib/presto/patcher.rb +0 -33
- data/lib/ddtrace/contrib/qless/configuration/settings.rb +0 -35
- data/lib/ddtrace/contrib/qless/ext.rb +0 -20
- data/lib/ddtrace/contrib/qless/integration.rb +0 -38
- data/lib/ddtrace/contrib/qless/patcher.rb +0 -33
- data/lib/ddtrace/contrib/qless/qless_job.rb +0 -73
- data/lib/ddtrace/contrib/qless/tracer_cleaner.rb +0 -33
- data/lib/ddtrace/contrib/que/configuration/settings.rb +0 -43
- data/lib/ddtrace/contrib/que/ext.rb +0 -30
- data/lib/ddtrace/contrib/que/integration.rb +0 -42
- data/lib/ddtrace/contrib/que/patcher.rb +0 -24
- data/lib/ddtrace/contrib/que/tracer.rb +0 -57
- data/lib/ddtrace/contrib/racecar/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/racecar/event.rb +0 -76
- data/lib/ddtrace/contrib/racecar/events/batch.rb +0 -27
- data/lib/ddtrace/contrib/racecar/events/consume.rb +0 -27
- data/lib/ddtrace/contrib/racecar/events/message.rb +0 -27
- data/lib/ddtrace/contrib/racecar/events.rb +0 -32
- data/lib/ddtrace/contrib/racecar/ext.rb +0 -25
- data/lib/ddtrace/contrib/racecar/integration.rb +0 -39
- data/lib/ddtrace/contrib/racecar/patcher.rb +0 -26
- data/lib/ddtrace/contrib/rack/configuration/settings.rb +0 -46
- data/lib/ddtrace/contrib/rack/ext.rb +0 -21
- data/lib/ddtrace/contrib/rack/integration.rb +0 -45
- data/lib/ddtrace/contrib/rack/middlewares.rb +0 -287
- data/lib/ddtrace/contrib/rack/patcher.rb +0 -105
- data/lib/ddtrace/contrib/rack/request_queue.rb +0 -44
- data/lib/ddtrace/contrib/rails/auto_instrument_railtie.rb +0 -10
- data/lib/ddtrace/contrib/rails/configuration/settings.rb +0 -93
- data/lib/ddtrace/contrib/rails/ext.rb +0 -17
- data/lib/ddtrace/contrib/rails/framework.rb +0 -124
- data/lib/ddtrace/contrib/rails/integration.rb +0 -44
- data/lib/ddtrace/contrib/rails/log_injection.rb +0 -81
- data/lib/ddtrace/contrib/rails/middlewares.rb +0 -43
- data/lib/ddtrace/contrib/rails/patcher.rb +0 -107
- data/lib/ddtrace/contrib/rails/railtie.rb +0 -17
- data/lib/ddtrace/contrib/rails/utils.rb +0 -24
- data/lib/ddtrace/contrib/rake/configuration/settings.rb +0 -31
- data/lib/ddtrace/contrib/rake/ext.rb +0 -21
- data/lib/ddtrace/contrib/rake/instrumentation.rb +0 -90
- data/lib/ddtrace/contrib/rake/integration.rb +0 -38
- data/lib/ddtrace/contrib/rake/patcher.rb +0 -30
- data/lib/ddtrace/contrib/redis/configuration/resolver.rb +0 -45
- data/lib/ddtrace/contrib/redis/configuration/settings.rb +0 -35
- data/lib/ddtrace/contrib/redis/ext.rb +0 -22
- data/lib/ddtrace/contrib/redis/integration.rb +0 -42
- data/lib/ddtrace/contrib/redis/patcher.rb +0 -114
- data/lib/ddtrace/contrib/redis/quantize.rb +0 -75
- data/lib/ddtrace/contrib/redis/tags.rb +0 -46
- data/lib/ddtrace/contrib/redis/vendor/resolver.rb +0 -158
- data/lib/ddtrace/contrib/registerable.rb +0 -33
- data/lib/ddtrace/contrib/registry.rb +0 -42
- data/lib/ddtrace/contrib/resque/configuration/settings.rb +0 -48
- data/lib/ddtrace/contrib/resque/ext.rb +0 -17
- data/lib/ddtrace/contrib/resque/integration.rb +0 -47
