crystalcell 0.0.3 → 0.0.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,148 +1,57 @@
1
- #
2
- # 元素(原子種)に関する情報を集めたクラス
3
- # 基本理念として、原子番号を最もネイティブなデータとして ID 付けをする。
4
- # 原子番号は人間がいなかったとしてもそれで区分できるが、
5
- # 原子記号は人間がつけたものだから。
1
+ # Class for elements and their information.
6
2
  #
7
3
  class CrystalCell::Element
8
- # 全データを生成しておく。
9
- def initialize
10
- #原子記号, 原子番号, 周期, 族, 質量数(平均), イオン半径
11
- @symbol = Array.new #; @mass = Array.new @radius = Array.new
12
- #i = 1; @symbol[i], @mass[i], @radius[i] = 'H', 1.008, nil
13
- i = 0; @symbol[i] = nil
14
- i = 1; @symbol[i] = 'H'
15
- i = 2; @symbol[i] = 'He'
16
- i = 3; @symbol[i] = 'Li'
17
- i = 4; @symbol[i] = 'Be'
18
- i = 5; @symbol[i] = 'B'
19
- i = 6; @symbol[i] = 'C'
20
- i = 7; @symbol[i] = 'N'
21
- i = 8; @symbol[i] = 'O'
22
- i = 9; @symbol[i] = 'F'
23
- i = 10; @symbol[i] = 'Ne'
24
- i = 11; @symbol[i] = 'Na'
25
- i = 12; @symbol[i] = 'Mg'
26
- i = 13; @symbol[i] = 'Al'
27
- i = 14; @symbol[i] = 'Si'
28
- i = 15; @symbol[i] = 'P'
29
- i = 16; @symbol[i] = 'S'
30
- i = 17; @symbol[i] = 'Cl'
31
- i = 18; @symbol[i] = 'Ar'
32
- i = 19; @symbol[i] = 'K'
33
- i = 20; @symbol[i] = 'Ca'
34
- i = 21; @symbol[i] = 'Sc'
35
- i = 22; @symbol[i] = 'Ti'
36
- i = 23; @symbol[i] = 'V'
37
- i = 24; @symbol[i] = 'Cr'
38
- i = 25; @symbol[i] = 'Mn'
39
- i = 26; @symbol[i] = 'Fe'
40
- i = 27; @symbol[i] = 'Co'
41
- i = 28; @symbol[i] = 'Ni'
42
- i = 29; @symbol[i] = 'Cu'
43
- i = 30; @symbol[i] = 'Zn'
44
- i = 31; @symbol[i] = 'Ga'
45
- i = 32; @symbol[i] = 'Ge'
46
- i = 33; @symbol[i] = 'As'
47
- i = 34; @symbol[i] = 'Se'
48
- i = 35; @symbol[i] = 'Br'
49
- i = 36; @symbol[i] = 'Kr'
50
- i = 37; @symbol[i] = 'Rb'
51
- i = 38; @symbol[i] = 'Sr'
52
- i = 39; @symbol[i] = 'Y'
53
- i = 40; @symbol[i] = 'Zr'
54
- i = 41; @symbol[i] = 'Nb'
55
- i = 42; @symbol[i] = 'Mo'
56
- i = 43; @symbol[i] = 'Tc'
57
- i = 44; @symbol[i] = 'Ru'
58
- i = 45; @symbol[i] = 'Rh'
59
- i = 46; @symbol[i] = 'Pd'
60
- i = 47; @symbol[i] = 'Ag'
61
- i = 48; @symbol[i] = 'Cd'
62
- i = 49; @symbol[i] = 'In'
63
- i = 50; @symbol[i] = 'Sn'
64
- i = 51; @symbol[i] = 'Sb'
65
- i = 52; @symbol[i] = 'Te'
66
- i = 53; @symbol[i] = 'I'
67
- i = 54; @symbol[i] = 'Xe'
68
- i = 55; @symbol[i] = 'Cs'
69
- i = 56; @symbol[i] = 'Ba'
70
- i = 57; @symbol[i] = 'La'
71
- i = 58; @symbol[i] = 'Ce'
72
- i = 59; @symbol[i] = 'Pr'
