charty 0.2.3 → 0.2.8
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.github/workflows/ci.yml +56 -23
- data/.github/workflows/nmatrix.yml +67 -0
- data/.github/workflows/pycall.yml +86 -0
- data/Gemfile +18 -0
- data/README.md +172 -4
- data/Rakefile +4 -5
- data/charty.gemspec +10 -6
- data/examples/sample_images/hist_gruff.png +0 -0
- data/images/penguins_body_mass_g_flipper_length_mm_scatter_plot.png +0 -0
- data/images/penguins_body_mass_g_flipper_length_mm_species_scatter_plot.png +0 -0
- data/images/penguins_body_mass_g_flipper_length_mm_species_sex_scatter_plot.png +0 -0
- data/images/penguins_species_body_mass_g_bar_plot_h.png +0 -0
- data/images/penguins_species_body_mass_g_bar_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_box_plot_h.png +0 -0
- data/images/penguins_species_body_mass_g_box_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_sex_bar_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_sex_box_plot_v.png +0 -0
- data/lib/charty.rb +8 -1
- data/lib/charty/backends/bokeh.rb +2 -2
- data/lib/charty/backends/google_charts.rb +1 -1
- data/lib/charty/backends/gruff.rb +14 -3
- data/lib/charty/backends/plotly.rb +731 -32
- data/lib/charty/backends/plotly_helpers/html_renderer.rb +203 -0
- data/lib/charty/backends/plotly_helpers/notebook_renderer.rb +87 -0
- data/lib/charty/backends/plotly_helpers/plotly_renderer.rb +121 -0
- data/lib/charty/backends/pyplot.rb +514 -66
- data/lib/charty/backends/rubyplot.rb +1 -1
- data/lib/charty/cache_dir.rb +27 -0
- data/lib/charty/dash_pattern_generator.rb +57 -0
- data/lib/charty/index.rb +213 -0
- data/lib/charty/iruby_helper.rb +18 -0
- data/lib/charty/linspace.rb +1 -1
- data/lib/charty/plot_methods.rb +283 -8
- data/lib/charty/plotter.rb +2 -2
- data/lib/charty/plotters.rb +11 -0
- data/lib/charty/plotters/abstract_plotter.rb +186 -16
- data/lib/charty/plotters/bar_plotter.rb +189 -7
- data/lib/charty/plotters/box_plotter.rb +64 -11
- data/lib/charty/plotters/categorical_plotter.rb +272 -40
- data/lib/charty/plotters/count_plotter.rb +7 -0
- data/lib/charty/plotters/distribution_plotter.rb +143 -0
- data/lib/charty/plotters/estimation_support.rb +84 -0
- data/lib/charty/plotters/histogram_plotter.rb +186 -0
- data/lib/charty/plotters/line_plotter.rb +300 -0
- data/lib/charty/plotters/random_support.rb +25 -0
- data/lib/charty/plotters/relational_plotter.rb +635 -0
- data/lib/charty/plotters/scatter_plotter.rb +80 -0
- data/lib/charty/plotters/vector_plotter.rb +6 -0
- data/lib/charty/statistics.rb +96 -2
- data/lib/charty/table.rb +160 -15
- data/lib/charty/table_adapters.rb +2 -0
- data/lib/charty/table_adapters/active_record_adapter.rb +17 -9
- data/lib/charty/table_adapters/base_adapter.rb +166 -0
- data/lib/charty/table_adapters/daru_adapter.rb +39 -3
- data/lib/charty/table_adapters/datasets_adapter.rb +13 -2
- data/lib/charty/table_adapters/hash_adapter.rb +141 -16
- data/lib/charty/table_adapters/narray_adapter.rb +25 -6
- data/lib/charty/table_adapters/nmatrix_adapter.rb +15 -5
- data/lib/charty/table_adapters/pandas_adapter.rb +163 -0
- data/lib/charty/util.rb +28 -0
- data/lib/charty/vector.rb +69 -0
- data/lib/charty/vector_adapters.rb +187 -0
- data/lib/charty/vector_adapters/array_adapter.rb +101 -0
- data/lib/charty/vector_adapters/daru_adapter.rb +163 -0
- data/lib/charty/vector_adapters/narray_adapter.rb +182 -0
- data/lib/charty/vector_adapters/nmatrix_adapter.rb +37 -0
- data/lib/charty/vector_adapters/numpy_adapter.rb +168 -0
- data/lib/charty/vector_adapters/pandas_adapter.rb +199 -0
- data/lib/charty/version.rb +1 -1
- metadata +92 -25
@@ -0,0 +1,143 @@
|
|
1
|
+
module Charty
|
2
|
+
module Plotters
|
3
|
+
class DistributionPlotter < AbstractPlotter
|
4
|
+
def flat_structure
|
5
|
+
{
|
6
|
+
x: :values
|
7
|
+
}
|
8
|
+
end
|
9
|
+
|
10
|
+
def initialize(data:, variables:, **options, &block)
|
11
|
+
x, y, color = variables.values_at(:x, :y, :color)
|
12
|
+
super(x, y, color, data: data, **options, &block)
|
13
|
+
|
14
|
+
setup_variables
|
15
|
+
end
|
16
|
+
|
17
|
+
attr_reader :variables
|
18
|
+
|
19
|
+
attr_reader :color_norm
|
20
|
+
|
21
|
+
def color_norm=(val)
|
22
|
+
unless val.nil?
