crmf 0.1.1 → 0.1.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +12 -0
- data/crmf.gemspec +102 -1
- data/ext/crlibm-1.0beta5/AUTHORS +2 -0
- data/ext/crlibm-1.0beta5/CMakeLists.txt +154 -0
- data/ext/crlibm-1.0beta5/COPYING +340 -0
- data/ext/crlibm-1.0beta5/COPYING.LIB +504 -0
- data/ext/crlibm-1.0beta5/ChangeLog +125 -0
- data/ext/crlibm-1.0beta5/Makefile.am +134 -0
- data/ext/crlibm-1.0beta5/NEWS +0 -0
- data/ext/crlibm-1.0beta5/README +31 -0
- data/ext/crlibm-1.0beta5/README.DEV +23 -0
- data/ext/crlibm-1.0beta5/README.md +5 -0
- data/ext/crlibm-1.0beta5/TODO +66 -0
- data/ext/crlibm-1.0beta5/VERSION +1 -0
- data/ext/crlibm-1.0beta5/acos-td.c +1195 -0
- data/ext/crlibm-1.0beta5/acos-td.h +629 -0
- data/ext/crlibm-1.0beta5/asin-td.c +1297 -0
- data/ext/crlibm-1.0beta5/asin-td.h +620 -0
- data/ext/crlibm-1.0beta5/asincos.c +4488 -0
- data/ext/crlibm-1.0beta5/asincos.h +575 -0
- data/ext/crlibm-1.0beta5/atan-itanium.c +846 -0
- data/ext/crlibm-1.0beta5/atan-pentium.c +280 -0
- data/ext/crlibm-1.0beta5/atan-pentium.h +343 -0
- data/ext/crlibm-1.0beta5/atan_accurate.c +341 -0
- data/ext/crlibm-1.0beta5/atan_accurate.h +198 -0
- data/ext/crlibm-1.0beta5/atan_fast.c +506 -0
- data/ext/crlibm-1.0beta5/atan_fast.h +680 -0
- data/ext/crlibm-1.0beta5/configure.ac +419 -0
- data/ext/crlibm-1.0beta5/crlibm.h +204 -0
- data/ext/crlibm-1.0beta5/crlibm.spec +42 -0
- data/ext/crlibm-1.0beta5/crlibm_private.c +397 -0
- data/ext/crlibm-1.0beta5/crlibm_private.h +1048 -0
- data/ext/crlibm-1.0beta5/csh_fast.c +721 -0
- data/ext/crlibm-1.0beta5/csh_fast.h +771 -0
- data/ext/crlibm-1.0beta5/double-extended.h +496 -0
- data/ext/crlibm-1.0beta5/exp-itanium.c +723 -0
- data/ext/crlibm-1.0beta5/exp-td-standalone.c +87 -0
- data/ext/crlibm-1.0beta5/exp-td.c +1363 -0
- data/ext/crlibm-1.0beta5/exp-td.h +685 -0
- data/ext/crlibm-1.0beta5/exp_build_coeffs/exp_fast_table.c +125 -0
- data/ext/crlibm-1.0beta5/expm1-standalone.c +119 -0
- data/ext/crlibm-1.0beta5/expm1.c +2515 -0
- data/ext/crlibm-1.0beta5/expm1.h +715 -0
- data/ext/crlibm-1.0beta5/interval.h +238 -0
- data/ext/crlibm-1.0beta5/log-de.c +480 -0
- data/ext/crlibm-1.0beta5/log-de.h +747 -0
- data/ext/crlibm-1.0beta5/log-de2.c +280 -0
- data/ext/crlibm-1.0beta5/log-de2.h +2352 -0
- data/ext/crlibm-1.0beta5/log-td.c +1158 -0
- data/ext/crlibm-1.0beta5/log-td.h +819 -0
- data/ext/crlibm-1.0beta5/log.c +2244 -0
- data/ext/crlibm-1.0beta5/log.h +1592 -0
- data/ext/crlibm-1.0beta5/log10-td.c +906 -0
- data/ext/crlibm-1.0beta5/log10-td.h +823 -0
- data/ext/crlibm-1.0beta5/log1p.c +1295 -0
- data/ext/crlibm-1.0beta5/log2-td.c +1521 -0
- data/ext/crlibm-1.0beta5/log2-td.h +821 -0
- data/ext/crlibm-1.0beta5/log2_accurate.c +330 -0
- data/ext/crlibm-1.0beta5/log2_accurate.h +261 -0
- data/ext/crlibm-1.0beta5/log_accurate.c +133 -0
- data/ext/crlibm-1.0beta5/log_accurate.h +261 -0
- data/ext/crlibm-1.0beta5/log_fast.c +360 -0
- data/ext/crlibm-1.0beta5/log_fast.h +440 -0
- data/ext/crlibm-1.0beta5/pow.c +1396 -0
- data/ext/crlibm-1.0beta5/pow.h +3101 -0
- data/ext/crlibm-1.0beta5/prepare +20 -0
- data/ext/crlibm-1.0beta5/rem_pio2_accurate.c +219 -0
- data/ext/crlibm-1.0beta5/rem_pio2_accurate.h +53 -0
- data/ext/crlibm-1.0beta5/scs_lib/AUTHORS +3 -0
- data/ext/crlibm-1.0beta5/scs_lib/COPYING +504 -0
- data/ext/crlibm-1.0beta5/scs_lib/ChangeLog +16 -0
- data/ext/crlibm-1.0beta5/scs_lib/Doxyfile.dev +939 -0
- data/ext/crlibm-1.0beta5/scs_lib/Doxyfile.user +939 -0
- data/ext/crlibm-1.0beta5/scs_lib/INSTALL +215 -0
- data/ext/crlibm-1.0beta5/scs_lib/Makefile.am +17 -0
- data/ext/crlibm-1.0beta5/scs_lib/NEWS +0 -0
- data/ext/crlibm-1.0beta5/scs_lib/README +9 -0
- data/ext/crlibm-1.0beta5/scs_lib/README.DEV +38 -0
- data/ext/crlibm-1.0beta5/scs_lib/TODO +4 -0
- data/ext/crlibm-1.0beta5/scs_lib/VERSION +1 -0
- data/ext/crlibm-1.0beta5/scs_lib/addition_scs.c +623 -0