73
- i = 60; @symbol[i] = 'Nd'
74
- i = 61; @symbol[i] = 'Pm'
75
- i = 62; @symbol[i] = 'Sm'
76
- i = 63; @symbol[i] = 'Eu'
77
- i = 64; @symbol[i] = 'Gd'
78
- i = 65; @symbol[i] = 'Tb'
79
- i = 66; @symbol[i] = 'Dy'
80
- i = 67; @symbol[i] = 'Ho'
81
- i = 68; @symbol[i] = 'Er'
82
- i = 69; @symbol[i] = 'Tm'
83
- i = 70; @symbol[i] = 'Yb'
84
- i = 71; @symbol[i] = 'Lu'
85
- i = 72; @symbol[i] = 'Hf'
86
- i = 73; @symbol[i] = 'Ta'
87
- i = 74; @symbol[i] = 'W'
88
- i = 75; @symbol[i] = 'Re'
89
- i = 76; @symbol[i] = 'Os'
90
- i = 77; @symbol[i] = 'Ir'
91
- i = 78; @symbol[i] = 'Pt'
92
- i = 79; @symbol[i] = 'Au'
93
- i = 80; @symbol[i] = 'Hg'
94
- i = 81; @symbol[i] = 'Tl'
95
- i = 82; @symbol[i] = 'Pb'
96
- i = 83; @symbol[i] = 'Bi'
97
- i = 84; @symbol[i] = 'Po'
98
- i = 85; @symbol[i] = 'At'
99
- i = 86; @symbol[i] = 'Rn'
100
- i = 87; @symbol[i] = 'Fr'
101
- i = 88; @symbol[i] = 'Ra'
102
- i = 89; @symbol[i] = 'Ac'
103
- i = 90; @symbol[i] = 'Th'
104
- i = 91; @symbol[i] = 'Pa'
105
- i = 92; @symbol[i] = 'U'
106
- i = 93; @symbol[i] = 'Np'
107
- i = 94; @symbol[i] = 'Pu'
108
- i = 95; @symbol[i] = 'Am'
109
- i = 96; @symbol[i] = 'Cm'
110
- i = 97; @symbol[i] = 'Bk'
111
- i = 98; @symbol[i] = 'Cf'
112
- i = 99; @symbol[i] = 'Es'
113
- i = 100; @symbol[i] = 'Fm'
114
- i = 101; @symbol[i] = 'Md'
115
- i = 102; @symbol[i] = 'No'
116
- i = 103; @symbol[i] = 'Lr'
117
- end
118
4
 
119
- # 原子記号から原子番号を取得。e.g., H から 1
120
- # 与えられたものが原子番号ならそのまま返す、ようにしたいがまだできてない。
121
- # リストに存在しなければ raise する。
122
- def getAtomicNumber( name )
123
- symbol = @symbol.index( name )
124
- raise "Symbol #{name} not found." if (symbol == nil || symbol == 0)
125
- symbol
126
- end
5
+ class NotExistError < Exception; end
6
+
7
+ SYMBOLS = [nil] + %w(
8
+ H He
9
+ Li Be B C N O F Ne
10
+ Na Mg Al Si P S Cl Ar
11
+ K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
12
+ Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
13
+ Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
14
+ Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
15
+ Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
16
+ )
17
+
18
+ #https://www.hulinks.co.jp/support/c-maker/qa_05.html
19
+ ATOMIC_RADII = [nil,
20
+ 0.53, 0.31,
21
+ 1.67, 1.12, 0.87, 0.67, 0.56, 0.48, 0.42, 0.38,
22
+ 1.90, 1.45, 1.18, 1.11, 0.98, 0.88, 0.79, 0.71,
23
+ 2.43, 1.94, 1.84, 1.76, 1.71, 1.66, 1.61, 1.56,