|
23
|
+
raise NotImplementedError,
|
24
|
+
"Specifying color_norm is not supported yet"
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
attr_reader :legend
|
29
|
+
|
30
|
+
def legend=(val)
|
31
|
+
@legend = check_legend(val)
|
32
|
+
end
|
33
|
+
|
34
|
+
private def check_legend(val)
|
35
|
+
check_boolean(val, :legend)
|
36
|
+
end
|
37
|
+
|
38
|
+
attr_reader :input_format, :plot_data, :variables, :var_types
|
39
|
+
|
40
|
+
# This should be the same as one in RelationalPlotter
|
41
|
+
# TODO: move this to AbstractPlotter and refactor with CategoricalPlotter
|
42
|
+
private def setup_variables
|
43
|
+
if x.nil? && y.nil?
|
44
|
+
@input_format = :wide
|
45
|
+
setup_variables_with_wide_form_dataset
|
46
|
+
else
|
47
|
+
@input_format = :long
|
48
|
+
setup_variables_with_long_form_dataset
|
49
|
+
end
|
50
|
+
|
51
|
+
@var_types = @plot_data.columns.map { |k|
|
52
|
+
[k, variable_type(@plot_data[k], :categorical)]
|
53
|
+
}.to_h
|
54
|
+
end
|
55
|
+
|
56
|
+
private def setup_variables_with_wide_form_dataset
|
57
|
+
unless color.nil?
|
58
|
+
raise ArgumentError,
|
59
|
+
"Unable to assign the following variables in wide-form data: color"
|
60
|
+
end
|
61
|
+
|
62
|
+
if data.nil? || data.empty?
|
63
|
+
@plot_data = Charty::Table.new({})
|
64
|
+
@variables = {}
|
65
|
+
return
|
66
|
+
end
|
67
|
+
|
68
|
+
# TODO: detect flat data
|
69
|
+
flat = data.is_a?(Charty::Vector)
|
70
|
+
if flat
|
71
|
+
@plot_data = {}
|
72
|
+
@variables = {}
|
73
|
+
|
74
|
+
[:x, :y].each do |var|
|
75
|
+
case self.flat_structure[var]
|
76
|
+
when :index
|
77
|
+
@plot_data[var] = data.index.to_a
|
78
|
+
@variables[var] = data.index.name
|
79
|
+
when :values
|
80
|
+
@plot_data[var] = data.to_a
|
81
|
+
@variables[var] = data.name
|
82
|
+
end
|
83
|
+
end
|
84
|
+
|
85
|
+
@plot_data = Charty::Table.new(@plot_data)
|
86
|
+
else
|
87
|
+
raise NotImplementedError,
|
88
|
+
"wide-form input is not supported"
|
89
|
+
end
|
90
|
+
end
|
91
|
+
|
92
|
+
private def setup_variables_with_long_form_dataset
|
93
|
+
if data.nil? || data.empty?
|
94
|
+
@plot_data = Charty::Table.new({})
|
95
|
+
@variables = {}
|
96
|
+
return
|
97
|
+
end
|
98
|
+
|
99
|
+
plot_data = {}
|
100
|
+
variables = {}
|
101
|
+
|
102
|
+
{
|
103
|
+
x: self.x,
|
104
|
+
y: self.y,
|
105
|
+
color: self.color,
|
106
|
+
}.each do |key, val|
|
107
|
+
next if val.nil?