- data/ext/crlibm-1.0beta5/scs_lib/division_scs.c +110 -0
- data/ext/crlibm-1.0beta5/scs_lib/double2scs.c +174 -0
- data/ext/crlibm-1.0beta5/scs_lib/main.dox +104 -0
- data/ext/crlibm-1.0beta5/scs_lib/multiplication_scs.c +339 -0
- data/ext/crlibm-1.0beta5/scs_lib/poly_fct.c +112 -0
- data/ext/crlibm-1.0beta5/scs_lib/print_scs.c +73 -0
- data/ext/crlibm-1.0beta5/scs_lib/rand_scs.c +63 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs.h +353 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs2double.c +411 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs2mpf.c +58 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs2mpfr.c +61 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs_private.c +23 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs_private.h +133 -0
- data/ext/crlibm-1.0beta5/scs_lib/wrapper_scs.h +486 -0
- data/ext/crlibm-1.0beta5/scs_lib/zero_scs.c +52 -0
- data/ext/crlibm-1.0beta5/trigo_accurate.c +501 -0
- data/ext/crlibm-1.0beta5/trigo_accurate.h +331 -0
- data/ext/crlibm-1.0beta5/trigo_fast.c +1243 -0
- data/ext/crlibm-1.0beta5/trigo_fast.h +639 -0
- data/ext/crlibm-1.0beta5/trigpi.c +1169 -0
- data/ext/crlibm-1.0beta5/trigpi.h +556 -0
- data/ext/crlibm-1.0beta5/triple-double.c +57 -0
- data/ext/crlibm-1.0beta5/triple-double.h +1380 -0
- data/ext/crmf/crmf.c +16 -16
- data/ext/crmf/extconf.rb +12 -8
- data/lib/crmf/version.rb +1 -1
- data/tests/perf.rb +100 -219
- metadata +104 -3
- data/ext/crlibm-1.0beta4.tar.gz +0 -0
@@ -0,0 +1,330 @@
|
|
1
|
+
/*
|
2
|
+
* Correctly rounded base 2 logarithm
|
3
|
+
*
|
4
|
+
* Author : David Defour
|
5
|
+
*
|
6
|
+
* This file is part of the crlibm library developed by the Arenaire
|
7
|
+
* project at Ecole Normale Superieure de Lyon
|
8
|
+
*
|
9
|
+
* This program is free software; you can redistribute it and/or modify
|
10
|
+
* it under the terms of the GNU Lesser General Public License as published by
|
11
|
+
* the Free Software Foundation; either version 2 of the License, or
|
12
|
+
* (at your option) any later version.
|
13
|
+
*
|
14
|
+
* This program is distributed in the hope that it will be useful,
|
15
|
+
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16
|
+
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17
|
+
* GNU General Public License for more details.
|
18
|
+
*
|
19
|
+
* You should have received a copy of the GNU Lesser General Public License
|
20
|
+
* along with this program; if not, write to the Free Software
|
21
|
+
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
22
|
+
*/
|
23
|
+
|
24
|
+
#include "log2_accurate.h"
|
25
|
+
|
26
|
+
/*
|
27
|
+
* 1) First reduction: exponent extraction
|
28
|
+
* E
|
29
|
+
* x = 2^ .(1+f) with 0 <= f < 1
|
30
|
+
*
|
31
|
+
* log2(x) = E + log2(1+f) where:
|
32
|
+
* - log2(1+f) need to be evalute
|
33
|
+
*
|
34
|
+
*
|
35
|
+
* 2) Avoiding accuracy problem when E=-1 by testing
|
36
|
+
*
|
37
|
+
* if (1+f >= sqrt(2)) then
|
38
|
+
* 1+f = (1+f)/2; E = E+1;
|
39
|
+
* and,
|
40
|
+
* log2(x) = (E+1) + log2((1+f)/2)
|
41
|
+
*
|
42
|
+
* so now: sqrt(2)/2 <= (1+f) < sqrt(2)
|
43
|
+
*
|
44
|
+
*
|
45
|
+
* 3) Second reduction: tabular reduction
|
46
|
+
* -4
|
47
|
+
* wi = 1 + i. 2^
|
48
|
+
* 1
|
49
|
+
* log2(1+f) = log2(wi) + log2 ( 1 + --- . (1 + f - wi) )
|
50
|
+
* wi
|
51
|
+
*
|
52
|
+
* then |(1+f-wi)/wi| <= 2^-5 if we use rounded to nearest.
|
53
|
+
*
|
54
|
+
* 4) Computation:
|
55
|
+
* a) Table lookup of:
|
56
|
+
* - ti = log2(wi)
|
57
|
+
* - inv_wi = 1/(wi)
|
58
|
+
* b) Polynomial evaluation of:
|
59
|
+
* - P(R) ~ log2(1 + R), where R = (1+f-wi) * inv_wi
|
60
|
+
*
|
61
|
+
* -5
|
62
|
+
* with |R| < 2^
|
63
|
+
*
|
64
|
+
*
|
65
|
+
* 5) Reconstruction:
|
66
|
+
* log2(x) = E + t_i + P(R)
|
67
|
+
*
|
68
|
+
*
|
69
|
+
* Note 1:
|
70
|
+
* To guarantee log2(2^n)=n, where 2^n is normal, the rounding
|
71
|
+
* mode must set to Round-to-Nearest.