24
+ 1.52, 1.49, 1.45, 1.42, 1.36, 1.25, 1.14, 1.03, 0.94, 0.88,
25
+ 2.65, 2.19, 2.12, 2.06, 1.98, 1.90, 1.83, 1.78,
26
+ 1.73, 1.69, 1.65, 1.61, 1.56, 1.45, 1.33, 1.23, 1.15, 1.08,
27
+ 2.98, 2.53, 1.95, 1.85, 2.47, 2.06, 2.05, 2.38,
28
+ 2.31, 2.33, 2.25, 2.28, 2.26, 2.26, 2.22, 2.22, 2.17, 2.08, 2.00,
29
+ 1.93, 1.88, 1.85, 1.80, 1.77, 1.74, 1.71, 1.56, 1.54, 1.43, 1.35, 1.27, 1.20,
30
+ nil, nil, 1.95, 1.80, 1.80, 1.75, 1.75, 1.75, 1.75
31
+ ]
32
+
127
33
 
128
- # 原子番号から原子記号を取得。e.g., 1 から H
129
- # 与えられたものが原子記号ならそのまま返す、ようにしたいがまだできてない。
130
- # リストに存在しなければ raise する。
131
- def getSymbol( num )
132
- raise "getSymbol(num) requires Fixnum, but #{num}" if (num.class != Fixnum)
133
- raise "Atomic number is out of range." if (num <= 0 || @symbol.size <= num)
134
- @symbol[num]
135
- end
34
+ # Return atomic number from element symbol, e.g., H to 1.
35
+ # If not found, raise CrystalCell::Element::NotExistError.
36
+ def self.symbol_to_num(str)
37
+ symbol = SYMBOLS.index( str )
38
+ raise NotExistError, "Symbol #{str} not found." if (symbol == nil || symbol == 0)
39
+ symbol
40
+ end
136
41
 
137
- # 引数 id がリストに含まれているか?
138
- # id は原子番号でも原子記号でも可にしたいが、とりあえず symbol だけ。
139
- def include?( symbol )
140
- return false if symbol == nil
141
- @symbol.include?( symbol )
142
- end
42
+ # Return element symbols from atomic number 'num', e.g., 1 to H
43
+ # If not found, raise CrystalCell::Element::NotExistError.
44
+ def self.num_to_symbol(num)
45
+ raise NotExistError, "#{num} is not Fixnum." if (num.class != Fixnum)
46
+ raise NotExistError, "#{num} is out of range." if (num <= 0 || SYMBOLS.size <= num)
47
+ SYMBOLS[num]
48
+ end
143
49
 
144
- ##
145
- #def getRadius
146
- #end
50
+ # Return atomic radius.
51
+ # 'id' can be indicated by number and elemet symbol.
52
+ def self.atomic_radius(id)
53
+ id = self.symbol_to_num(id) if id.class == String
54
+ ATOMIC_RADII[id]
55
+ end
147
56
 
148
57
  end
@@ -19,195 +19,208 @@ require "malge/simultaneousequations.rb"
19
19
  # [0.00000, 0.00000, 0.70710]]
20
20
  class CrystalCell::LatticeAxes < Mageo::Axes
21
21
 
22
- class InitializeError < Exception; end
23
- class ArgumentError < Exception; end
24
- class TypeError < Exception; end
25
-
26
- include Math
27
- include Mageo
28
-
29
- # Argument 'vectors' is three vectors with the order of a, b, c.