|
108
|
+
|
109
|
+
if data.column?(val)
|
110
|
+
plot_data[key] = data[val]
|
111
|
+
variables[key] = val
|
112
|
+
else
|
113
|
+
case val
|
114
|
+
when Charty::Vector
|
115
|
+
plot_data[key] = val
|
116
|
+
variables[key] = val.name
|
117
|
+
else
|
118
|
+
raise ArgumentError,
|
119
|
+
"Could not interpret value %p for parameter %p" % [val, key]
|
120
|
+
end
|
121
|
+
end
|
122
|
+
end
|
123
|
+
|
124
|
+
@plot_data = Charty::Table.new(plot_data)
|
125
|
+
@variables = variables.select do |var, name|
|
126
|
+
@plot_data[var].notnull.any?
|
127
|
+
end
|
128
|
+
end
|
129
|
+
|
130
|
+
private def map_color(palette: nil, order: nil, norm: nil)
|
131
|
+
@color_mapper = ColorMapper.new(self, palette, order, norm)
|
132
|
+
end
|
133
|
+
|
134
|
+
private def map_size(sizes: nil, order: nil, norm: nil)
|
135
|
+
@size_mapper = SizeMapper.new(self, sizes, order, norm)
|
136
|
+
end
|
137
|
+
|
138
|
+
private def map_style(markers: nil, dashes: nil, order: nil)
|
139
|
+
@style_mapper = StyleMapper.new(self, markers, dashes, order)
|
140
|
+
end
|
141
|
+
end
|
142
|
+
end
|
143
|
+
end
|
@@ -0,0 +1,84 @@
|
|
1
|
+
module Charty
|
2
|
+
module Plotters
|
3
|
+
module EstimationSupport
|
4
|
+
attr_reader :estimator
|
5
|
+
|
6
|
+
def estimator=(estimator)
|
7
|
+
@estimator = check_estimator(estimator)
|
8
|
+
end
|
9
|
+
|
10
|
+
module_function def check_estimator(value)
|
11
|
+
case value
|
12
|
+
when :count, "count"
|
13
|
+
:count
|
14
|
+
when :mean, "mean"
|
15
|
+
:mean
|
16
|
+
when :median
|
17
|
+
raise NotImplementedError,
|
18
|
+
"median estimator has not been supported yet"
|
19
|
+
when Proc
|
20
|
+
raise NotImplementedError,
|
21
|
+
"a callable estimator has not been supported yet"
|
22
|
+
else
|
23
|
+
raise ArgumentError,
|
24
|
+
"invalid value for estimator (%p for :mean)" % value
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
attr_reader :ci
|
29
|
+
|
30
|
+
def ci=(ci)
|
31
|
+
@ci = check_ci(ci)
|
32
|
+
end
|
33
|
+
|
34
|
+
private def check_ci(value)
|
35
|
+
case value
|
36
|
+
when nil
|
37
|
+
nil
|
38
|
+
when :sd, "sd"
|
39
|
+
:sd
|
40
|
+
when 0..100
|
41
|
+
value
|
42
|
+
when Numeric
|
43
|
+
raise ArgumentError,
|
44
|
+
"ci must be in 0..100, but %p is given" % value
|
45
|
+
else
|
46
|
+
raise ArgumentError,
|
47
|
+
"invalid value for ci (%p for nil, :sd, or a number in 0..100)" % value
|
48
|
+
end
|
49
|
+
end
|
50
|
+
|
51
|
+
attr_reader :n_boot
|
52
|
+
|
53
|
+
def n_boot=(n_boot)
|
54
|
+
@n_boot = check_n_boot(n_boot)
|
55
|
+
end
|
56
|
+
|
57
|
+
private def check_n_boot(value)
|
58
|
+
case value
|
59
|
+
when Integer
|
60
|
+
if value <= 0
|
61
|
+
raise ArgumentError,
|
62
|
+
"n_boot must be larger than zero, but %p is given" % value
|
63
|
+
end
|
64
|
+
value
|
65
|
+
else
|
66
|
+
raise ArgumentError,
|
67
|
+
"invalid value for n_boot (%p for an integer > 0)" % value
|
68
|
+
end
|
69
|
+
end
|
70
|
+
|
71
|
+
attr_reader :units
|
72
|
+
|
73
|
+
def units=(units)
|
74
|
+
@units = check_dimension(units, :units)
|
75
|
+
unless units.nil?