|
72
|
+
*
|
73
|
+
* Special cases:
|
74
|
+
* log2(x) is NaN with signal if x < 0;
|
75
|
+
* log2(+INF) is +INF with no signal; log2(0) is -INF with signal;
|
76
|
+
* log2(NaN) is that NaN with no signal;
|
77
|
+
* log2(2^N) = N
|
78
|
+
*
|
79
|
+
*/
|
80
|
+
#define SQRT_2 1.4142135623730950489e0
|
81
|
+
|
82
|
+
|
83
|
+
/*************************************************************
|
84
|
+
*************************************************************
|
85
|
+
* ROUNDED TO NEAREST
|
86
|
+
*************************************************************
|
87
|
+
*************************************************************/
|
88
|
+
double log2_rn(double x) {
|
89
|
+
scs_t R, res1, sc_exp;
|
90
|
+
scs_ptr inv_wi, ti;
|
91
|
+
|
92
|
+
db_number nb, nb2, wi, resd;
|
93
|
+
int i, E=0;
|
94
|
+
|
95
|
+
nb.d = x;
|
96
|
+
/* Filter cases */
|
97
|
+
if (nb.i[HI] < 0x00100000){ /* x < 2^(-1022) */
|
98
|
+
if (((nb.i[HI] & 0x7fffffff)|nb.i[LO])==0)
|
99
|
+
return 1.0/0.0; /* log(+/-0) = -Inf */
|
100
|
+
if (nb.i[HI] < 0)
|
101
|
+
return (x-x)/0; /* log(-x) = Nan */
|
102
|
+
|
103
|
+
/* Subnormal number */
|
104
|
+
E -= (SCS_NB_BITS*2); /* keep in mind that x is a subnormal number */
|
105
|
+
nb.d *=SCS_RADIX_TWO_DOUBLE; /* make x as normal number */
|
106
|
+
/* We may just want add 2 to the scs number.index */
|
107
|
+
/* may be .... we will see */
|
108
|
+
}
|
109
|
+
if (nb.i[HI] >= 0x7ff00000)
|
110
|
+
return x+x; /* Inf or Nan */
|
111
|
+
|
112
|
+
/* find n, nb.d such that sqrt(2)/2 < nb.d < sqrt(2) */
|
113
|
+
E += (nb.i[HI]>>20)-1023;
|
114
|
+
nb.i[HI] = (nb.i[HI] & 0x000fffff) | 0x3ff00000;
|
115
|
+
if (nb.d > SQRT_2){
|
116
|
+
nb.d *= 0.5;
|
117
|
+
E++;
|
118
|
+
}
|
119
|
+
|
120
|
+
scs_set_si(sc_exp, E);
|
121
|
+
|
122
|
+
/* to normalize nb.d and round to nearest */
|
123
|
+
/* +((2^4 - trunc(sqrt(2)/2) *2^4 )*2 + 1)/2^5 */
|
124
|
+
nb2.d = nb.d + norm_number.d;
|
125
|
+
i = (nb2.i[HI] & 0x000fffff);
|
126
|
+
i = i >> 16; /* 0<= i <=11 */
|
127
|
+
|
128
|
+
wi.d = (11+i)*(double)0.6250e-1;
|
129
|
+
|
130
|
+
/* (1+f-w_i) */
|
131
|
+
nb.d -= wi.d;
|
132
|
+
|
133
|
+
/* Table reduction */
|
134
|
+
ti = table_ti_ptr[i];
|
135
|
+
inv_wi = table_inv_wi_ptr[i];
|
136
|
+
|
137
|
+
|
138
|
+
/* R = (1+f-w_i)/w_i */
|
139
|
+
scs_set_d(R, nb.d);
|
140
|
+
scs_mul(R, R, inv_wi);
|
141
|
+
|
142
|
+
|
143
|
+
/*
|
144
|
+
* Polynomial evaluation of log2(1 + R) with an error less than 2^(-130)
|
145
|
+
*/
|
146
|
+
scs_mul(res1, constant_poly_ptr[0], R);
|
147
|
+
for(i=1; i<20; i++){
|
148
|
+
scs_add(res1, constant_poly_ptr[i], res1);
|
149
|
+
scs_mul(res1, res1, R);
|
150
|
+
}
|
151
|
+
scs_add(res1, res1, ti);
|
152
|
+
scs_add(res1, res1, sc_exp);
|
153
|
+
|
154
|
+
scs_get_d(&resd.d, res1);
|
155
|
+
|
156
|
+
return resd.d;
|
157
|
+
}
|
158
|
+
|
159
|
+
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
/*************************************************************
|
164
|
+
*************************************************************
|
165
|
+
* ROUNDED TOWARD -INFINITY
|
166
|
+
*************************************************************
|
167
|
+
*************************************************************/
|
168
|
+
double log2_rd(double x) {
|
169
|
+
scs_t R, res1, sc_exp;
|
170
|
+
scs_ptr inv_wi, ti;
|
171
|
+
|
172
|
+
db_number nb, nb2, wi, resd;
|
173
|
+
int i, E=0;
|
174
|
+
|
175
|
+
nb.d = x;
|
176
|
+
/* Filter cases */
|
177
|
+
if (nb.i[HI] < 0x00100000){ /* x < 2^(-1022) */
|
178
|
+
if (((nb.i[HI] & 0x7fffffff)|nb.i[LO])==0)
|
179
|
+
return 1.0/0.0; /* log(+/-0) = -Inf */
|
180
|
+
if (nb.i[HI] < 0)
|
181
|
+
return (x-x)/0; /* log(-x) = Nan */
|
182
|
+
|
183
|
+
/* Subnormal number */
|
184
|
+
E -= (SCS_NB_BITS*2); /* keep in mind that x is a subnormal number */
|
185
|
+
nb.d *=SCS_RADIX_TWO_DOUBLE; /* make x as normal number */
|
186
|
+
/* We may just want add 2 to the scs number.index */
|
187
|
+
/* may be .... we will see */
|
188
|
+
}
|
189
|
+
if (nb.i[HI] >= 0x7ff00000)
|
190
|
+
return x+x; /* Inf or Nan */
|
191
|
+
|
192
|
+
/* find n, nb.d such that sqrt(2)/2 < nb.d < sqrt(2) */
|
193
|
+
E += (nb.i[HI]>>20)-1023;
|
194
|
+
nb.i[HI] = (nb.i[HI] & 0x000fffff) | 0x3ff00000;
|
195
|
+
if (nb.d > SQRT_2){
|
196
|
+
nb.d *= 0.5;
|
197
|
+
E++;
|
198
|
+
}
|
199