30
- # If you want to make LatticeAxes instances from lattice constants,
31
- # you should convert to axes with LatticeAxes.lc_to_axes
32
- # 任意の向きのベクトルを渡しても、必ず triangulate する。
33
- def initialize(vectors)
34
- raise InitializeError, "#{vectors.inspect}" unless vectors.size == 3
35
-
36
- if vectors.class == CrystalCell::LatticeAxes
37
- @axes = vectors
38
- else
39
- begin
40
- vectors = self.class.triangulate(vectors)
41
- rescue Vector3D::RangeError
42
- raise InitializeError, "#{vectors.inspect}"
43
- end
44
-
45
- super(vectors)
46
- end
22
+ attr_reader :axes
23
+
24
+ class InitializeError < Exception; end
25
+ class ArgumentError < Exception; end
26
+ class TypeError < Exception; end
27
+
28
+ include Math
29
+ include Mageo
30
+
31
+ # Argument 'vectors' is three vectors with the order of a, b, c.
32
+ # If you want to make LatticeAxes instances from lattice constants,
33
+ # you should convert to axes with LatticeAxes.lc_to_axes
34
+ # 任意の向きのベクトルを渡しても、必ず triangulate する。
35
+ def initialize(vectors)
36
+ raise InitializeError, "#{vectors.inspect}" unless vectors.size == 3
37
+
38
+ if vectors.class == CrystalCell::LatticeAxes
39
+ @axes = vectors
40
+ else
41
+ begin
42
+ vectors = self.class.triangulate(vectors)
43
+ rescue Vector3D::RangeError
44
+ raise InitializeError, "#{vectors.inspect}"
45
+ end
46
+
47
+ super(vectors)
47
48
  end
48
-
49
-
50
- ## Class methods
51
-
52
- # Generate new instance from lattice constants.
53
- def self.new_lc(lc)
54
- vec = CrystalCell::LatticeAxes.lc_to_axes(lc)
55
- CrystalCell::LatticeAxes.new(vec)
56
- end
57
-
58
- # Convert six lattice constants to three axes.
59
- # Set true to the argument of 'righthand' if a assumed lattice has righthand axis system.
60
- def self.lc_to_axes(lc, righthand = true)
61
- raise ArgumentError if (lc.size != 6)
62
-
63
- a = lc[0]
64
- b = lc[1]
65
- c = lc[2]
66
- alpha = (2.0*PI) * lc[3] / 360.0 # radian
67
- beta = (2.0*PI) * lc[4] / 360.0 # radian
68
- gamma = (2.0*PI) * lc[5] / 360.0 # radian
69
-
70
- v_c = Vector3D[0.0, 0.0, c]
71
- v_b = Vector3D[0.0, b * Math::sin(alpha), b * Math::cos(alpha)]
72
- v_a_z = a * Math::cos(beta)
73
- v_a_y = (a * (Math::cos(gamma) - Math::cos(alpha) * Math::cos(beta)))/ Math::sin(alpha)
74
- v_a_x = Math::sqrt(a**2 - v_a_y**2 - v_a_z**2)
75
- v_a_x *= -1.0 if righthand == false
76
- v_a = Vector3D[v_a_x, v_a_y, v_a_z]
77
- return [v_a, v_b, v_c]
78
- end
79
-
80
- # Convert three axes to six lattice constants.
81
- def self.axes_to_lc(axes)
82
- axes.collect!{|i| Vector3D[*i] }
83
- a = axes[0].r
84
- b = axes[1].r
85
- c = axes[2].r
86
- alpha = axes[1].angle_degree(axes[2])
87
- beta = axes[2].angle_degree(axes[0])
88
- gamma = axes[0].angle_degree(axes[1])
89
- return [ a, b, c, alpha, beta, gamma ]
49
+ end
50
+
51
+
52
+ ## Class methods
53
+
54
+ # Generate new instance from lattice constants.
55
+ def self.new_lc(lc)
56
+ vec = CrystalCell::LatticeAxes.lc_to_axes(lc)
57
+ CrystalCell::LatticeAxes.new(vec)
58
+ end
59
+
60
+ # Convert six lattice constants to three axes.
61
+ # Set true to the argument of 'righthand' if a assumed lattice has righthand axis system.