|
76
|
+
raise NotImplementedError,
|
77
|
+
"Specifying units variable is not supported yet"
|
78
|
+
end
|
79
|
+
end
|
80
|
+
|
81
|
+
include RandomSupport
|
82
|
+
end
|
83
|
+
end
|
84
|
+
end
|
@@ -0,0 +1,186 @@
|
|
1
|
+
module Charty
|
2
|
+
module Plotters
|
3
|
+
class HistogramPlotter < DistributionPlotter
|
4
|
+
def univariate?
|
5
|
+
self.variables.key?(:x) != self.variables.key?(:y)
|
6
|
+
end
|
7
|
+
|
8
|
+
def univariate_variable
|
9
|
+
unless univariate?
|
10
|
+
raise TypeError, "This is not a univariate plot"
|
11
|
+
end
|
12
|
+
([:x, :y] & self.variables.keys)[0]
|
13
|
+
end
|
14
|
+
|
15
|
+
attr_reader :weights
|
16
|
+
|
17
|
+
def weights=(val)
|
18
|
+
@weights = check_weights(val)
|
19
|
+
end
|
20
|
+
|
21
|
+
private def check_weights(val)
|
22
|
+
raise NotImplementedError, "weights is not supported yet"
|
23
|
+
end
|
24
|
+
|
25
|
+
attr_reader :stat
|
26
|
+
|
27
|
+
def stat=(val)
|
28
|
+
@stat = check_stat(val)
|
29
|
+
end
|
30
|
+
|
31
|
+
private def check_stat(val)
|
32
|
+
case val
|
33
|
+
when :count, "count"
|
34
|
+
val.to_sym
|
35
|
+
when :frequency, "frequency",
|
36
|
+
:density, "density",
|
37
|
+
:probability, "probability"
|
38
|
+
raise ArgumentError,
|
39
|
+
"%p for `stat` is not supported yet" % val,
|
40
|
+
caller
|
41
|
+
else
|
42
|
+
raise ArgumentError,
|
43
|
+
"Invalid value for `stat` (%p)" % val,
|
44
|
+
caller
|
45
|
+
end
|
46
|
+
end
|
47
|
+
|
48
|
+
attr_reader :bins
|
49
|
+
|
50
|
+
def bins=(val)
|
51
|
+
@bins = check_bins(val)
|
52
|
+
end
|
53
|
+
|
54
|
+
private def check_bins(val)
|
55
|
+
case val
|
56
|
+
when :auto, "auto"
|
57
|
+
val.to_sym
|
58
|
+
when Integer
|
59
|
+
val
|
60
|
+
else
|
61
|
+
raise ArgumentError,
|
62
|
+
"Invalid value for `bins` (%p)" % val,
|
63
|
+
caller
|
64
|
+
end
|
65
|
+
end
|
66
|
+
|
67
|
+
# TODO: bin_width
|
68
|
+
# TODO: bin_range
|
69
|
+
# TODO: discrete
|
70
|
+
# TODO: cumulative
|
71
|
+
# TODO: common_bins
|
72
|
+
# TODO: common_norm
|
73
|
+
|
74
|
+
attr_reader :multiple
|
75
|
+
|
76
|
+
def multiple=(val)
|
77
|
+
@multiple = check_multiple(val)
|
78
|
+
end
|
79
|
+
|
80
|
+
private def check_multiple(val)
|
81
|
+
case val
|
82
|
+
when :layer, "layer"
|
83
|
+
val.to_sym
|
84
|
+
when :dodge, "dodge",
|
85
|
+
:stack, "stack",
|
86
|
+
:fill, "fill"
|
87
|
+
val = val.to_sym
|
88
|
+
raise NotImplementedError,
|
89
|
+
"%p for `multiple` is not supported yet" % val,
|
90
|
+
caller
|
91
|
+
else
|
92
|
+
raise ArgumentError,
|
93
|
+
"Invalid value for `multiple` (%p)" % val,
|
94
|
+
caller
|
95
|
+
end
|
96
|
+
end
|
97
|
+
|
98
|
+
# TODO: element
|
99
|
+
# TODO: fill
|
100
|
+
# TODO: shrink
|
101
|
+
|
102
|
+
attr_reader :kde
|
103
|
+
|
104
|
+
def kde=(val)
|
105
|
+
raise NotImplementedError, "kde is not supported yet"
|
106
|
+
end
|
107
|
+
|
108
|
+
attr_reader :kde_params
|
109
|
+
|
110
|
+
def kde_params=(val)
|
111
|
+
raise NotImplementedError, "kde_params is not supported yet"
|
112
|
+
end
|
113
|
+
|
114
|
+
# TODO: thresh
|
115
|
+
# TODO: pthresh
|
116
