crmf 0.1.1 → 0.1.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +12 -0
- data/crmf.gemspec +102 -1
- data/ext/crlibm-1.0beta5/AUTHORS +2 -0
- data/ext/crlibm-1.0beta5/CMakeLists.txt +154 -0
- data/ext/crlibm-1.0beta5/COPYING +340 -0
- data/ext/crlibm-1.0beta5/COPYING.LIB +504 -0
- data/ext/crlibm-1.0beta5/ChangeLog +125 -0
- data/ext/crlibm-1.0beta5/Makefile.am +134 -0
- data/ext/crlibm-1.0beta5/NEWS +0 -0
- data/ext/crlibm-1.0beta5/README +31 -0
- data/ext/crlibm-1.0beta5/README.DEV +23 -0
- data/ext/crlibm-1.0beta5/README.md +5 -0
- data/ext/crlibm-1.0beta5/TODO +66 -0
- data/ext/crlibm-1.0beta5/VERSION +1 -0
- data/ext/crlibm-1.0beta5/acos-td.c +1195 -0
- data/ext/crlibm-1.0beta5/acos-td.h +629 -0
- data/ext/crlibm-1.0beta5/asin-td.c +1297 -0
- data/ext/crlibm-1.0beta5/asin-td.h +620 -0
- data/ext/crlibm-1.0beta5/asincos.c +4488 -0
- data/ext/crlibm-1.0beta5/asincos.h +575 -0
- data/ext/crlibm-1.0beta5/atan-itanium.c +846 -0
- data/ext/crlibm-1.0beta5/atan-pentium.c +280 -0
- data/ext/crlibm-1.0beta5/atan-pentium.h +343 -0
- data/ext/crlibm-1.0beta5/atan_accurate.c +341 -0
- data/ext/crlibm-1.0beta5/atan_accurate.h +198 -0
- data/ext/crlibm-1.0beta5/atan_fast.c +506 -0
- data/ext/crlibm-1.0beta5/atan_fast.h +680 -0
- data/ext/crlibm-1.0beta5/configure.ac +419 -0
- data/ext/crlibm-1.0beta5/crlibm.h +204 -0
- data/ext/crlibm-1.0beta5/crlibm.spec +42 -0
- data/ext/crlibm-1.0beta5/crlibm_private.c +397 -0
- data/ext/crlibm-1.0beta5/crlibm_private.h +1048 -0
- data/ext/crlibm-1.0beta5/csh_fast.c +721 -0
- data/ext/crlibm-1.0beta5/csh_fast.h +771 -0
- data/ext/crlibm-1.0beta5/double-extended.h +496 -0
- data/ext/crlibm-1.0beta5/exp-itanium.c +723 -0
- data/ext/crlibm-1.0beta5/exp-td-standalone.c +87 -0
- data/ext/crlibm-1.0beta5/exp-td.c +1363 -0
- data/ext/crlibm-1.0beta5/exp-td.h +685 -0
- data/ext/crlibm-1.0beta5/exp_build_coeffs/exp_fast_table.c +125 -0
- data/ext/crlibm-1.0beta5/expm1-standalone.c +119 -0
- data/ext/crlibm-1.0beta5/expm1.c +2515 -0
- data/ext/crlibm-1.0beta5/expm1.h +715 -0
- data/ext/crlibm-1.0beta5/interval.h +238 -0
- data/ext/crlibm-1.0beta5/log-de.c +480 -0
- data/ext/crlibm-1.0beta5/log-de.h +747 -0
- data/ext/crlibm-1.0beta5/log-de2.c +280 -0
- data/ext/crlibm-1.0beta5/log-de2.h +2352 -0
- data/ext/crlibm-1.0beta5/log-td.c +1158 -0
- data/ext/crlibm-1.0beta5/log-td.h +819 -0
- data/ext/crlibm-1.0beta5/log.c +2244 -0
- data/ext/crlibm-1.0beta5/log.h +1592 -0
- data/ext/crlibm-1.0beta5/log10-td.c +906 -0
- data/ext/crlibm-1.0beta5/log10-td.h +823 -0
- data/ext/crlibm-1.0beta5/log1p.c +1295 -0
- data/ext/crlibm-1.0beta5/log2-td.c +1521 -0
- data/ext/crlibm-1.0beta5/log2-td.h +821 -0
- data/ext/crlibm-1.0beta5/log2_accurate.c +330 -0
- data/ext/crlibm-1.0beta5/log2_accurate.h +261 -0
- data/ext/crlibm-1.0beta5/log_accurate.c +133 -0
- data/ext/crlibm-1.0beta5/log_accurate.h +261 -0
- data/ext/crlibm-1.0beta5/log_fast.c +360 -0
- data/ext/crlibm-1.0beta5/log_fast.h +440 -0
- data/ext/crlibm-1.0beta5/pow.c +1396 -0
- data/ext/crlibm-1.0beta5/pow.h +3101 -0
- data/ext/crlibm-1.0beta5/prepare +20 -0
- data/ext/crlibm-1.0beta5/rem_pio2_accurate.c +219 -0