62
+ def self.lc_to_axes(lc, righthand = true)
63
+ raise ArgumentError if (lc.size != 6)
64
+
65
+ a = lc[0]
66
+ b = lc[1]
67
+ c = lc[2]
68
+ alpha = (2.0*PI) * lc[3] / 360.0 # radian
69
+ beta = (2.0*PI) * lc[4] / 360.0 # radian
70
+ gamma = (2.0*PI) * lc[5] / 360.0 # radian
71
+
72
+ v_c = Vector3D[0.0, 0.0, c]
73
+ v_b = Vector3D[0.0, b * Math::sin(alpha), b * Math::cos(alpha)]
74
+ v_a_z = a * Math::cos(beta)
75
+ v_a_y = (a * (Math::cos(gamma) - Math::cos(alpha) * Math::cos(beta)))/ Math::sin(alpha)
76
+ v_a_x = Math::sqrt(a**2 - v_a_y**2 - v_a_z**2)
77
+ v_a_x *= -1.0 if righthand == false
78
+ v_a = Vector3D[v_a_x, v_a_y, v_a_z]
79
+ return [v_a, v_b, v_c]
80
+ end
81
+
82
+ # Convert three axes to six lattice constants.
83
+ def self.axes_to_lc(axes)
84
+ axes.collect!{|i| Vector3D[*i] }
85
+ a = axes[0].r
86
+ b = axes[1].r
87
+ c = axes[2].r
88
+ alpha = axes[1].angle_degree(axes[2])
89
+ beta = axes[2].angle_degree(axes[0])
90
+ gamma = axes[0].angle_degree(axes[1])
91
+ return [ a, b, c, alpha, beta, gamma ]
92
+ end
93
+
94
+ # Return true if the relation of vector order is righthand system.
95
+ def self.righthand?(axes)
96
+ axes.map! { |i| Vector3D[*i] }
97
+ return true if Vector3D.scalar_triple_product(*axes) > 0.0
98
+ return false
99
+ end
100
+
101
+ # Return true if the relation of vector order is lefthand system.
102
+ def self.lefthand?(axes)
103
+ axes.map! { |i| Vector3D[*i] }
104
+ return true if Vector3D.scalar_triple_product(*axes) < 0.0
105
+ return false
106
+ end
107
+
108
+ # Convert three axes to three axes with rules below:
109
+ # c axis is along z axis in cartesian system.
110
+ # b axis is on y-z plane in cartesian system.
111
+ # Return an array of three Vector3D instances.
112
+ # This class does not convert righthand to lefthand system.
113
+ # The name of this method 'triangulate' originates from the
114
+ # matrix indicating the vectors being triangular matrix.
115
+ #
116
+ # クラスメソッドは廃止の方向で。
117
+ # vectors の数をチェックするのは initialize でやるべきことだろうし、
118
+ # LatticeAxes クラスインスタンス以外で triangulate を使う場面が想像できない。
119
+ #
120
+ def self.triangulate(vectors)
121
+ vectors.map! { |i| Vector3D[*i] }
122
+ raise InitializeError if self.dependent?(vectors)
123
+ lc = self.axes_to_lc(vectors)
124
+ righthand = self.righthand?(vectors)
125
+ return self.lc_to_axes(lc, righthand)
126
+ end
127
+
128
+ ## Instance methods.
129
+
130
+ # Get lattice constants in six values.
131
+ def get_lattice_constants
132
+ return CrystalCell::LatticeAxes.axes_to_lc(@axes)
133
+ end
134
+
135
+ def righthand?
136
+ self.class.righthand?(@axes)
137
+ end
138
+
139
+ def lefthand?
140
+ self.class.lefthand?(@axes)
141
+ end
142
+
143
+ # This class is obsoleted. [2011-12-22]
144
+ ## Convert internal coordinates to cartesian coordinates.