|
+
# TODO: pmax
|
117
|
+
# TODO: cbar
|
118
|
+
# TODO: cbar_params
|
119
|
+
# TODO: x_log_scale
|
120
|
+
# TODO: y_log_scale
|
121
|
+
|
122
|
+
private def render_plot(backend, **)
|
123
|
+
draw_univariate_histogram(backend)
|
124
|
+
annotate_axes(backend)
|
125
|
+
end
|
126
|
+
|
127
|
+
private def draw_univariate_histogram(backend)
|
128
|
+
map_color(palette: palette, order: color_order, norm: color_norm)
|
129
|
+
|
130
|
+
# TODO: calculate histogram here and use bar plot to visualize
|
131
|
+
data_variable = self.univariate_variable
|
132
|
+
|
133
|
+
histograms = {}
|
134
|
+
each_subset([:color], processed: true) do |sub_vars, sub_data|
|
135
|
+
key = sub_vars.to_a
|
136
|
+
observations = sub_data[data_variable].drop_na.to_a
|
137
|
+
hist = if bins != :auto
|
138
|
+
Statistics.histogram(observations, bins)
|
139
|
+
else
|
140
|
+
Statistics.histogram(observations)
|
141
|
+
end
|
142
|
+
histograms[key] = hist
|
143
|
+
end
|
144
|
+
|
145
|
+
bin_start, bin_end, bin_size = nil
|
146
|
+
histograms.each do |_, hist|
|
147
|
+
s, e = hist.edge.minmax
|
148
|
+
z = (e - s).to_f / (hist.edge.length - 1)
|
149
|
+
bin_start = [bin_start, s].compact.min
|
150
|
+
bin_end = [bin_end, e].compact.max
|
151
|
+
bin_size = [bin_size, z].compact.min
|
152
|
+
end
|
153
|
+
|
154
|
+
if self.variables.key?(:color)
|
155
|
+
alpha = 0.5
|
156
|
+
else
|
157
|
+
alpha = 0.75
|
158
|
+
end
|
159
|
+
|
160
|
+
each_subset([:color], processed: true) do |sub_vars, sub_data|
|
161
|
+
name = sub_vars[:color]
|
162
|
+
observations = sub_data[data_variable].drop_na.to_a
|
163
|
+
|
164
|
+
backend.univariate_histogram(observations, name, data_variable, stat,
|
165
|
+
bin_start, bin_end, bin_size, alpha,
|
166
|
+
name, @color_mapper)
|
167
|
+
end
|
168
|
+
end
|
169
|
+
|
170
|
+
private def annotate_axes(backend)
|
171
|
+
if univariate?
|
172
|
+
xlabel = self.variables[:x]
|
173
|
+
ylabel = self.variables[:y]
|
174
|
+
case self.univariate_variable
|
175
|
+
when :x
|
176
|
+
ylabel = self.stat.to_s.capitalize
|
177
|
+
else
|
178
|
+
xlabel = self.stat.to_s.capitalize
|
179
|
+
end
|
180
|
+
backend.set_ylabel(ylabel) if ylabel
|
181
|
+
backend.set_xlabel(xlabel) if xlabel
|
182
|
+
end
|
183
|
+
end
|
184
|
+
end
|
185
|
+
end
|
186
|
+
end
|
@@ -0,0 +1,300 @@
|
|
1
|
+
module Charty
|
2
|
+
module Plotters
|
3
|
+
class EstimateAggregator
|
4
|
+
def initialize(estimator, error_bar, n_boot, random)
|
5
|
+
@estimator = estimator
|
6
|
+
@method, @level = error_bar
|
7
|
+
@n_boot = n_boot
|
8
|
+
@random = random
|
9
|
+
end
|
10
|
+
|
11
|
+
# Perform aggregation
|
12
|
+
#
|
13
|
+
# @param data [Hash<Any, Charty::Table>]
|
14
|
+
# @param var_name [Symbol, String] A column name to be aggregated
|
15
|
+
def aggregate(data, var_name)
|
16
|
+
values = data[var_name]
|
17
|
+
estimation = case @estimator
|
18
|
+
when :count
|
19
|
+
values.length
|
20
|
+
when :mean
|
21
|
+
values.mean
|
22
|
+
end
|
23
|
+
|
24
|
+
n = values.length
|
25
|
+
case
|
26
|
+
# No error bars
|
27
|
+
when @method.nil?