- data/ext/crlibm-1.0beta5/rem_pio2_accurate.h +53 -0
- data/ext/crlibm-1.0beta5/scs_lib/AUTHORS +3 -0
- data/ext/crlibm-1.0beta5/scs_lib/COPYING +504 -0
- data/ext/crlibm-1.0beta5/scs_lib/ChangeLog +16 -0
- data/ext/crlibm-1.0beta5/scs_lib/Doxyfile.dev +939 -0
- data/ext/crlibm-1.0beta5/scs_lib/Doxyfile.user +939 -0
- data/ext/crlibm-1.0beta5/scs_lib/INSTALL +215 -0
- data/ext/crlibm-1.0beta5/scs_lib/Makefile.am +17 -0
- data/ext/crlibm-1.0beta5/scs_lib/NEWS +0 -0
- data/ext/crlibm-1.0beta5/scs_lib/README +9 -0
- data/ext/crlibm-1.0beta5/scs_lib/README.DEV +38 -0
- data/ext/crlibm-1.0beta5/scs_lib/TODO +4 -0
- data/ext/crlibm-1.0beta5/scs_lib/VERSION +1 -0
- data/ext/crlibm-1.0beta5/scs_lib/addition_scs.c +623 -0
- data/ext/crlibm-1.0beta5/scs_lib/division_scs.c +110 -0
- data/ext/crlibm-1.0beta5/scs_lib/double2scs.c +174 -0
- data/ext/crlibm-1.0beta5/scs_lib/main.dox +104 -0
- data/ext/crlibm-1.0beta5/scs_lib/multiplication_scs.c +339 -0
- data/ext/crlibm-1.0beta5/scs_lib/poly_fct.c +112 -0
- data/ext/crlibm-1.0beta5/scs_lib/print_scs.c +73 -0
- data/ext/crlibm-1.0beta5/scs_lib/rand_scs.c +63 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs.h +353 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs2double.c +411 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs2mpf.c +58 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs2mpfr.c +61 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs_private.c +23 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs_private.h +133 -0
- data/ext/crlibm-1.0beta5/scs_lib/wrapper_scs.h +486 -0
- data/ext/crlibm-1.0beta5/scs_lib/zero_scs.c +52 -0
- data/ext/crlibm-1.0beta5/trigo_accurate.c +501 -0
- data/ext/crlibm-1.0beta5/trigo_accurate.h +331 -0
- data/ext/crlibm-1.0beta5/trigo_fast.c +1243 -0
- data/ext/crlibm-1.0beta5/trigo_fast.h +639 -0
- data/ext/crlibm-1.0beta5/trigpi.c +1169 -0
- data/ext/crlibm-1.0beta5/trigpi.h +556 -0
- data/ext/crlibm-1.0beta5/triple-double.c +57 -0
- data/ext/crlibm-1.0beta5/triple-double.h +1380 -0
- data/ext/crmf/crmf.c +16 -16
- data/ext/crmf/extconf.rb +12 -8
- data/lib/crmf/version.rb +1 -1
- data/tests/perf.rb +100 -219
- metadata +104 -3
- data/ext/crlibm-1.0beta4.tar.gz +0 -0
@@ -0,0 +1,261 @@
|
|
1
|
+
#include "crlibm.h"
|
2
|
+
#include "crlibm_private.h"
|
3
|
+
/*
|
4
|
+
* Constant to compute the natural logarithm.
|
5
|
+
*/
|
6
|
+
|
7
|
+
#ifdef WORDS_BIGENDIAN
|
8
|
+
static const db_number
|
9
|
+
norm_number = {{0x3FD60000, 0x00000000}}; /* 11*2^(-5) */
|
10
|
+
#else
|
11
|
+
static const db_number
|
12
|
+
norm_number = {{0x00000000, 0x3FD60000}}; /* 11*2^(-5) */
|
13
|
+
#endif
|
14
|
+
|
15
|
+
#define SQRT_2 1.4142135623730950489e0
|
16
|
+
|
17
|
+
static const scs
|
18
|
+
sc_ln2={{0x2c5c85fd, 0x3d1cf79a, 0x2f278ece, 0x1803f2f6,
|
19
|
+
0x2bd03cd0, 0x3267298b, 0x18b62834, 0x175b8baa},
|
20
|
+
DB_ONE, -1, 1 };
|
21
|
+
#define sc_ln2_ptr (scs_ptr)(&sc_ln2)
|
22
|
+
|
23
|
+
|
24
|
+
static const scs table_ti[13]=
|
25
|
+
/* ~-3.746934e-01 */
|
26
|
+
{{{0x17fafa3b, 0x360546fb, 0x1e6fdb53, 0x0b1225e6,
|
27
|
+