145
+ ## Return a Vector3DInternal class instance, which is not a cartesian vector.
146
+ #def internal2cartesian(internal_coord)
147
+ # Vector3DInternal[ *internal_coord ].to_v3d(axes)
148
+ #end
149
+
150
+ # This class is obsoleted. [2011-12-22]
151
+ ## Convert cartesian coordinates to internal coordinates.
152
+ ## Return a Vector3D class instance, which is a cartesian vector.
153
+ #def cartesian2internal(cartesian_coord)
154
+ # #pp cartesian_coord
155
+ # Vector3D[ *cartesian_coord ].to_v3di(axes)
156
+ #end
157
+
158
+ # Compare <other> CrystalCell::LatticeAxes instance.
159
+ # <length_ratio> is tolerance of ratio in length of axes.
160
+ # <angle_tolerance> is tolerance of value in angle between axes.
161
+ def equal_in_delta?(other, length_ratio, angle_tolerance)
162
+ length_a = self .get_lattice_constants[0..2]
163
+ length_b = other.get_lattice_constants[0..2]
164
+ 3.times do |i|
165
+ return false unless ((length_a[i] - length_b[i]).abs <= length_ratio)
90
166
  end
91
167
 
92
- # Return true if the relation of vector order is righthand system.
93
- def self.righthand?(axes)
94
- axes.map! { |i| Vector3D[*i] }
95
- return true if Vector3D.scalar_triple_product(*axes) > 0.0
96
- return false
168
+ angle_a = self .get_lattice_constants[3..5]
169
+ angle_b = other.get_lattice_constants[3..5]
170
+ 3.times do |i|
171
+ return false unless ((angle_a[i] - angle_b[i]).abs <= angle_tolerance)
97
172
  end
98
-
99
- # Return true if the relation of vector order is lefthand system.
100
- def self.lefthand?(axes)
101
- axes.map! { |i| Vector3D[*i] }
102
- return true if Vector3D.scalar_triple_product(*axes) < 0.0
103
- return false
104
- end
105
-
106
- # Convert three axes to three axes with rules below:
107
- # c axis is along z axis in cartesian system.
108
- # b axis is on y-z plane in cartesian system.
109
- # Return an array of three Vector3D instances.
110
- # This class does not convert righthand to lefthand system.
111
- # The name of this method 'triangulate' originates from the
112
- # matrix indicating the vectors being triangular matrix.
113
- #
114
- # クラスメソッドは廃止の方向で。
115
- # vectors の数をチェックするのは initialize でやるべきことだろうし、
116
- # LatticeAxes クラスインスタンス以外で triangulate を使う場面が想像できない。
117
- #
118
- def self.triangulate(vectors)
119
- vectors.map! { |i| Vector3D[*i] }
120
- raise InitializeError if self.dependent?(vectors)
121
- lc = self.axes_to_lc(vectors)
122
- righthand = self.righthand?(vectors)
123
- return self.lc_to_axes(lc, righthand)
124
- end
125
-
126
- ## Instance methods.
127
-
128
- # Get lattice constants in six values.
129
- def get_lattice_constants
130
- return CrystalCell::LatticeAxes.axes_to_lc(@axes)
173
+ return true
174
+ end
175
+
176
+ def ==(other)
177
+ 3.times do |i|
178
+ 3.times do |j|
179
+ return false if self[i][j] != other[i][j]
180
+ end
131
181
  end
132
-
133
- def righthand?
134
- self.class.righthand?(@axes)
135
- end
136
-
137
- def lefthand?
138
- self.class.lefthand?(@axes)
139
- end
140
-
141
- # This class is obsoleted. [2011-12-22]
142
- ## Convert internal coordinates to cartesian coordinates.
143
- ## Return a Vector3DInternal class instance, which is not a cartesian vector.