|
28
|
+
err_min = err_max = Float::NAN
|
29
|
+
when n <= 1
|
30
|
+
err_min = err_max = Float::NAN
|
31
|
+
|
32
|
+
# User-defined method
|
33
|
+
when @method.respond_to?(:call)
|
34
|
+
err_min, err_max = @method.call(values)
|
35
|
+
|
36
|
+
# Parametric
|
37
|
+
when @method == :sd
|
38
|
+
err_radius = values.stdev * @level
|
39
|
+
err_min = estimation - err_radius
|
40
|
+
err_max = estimation + err_radius
|
41
|
+
when @method == :se
|
42
|
+
err_radius = values.stdev / Math.sqrt(n)
|
43
|
+
err_min = estimation - err_radius
|
44
|
+
err_max = estimation + err_radius
|
45
|
+
|
46
|
+
# Nonparametric
|
47
|
+
when @method == :pi
|
48
|
+
err_min, err_max = percentile_interval(values, @level)
|
49
|
+
when @method == :ci
|
50
|
+
# TODO: Support units
|
51
|
+
err_min, err_max =
|
52
|
+
Statistics.bootstrap_ci(values, @level, units: nil, func: @estimator,
|
53
|
+
n_boot: @n_boot, random: @random)
|
54
|
+
end
|
55
|
+
|
56
|
+
{
|
57
|
+
var_name => estimation,
|
58
|
+
"#{var_name}_min" => err_min,
|
59
|
+
"#{var_name}_max" => err_max
|
60
|
+
}
|
61
|
+
end
|
62
|
+
|
63
|
+
def percentile_interval(values, width)
|
64
|
+
q = [50 - width / 2, 50 + width / 2]
|
65
|
+
Statistics.percentile(values, q)
|
66
|
+
end
|
67
|
+
end
|
68
|
+
|
69
|
+
class LinePlotter < RelationalPlotter
|
70
|
+
def initialize(data: nil, variables: {}, **options, &block)
|
71
|
+
x, y, color, style, size = variables.values_at(:x, :y, :color, :style, :size)
|
72
|
+
super(x, y, color, style, size, data: data, **options, &block)
|
73
|
+
|
74
|
+
@comp_data = nil
|
75
|
+
end
|
76
|
+
|
77
|
+
attr_reader :estimator
|
78
|
+
|
79
|
+
def estimator=(estimator)
|
80
|
+
@estimator = check_estimator(estimator)
|
81
|
+
end
|
82
|
+
|
83
|
+
private def check_estimator(value)
|
84
|
+
case value
|
85
|
+
when nil, false
|
86
|
+
nil
|
87
|
+
when :count, "count"
|
88
|
+
:count
|
89
|
+
when :mean, "mean"
|
90
|
+
:mean
|
91
|
+
when :median
|
92
|
+
raise NotImplementedError,
|
93
|
+
"median estimator has not been supported yet"
|
94
|
+
when Proc
|
95
|
+
raise NotImplementedError,
|
96
|
+
"a callable estimator has not been supported yet"
|
97
|
+
else
|
98
|
+
raise ArgumentError,
|
99
|
+
"invalid value for estimator (%p for :mean)" % value
|
100
|
+
end
|
101
|
+
end
|
102
|
+
|
103
|
+
attr_reader :n_boot
|
104
|
+
|
105
|
+
def n_boot=(n_boot)
|
106
|
+
@n_boot = check_n_boot(n_boot)
|
107
|
+
end
|
108
|
+
|
109
|
+
private def check_n_boot(value)
|
110
|
+
case value
|
111
|
+
when Integer
|
112
|
+
if value <= 0
|
113
|
+
raise ArgumentError,
|
114
|
+
"n_boot must be larger than zero, but %p is given" % value
|
115
|
+
end
|
116
|
+
value
|
117
|
+
else
|
118
|
+
raise ArgumentError,
|
119
|
+
"invalid value for n_boot (%p for an integer > 0)" % value
|
120
|
+
end
|
121
|
+
end