0x15f38987, 0x26664702, 0x3cb1bf6d, 0x118a64f9},
|
28
|
+
DB_ONE, -1, -1 }
|
29
|
+
,
|
30
|
+
/* ~-2.876821e-01 */
|
31
|
+
{{0x12696211, 0x0d36e49e, 0x03beb767, 0x1b02aa70,
|
32
|
+
0x2a30f490, 0x3732bb37, 0x2425c6da, 0x1fc53d0e},
|
33
|
+
DB_ONE, -1, -1 }
|
34
|
+
,
|
35
|
+
/* ~-2.076394e-01 */
|
36
|
+
{{0x0d49f69e, 0x115b3c6d, 0x395f53bd, 0x0b901b99,
|
37
|
+
0x2e77188a, 0x3e3d1ab5, 0x1147dede, 0x05483ae4},
|
38
|
+
DB_ONE, -1, -1 }
|
39
|
+
,
|
40
|
+
/* ~-1.335314e-01 */
|
41
|
+
{{0x088bc741, 0x04fc8f7b, 0x319c5a0f, 0x38e5bd03,
|
42
|
+
0x31dda8fe, 0x30f08645, 0x2fa1d5c5, 0x02c6529d},
|
43
|
+
DB_ONE, -1, -1 }
|
44
|
+
,
|
45
|
+
/* ~-6.453852e-02 */
|
46
|
+
{{0x0421662d, 0x19e3a068, 0x228ff66f, 0x3503372c,
|
47
|
+
0x04bf1b16, 0x0ff1b85c, 0x006c21b2, 0x21a9efd6},
|
48
|
+
DB_ONE, -1, -1 }
|
49
|
+
,
|
50
|
+
/* ZERO */
|
51
|
+
{{0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
52
|
+
0x00000000, 0x00000000, 0x00000000, 0x00000000},
|
53
|
+
{{0, 0}}, 0, 1 }
|
54
|
+
,
|
55
|
+
/* ~6.062462e-02 */
|
56
|
+
{{0x03e14618, 0x008b1533, 0x02f992e2, 0x37759978,
|
57
|
+
0x2634d1d3, 0x13375edb, 0x2e4634ea, 0x1dcf0aef},
|
58
|
+
DB_ONE, -1, 1 }
|
59
|
+
,
|
60
|
+
/* ~1.177830e-01 */
|
61
|
+
{{0x0789c1db, 0x22af2e5e, 0x27aa1fff, 0x21fe9e15,
|
62
|
+
0x176e53af, 0x04015c6b, 0x021a0541, 0x006df1d7},
|
63
|
+
DB_ONE, -1, 1 }
|
64
|
+
,
|
65
|
+
/* ~1.718503e-01 */
|
66
|
+
{{0x0aff9838, 0x14f27a79, 0x039f1050, 0x0e424775,
|
67
|
+
0x3f35571c, 0x355ff008, 0x1ca13efc, 0x3c2c8490},
|
68
|
+
DB_ONE, -1, 1 }
|
69
|
+
,
|
70
|
+
/* ~2.231436e-01 */
|
71
|
+
{{0x0e47fbe3, 0x33534435, 0x212ec0f7, 0x25ff7344,
|
72
|
+
0x2571d97a, 0x274129e2, 0x12b111db, 0x2c051568},
|
73
|
+
DB_ONE, -1, 1 }
|
74
|
+
,
|
75
|
+
/* ~2.719337e-01 */
|
76
|
+
{{0x11675cab, 0x2ae98380, 0x39cc7d57, 0x041b8b82,
|
77
|
+
0x0fc19f41, 0x0a43c91d, 0x1523ef69, 0x164b69f6},
|
78
|
+
DB_ONE, -1, 1 }
|
79
|
+
,
|
80
|
+
/* ~3.184537e-01 */
|
81
|
+
{{0x14618bc2, 0x0717b09f, 0x10b7b37b, 0x0cf1cd10,
|
82
|
+
0x15dcb349, 0x0c00c397, 0x2c39cc9b, 0x274c94a8},
|
83
|
+
DB_ONE, -1, 1 }
|
84
|
+
,
|
85
|
+
{{0x1739d7f6, 0x2ef401a7, 0x0e24c53f, 0x2b4fbde5,
|
86
|
+
0x2ab77843, 0x1cea5975, 0x1eeef249, 0x384d2344},
|
87
|
+
DB_ONE, -1, 1 }
|
88
|
+
};
|
89
|
+
#define table_ti_ptr (scs_ptr)&table_ti
|
90
|
+
|
91
|
+
static const scs table_inv_wi[13]=
|
92
|
+
/* ~1.454545e+00 */
|
93
|
+
{{{0x00000001, 0x1d1745d1, 0x1d1745d1, 0x1d1745d1,
|
94
|
+
0x1d1745d1, 0x1d1745d1, 0x1d183e2a, 0x36835582},
|
95
|
+
DB_ONE, 0, 1 }
|
96
|
+
,
|
97
|
+
/* ~1.333333e+00 */
|
98
|
+
{{0x00000001, 0x15555555, 0x15555555, 0x15555555,
|
99
|
+
0x15555555, 0x15555555, 0x15549b7e, 0x1a416c6b},
|
100
|
+
DB_ONE, 0, 1 }
|
101
|
+
,
|
102
|
+
/* ~1.230769e+00 */
|
103
|
+
{{0x00000001, 0x0ec4ec4e, 0x313b13b1, 0x0ec4ec4e,
|
104
|
+
0x313b13b1, 0x0ec4ec4e, 0x313a6825, 0x3ab28b77},
|
105
|
+
DB_ONE, 0, 1 }
|
106
|
+
,
|
107
|
+
/* ~1.142857e+00 */
|
108
|
+
{{0x00000001, 0x09249249, 0x09249249, 0x09249249,
|
109
|
+
0x09249249, 0x09249249, 0x09238b74, 0x26f620a6},
|
110
|
+
DB_ONE, 0, 1 }
|
111
|
+
,
|
112
|
+
/* ~1.066667e+00 */