- data/lib/ddtrace/contrib/resque/patcher.rb +0 -29
- data/lib/ddtrace/contrib/resque/resque_job.rb +0 -103
- data/lib/ddtrace/contrib/rest_client/configuration/settings.rb +0 -31
- data/lib/ddtrace/contrib/rest_client/ext.rb +0 -17
- data/lib/ddtrace/contrib/rest_client/integration.rb +0 -38
- data/lib/ddtrace/contrib/rest_client/patcher.rb +0 -23
- data/lib/ddtrace/contrib/rest_client/request_patch.rb +0 -91
- data/lib/ddtrace/contrib/sequel/configuration/settings.rb +0 -28
- data/lib/ddtrace/contrib/sequel/database.rb +0 -63
- data/lib/ddtrace/contrib/sequel/dataset.rb +0 -63
- data/lib/ddtrace/contrib/sequel/ext.rb +0 -19
- data/lib/ddtrace/contrib/sequel/integration.rb +0 -38
- data/lib/ddtrace/contrib/sequel/patcher.rb +0 -33
- data/lib/ddtrace/contrib/sequel/utils.rb +0 -74
- data/lib/ddtrace/contrib/shoryuken/configuration/settings.rb +0 -31
- data/lib/ddtrace/contrib/shoryuken/ext.rb +0 -21
- data/lib/ddtrace/contrib/shoryuken/integration.rb +0 -39
- data/lib/ddtrace/contrib/shoryuken/patcher.rb +0 -24
- data/lib/ddtrace/contrib/shoryuken/tracer.rb +0 -55
- data/lib/ddtrace/contrib/sidekiq/client_tracer.rb +0 -43
- data/lib/ddtrace/contrib/sidekiq/configuration/settings.rb +0 -37
- data/lib/ddtrace/contrib/sidekiq/ext.rb +0 -27
- data/lib/ddtrace/contrib/sidekiq/integration.rb +0 -38
- data/lib/ddtrace/contrib/sidekiq/patcher.rb +0 -41
- data/lib/ddtrace/contrib/sidekiq/server_tracer.rb +0 -65
- data/lib/ddtrace/contrib/sidekiq/tracing.rb +0 -44
- data/lib/ddtrace/contrib/sinatra/configuration/settings.rb +0 -39
- data/lib/ddtrace/contrib/sinatra/env.rb +0 -57
- data/lib/ddtrace/contrib/sinatra/ext.rb +0 -27
- data/lib/ddtrace/contrib/sinatra/headers.rb +0 -29
- data/lib/ddtrace/contrib/sinatra/integration.rb +0 -38
- data/lib/ddtrace/contrib/sinatra/patcher.rb +0 -28
- data/lib/ddtrace/contrib/sinatra/tracer.rb +0 -127
- data/lib/ddtrace/contrib/sinatra/tracer_middleware.rb +0 -105
- data/lib/ddtrace/contrib/sneakers/configuration/settings.rb +0 -33
- data/lib/ddtrace/contrib/sneakers/ext.rb +0 -22
- data/lib/ddtrace/contrib/sneakers/integration.rb +0 -41
- data/lib/ddtrace/contrib/sneakers/patcher.rb +0 -24
- data/lib/ddtrace/contrib/sneakers/tracer.rb +0 -53
- data/lib/ddtrace/contrib/status_code_matcher.rb +0 -69
- data/lib/ddtrace/contrib/sucker_punch/configuration/settings.rb +0 -30
- data/lib/ddtrace/contrib/sucker_punch/exception_handler.rb +0 -24
- data/lib/ddtrace/contrib/sucker_punch/ext.rb +0 -21
- data/lib/ddtrace/contrib/sucker_punch/instrumentation.rb +0 -88
- data/lib/ddtrace/contrib/sucker_punch/integration.rb +0 -38
- data/lib/ddtrace/contrib/sucker_punch/patcher.rb +0 -42
- data/lib/ddtrace/correlation.rb +0 -39
- data/lib/ddtrace/diagnostics/environment_logger.rb +0 -279
- data/lib/ddtrace/diagnostics/health.rb +0 -33
- data/lib/ddtrace/distributed_tracing/headers/b3.rb +0 -44
- data/lib/ddtrace/distributed_tracing/headers/b3_single.rb +0 -56
- data/lib/ddtrace/distributed_tracing/headers/datadog.rb +0 -42