|
122
|
+
|
123
|
+
include RandomSupport
|
124
|
+
|
125
|
+
attr_reader :sort, :err_style, :err_kws, :error_bar, :x_scale, :y_scale
|
126
|
+
|
127
|
+
def sort=(val)
|
128
|
+
@sort = check_boolean(val, :sort)
|
129
|
+
end
|
130
|
+
|
131
|
+
def err_style=(val)
|
132
|
+
@err_style = check_err_style(val)
|
133
|
+
end
|
134
|
+
|
135
|
+
private def check_err_style(val)
|
136
|
+
case val
|
137
|
+
when :bars, "bars", :band, "band"
|
138
|
+
val.to_sym
|
139
|
+
else
|
140
|
+
raise ArgumentError,
|
141
|
+
"Invalid value for err_style (%p for :band or :bars)" % val
|
142
|
+
end
|
143
|
+
end
|
144
|
+
|
145
|
+
# parameters to draw error bars/bands
|
146
|
+
def err_params=(val)
|
147
|
+
unless val.nil?
|
148
|
+
raise NotImplementedError,
|
149
|
+
"Specifying `err_params` is not supported"
|
150
|
+
end
|
151
|
+
end
|
152
|
+
|
153
|
+
# The method and level to calculate error bars/bands
|
154
|
+
def error_bar=(val)
|
155
|
+
@error_bar = check_error_bar(val)
|
156
|
+
end
|
157
|
+
|
158
|
+
DEFAULT_ERROR_BAR_LEVELS = {
|
159
|
+
ci: 95,
|
160
|
+
pi: 95,
|
161
|
+
se: 1,
|
162
|
+
sd: 1
|
163
|
+
}.freeze
|
164
|
+
|
165
|
+
VALID_ERROR_BAR_METHODS = DEFAULT_ERROR_BAR_LEVELS.keys
|
166
|
+
VALID_ERROR_BAR_METHODS.concat(VALID_ERROR_BAR_METHODS.map(&:to_s))
|
167
|
+
VALID_ERROR_BAR_METHODS.freeze
|
168
|
+
|
169
|
+
private def check_error_bar(val)
|
170
|
+
case val
|
171
|
+
when nil
|
172
|
+
return [nil, nil]
|
173
|
+
when ->(x) { x.respond_to?(:call) }
|
174
|
+
return [val, nil]
|
175
|
+
when *VALID_ERROR_BAR_METHODS
|
176
|
+
method = val.to_sym
|
177
|
+
level = nil
|
178
|
+
when Array
|
179
|
+
if val.length != 2
|
180
|
+
raise ArgumentError,
|
181
|
+
"The `error_bar` array has the wrong number of items " +
|
182
|
+
"(%d for 2)" % val.length
|
183
|
+
end
|
184
|
+
method, level = *val
|
185
|
+
else
|
186
|
+
raise ArgumentError,
|
187
|
+
"Unable to recognize the value for `error_bar`: %p" % val
|
188
|
+
end
|
189
|
+
|
190
|
+
case method
|
191
|
+
when *VALID_ERROR_BAR_METHODS
|
192
|
+
method = method.to_sym
|
193
|
+
else
|
194
|
+
error_message = "The value for method in `error_bar` array must be in %p, but %p was passed" % [
|
195
|
+
DEFAULT_ERROR_BAR_LEVELS.keys,
|
196
|
+
method
|
197
|
+
]
|
198
|
+
raise ArgumentError, error_message
|
199
|
+
end
|
200
|
+
|
201
|
+
case level
|
202
|
+
when Numeric
|
203
|
+
# nothing to do
|
204
|
+
when nil
|
205
|
+
level = DEFAULT_ERROR_BAR_LEVELS[method]
|
206
|
+
else
|
207
|
+
raise ArgumentError,
|
208
|
+
"The value of level in `error_bar` array must be a number "
|
209
|
+
end
|
210
|
+
|
211
|
+
[method, level]
|
212
|
+
end
|
213
|
+
|
214
|
+
def x_scale=(val)
|
215
|
+
@x_scale = check_axis_scale(val, :x)
|
216
|
+
end
|
217
|
+
|
218
|
+
def y_scale=(val)
|
219
|
+
@y_scale = check_axis_scale(val, :y)