|
113
|
+
{{0x00000001, 0x04444444, 0x11111111, 0x04444444,
|
114
|
+
0x11111111, 0x04444444, 0x1111d60e, 0x1f0c9d58},
|
115
|
+
DB_ONE, 0, 1 }
|
116
|
+
,
|
117
|
+
/* ~1.000000e+00 */
|
118
|
+
{{0x00000001, 0x00000000, 0x00000000, 0x00000000,
|
119
|
+
0x00000000, 0x00000000, 0x00000000, 0x00000000},
|
120
|
+
DB_ONE, 0, 1 }
|
121
|
+
,
|
122
|
+
/* ~9.411765e-01 */
|
123
|
+
{{0x3c3c3c3c, 0x0f0f0f0f, 0x03c3c3c3, 0x30f0f0f0,
|
124
|
+
0x3c3c3c3c, 0x0f0f923d, 0x16e0e0a4, 0x3a84202f},
|
125
|
+
DB_ONE, -1, 1 }
|
126
|
+
,
|
127
|
+
/* ~8.888889e-01 */
|
128
|
+
{{0x38e38e38, 0x38e38e38, 0x38e38e38, 0x38e38e38,
|
129
|
+
0x38e38e38, 0x38e3946a, 0x2e0ee2c9, 0x0d6e0fbd},
|
130
|
+
DB_ONE, -1, 1 }
|
131
|
+
,
|
132
|
+
/* ~8.421053e-01 */
|
133
|
+
{{0x35e50d79, 0x10d79435, 0x39435e50, 0x35e50d79,
|
134
|
+
0x10d79435, 0x3943324d, 0x0637ea85, 0x131a67ba},
|
135
|
+
DB_ONE, -1, 1 }
|
136
|
+
,
|
137
|
+
/* ~8.000000e-01 */
|
138
|
+
{{0x33333333, 0x0ccccccc, 0x33333333, 0x0ccccccc,
|
139
|
+
0x33333333, 0x0ccccccc, 0x33333333, 0x0ccccccc},
|
140
|
+
DB_ONE, -1, 1 }
|
141
|
+
,
|
142
|
+
/* ~7.619048e-01 */
|
143
|
+
{{0x30c30c30, 0x30c30c30, 0x30c30c30, 0x30c30c30,
|
144
|
+
0x30c30c30, 0x30c2f1a4, 0x160958a1, 0x2b03bc88},
|
145
|
+
DB_ONE, -1, 1 }
|
146
|
+
,
|
147
|
+
/* ~7.272727e-01 */
|
148
|
+
{{0x2e8ba2e8, 0x2e8ba2e8, 0x2e8ba2e8, 0x2e8ba2e8,
|
149
|
+
0x2e8ba2e8, 0x2e8bcb74, 0x2d78b525, 0x00a1db67},
|
150
|
+
DB_ONE, -1, 1 }
|
151
|
+
,
|
152
|
+
/* ~6.956522e-01 */
|
153
|
+
{{0x2c8590b2, 0x0590b216, 0x10b21642, 0x321642c8,
|
154
|
+
0x1642c859, 0x02c8590b, 0x08590b21, 0x190b2164},
|
155
|
+
DB_ONE, -1, 1 }
|
156
|
+
};
|
157
|
+
#define table_inv_wi_ptr (scs_ptr)&table_inv_wi
|
158
|
+
|
159
|
+
|
160
|
+
static const scs constant_poly[20]=
|
161
|
+
/*0 ~-5.023367e-02 */
|
162
|
+
{{{0x0337074b, 0x275aac5c, 0x2cf4a893, 0x38013cc3,
|
163
|
+
0x149a3416, 0x0e067307, 0x12745608, 0x1658e0d5},
|
164
|
+
DB_ONE, -1, -1 }
|
165
|
+
,
|
166
|
+
/*1 ~5.286469e-02 */
|
167
|
+
{{0x03622298, 0x252ff65c, 0x03001550, 0x2f457908,
|
168
|
+
0x32f78ecc, 0x17442a4e, 0x1d806366, 0x2c50350e},
|
169
|
+
DB_ONE, -1, 1 }
|
170
|
+
,
|
171
|
+
/*2 ~-5.555504e-02 */
|
172
|
+
{{0x038e36bb, 0x30665a9c, 0x119434c7, 0x3fdec8cb,
|
173
|
+
0x37dd3adb, 0x2663cd45, 0x230e43e9, 0x32b9663c},
|
174
|
+
DB_ONE, -1, -1 }
|
175
|
+
,
|
176
|
+
/*3 ~5.882305e-02 */
|
177
|
+
{{0x03c3c1bb, 0x38c473ae, 0x192b9c18, 0x242b7c4e,
|
178
|
+
0x3da8edc8, 0x04454ffe, 0x2cf133c6, 0x0c926fd0},
|
179
|
+
DB_ONE, -1, 1 }
|
180
|
+
,
|
181
|
+
/*4 ~-6.250000e-02 */
|
182
|
+
{{0x04000000, 0x2b72bb0a, 0x038f5efc, 0x34665092,
|
183
|
+
0x2461b6c9, 0x172f7050, 0x1218b5c1, 0x104862d7},
|
184
|
+
DB_ONE, -1, -1 }
|
185
|
+
,
|
186
|
+
/*5 ~6.666667e-02 */
|
187
|
+
{{0x04444444, 0x374f3324, 0x1531bcf1, 0x1d7d23fc,
|
188
|
+
0x26ff9670, 0x38fc33ae, 0x15bf1cfb, 0x2c9f1c2d},
|
189
|
+
DB_ONE, -1, 1 }
|
190
|
+
,
|
191
|
+
/*6 ~-7.142857e-02 */
|
192
|
+
{{0x04924924, 0x2489e5b6, 0x288b19c5, 0x2893519b,
|
193
|
+
0x2c3f35c0, 0x0b8bfdce, 0x3541ab49, 0x1de415bc},
|
194
|
+
DB_ONE, -1, -1 }
|
195
|
+