144
- #def internal2cartesian(internal_coord)
145
- # Vector3DInternal[ *internal_coord ].to_v3d(axes)
146
- #end
147
-
148
- # This class is obsoleted. [2011-12-22]
149
- ## Convert cartesian coordinates to internal coordinates.
150
- ## Return a Vector3D class instance, which is a cartesian vector.
151
- #def cartesian2internal(cartesian_coord)
152
- # #pp cartesian_coord
153
- # Vector3D[ *cartesian_coord ].to_v3di(axes)
154
- #end
155
-
156
- # Compare <other> CrystalCell::LatticeAxes instance.
157
- # <length_ratio> is tolerance of ratio in length of axes.
158
- # <angle_tolerance> is tolerance of value in angle between axes.
159
- def equal_in_delta?(other, length_ratio, angle_tolerance)
160
- length_a = self .get_lattice_constants[0..2]
161
- length_b = other.get_lattice_constants[0..2]
162
- 3.times do |i|
163
- return false unless ((length_a[i] - length_b[i]).abs <= length_ratio)
164
- end
165
-
166
- angle_a = self .get_lattice_constants[3..5]
167
- angle_b = other.get_lattice_constants[3..5]
168
- 3.times do |i|
169
- return false unless ((angle_a[i] - angle_b[i]).abs <= angle_tolerance)
170
- end
171
- return true
172
- end
173
-
174
- def ==(other)
175
- 3.times do |i|
176
- 3.times do |j|
177
- return false if self[i][j] != other[i][j]
178
- end
179
- end
180
- return true
181
- end
182
-
183
- private
184
-
185
- def triangulate
186
- #self.class.triangulate(@axes)
187
- # rotate(2, 2, 1)
188
- # rotate(2, 0, 2)
189
- # rotate(1, 2, 1)
190
- end
191
-
192
- #private
193
-
194
- ## 保持する全ての軸を回転する。
195
- ## 以下の index は Axes クラス保持している配列における index。
196
- ## target_index 回転の際の角度を決めるベクトルの
197
- ## self が保持する内部座標軸の index。
198
- ## center_axis_index 回転の中心軸のベクトルの index in x, y, z。
199
- ## plane_axis_index) 回転の目的地となる平面を、中心軸と共に構成するベクトルの index
200
- ## in x, y, z。
201
- #def rotate(target_index, center_axis_index, plane_axis_index)
202
- # theta =
203
-
204
- # axes[target_index]
205
- #
206
- # HERE
207
-
208
- # self.each do |vector|
209
- # vector
210
- # end
211
- #end
182
+ return true
183
+ end
184
+
185
+ ## Multiply all vectors. Not destructive.
186
+ def *(val)
187
+ #result = Marshal.load(Marshal.dump(self))
188
+
189
+ self.class.new(@axes.map{|vec| vec * val})
190
+ end
191
+
192
+ def to_a
193
+ @axes.map{|v| v.to_a}
194
+ end
195
+
196
+ private
197
+
198
+ def triangulate
199
+ #self.class.triangulate(@axes)
200
+ # rotate(2, 2, 1)
201
+ # rotate(2, 0, 2)
202
+ # rotate(1, 2, 1)
203
+ end
204
+
205
+ #private
206
+
207
+ ## 保持する全ての軸を回転する。
208
+ ## 以下の index Axes クラス保持している配列における index。
209
+ ## target_index 回転の際の角度を決めるベクトルの
210
+ ## self が保持する内部座標軸の index。
211
+ ## center_axis_index 回転の中心軸のベクトルの index in x, y, z。
212
+ ## plane_axis_index) 回転の目的地となる平面を、中心軸と共に構成するベクトルの index
213
+ ## in x, y, z。
214
+ #def rotate(target_index, center_axis_index, plane_axis_index)
215
+ # theta =
216
+
217
+ # axes[target_index]
218
+ #
219
+ # HERE
220
+
221
+ # self.each do |vector|
222
+ # vector
223
+ # end
224
+ #end
212
225
 
213
226
  end