|
220
|
+
end
|
221
|
+
|
222
|
+
private def check_axis_scale(val, axis)
|
223
|
+
case val
|
224
|
+
when :linear, "linear", :log10, "log10"
|
225
|
+
val.to_sym
|
226
|
+
else
|
227
|
+
raise ArgumentError,
|
228
|
+
"The value of `#{axis}_scale` is worng: %p" % val,
|
229
|
+
caller
|
230
|
+
end
|
231
|
+
end
|
232
|
+
|
233
|
+
private def render_plot(backend, **)
|
234
|
+
draw_lines(backend)
|
235
|
+
annotate_axes(backend)
|
236
|
+
end
|
237
|
+
|
238
|
+
private def draw_lines(backend)
|
239
|
+
map_color(palette: palette, order: color_order, norm: color_norm)
|
240
|
+
map_size(sizes: sizes, order: size_order, norm: size_norm)
|
241
|
+
map_style(markers: markers, dashes: dashes, order: style_order)
|
242
|
+
|
243
|
+
aggregator = EstimateAggregator.new(estimator, error_bar, n_boot, random)
|
244
|
+
|
245
|
+
agg_var = :y
|
246
|
+
grouper = :x
|
247
|
+
grouping_vars = [:color, :size, :style]
|
248
|
+
|
249
|
+
each_subset(grouping_vars, processed: true) do |sub_vars, sub_data|
|
250
|
+
if self.sort
|
251
|
+
sort_cols = [:units, :x, :y] & self.variables.keys
|
252
|
+
sub_data = sub_data.sort_values(sort_cols)
|
253
|
+
end
|
254
|
+
|
255
|
+
unless estimator.nil?
|
256
|
+
if self.variables.include?(:units)
|
257
|
+
raise "`estimator` is must be nil when specifying `units`"
|
258
|
+
end
|
259
|
+
|
260
|
+
grouped = sub_data.group_by(grouper, sort: self.sort)
|
261
|
+
sub_data = grouped.apply(agg_var, &aggregator.method(:aggregate)).reset_index
|
262
|
+
end
|
263
|
+
|
264
|
+
# TODO: perform inverse conversion of axis scaling before plot
|
265
|
+
|
266
|
+
unit_grouping = if self.variables.include?(:units)
|
267
|
+
sub_data.group_by(:units).each_group
|
268
|
+
else
|
269
|
+
{ nil => sub_data }
|
270
|
+
end
|
271
|
+
unit_grouping.each do |_unit_value, unit_data|
|
272
|
+
ci_params = unless self.estimator.nil? || self.error_bar.nil?
|
273
|
+
{
|
274
|
+
style: self.err_style,
|
275
|
+
y_min: sub_data[:y_min],
|
276
|
+
y_max: sub_data[:y_max]
|
277
|
+
}
|
278
|
+
end
|
279
|
+
backend.line(unit_data[:x], unit_data[:y], self.variables,
|
280
|
+
color: sub_vars[:color], color_mapper: @color_mapper,
|
281
|
+
size: sub_vars[:size], size_mapper: @size_mapper,
|
282
|
+
style: sub_vars[:style], style_mapper: @style_mapper,
|
283
|
+
ci_params: ci_params)
|
284
|
+
end
|
285
|
+
end
|
286
|
+
|
287
|
+
if legend
|
288
|
+
backend.add_line_plot_legend(@variables, @color_mapper, @size_mapper, @style_mapper, legend)
|
289
|
+
end
|
290
|
+
end
|
291
|
+
|
292
|
+
private def annotate_axes(backend)
|
293
|
+
xlabel = self.variables[:x]
|
294
|
+
ylabel = self.variables[:y]
|
295
|
+
backend.set_xlabel(xlabel) unless xlabel.nil?
|
296
|
+
backend.set_ylabel(ylabel) unless ylabel.nil?
|
297
|
+
end
|
298
|
+
end
|
299
|
+
end
|
300
|
+
end
|