,
|
196
|
+
/*7 ~7.692308e-02 */
|
197
|
+
{{0x04ec4ec4, 0x3b0ce4bd, 0x14d14046, 0x0243ade9,
|
198
|
+
0x083cc34f, 0x393e6a5a, 0x2c1855f2, 0x259d599f},
|
199
|
+
DB_ONE, -1, 1 }
|
200
|
+
,
|
201
|
+
/*8 ~-8.333333e-02 */
|
202
|
+
{{0x05555555, 0x1555565b, 0x064b42af, 0x13bc7961,
|
203
|
+
0x1396754b, 0x33d85415, 0x2ba548d4, 0x039c4ff6},
|
204
|
+
DB_ONE, -1, -1 }
|
205
|
+
,
|
206
|
+
/*9 ~9.090909e-02 */
|
207
|
+
{{0x05d1745d, 0x05d1751c, 0x24facd05, 0x07540f86,
|
208
|
+
0x014f2ec1, 0x3bb3fa8b, 0x02e1da4c, 0x3304817c},
|
209
|
+
DB_ONE, -1, 1 }
|
210
|
+
,
|
211
|
+
/*10 ~-1.000000e-01 */
|
212
|
+
{{0x06666666, 0x19999999, 0x21667ee1, 0x0f5f75ea,
|
213
|
+
0x353af37f, 0x2578daa1, 0x07c76f47, 0x16541534},
|
214
|
+
DB_ONE, -1, -1 }
|
215
|
+
,
|
216
|
+
/*11 ~1.111111e-01 */
|
217
|
+
{{0x071c71c7, 0x071c71c7, 0x03e7af88, 0x2fca5d74,
|
218
|
+
0x0bb43f38, 0x050edb70, 0x3631b696, 0x1fc3e0d3},
|
219
|
+
DB_ONE, -1, 1 }
|
220
|
+
,
|
221
|
+
/*12 ~-1.250000e-01 */
|
222
|
+
{{0x08000000, 0x00000000, 0x00003ac6, 0x36c11384,
|
223
|
+
0x2d596ab4, 0x09257878, 0x0597dc26, 0x2d60813a},
|
224
|
+
DB_ONE, -1, -1 }
|
225
|
+
,
|
226
|
+
/*13 ~1.428571e-01 */
|
227
|
+
{{0x09249249, 0x09249249, 0x0924b1db, 0x0d002ac1,
|
228
|
+
0x0eafd708, 0x2b4df21d, 0x0458da93, 0x2d11460c},
|
229
|
+
DB_ONE, -1, 1 }
|
230
|
+
,
|
231
|
+
/*14 ~-1.666667e-01 */
|
232
|
+
{{0x0aaaaaaa, 0x2aaaaaaa, 0x2aaaaaa9, 0x0bb6630e,
|
233
|
+
0x2e44a5cf, 0x39f32e04, 0x105732b9, 0x01a76208},
|
234
|
+
DB_ONE, -1, -1 }
|
235
|
+
,
|
236
|
+
/*15 ~2.000000e-01 */
|
237
|
+
{{0x0ccccccc, 0x33333333, 0x0ccccccc, 0x0bbbe6e8,
|
238
|
+
0x253269ea, 0x0ec2a630, 0x10defc5c, 0x238aef3b},
|
239
|
+
DB_ONE, -1, 1 }
|
240
|
+
,
|
241
|
+
/*16 ~-2.500000e-01 */
|
242
|
+
{{0x10000000, 0x00000000, 0x00000000, 0x0001195c,
|
243
|
+
0x3654cd5a, 0x16ca3471, 0x343d2da0, 0x235273f2},
|
244
|
+
DB_ONE, -1, -1 }
|
245
|
+
,
|
246
|
+
/*17 ~3.333333e-01 */
|
247
|
+
{{0x15555555, 0x15555555, 0x15555555, 0x1555a1e0,
|
248
|
+
0x2eb2094a, 0x07dde891, 0x230e2bfa, 0x28aae6ab},
|
249
|
+
DB_ONE, -1, 1 }
|
250
|
+
,
|
251
|
+
/*18 ~-5.000000e-01 */
|
252
|
+
{{0x1fffffff, 0x3fffffff, 0x3fffffff, 0x3fffffff,
|
253
|
+
0x029bd81b, 0x360f63df, 0x28d28bd3, 0x3c15f394},
|
254
|
+
DB_ONE, -1, -1 }
|
255
|
+
,
|
256
|
+
/*19 ~1.000000e+00 */
|
257
|
+
{{0x3fffffff, 0x3fffffff, 0x3fffffff, 0x3fffffff,
|
258
|
+
0x39e04b7e, 0x08e4e337, 0x1a1e2ed3, 0x23e85705},
|
259
|
+
DB_ONE, -1, 1 }
|
260
|
+
};
|
261
|
+
#define constant_poly_ptr (scs_ptr)&constant_poly
|
@@ -0,0 +1,360 @@
|
|
1
|
+
/*
|
2
|
+
* Correctly rounded logarithm
|
3
|
+
*
|
4
|
+
* Author : Daramy Catherine, Florent de Dinechin
|
5
|
+
*
|
6
|
+
* This file is part of the crlibm library developed by the Arenaire
|
7
|
+
* project at Ecole Normale Superieure de Lyon
|
8
|
+
*
|
9
|
+
* This program is free software; you can redistribute it and/or modify
|
10
|
+
* it under the terms of the GNU Lesser General Public License as published by
|
11
|
+
* the Free Software Foundation; either version 2 of the License, or
|
12
|
+
* (at your option) any later version.