- data/lib/ddtrace/distributed_tracing/headers/headers.rb +0 -71
- data/lib/ddtrace/distributed_tracing/headers/helpers.rb +0 -43
- data/lib/ddtrace/encoding.rb +0 -69
- data/lib/ddtrace/environment.rb +0 -41
- data/lib/ddtrace/error.rb +0 -96
- data/lib/ddtrace/event.rb +0 -52
- data/lib/ddtrace/ext/analytics.rb +0 -12
- data/lib/ddtrace/ext/app_types.rb +0 -11
- data/lib/ddtrace/ext/correlation.rb +0 -11
- data/lib/ddtrace/ext/diagnostics.rb +0 -36
- data/lib/ddtrace/ext/distributed.rb +0 -39
- data/lib/ddtrace/ext/environment.rb +0 -16
- data/lib/ddtrace/ext/errors.rb +0 -10
- data/lib/ddtrace/ext/forced_tracing.rb +0 -25
- data/lib/ddtrace/ext/git.rb +0 -11
- data/lib/ddtrace/ext/http.rb +0 -46
- data/lib/ddtrace/ext/integration.rb +0 -8
- data/lib/ddtrace/ext/manual_tracing.rb +0 -9
- data/lib/ddtrace/ext/metrics.rb +0 -15
- data/lib/ddtrace/ext/net.rb +0 -10
- data/lib/ddtrace/ext/priority.rb +0 -16
- data/lib/ddtrace/ext/profiling.rb +0 -53
- data/lib/ddtrace/ext/runtime.rb +0 -30
- data/lib/ddtrace/ext/sampling.rb +0 -16
- data/lib/ddtrace/ext/sql.rb +0 -8
- data/lib/ddtrace/ext/test.rb +0 -8
- data/lib/ddtrace/ext/transport.rb +0 -20
- data/lib/ddtrace/forced_tracing.rb +0 -38
- data/lib/ddtrace/logger.rb +0 -40
- data/lib/ddtrace/metrics.rb +0 -255
- data/lib/ddtrace/opentelemetry/extensions.rb +0 -13
- data/lib/ddtrace/opentelemetry/span.rb +0 -33
- data/lib/ddtrace/opentracer/binary_propagator.rb +0 -24
- data/lib/ddtrace/opentracer/carrier.rb +0 -6
- data/lib/ddtrace/opentracer/distributed_headers.rb +0 -55
- data/lib/ddtrace/opentracer/global_tracer.rb +0 -15
- data/lib/ddtrace/opentracer/propagator.rb +0 -22
- data/lib/ddtrace/opentracer/rack_propagator.rb +0 -60
- data/lib/ddtrace/opentracer/scope.rb +0 -15
- data/lib/ddtrace/opentracer/scope_manager.rb +0 -6
- data/lib/ddtrace/opentracer/span.rb +0 -94
- data/lib/ddtrace/opentracer/span_context.rb +0 -14
- data/lib/ddtrace/opentracer/span_context_factory.rb +0 -23
- data/lib/ddtrace/opentracer/text_map_propagator.rb +0 -75
- data/lib/ddtrace/opentracer/thread_local_scope.rb +0 -31
- data/lib/ddtrace/opentracer/thread_local_scope_manager.rb +0 -40
- data/lib/ddtrace/opentracer/tracer.rb +0 -208
- data/lib/ddtrace/opentracer.rb +0 -21
- data/lib/ddtrace/patcher.rb +0 -68
- data/lib/ddtrace/pin.rb +0 -85
- data/lib/ddtrace/pipeline/span_filter.rb +0 -38
- data/lib/ddtrace/pipeline/span_processor.rb +0 -20
- data/lib/ddtrace/pipeline.rb +0 -46
- data/lib/ddtrace/profiling/backtrace_location.rb +0 -32
- data/lib/ddtrace/profiling/buffer.rb +0 -41
- data/lib/ddtrace/profiling/collectors/stack.rb +0 -262
- data/lib/ddtrace/profiling/encoding/profile.rb +0 -37
- data/lib/ddtrace/profiling/event.rb +0 -13
- data/lib/ddtrace/profiling/events/stack.rb +0 -102
- data/lib/ddtrace/profiling/exporter.rb +0 -23
- data/lib/ddtrace/profiling/ext/cpu.rb +0 -52
- data/lib/ddtrace/profiling/ext/cthread.rb +0 -155
- data/lib/ddtrace/profiling/ext/forking.rb +0 -97