|
+
|
200
|
+
scs_set_si(sc_exp, E);
|
201
|
+
|
202
|
+
/* to normalize nb.d and round to nearest */
|
203
|
+
/* +((2^4 - trunc(sqrt(2)/2) *2^4 )*2 + 1)/2^5 */
|
204
|
+
nb2.d = nb.d + norm_number.d;
|
205
|
+
i = (nb2.i[HI] & 0x000fffff);
|
206
|
+
i = i >> 16; /* 0<= i <=11 */
|
207
|
+
|
208
|
+
wi.d = (11+i)*(double)0.6250e-1;
|
209
|
+
|
210
|
+
/* (1+f-w_i) */
|
211
|
+
nb.d -= wi.d;
|
212
|
+
|
213
|
+
/* Table reduction */
|
214
|
+
ti = table_ti_ptr[i];
|
215
|
+
inv_wi = table_inv_wi_ptr[i];
|
216
|
+
|
217
|
+
|
218
|
+
/* R = (1+f-w_i)/w_i */
|
219
|
+
scs_set_d(R, nb.d);
|
220
|
+
scs_mul(R, R, inv_wi);
|
221
|
+
|
222
|
+
|
223
|
+
/*
|
224
|
+
* Polynomial evaluation of log2(1 + R) with an error less than 2^(-130)
|
225
|
+
*/
|
226
|
+
scs_mul(res1, constant_poly_ptr[0], R);
|
227
|
+
for(i=1; i<20; i++){
|
228
|
+
scs_add(res1, constant_poly_ptr[i], res1);
|
229
|
+
scs_mul(res1, res1, R);
|
230
|
+
}
|
231
|
+
scs_add(res1, res1, ti);
|
232
|
+
scs_add(res1, res1, sc_exp);
|
233
|
+
|
234
|
+
scs_get_d_minf(&resd.d, res1);
|
235
|
+
|
236
|
+
return resd.d;
|
237
|
+
}
|
238
|
+
|
239
|
+
|
240
|
+
|
241
|
+
|
242
|
+
|
243
|
+
|
244
|
+
/*************************************************************
|
245
|
+
*************************************************************
|
246
|
+
* ROUNDED TOWARD +INFINITY
|
247
|
+
*************************************************************
|
248
|
+
*************************************************************/
|
249
|
+
double log2_ru(double x) {
|
250
|
+
scs_t R, res1, sc_exp;
|
251
|
+
scs_ptr inv_wi, ti;
|
252
|
+
|
253
|
+
db_number nb, nb2, wi, resd;
|
254
|
+
int i, E=0;
|
255
|
+
|
256
|
+
nb.d = x;
|
257
|
+
/* Filter cases */
|
258
|
+
if (nb.i[HI] < 0x00100000){ /* x < 2^(-1022) */
|
259
|
+
if (((nb.i[HI] & 0x7fffffff)|nb.i[LO])==0)
|
260
|
+
return 1.0/0.0; /* log(+/-0) = -Inf */
|
261
|
+
if (nb.i[HI] < 0)
|
262
|
+
return (x-x)/0; /* log(-x) = Nan */
|
263
|
+
|
264
|
+
/* Subnormal number */
|
265
|
+
E -= (SCS_NB_BITS*2); /* keep in mind that x is a subnormal number */
|
266
|
+
nb.d *=SCS_RADIX_TWO_DOUBLE; /* make x as normal number */
|
267
|
+
/* We may just want add 2 to the scs number.index */
|
268
|
+
/* may be .... we will see */
|
269
|
+
}
|
270
|
+
if (nb.i[HI] >= 0x7ff00000)
|
271
|
+
return x+x; /* Inf or Nan */
|
272
|
+
|
273
|
+
/* find n, nb.d such that sqrt(2)/2 < nb.d < sqrt(2) */
|
274
|
+
E += (nb.i[HI]>>20)-1023;
|
275
|
+
nb.i[HI] = (nb.i[HI] & 0x000fffff) | 0x3ff00000;
|
276
|
+
if (nb.d > SQRT_2){
|
277
|
+
nb.d *= 0.5;
|
278
|
+
E++;
|
279
|
+
}
|
280
|
+
|
281
|
+
scs_set_si(sc_exp, E);
|
282
|
+
|
283
|
+
/* to normalize nb.d and round to nearest */
|
284
|
+
/* +((2^4 - trunc(sqrt(2)/2) *2^4 )*2 + 1)/2^5 */
|
285
|
+
nb2.d = nb.d + norm_number.d;
|
286
|
+
i = (nb2.i[HI] & 0x000fffff);
|
287
|
+
i = i >> 16; /* 0<= i <=11 */
|
288
|
+
|
289
|
+
wi.d = (11+i)*(double)0.6250e-1;
|
290
|
+
|
291
|
+
/* (1+f-w_i) */
|
292
|
+
nb.d -= wi.d;
|
293
|
+
|
294
|
+
/* Table reduction */
|
295
|
+
ti = table_ti_ptr[i];
|
296
|
+
inv_wi = table_inv_wi_ptr[i];
|
297
|
+
|
298
|
+
|
299
|
+
/* R = (1+f-w_i)/w_i */
|
300
|
+
scs_set_d(R, nb.d);
|
301
|
+
scs_mul(R, R, inv_wi);
|
302
|
+
|
303
|
+
|
304
|
+
/*
|
305
|
+
* Polynomial evaluation of log2(1 + R) with an error less than 2^(-130)
|
306
|
+
*/
|
307
|
+
scs_mul(res1, constant_poly_ptr[0], R);
|
308
|
+
for(i=1; i<20; i++){
|
309
|
+
scs_add(res1, constant_poly_ptr[i], res1);
|
310
|
+
scs_mul(res1, res1, R);
|
311
|
+
}
|
312
|
+
scs_add(res1, res1, ti);
|
313
|
+
scs_add(res1, res1, sc_exp);
|
314
|
+
|
315
|
+
scs_get_d_pinf(&resd.d, res1);
|
316
|
+
|
317
|
+
return resd.d;
|
318
|
+
}
|
319
|
+
|
320
|
+
/*************************************************************
|
321
|
+
*************************************************************
|
322
|
+
* ROUNDED TOWARDS ZERO
|
323
|
+
*************************************************************
|
324
|
+
*************************************************************/
|
325
|
+
double log2_rz(double x) {
|
326
|
+
if (x > 1)
|
327
|
+
return log2_rd(x);
|
328
|
+
else
|
329
|
+
return log2_ru(x);
|
330
|
+
}
|
@@ -0,0 +1,261 @@
|
|
1
|
+
#include "crlibm.h"
|
2
|
+
#include "crlibm_private.h"
|
3
|
+
/*
|
4
|
+
* Constant to compute the logarithm base 2.