|
13
|
+
*
|
14
|
+
* This program is distributed in the hope that it will be useful,
|
15
|
+
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16
|
+
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17
|
+
* GNU General Public License for more details.
|
18
|
+
*
|
19
|
+
* You should have received a copy of the GNU Lesser General Public License
|
20
|
+
* along with this program; if not, write to the Free Software
|
21
|
+
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
22
|
+
*/
|
23
|
+
#include <stdio.h>
|
24
|
+
#include <stdlib.h>
|
25
|
+
#include "crlibm.h"
|
26
|
+
#include "crlibm_private.h"
|
27
|
+
#include "log_fast.h"
|
28
|
+
|
29
|
+
|
30
|
+
/* switches on various printfs. Default 0 */
|
31
|
+
#define DEBUG 0
|
32
|
+
|
33
|
+
|
34
|
+
|
35
|
+
|
36
|
+
/*
|
37
|
+
* 1) First reduction: exponent extraction
|
38
|
+
* E
|
39
|
+
* x = 2^ .(y) with 1 <= y < 2
|
40
|
+
*
|
41
|
+
* log(x) = E.log(2) + log(y) where:
|
42
|
+
* - log(2) is tabulated
|
43
|
+
* - log(y) need to be evaluated
|
44
|
+
*
|
45
|
+
*
|
46
|
+
* 2) Avoiding accuracy problem when E=-1 by testing
|
47
|
+
*
|
48
|
+
* if (ny >= sqrt(2)) then
|
49
|
+
* y = z/2; E = E+1;
|
50
|
+
* and,
|
51
|
+
* log(x) = (E+1).log(2) + log(y/2)
|
52
|
+
*
|
53
|
+
* so now: 11/16 <= sqrt(2)/2 <= y < sqrt(2) <= 23/16
|
54
|
+
*
|
55
|
+
*
|
56
|
+
* 3) Second reduction: tabular reduction
|
57
|
+
*
|
58
|
+
* The interval 1/sqrt(2) .. sqrt(2) is divided in 8 intervals.
|
59
|
+
* So, find the interval X_i where y is.
|
60
|
+
* And compute z = y - middle(X_i);
|
61
|
+
*
|
62
|
+
* 4) Computation:
|
63
|
+
*
|
64
|
+
* Polynomial evaluation of:
|
65
|
+
* - P(z) ~ log(z+middle(X_i))
|
66
|
+
*
|
67
|
+
* -4 -5
|
68
|
+
* with |z| < 2^ or 2^ depending the considered interval.
|
69
|
+
*
|
70
|
+
*
|
71
|
+
* 5) Reconstruction:
|
72
|
+
* log(x) = E.log(2) + P(z)
|
73
|
+
*
|
74
|
+
*/
|
75
|
+
|
76
|
+
|
77
|
+
|
78
|
+
|
79
|
+
|
80
|
+
|
81
|
+
|
82
|
+
/*
|
83
|
+
* Function used to evaluate log and pow functions
|
84
|
+
*/
|
85
|
+
void log_quick(double *pres_hi, double *pres_lo, int* prndcstindex, db_number * py, int E) {
|
86
|
+
double ln2_times_E_HI, ln2_times_E_LO, res_hi, res_lo;
|
87
|
+
double z, res, P_hi, P_lo;
|
88
|
+
int k, i;
|
89
|
+
|
90
|
+
res=(double)E;
|
91
|
+
if(E<0) E=-E;
|
92
|
+
|
93
|
+
/* find the interval including y.d */
|
94
|
+
i = ((((*py).i[HI] & 0x001F0000)>>16)-6) ;
|
95
|
+
if (i < 10)
|
96
|
+
i = i>>1;
|
97
|
+
else
|
98
|
+
i = ((i-1)>>1);
|
99
|
+
|
100
|
+
z = (*py).d - (middle[i]).d; /* (exact thanks to Sterbenz Lemma) */
|
101
|
+
|
102
|
+
|
103
|
+
/* Compute ln2_times_E = E*log(2) in double-double */
|
104
|
+
Add12( ln2_times_E_HI, ln2_times_E_LO, res*ln2hi.d, res*ln2lo.d);
|
105
|
+
|
106
|
+
/* Now begin the polynomial evaluation of log(1 + z) */
|
107
|
+
|
108
|
+
res = (Poly_h[i][DEGREE]).d;
|
109
|
+
|
110
|
+
for(k=DEGREE-1; k>1; k--){
|
111
|
+
res *= z;
|
112
|
+
res += (Poly_h[i][k]).d;
|
113
|
+
}
|
114
|
+
|
115
|
+
if(E <= EMIN_FASTPATH) {
|
116
|
+
/* Slow path */
|
117
|
+
if(E==0) {
|
118
|
+
*prndcstindex = 0 ;
|
119
|
+
/* In this case we start with a double-double multiplication to get enough relative accuracy */
|
120
|
+
Mul12(&P_hi, &P_lo, res, z);
|
121
|
+
Add22(&res_hi, &res_lo, (Poly_h[i][1]).d, (Poly_l[i][1]).d, P_hi, P_lo);
|
122
|
+
Mul22(&P_hi, &P_lo, res_hi, res_lo, z, 0.);
|
123
|
+
Add22(pres_hi, pres_lo, (Poly_h[i][0]).d, (Poly_l[i][0]).d, P_hi, P_lo);
|
124
|
+
}
|
125
|
+
else
|
126
|
+
{
|
127
|
+
if(E > EMIN_MEDIUMPATH)
|
128
|
+
*prndcstindex = 2;
|
129
|
+
else
|
130
|