- data/lib/ddtrace/profiling/flush.rb +0 -43
- data/lib/ddtrace/profiling/pprof/builder.rb +0 -119
- data/lib/ddtrace/profiling/pprof/converter.rb +0 -89
- data/lib/ddtrace/profiling/pprof/message_set.rb +0 -12
- data/lib/ddtrace/profiling/pprof/payload.rb +0 -18
- data/lib/ddtrace/profiling/pprof/pprof_pb.rb +0 -81
- data/lib/ddtrace/profiling/pprof/stack_sample.rb +0 -106
- data/lib/ddtrace/profiling/pprof/string_table.rb +0 -10
- data/lib/ddtrace/profiling/pprof/template.rb +0 -118
- data/lib/ddtrace/profiling/profiler.rb +0 -30
- data/lib/ddtrace/profiling/recorder.rb +0 -95
- data/lib/ddtrace/profiling/scheduler.rb +0 -116
- data/lib/ddtrace/profiling/tasks/setup.rb +0 -77
- data/lib/ddtrace/profiling/transport/client.rb +0 -12
- data/lib/ddtrace/profiling/transport/http/api/endpoint.rb +0 -100
- data/lib/ddtrace/profiling/transport/http/api/instance.rb +0 -36
- data/lib/ddtrace/profiling/transport/http/api/spec.rb +0 -40
- data/lib/ddtrace/profiling/transport/http/api.rb +0 -43
- data/lib/ddtrace/profiling/transport/http/builder.rb +0 -28
- data/lib/ddtrace/profiling/transport/http/client.rb +0 -33
- data/lib/ddtrace/profiling/transport/http/response.rb +0 -21
- data/lib/ddtrace/profiling/transport/http.rb +0 -118
- data/lib/ddtrace/profiling/transport/io/client.rb +0 -27
- data/lib/ddtrace/profiling/transport/io/response.rb +0 -16
- data/lib/ddtrace/profiling/transport/io.rb +0 -30
- data/lib/ddtrace/profiling/transport/parcel.rb +0 -17
- data/lib/ddtrace/profiling/transport/request.rb +0 -15
- data/lib/ddtrace/profiling/transport/response.rb +0 -8
- data/lib/ddtrace/profiling.rb +0 -107
- data/lib/ddtrace/propagation/grpc_propagator.rb +0 -74
- data/lib/ddtrace/propagation/http_propagator.rb +0 -90
- data/lib/ddtrace/quantization/hash.rb +0 -103
- data/lib/ddtrace/quantization/http.rb +0 -87
- data/lib/ddtrace/runtime/cgroup.rb +0 -44
- data/lib/ddtrace/runtime/class_count.rb +0 -17
- data/lib/ddtrace/runtime/container.rb +0 -87
- data/lib/ddtrace/runtime/gc.rb +0 -16
- data/lib/ddtrace/runtime/identity.rb +0 -48
- data/lib/ddtrace/runtime/metrics.rb +0 -112
- data/lib/ddtrace/runtime/object_space.rb +0 -19
- data/lib/ddtrace/runtime/socket.rb +0 -14
- data/lib/ddtrace/runtime/thread_count.rb +0 -16
- data/lib/ddtrace/sampler.rb +0 -292
- data/lib/ddtrace/sampling/matcher.rb +0 -57
- data/lib/ddtrace/sampling/rate_limiter.rb +0 -176
- data/lib/ddtrace/sampling/rule.rb +0 -61
- data/lib/ddtrace/sampling/rule_sampler.rb +0 -120
- data/lib/ddtrace/sampling.rb +0 -2
- data/lib/ddtrace/span.rb +0 -432
- data/lib/ddtrace/sync_writer.rb +0 -68
- data/lib/ddtrace/tasks/exec.rb +0 -48
- data/lib/ddtrace/tasks/help.rb +0 -14
- data/lib/ddtrace/tracer.rb +0 -457
- data/lib/ddtrace/utils/compression.rb +0 -27
- data/lib/ddtrace/utils/database.rb +0 -25
- data/lib/ddtrace/utils/forking.rb +0 -52
- data/lib/ddtrace/utils/object_set.rb +0 -39
- data/lib/ddtrace/utils/only_once.rb +0 -40
- data/lib/ddtrace/utils/sequence.rb +0 -17
