aws-sdk-sagemaker 1.86.0 → 1.87.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 70252da28bdb9fdf188757e86122657444538bbb61d8cd8ee3affc624df66fe0
4
- data.tar.gz: 4569055d7487adf471f69404f3d0755b6b65626cb1cea5adf6e89e1f9e89254d
3
+ metadata.gz: 45e81df582a8f46bb7d50a6580109c4227b377cf5f59586ef50a9be34360cd6f
4
+ data.tar.gz: cd0db9d973fade8261b241ae82628d4b5067c939818d47f41cbeac57b0aa18cf
5
5
  SHA512:
6
- metadata.gz: 295f08196ef61ed263fe7464b0040bd77c733c7c1e50e726401eecc6ccca1d16e8a944501141e1e99edc86627f38653bb71619f7fd9c5b16b1c7a79cc778c88e
7
- data.tar.gz: 94ca0e69a233115b6e3f2a07874a974d47b2b268cbed09c9db304c36ad07e5fb329ca346a95793ea3fddd2b125fec06ddb3075e9d1b777029c3a7808ef7e4521
6
+ metadata.gz: 8f261b921d2bc164337131794649947746c4aa0b4ab5f165cb77f9d76fe3c8db164a563023d01f968747d281eccbd89362ac01a3c0e7aded1794fb5748a6e335
7
+ data.tar.gz: 73ddb1e3d21f94622d02fb6f96aa8e9aff3fe8a9aac9f4d7c8632aec4c8b1e4453d453165e09cc075466ddad9422a5423a9d2c4c4cf93993923e72443073f135
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.87.0 (2021-05-05)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Autopilot now provides the ability to automatically deploy the best model to an endpoint
8
+
4
9
  1.86.0 (2021-05-04)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.86.0
1
+ 1.87.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.86.0'
52
+ GEM_VERSION = '1.87.0'
53
53
 