+
*prndcstindex =1;
|
131
|
+
P_hi=res*z;
|
132
|
+
Add12(res_hi, res_lo, (Poly_h[i][1]).d, (Poly_l[i][1]).d + P_hi);
|
133
|
+
Mul22(&P_hi, &P_lo, res_hi, res_lo, z, 0.);
|
134
|
+
Add22(&res_hi, &res_lo, (Poly_h[i][0]).d, (Poly_l[i][0]).d, P_hi, P_lo);
|
135
|
+
|
136
|
+
/* Add E*log(2) */
|
137
|
+
Add22(pres_hi, pres_lo, ln2_times_E_HI, ln2_times_E_LO, res_hi, res_lo);
|
138
|
+
}
|
139
|
+
}
|
140
|
+
else { /* Fast path */
|
141
|
+
|
142
|
+
*prndcstindex = 3 ;
|
143
|
+
res = z*((Poly_h[i][1]).d + z*res);
|
144
|
+
#if 1
|
145
|
+
Add12(P_hi,P_lo, ln2_times_E_HI, (Poly_h[i][0]).d );
|
146
|
+
Add12(*pres_hi, *pres_lo, P_hi, (res + ((Poly_l[i][0]).d + (ln2_times_E_LO + P_lo))));
|
147
|
+
#else
|
148
|
+
Add12(*pres_hi, *pres_lo,
|
149
|
+
ln2_times_E_HI,
|
150
|
+
(Poly_h[i][0]).d + (res + ((Poly_l[i][0]).d + ln2_times_E_LO)));
|
151
|
+
#endif
|
152
|
+
}
|
153
|
+
}
|
154
|
+
|
155
|
+
|
156
|
+
|
157
|
+
|
158
|
+
|
159
|
+
/*************************************************************
|
160
|
+
*************************************************************
|
161
|
+
* ROUNDED TO NEAREST *
|
162
|
+
*************************************************************
|
163
|
+
*************************************************************/
|
164
|
+
double log_rn(double x){
|
165
|
+
db_number y;
|
166
|
+
double res_hi,res_lo,roundcst;
|
167
|
+
int E,rndcstindex;
|
168
|
+
|
169
|
+
E=0;
|
170
|
+
y.d=x;
|
171
|
+
|
172
|
+
/* Filter cases */
|
173
|
+
if (y.i[HI] < 0x00100000){ /* x < 2^(-1022) */
|
174
|
+
if (((y.i[HI] & 0x7fffffff)|y.i[LO])==0){
|
175
|
+
return -1.0/0.0;
|
176
|
+
} /* log(+/-0) = -Inf */
|
177
|
+
if (y.i[HI] < 0){
|
178
|
+
return (x-x)/0; /* log(-x) = Nan */
|
179
|
+
}
|
180
|
+
/* Subnormal number */
|
181
|
+
E = -52;
|
182
|
+
y.d *= two52.d; /* make x a normal number */
|
183
|
+
}
|
184
|
+
|
185
|
+
if (y.i[HI] >= 0x7ff00000){
|
186
|
+
return x+x; /* Inf or Nan */
|
187
|
+
}
|
188
|
+
|
189
|
+
/* reduce to y.d such that sqrt(2)/2 < y.d < sqrt(2) */
|
190
|
+
E += (y.i[HI]>>20)-1023; /* extract the exponent */
|
191
|
+
y.i[HI] = (y.i[HI] & 0x000fffff) | 0x3ff00000; /* do exponent = 0 */
|
192
|
+
if (y.d > SQRT_2){
|
193
|
+
y.d *= 0.5;
|
194
|
+
E++;
|
195
|
+
}
|
196
|
+
|
197
|
+
/* Call the actual computation */
|
198
|
+
log_quick(&res_hi, &res_lo, &rndcstindex, &y, E);
|
199
|
+
roundcst = rncst[rndcstindex];
|
200
|
+
|
201
|
+
/* Test for rounding to the nearest */
|
202
|
+
if(res_hi == (res_hi + (res_lo * roundcst)))
|
203
|
+
return res_hi;
|
204
|
+
else {
|
205
|
+
scs_t res;
|
206
|
+
#if DEBUG
|
207
|
+
printf("Going for Accurate Phase for x=%1.50e\n",x);
|
208
|
+
#endif
|
209
|
+
scs_log(res, y, E);
|
210
|
+
scs_get_d(&res_hi, res);
|
211
|
+
return res_hi;
|
212
|
+
}
|
213
|
+
}
|
214
|
+
|
215
|
+
|
216
|
+
|
217
|
+
|
218
|
+
|
219
|
+
|
220
|
+
|
221
|
+
|
222
|
+
|
223
|
+
|
224
|
+
|
225
|
+
|
226
|
+
|
227
|
+
|
228
|
+
/*************************************************************
|
229
|
+
*************************************************************
|
230
|
+
* ROUNDED TOWARD -INFINITY *
|
231
|
+
*************************************************************
|
232
|
+
*************************************************************/
|
233
|
+
double log_rd(double x){
|
234
|
+
db_number y;
|
235
|
+
double res_hi,res_lo,roundcst;
|
236
|
+
int E,rndcstindex;
|
237
|
+
scs_t res;
|
238
|
+
|
239
|
+
E=0;
|
240
|
+
y.d=x;
|
241
|
+
|
242
|
+
/* Filter cases */
|
243
|
+
if (y.i[HI] < 0x00100000){ /* x < 2^(-1022) */
|
244
|
+
if (((y.i[HI] & 0x7fffffff)|y.i[LO])==0){
|
245
|
+