- data/lib/ddtrace/utils/string_table.rb +0 -45
- data/lib/ddtrace/utils/time.rb +0 -43
- data/lib/ddtrace/utils.rb +0 -68
- data/lib/ddtrace/vendor/active_record/connection_specification.rb +0 -301
- data/lib/ddtrace/vendor/multipart-post/multipart/post/composite_read_io.rb +0 -116
- data/lib/ddtrace/vendor/multipart-post/multipart/post/multipartable.rb +0 -57
- data/lib/ddtrace/vendor/multipart-post/multipart/post/parts.rb +0 -135
- data/lib/ddtrace/vendor/multipart-post/multipart/post/version.rb +0 -9
- data/lib/ddtrace/vendor/multipart-post/multipart/post.rb +0 -8
- data/lib/ddtrace/vendor/multipart-post/multipart.rb +0 -12
- data/lib/ddtrace/vendor/multipart-post/net/http/post/multipart.rb +0 -32
- data/lib/ddtrace/worker.rb +0 -20
- data/lib/ddtrace/workers/async.rb +0 -174
- data/lib/ddtrace/workers/loop.rb +0 -131
- data/lib/ddtrace/workers/polling.rb +0 -55
- data/lib/ddtrace/workers/queue.rb +0 -40
- data/lib/ddtrace/workers/runtime_metrics.rb +0 -64
- data/lib/ddtrace/workers/trace_writer.rb +0 -199
- data/lib/ddtrace/workers.rb +0 -122
- data/lib/ddtrace/writer.rb +0 -199
- data/tasks/release_gem.rake +0 -28
- /data/lib/{ddtrace → datadog/core}/vendor/multipart-post/LICENSE +0 -0
- /data/lib/{ddtrace → datadog}/profiling/pprof/pprof.proto +0 -0
- /data/lib/{ddtrace/vendor/active_record → datadog/tracing/contrib/active_record/vendor}/MIT-LICENSE +0 -0
- /data/lib/{ddtrace → datadog/tracing}/contrib/redis/vendor/LICENSE +0 -0
@@ -0,0 +1,4 @@
|
|
1
|
+
<!-- Sorry, you’ve been blocked --><!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width,initial-scale=1"><title>You've been blocked</title><style>a,body,div,h1,html,span{margin:0;padding:0;border:0;font-size:100%;font:inherit;vertical-align:baseline}body{background:-webkit-radial-gradient(26% 19%,circle,#fff,#f4f7f9);background:radial-gradient(circle at 26% 19%,#fff,#f4f7f9);display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-ms-flex-pack:center;justify-content:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-ms-flex-line-pack:center;align-content:center;width:100%;min-height:100vh;line-height:1;flex-direction:column}h1,p,img{display:block}img{width:200px}img{margin:0 auto 4vh}main{text-align:center;flex:1;display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-ms-flex-pack:center;justify-content:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-ms-flex-line-pack:center;align-content:center;flex-direction:column}h1{font-family:sans-serif;font-weight:600;font-size:34px;color:#1e0936;line-height:1.2}p{font-size:18px;line-height:normal;color:#646464;font-family:sans-serif;font-weight:400}a{color:#4842b7}footer{width:100%;text-align:center}footer p{font-size:16px}</style></head><body><main>
|
2
|
+
<img src=""></img>
|
3
|
+
<h1>Sorry, you've been blocked</h1><p>Contact the website owner</p></main><footer><p>Security provided by <a href="https://www.datadoghq.com/?utm_medium=block_page" target="_blank">Datadog</a></p></footer></body></html>
|
4
|
+
|