|
5
|
+
*/
|
6
|
+
#ifdef WORDS_BIGENDIAN
|
7
|
+
static const db_number
|
8
|
+
norm_number = {{0x3FD60000, 0x00000000}}; /* 11*2^(-5) */
|
9
|
+
#else
|
10
|
+
static const db_number
|
11
|
+
norm_number = {{0x00000000, 0x3FD60000}}; /* 11*2^(-5) */
|
12
|
+
#endif
|
13
|
+
|
14
|
+
|
15
|
+
static const scs table_ti[13]=
|
16
|
+
/* ~-5.405684e-01 */
|
17
|
+
{{{0x2298ac1f, 0x33457c40, 0x1c141e66, 0x3eaaab29,
|
18
|
+
0x1030633d, 0x048bef17, 0x1a91d6a1, 0x22230522},
|
19
|
+
DB_ONE, -1, -1 }
|
20
|
+
,
|
21
|
+
/* ~-4.150375e-01 */
|
22
|
+
{{0x1a8ff971, 0x20429786, 0x017fd3b7, 0x35f97452,
|
23
|
+
0x0bb6c306, 0x15c5da64, 0x3efe1069, 0x2fb2da05},
|
24
|
+
DB_ONE, -1, -1 }
|
25
|
+
,
|
26
|
+
/* ~-2.995603e-01 */
|
27
|
+
{{0x132bfee3, 0x1c3b9a19, 0x1a24978d, 0x38d67cae,
|
28
|
+
0x3878c2df, 0x02d6ff98, 0x24e1a2a9, 0x1b4f917d},
|
29
|
+
DB_ONE, -1, -1 }
|
30
|
+
,
|
31
|
+
/* ~-1.926451e-01 */
|
32
|
+
{{0x0c544c05, 0x17f7a64c, 0x3354dbf1, 0x1bec1a57,
|
33
|
+
0x2e31ce56, 0x2b7fe8e9, 0x20d510a7, 0x19e262f3},
|
34
|
+
DB_ONE, -1, -1 }
|
35
|
+
,
|
36
|
+
/* ~-9.310940e-02 */
|
37
|
+
{{0x05f58125, 0x2cfbb4c6, 0x1ced1447, 0x38c2b4e4,
|
38
|
+
0x3edd56b0, 0x1637ed79, 0x2a14f4fe, 0x3db0ce67},
|
39
|
+
DB_ONE, -1, -1 }
|
40
|
+
,
|
41
|
+
/* ZERO */
|
42
|
+
{{0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
43
|
+
0x00000000, 0x00000000, 0x00000000, 0x00000000},
|
44
|
+
{{0, 0}}, 0, 1 }
|
45
|
+
,
|
46
|
+
/* ~8.746284e-02 */
|
47
|
+
{{0x0598fdbe, 0x2c913167, 0x33314e09, 0x2144575a,
|
48
|
+
0x30f2941f, 0x0fab1d27, 0x3e612491, 0x0849fe51},
|
49
|
+
DB_ONE, -1, 1 }
|
50
|
+
,
|
51
|
+
/* ~1.699250e-01 */
|
52
|
+
{{0x0ae00d1c, 0x3f7ad0f3, 0x3d005890, 0x140d175b,
|
53
|
+
0x289279f3, 0x14744b36, 0x0203df2c, 0x209a4bf4},
|
54
|
+
DB_ONE, -1, 1 }
|
55
|
+
,
|
56
|
+
/* ~2.479275e-01 */
|
57
|
+
{{0x0fde0b5c, 0x204d0144, 0x1d46ccc5, 0x0f09de6b,
|
58
|
+
0x39267ab7, 0x1b5a9520, 0x35aacfb1, 0x311d7642},
|
59
|
+
DB_ONE, -1, 1 }
|
60
|
+
,
|
61
|
+
/* ~3.219281e-01 */
|
62
|
+
{{0x149a784b, 0x3346e2bf, 0x2492bf6f, 0x3d36bf6d,
|
63
|
+
0x0cd96c55, 0x3f8deceb, 0x14e91b6a, 0x32020b9e},
|
64
|
+
DB_ONE, -1, 1 }
|
65
|
+
,
|
66
|
+
/* ~3.923174e-01 */
|
67
|
+
{{0x191bba89, 0x07c5c22d, 0x0b2b5056, 0x2e1a7156,
|
68
|
+
0x06176ea2, 0x3eba3cb1, 0x202cdeee, 0x366ac306},
|
69
|
+
DB_ONE, -1, 1 }
|
70
|
+
,
|
71
|
+
/* ~4.594316e-01 */
|
72
|
+
{{0x1d6753e0, 0x0cba83bf, 0x23ebe199, 0x015554d6,
|
73
|
+
0x2fcf9cc2, 0x3b7410e8, 0x256e295e, 0x1ddcfadd},
|
74
|
+
DB_ONE, -1, 1 }
|
75
|
+
,
|
76
|
+
/* ~5.235620e-01 */
|
77
|
+
{{0x21820a01, 0x2b1d532c, 0x104aea53, 0x1b12ef0a,
|
78
|
+
0x2a0fca1a, 0x1dd6be1d, 0x0730b711, 0x35eaa979},
|
79
|
+
DB_ONE, -1, 1 }
|
80
|
+
};
|
81
|
+
|
82
|
+
|
83
|
+
|
84
|
+
static const scs table_inv_wi[13]=
|
85
|
+
/* ~1.454545e+00 */
|
86
|
+
{{{0x00000001, 0x1d1745d1, 0x1d1745d1, 0x1d1745d1,
|
87
|
+
0x1d1745d1, 0x1d1745d1, 0x1d183e2a, 0x36835582},
|
88
|
+
DB_ONE, 0, 1 }
|
89
|
+
,
|
90
|
+
/* ~1.333333e+00 */
|
91
|
+
{{0x00000001, 0x15555555, 0x15555555, 0x15555555,
|
92
|
+
0x15555555, 0x15555555, 0x15549b7e, 0x1a416c6b},
|
93
|
+
DB_ONE, 0, 1 }
|
94
|
+
,
|
95
|
+
/* ~1.230769e+00 */
|
96
|
+
{{0x00000001, 0x0ec4ec4e, 0x313b13b1, 0x0ec4ec4e,
|
97
|
+
0x313b13b1, 0x0ec4ec4e, 0x313a6825, 0x3ab28b77},