return -1.0/0.0;
|
246
|
+
} /* log(+/-0) = -Inf */
|
247
|
+
if (y.i[HI] < 0){
|
248
|
+
return (x-x)/0; /* log(-x) = Nan */
|
249
|
+
}
|
250
|
+
/* Subnormal number */
|
251
|
+
E = -52;
|
252
|
+
y.d *= two52.d; /* make x as normal number = x's mantissa */
|
253
|
+
}
|
254
|
+
|
255
|
+
if (y.i[HI] >= 0x7ff00000){
|
256
|
+
return x+x; /* Inf or Nan */
|
257
|
+
}
|
258
|
+
|
259
|
+
/* The only double whose log is exactly a double */
|
260
|
+
if(x==1.0) return 0.0;
|
261
|
+
|
262
|
+
E += (y.i[HI]>>20)-1023; /* extract the exponent */
|
263
|
+
y.i[HI] = (y.i[HI] & 0x000fffff) | 0x3ff00000; /* do exponent = 0 */
|
264
|
+
if (y.d > SQRT_2){
|
265
|
+
y.d *= 0.5;
|
266
|
+
E++;
|
267
|
+
}
|
268
|
+
|
269
|
+
log_quick(&res_hi, &res_lo, &rndcstindex, &y, E);
|
270
|
+
roundcst = epsilon[rndcstindex];
|
271
|
+
|
272
|
+
TEST_AND_RETURN_RD(res_hi, res_lo, roundcst);
|
273
|
+
|
274
|
+
/* if the previous block didn't return a value, launch accurate phase */
|
275
|
+
#if DEBUG
|
276
|
+
printf("Going for Accurate Phase");
|
277
|
+
#endif
|
278
|
+
scs_log(res, y, E);
|
279
|
+
scs_get_d_minf(&res_hi, res);
|
280
|
+
return res_hi;
|
281
|
+
|
282
|
+
}
|
283
|
+
|
284
|
+
|
285
|
+
|
286
|
+
|
287
|
+
|
288
|
+
|
289
|
+
|
290
|
+
/*************************************************************
|
291
|
+
*************************************************************
|
292
|
+
* ROUNDED TOWARD +INFINITY *
|
293
|
+
*************************************************************
|
294
|
+
*************************************************************/
|
295
|
+
double log_ru(double x){
|
296
|
+
db_number y;
|
297
|
+
double res_hi,res_lo,roundcst;
|
298
|
+
int E,rndcstindex;
|
299
|
+
scs_t res;
|
300
|
+
|
301
|
+
E=0;
|
302
|
+
y.d=x;
|
303
|
+
|
304
|
+
/* Filter cases */
|
305
|
+
if (y.i[HI] < 0x00100000){ /* x < 2^(-1022) */
|
306
|
+
if (((y.i[HI] & 0x7fffffff)|y.i[LO])==0){
|
307
|
+
return -1.0/0.0;
|
308
|
+
} /* log(+/-0) = -Inf */
|
309
|
+
if (y.i[HI] < 0){
|
310
|
+
return (x-x)/0; /* log(-x) = Nan */
|
311
|
+
}
|
312
|
+
/* Subnormal number */
|
313
|
+
E = -52;
|
314
|
+
y.d *= two52.d; /* make x as normal number = x's mantissa */
|
315
|
+
}
|
316
|
+
|
317
|
+
if (y.i[HI] >= 0x7ff00000){
|
318
|
+
return x+x; /* Inf or Nan */
|
319
|
+
}
|
320
|
+
|
321
|
+
/* The only double whose log is exactly a double */
|
322
|
+
if(x==1.0) return 0.0;
|
323
|
+
|
324
|
+
E += (y.i[HI]>>20)-1023; /* extract the exponent */
|
325
|
+
y.i[HI] = (y.i[HI] & 0x000fffff) | 0x3ff00000; /* do exponent = 0 */
|
326
|
+
if (y.d > SQRT_2){
|
327
|
+
y.d *= 0.5;
|
328
|
+
E++;
|
329
|
+
}
|
330
|
+
|
331
|
+
log_quick(&res_hi, &res_lo, &rndcstindex, &y, E);
|
332
|
+
roundcst = epsilon[rndcstindex];
|
333
|
+
|
334
|
+
|
335
|
+
TEST_AND_RETURN_RU(res_hi, res_lo, roundcst);
|
336
|
+
|
337
|
+
/* if the previous block didn't return a value, launch accurate phase */
|
338
|
+
#if DEBUG
|
339
|
+
printf("Going for Accurate Phase");
|
340
|
+
#endif
|
341
|
+
scs_log(res, y, E);
|
342
|
+
scs_get_d_pinf(&res_hi, res);
|
343
|
+
return res_hi;
|
344
|
+
}
|
345
|
+
|
346
|
+
|
347
|
+
|
348
|
+
|
349
|
+
|
350
|
+
/*************************************************************
|
351
|
+
*************************************************************
|
352
|
+
* ROUNDED TOWARD ZERO *
|
353
|
+
*************************************************************
|
354
|
+
*************************************************************/
|
355
|
+
double log_rz(double x){
|
356
|
+
if(x>1)
|
357
|
+
return log_rd(x);
|
358
|
+
else
|
359
|
+
return log_ru(x);
|
360
|
+
}
|