54
54
  end
@@ -419,6 +419,17 @@ module Aws::SageMaker
419
419
  #
420
420
  # </note>
421
421
  #
422
+ # <note markdown="1"> Tags that you add to a SageMaker Studio Domain or User Profile by
423
+ # calling this API are also added to any Apps that the Domain or User
424
+ # Profile launches after you call this API, but not to Apps that the
425
+ # Domain or User Profile launched before you called this API. To make
426
+ # sure that the tags associated with a Domain or User Profile are also
427
+ # added to all Apps that the Domain or User Profile launches, add the
428
+ # tags when you first create the Domain or User Profile by specifying
429
+ # them in the `Tags` parameter of CreateDomain or CreateUserProfile.
430
+ #
431
+ # </note>
432
+ #
422
433
  #
423
434
  #
424
435
  # [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
@@ -1064,11 +1075,15 @@ module Aws::SageMaker
1064
1075
  # needed to store artifacts from an AutoML job. Format(s) supported:
1065
1076
  # CSV.
1066
1077
  #
1078
+ # &lt;para&gt;Specifies whether to automatically deploy the best
1079
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
1080
+ # deployed automatically.&lt;/para&gt;
1081
+ #
1067
1082
  # @option params [String] :problem_type
1068
1083
  # Defines the type of supervised learning available for the candidates.
1069
- # Options include: BinaryClassification, MulticlassClassification, and
1070
- # Regression. For more information, see [ Amazon SageMaker Autopilot
1071
- # problem types and algorithm support][1].
1084
+ # Options include: `BinaryClassification`, `MulticlassClassification`,
1085
+ # and `Regression`. For more information, see [ Amazon SageMaker
1086
+ # Autopilot problem types and algorithm support][1].
1072
1087
  #
1073
1088
  #
1074
1089
  #
@@ -1076,16 +1091,20 @@ module Aws::SageMaker
1076
1091
  #
1077
1092
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1078
1093
  # Defines the objective metric used to measure the predictive quality of
1079
- # an AutoML job. You provide a AutoMLJobObjective$MetricName and
1094
+ # an AutoML job. You provide an AutoMLJobObjective$MetricName and
1080
1095
  # Autopilot infers whether to minimize or maximize it.
1081
1096
  #
1082
1097
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1083
- # Contains CompletionCriteria and SecurityConfig settings for the AutoML
1084
- # job.
1098
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
1099
+ # AutoML job.
1085
1100
  #
1086
1101
  # @option params [required, String] :role_arn
1087
1102
  # The ARN of the role that is used to access the data.
1088
1103
  #
1104
+ # &lt;para&gt;Specifies whether to automatically deploy the best
1105
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
1106
+ # deployed automatically.&lt;/para&gt;
1107
+ #
1089
1108
  # @option params [Boolean] :generate_candidate_definitions_only
1090
1109
  # Generates possible candidates without training the models. A candidate
1091
1110
  # is a combination of data preprocessors, algorithms, and algorithm
@@ -1095,6 +1114,10 @@ module Aws::SageMaker
1095
1114
  # Each tag consists of a key and an optional value. Tag keys must be
1096
1115
  # unique per resource.
1097
1116
  #
1117
+ # @option params [Types::ModelDeployConfig] :model_deploy_config
1118
+ # Specifies how to generate the endpoint name for an automatic one-click
1119
+ # Autopilot model deployment.
1120
+ #
1098
1121
  # @return [Types::CreateAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1099
1122
  #
1100
1123
  # * {Types::CreateAutoMLJobResponse#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1146,6 +1169,10 @@ module Aws::SageMaker
1146
1169
  # value: "TagValue", # required
1147
1170
  # },
1148
1171
  # ],
1172
+ # model_deploy_config: {
1173
+ # auto_generate_endpoint_name: false,
1174
+ # endpoint_name: "EndpointName",
1175
+ # },
1149
1176
  # })
1150
1177
  #
1151
1178
  # @example Response structure
@@ -4386,10 +4413,10 @@ module Aws::SageMaker
4386
4413
  #
4387
4414
  # @option params [String] :direct_internet_access
4388
4415
  # Sets whether Amazon SageMaker provides internet access to the notebook
4389
- # instance. If you set this to `Disabled` this notebook instance will be
4390
- # able to access resources only in your VPC, and will not be able to
4391
- # connect to Amazon SageMaker training and endpoint services unless your
4392
- # configure a NAT Gateway in your VPC.
4416
+ # instance. If you set this to `Disabled` this notebook instance is able
4417
+ # to access resources only in your VPC, and is not be able to connect to
4418
+ # Amazon SageMaker training and endpoint services unless you configure a
4419
+ # NAT Gateway in your VPC.
4393
4420
  #
4394
4421
  # For more information, see [Notebook Instances Are Internet-Enabled by
4395
4422
  # Default][1]. You can set the value of this parameter to `Disabled`
@@ -6959,6 +6986,13 @@ module Aws::SageMaker
6959
6986
  #
6960
6987
  # </note>
6961
6988
  #
6989
+ # <note markdown="1"> When you call this API to delete tags from a SageMaker Studio Domain
6990
+ # or User Profile, the deleted tags are not removed from Apps that the
6991
+ # SageMaker Studio Domain or User Profile launched before you called
6992
+ # this API.
6993
+ #
6994
+ # </note>
6995
+ #
6962
6996
  # @option params [required, String] :resource_arn
6963
6997
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
6964
6998
  # delete.
@@ -7553,6 +7587,8 @@ module Aws::SageMaker
7553
7587
  # * {Types::DescribeAutoMLJobResponse#generate_candidate_definitions_only #generate_candidate_definitions_only} => Boolean
7554
7588
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
7555
7589
  # * {Types::DescribeAutoMLJobResponse#resolved_attributes #resolved_attributes} => Types::ResolvedAttributes
7590
+ # * {Types::DescribeAutoMLJobResponse#model_deploy_config #model_deploy_config} => Types::ModelDeployConfig
7591
+ # * {Types::DescribeAutoMLJobResponse#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
7556
7592
  #
7557
7593
  # @example Request syntax with placeholder values
7558
7594
  #
@@ -7610,7 +7646,7 @@ module Aws::SageMaker
7610
7646
  # resp.best_candidate.failure_reason #=> String
7611
7647
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
7612
7648
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
7613
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
7649
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
7614
7650
  # resp.generate_candidate_definitions_only #=> Boolean
7615
7651
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
7616
7652
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
@@ -7619,6 +7655,9 @@ module Aws::SageMaker
7619
7655
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
7620
7656
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
7621
7657
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
7658
+ # resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
7659
+ # resp.model_deploy_config.endpoint_name #=> String
7660
+ # resp.model_deploy_result.endpoint_name #=> String
7622
7661
  #
7623
7662
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJob AWS API Documentation
7624
7663
  #
@@ -11173,11 +11212,10 @@ module Aws::SageMaker
11173
11212
  # Request a list of jobs, using a filter for status.
11174
11213
  #
11175
11214
  # @option params [String] :sort_order
11176
- # The sort order for the results. The default is Descending.
11215
+ # The sort order for the results. The default is `Descending`.
11177
11216
  #
11178
11217
  # @option params [String] :sort_by
11179
- # The parameter by which to sort the results. The default is
11180
- # AutoMLJobName.
11218
+ # The parameter by which to sort the results. The default is `Name`.
11181
11219
  #
11182
11220
  # @option params [Integer] :max_results
11183
11221
  # Request a list of jobs up to a specified limit.
@@ -11214,7 +11252,7 @@ module Aws::SageMaker
11214
11252
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
11215
11253
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
11216
11254
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
11217
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
11255
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
11218
11256
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
11219
11257
  # resp.auto_ml_job_summaries[0].end_time #=> Time
11220
11258
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
@@ -17408,7 +17446,7 @@ module Aws::SageMaker
17408
17446
  params: params,
17409
17447
  config: config)
17410
17448
  context[:gem_name] = 'aws-sdk-sagemaker'
17411
- context[:gem_version] = '1.86.0'
17449
+ context[:gem_version] = '1.87.0'
17412
17450
  Seahorse::Client::Request.new(handlers, context)
17413
17451
  end
17414
17452
 