|
98
|
+
DB_ONE, 0, 1 }
|
99
|
+
,
|
100
|
+
/* ~1.142857e+00 */
|
101
|
+
{{0x00000001, 0x09249249, 0x09249249, 0x09249249,
|
102
|
+
0x09249249, 0x09249249, 0x09238b74, 0x26f620a6},
|
103
|
+
DB_ONE, 0, 1 }
|
104
|
+
,
|
105
|
+
/* ~1.066667e+00 */
|
106
|
+
{{0x00000001, 0x04444444, 0x11111111, 0x04444444,
|
107
|
+
0x11111111, 0x04444444, 0x1111d60e, 0x1f0c9d58},
|
108
|
+
DB_ONE, 0, 1 }
|
109
|
+
,
|
110
|
+
/* ~1.000000e+00 */
|
111
|
+
{{0x00000001, 0x00000000, 0x00000000, 0x00000000,
|
112
|
+
0x00000000, 0x00000000, 0x00000000, 0x00000000},
|
113
|
+
DB_ONE, 0, 1 }
|
114
|
+
,
|
115
|
+
/* ~9.411765e-01 */
|
116
|
+
{{0x3c3c3c3c, 0x0f0f0f0f, 0x03c3c3c3, 0x30f0f0f0,
|
117
|
+
0x3c3c3c3c, 0x0f0f923d, 0x16e0e0a4, 0x3a84202f},
|
118
|
+
DB_ONE, -1, 1 }
|
119
|
+
,
|
120
|
+
/* ~8.888889e-01 */
|
121
|
+
{{0x38e38e38, 0x38e38e38, 0x38e38e38, 0x38e38e38,
|
122
|
+
0x38e38e38, 0x38e3946a, 0x2e0ee2c9, 0x0d6e0fbd},
|
123
|
+
DB_ONE, -1, 1 }
|
124
|
+
,
|
125
|
+
/* ~8.421053e-01 */
|
126
|
+
{{0x35e50d79, 0x10d79435, 0x39435e50, 0x35e50d79,
|
127
|
+
0x10d79435, 0x3943324d, 0x0637ea85, 0x131a67ba},
|
128
|
+
DB_ONE, -1, 1 }
|
129
|
+
,
|
130
|
+
/* ~8.000000e-01 */
|
131
|
+
{{0x33333333, 0x0ccccccc, 0x33333333, 0x0ccccccc,
|
132
|
+
0x33333333, 0x0ccccccc, 0x33333333, 0x0ccccccc},
|
133
|
+
DB_ONE, -1, 1 }
|
134
|
+
,
|
135
|
+
/* ~7.619048e-01 */
|
136
|
+
{{0x30c30c30, 0x30c30c30, 0x30c30c30, 0x30c30c30,
|
137
|
+
0x30c30c30, 0x30c2f1a4, 0x160958a1, 0x2b03bc88},
|
138
|
+
DB_ONE, -1, 1 }
|
139
|
+
,
|
140
|
+
/* ~7.272727e-01 */
|
141
|
+
{{0x2e8ba2e8, 0x2e8ba2e8, 0x2e8ba2e8, 0x2e8ba2e8,
|
142
|
+
0x2e8ba2e8, 0x2e8bcb74, 0x2d78b525, 0x00a1db67},
|
143
|
+
DB_ONE, -1, 1 }
|
144
|
+
,
|
145
|
+
/* ~6.956522e-01 */
|
146
|
+
{{0x2c8590b2, 0x0590b216, 0x10b21642, 0x321642c8,
|
147
|
+
0x1642c859, 0x02c8590b, 0x08590b21, 0x190b2164},
|
148
|
+
DB_ONE, -1, 1 }
|
149
|
+
};
|
150
|
+
|
151
|
+
|
152
|
+
|
153
|
+
|
154
|
+
|
155
|
+
|
156
|
+
static const scs constant_poly[20]=
|
157
|
+
/* ~-7.247187e-02 */
|
158
|
+
{{{0x04a3610e, 0x3280f22f, 0x1de04b83, 0x13d0592c,
|
159
|
+
0x01c1f347, 0x0e59a808, 0x0bcf5cfa, 0x3009a167},
|
160
|
+
DB_ONE, -1, -1 }
|
161
|
+
,
|
162
|
+
/* ~7.626763e-02 */
|
163
|
+
{{0x04e191a1, 0x27127aea, 0x2fb498c3, 0x3f8e3721,
|
164
|
+
0x2688ed52, 0x38503e4f, 0x3b216e42, 0x17d8666c},
|
165
|
+
DB_ONE, -1, 1 }
|
166
|
+
,
|
167
|
+
/* ~-8.014898e-02 */
|
168
|
+
{{0x05212933, 0x12c0276e, 0x1534c74e, 0x1ffc3802,
|
169
|
+
0x36935f91, 0x25fe848d, 0x2bade416, 0x110f0662},
|
170
|
+
DB_ONE, -1, -1 }
|
171
|
+
,
|
172
|
+
/* ~8.486372e-02 */
|
173
|
+
{{0x056e6838, 0x35aa4f4a, 0x2ae2f258, 0x30768483,
|
174
|
+
0x2bc43d6e, 0x176d2fe1, 0x17488263, 0x30f7670b},
|
175
|
+
DB_ONE, -1, 1 }
|
176
|
+
,
|
177
|
+
/* ~-9.016844e-02 */
|
178
|
+
{{0x05c551da, 0x1166e535, 0x10625f98, 0x08af81ee,
|
179
|
+
0x04feb59e, 0x2906123e, 0x0b31f878, 0x0693beb1},
|
180
|
+
DB_ONE, -1, -1 }
|
181
|
+
,
|
182
|
+
/* ~9.617967e-02 */
|
183
|
+
{{0x0627cec6, 0x20792d0d, 0x181b90ab, 0x0c8e3405,
|
184
|
+
0x1fe3b53f, 0x0f6d3b7a, 0x00eefd12, 0x0808849b},
|
185
|
+
DB_ONE, -1, 1 }
|
186
|
+
,
|
187
|
+
/* ~-1.030496e-01 */
|
188
|
+
{{0x06985d8a, 0x27a1d37d, 0x3fa3c0e9, 0x37e7d679,
|
189
|
+
0x0379ed1d, 0x25a15e16, 0x3ef8c491, 0x2414ab4f},
|
190
|
+
DB_ONE, -1, -1 }
|
191
|
+
,
|
192
|
+
/* ~1.109765e-01 */
|
193
|
+
{{0x071a3d5a, 0x0d27a702, 0x138411a6, 0x15701cae,
|
194
|
+
0x31ef415d, 0x1985227d, 0x31a4c54c, 0x15d3a279},
|
195
|
+
DB_ONE, -1, 1 }
|
196
|
+
,
|
197
|
+
/* ~-1.202246e-01 */
|
198
|
+
{{0x07b1c277, 0x03a04150, 0x3be8d05b, 0x2f373cf4,
|
199
|
+
0x105c73c2, 0x0ee0272b, 0x0b2bf018, 0x1ad7026f},
|
200
|
+
DB_ONE, -1, -1 }
|
201
|
+
,
|
202
|
+
/* ~1.311541e-01 */
|
203
|
+
{{0x0864d424, 0x328046b9, 0x132f0fc6, 0x2b14d554,
|
204
|
+
0x189d4b79, 0x2ec40035, 0x15083d44, 0x33a13b8c},
|
205
|
+
DB_ONE, -1, 1 }
|
206
|
+
,
|
207
|
+
/* ~-1.442695e-01 */
|
208
|
+
{{0x093bb628, 0x1df37fcf, 0x022eb69a, 0x0b325d1d,
|
209
|
+
0x0625c904, 0x1ccaa7ae, 0x0ed7ce1d, 0x3202ff74},
|
210
|
+
DB_ONE, -1, -1 }
|
211
|
+
,
|
212
|
+
/* ~1.602994e-01 */
|
213
|
+
{{0x0a42589e, 0x2f80551e, 0x3eb3ec54, 0x1a1094cd,
|
214
|
+
0x23649796, 0x328d4019, 0x3f6371c6, 0x37a359a1},
|
215
|
+
DB_ONE, -1, 1 }
|
216
|
+
,
|
217
|
+
/* ~-1.803369e-01 */
|
218
|
+
{{0x0b8aa3b2, 0x25705fc2, 0x3bbedcca, 0x35a13588,
|
219
|
+
0x15c06cdc, 0x39fbf52c, 0x2b666451, 0x350d8287},
|
220
|
+
DB_ONE, -1, -1 }
|
221
|
+
,
|
222
|
+
/* ~2.060993e-01 */
|
223
|
+
{{0x0d30bb15, 0x0f5bdb27, 0x3b23121c, 0x383c6bb0,
|
224
|
+
0x2f3b4fd2, 0x2dba0ce0, 0x0230a445, 0x306b1136},
|
225
|
+
DB_ONE, -1, 1 }
|
226
|
+
,
|
227
|
+
/* ~-2.404492e-01 */
|
228
|
+
{{0x0f6384ee, 0x07407fae, 0x24fe0aa6, 0x3c7aefd2,
|
229
|
+
0x12953456, 0x0d1d1991, 0x2af86714, 0x26b4c925},
|
230
|
+
DB_ONE, -1, -1 }
|
231
|
+
,
|
232
|
+
/* ~2.885390e-01 */
|
233
|
+
{{0x12776c50, 0x3be6ff9e, 0x12ca7330, 0x1a6d448b,
|
234
|
+
0x1ef18433, 0x375e9366, 0x21f2efcf, 0x38ab1d93},
|
235
|
+
DB_ONE, -1, 1 }
|
236
|
+
,
|
237
|
+
/* ~-3.606738e-01 */
|
238
|
+
{{0x17154765, 0x0ae0bf85, 0x377d0ffd, 0x2836248a,
|
239
|
+
0x3b8e6858, 0x123f10ae, 0x0c65387c, 0x26048456},
|
240
|
+
DB_ONE, -1, -1 }
|
241
|
+
,
|
242
|
+
/* ~4.808983e-01 */
|
243
|
+
{{0x1ec709dc, 0x0e80ff5d, 0x09fc1552, 0x0af12c97,
|
244
|
+
0x37bd6a2c, 0x3ebc8f65, 0x113a7c28, 0x1663571a},
|
245
|
+
DB_ONE, -1, 1 }
|
246
|
+
,
|
247
|
+
/* ~-7.213475e-01 */
|
248
|
+
{{0x2e2a8eca, 0x15c17f0b, 0x2efa1ffb, 0x10691d3d,
|
249
|
+
0x09a93721, 0x2d59e835, 0x1baea424, 0x28b120a0},
|
250
|
+
DB_ONE, -1, -1 }
|
251
|
+
,
|
252
|
+
/* ~1.442695e+00 */
|
253
|
+
{{0x00000001, 0x1c551d94, 0x2b82fe17, 0x1df43ff6,
|
254
|
+
0x20d23a7c, 0x3b9ff352, 0x14d59cbf, 0x00fe1bdb},
|
255
|
+
DB_ONE, 0, 1 }
|
256
|
+
};
|
257
|
+
|
258
|
+
|
259
|
+
#define constant_poly_ptr (scs_ptr)&constant_poly
|
260
|
+
#define table_ti_ptr (scs_ptr)&table_ti
|
261
|
+
#define table_inv_wi_ptr (scs_ptr)&table_inv_wi
|
@@ -0,0 +1,133 @@
|
|
1
|
+
/*
|
2
|
+
* Correctly rounded logarithm
|
3
|
+
*
|
4
|
+
* Author : David Defour
|
5
|
+
*
|
6
|
+
* This file is part of the crlibm library developed by the Arenaire
|
7
|
+
* project at Ecole Normale Superieure de Lyon
|
8
|
+
*
|
9
|
+
* This program is free software; you can redistribute it and/or modify
|
10
|
+
* it under the terms of the GNU Lesser General Public License as published by
|
11
|
+
* the Free Software Foundation; either version 2 of the License, or
|
12
|
+
* (at your option) any later version.
|
13
|
+
*
|
14
|
+
* This program is distributed in the hope that it will be useful,
|
15
|
+
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16
|
+
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17
|
+
* GNU General Public License for more details.
|
18
|
+
*
|
19
|
+
* You should have received a copy of the GNU Lesser General Public License
|
20
|
+
* along with this program; if not, write to the Free Software
|
21
|
+
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
22
|
+
*/
|
23
|
+
#include <stdio.h>
|
24
|
+
#include "log_accurate.h"
|
25
|
+
|
26
|
+
/*
|
27
|
+
* 1) First reduction: exponent extraction
|
28
|
+
* E
|
29
|
+
* x = 2^ .(1+f) with 0 <= f < 1
|
30
|
+
*
|
31
|
+
* log(x) = E.log(2) + log(1+f) where:
|
32
|
+
* - log(2) is tabulated
|
33
|
+
* - log(1+f) need to be evaluated
|
34
|
+
*
|
35
|
+
*
|
36
|
+
* 2) Avoiding accuracy problem when E=-1 by testing
|
37
|
+
*
|
38
|
+
* if (1+f >= sqrt(2)) then
|
39
|
+
* 1+f = (1+f)/2; E = E+1;
|
40
|
+
* and,
|
41
|
+
* log(x) = (E+1).log(2) + log((1+f)/2)
|
42
|
+
*
|
43
|
+
* so now: sqrt(2)/2 <= (1+f) < sqrt(2)
|
44
|
+
*
|
45
|
+
*
|
46
|
+
* 3) Second reduction: tabular reduction
|
47
|
+
* -4
|
48
|
+
* wi = 1 + i. 2^
|
49
|
+
* 1
|
50
|
+
* log(1+f) = log(wi) + log ( 1 + --- . (1 + f - wi) )
|
51
|
+
* wi
|
52
|
+
*
|
53
|
+
* then |(1+f-wi)/wi| <= 2^-5 if we use rounded to nearest.
|
54
|
+
*
|
55
|
+
* 4) Computation:
|
56
|
+
* a) Table lookup of:
|
57
|
+
* - ti = log(wi)
|
58
|
+
* - inv_wi = 1/(wi)
|
59
|
+
* b) Polynomial evaluation of:
|
60
|
+
* - P(R) ~ log(1 + R), where R = (1+f-wi) * inv_wi
|
61
|
+
*
|
62
|
+
* -5
|
63
|
+
* with |R| < 2^
|
64
|
+
*
|
65
|
+
*
|
66
|
+
* 5) Reconstruction:
|
67
|
+
* log(x) = E.log(2) + t_i + P(R)
|
68
|
+
*
|
69
|
+
*/
|
70
|
+
|
71
|
+
|
72
|
+
|
73
|
+
|
74
|
+
void scs_log(scs_ptr res, db_number y, int E){
|
75
|
+
scs_t R, sc_ln2_times_E, res1, addi;
|
76
|
+
scs_ptr ti, inv_wi;
|
77
|
+
db_number z, wi;
|
78
|
+
int i;
|
79
|
+
|
80
|
+
|
81
|
+
#if EVAL_PERF
|
82
|
+
crlibm_second_step_taken++;
|
83
|
+
#endif
|
84
|
+
|
85
|
+
|
86
|
+
/* to normalize y.d and round to nearest */
|
87
|
+
/* + (1-trunc(sqrt(2.)/2 * 2^(4))*2^(-4) )+2.^(-(4+1))*/
|
88
|
+
z.d = y.d + norm_number.d;
|
89
|
+
i = (z.i[HI] & 0x000fffff);
|
90
|
+
i = i >> 16; /* 0<= i <=11 */
|
91
|
+
|
92
|
+
|
93
|
+
wi.d = ((double)(11+i))*0.0625;
|
94
|
+
|
95
|
+
/* (1+f-w_i) */
|
96
|
+
y.d -= wi.d;
|
97
|
+
|
98
|
+
/* Table reduction */
|
99
|
+
ti = table_ti_ptr[i];
|
100
|
+
inv_wi = table_inv_wi_ptr[i];
|
101
|
+
|
102
|
+
/* R = (1+f-w_i)/w_i */
|
103
|
+
scs_set_d(R, y.d);
|
104
|
+
scs_mul(R, R, inv_wi);
|
105
|
+
|
106
|
+
|
107
|
+
/*
|
108
|
+
* Polynomial evaluation of log(1 + R) with an error less than 2^(-130)
|
109
|
+
*/
|
110
|
+
|
111
|
+
scs_mul(res1, constant_poly_ptr[0], R);
|
112
|
+
for(i=1; i<20; i++){
|
113
|
+
scs_add(addi, constant_poly_ptr[i], res1);
|
114
|
+
scs_mul(res1, addi, R);
|
115
|
+
}
|
116
|
+
|
117
|
+
if(E==0){
|
118
|
+
scs_add(res, res1, ti);
|
119
|
+
}else{
|
120
|
+
/* sc_ln2_times_E = E*log(2) */
|
121
|
+
scs_set(sc_ln2_times_E, sc_ln2_ptr);
|
122
|
+
|
123
|
+
if (E >= 0){
|
124
|
+
scs_mul_ui(sc_ln2_times_E, (unsigned int) E);
|
125
|
+
}else{
|
126
|
+
scs_mul_ui(sc_ln2_times_E, (unsigned int) -E);
|
127
|
+
sc_ln2_times_E->sign = -1;
|
128
|
+
}
|
129
|
+
scs_add(addi, res1, ti);
|
130
|
+
scs_add(res, addi, sc_ln2_times_E);
|
131
|
+
}
|
132
|
+
}
|
133
|
+
|