@@ -87,6 +87,7 @@ module Aws::SageMaker
87
87
  AttributeName = Shapes::StringShape.new(name: 'AttributeName')
88
88
  AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
89
89
  AuthMode = Shapes::StringShape.new(name: 'AuthMode')
90
+ AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
90
91
  AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
91
92
  AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
92
93
  AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
@@ -884,6 +885,8 @@ module Aws::SageMaker
884
885
  ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
885
886
  ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
886
887
  ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
888
+ ModelDeployConfig = Shapes::StructureShape.new(name: 'ModelDeployConfig')
889
+ ModelDeployResult = Shapes::StructureShape.new(name: 'ModelDeployResult')
887
890
  ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
888
891
  ModelExplainabilityAppSpecification = Shapes::StructureShape.new(name: 'ModelExplainabilityAppSpecification')
889
892
  ModelExplainabilityBaselineConfig = Shapes::StructureShape.new(name: 'ModelExplainabilityBaselineConfig')
@@ -1899,6 +1902,7 @@ module Aws::SageMaker
1899
1902
  CreateAutoMLJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
1900
1903
  CreateAutoMLJobRequest.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
1901
1904
  CreateAutoMLJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1905
+ CreateAutoMLJobRequest.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
1902
1906
  CreateAutoMLJobRequest.struct_class = Types::CreateAutoMLJobRequest
1903
1907
 
1904
1908
  CreateAutoMLJobResponse.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
@@ -2722,6 +2726,8 @@ module Aws::SageMaker
2722
2726
  DescribeAutoMLJobResponse.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
2723
2727
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
2724
2728
  DescribeAutoMLJobResponse.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: ResolvedAttributes, location_name: "ResolvedAttributes"))
2729
+ DescribeAutoMLJobResponse.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
2730
+ DescribeAutoMLJobResponse.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
2725
2731
  DescribeAutoMLJobResponse.struct_class = Types::DescribeAutoMLJobResponse
2726
2732
 
2727
2733
  DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
@@ -4763,6 +4769,13 @@ module Aws::SageMaker
4763
4769
  ModelDataQuality.add_member(:constraints, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Constraints"))
4764
4770
  ModelDataQuality.struct_class = Types::ModelDataQuality
4765
4771
 
4772
+ ModelDeployConfig.add_member(:auto_generate_endpoint_name, Shapes::ShapeRef.new(shape: AutoGenerateEndpointName, location_name: "AutoGenerateEndpointName"))
4773
+ ModelDeployConfig.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4774
+ ModelDeployConfig.struct_class = Types::ModelDeployConfig
4775
+
4776
+ ModelDeployResult.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4777
+ ModelDeployResult.struct_class = Types::ModelDeployResult
4778
+
4766
4779
  ModelDigests.add_member(:artifact_digest, Shapes::ShapeRef.new(shape: ArtifactDigest, location_name: "ArtifactDigest"))
4767
4780
  ModelDigests.struct_class = Types::ModelDigests
4768
4781
 
@@ -1706,10 +1706,10 @@ module Aws::SageMaker
1706
1706
  end
1707
1707
 
1708
1708
  # An Autopilot job returns recommendations, or candidates. Each
1709
- # candidate has futher details about the steps involed, and the status.
1709
+ # candidate has futher details about the steps involved and the status.
1710
1710
  #
1711
1711
  # @!attribute [rw] candidate_name
1712
- # The candidate name.
1712
+ # The name of the candidate.
1713
1713
  # @return [String]
1714
1714
  #
1715
1715
  # @!attribute [rw] final_auto_ml_job_objective_metric
@@ -1717,11 +1717,11 @@ module Aws::SageMaker
1717
1717
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1718
1718
  #
1719
1719
  # @!attribute [rw] objective_status
1720
- # The objective status.
1720
+ # The objective's status.
1721
1721
  # @return [String]
1722
1722
  #
1723
1723
  # @!attribute [rw] candidate_steps
1724
- # The candidate's steps.
1724
+ # Information about the candidate's steps.
1725
1725
  # @return [Array<Types::AutoMLCandidateStep>]
1726
1726
  #
1727
1727
  # @!attribute [rw] candidate_status
@@ -1729,7 +1729,7 @@ module Aws::SageMaker
1729
1729
  # @return [String]
1730
1730
  #
1731
1731
  # @!attribute [rw] inference_containers
1732
- # The inference containers.
1732
+ # Information about the inference container definitions.
1733
1733
  # @return [Array<Types::AutoMLContainerDefinition>]
1734
1734
  #
1735
1735
  # @!attribute [rw] creation_time
@@ -1770,20 +1770,20 @@ module Aws::SageMaker
1770
1770
  include Aws::Structure
1771
1771
  end
1772
1772
 
1773
- # Information about the steps for a Candidate, and what step it is
1773
+ # Information about the steps for a candidate and what step it is
1774
1774
  # working on.
1775
1775
  #
1776
1776
  # @!attribute [rw] candidate_step_type
1777
- # Whether the Candidate is at the transform, training, or processing
1777
+ # Whether the candidate is at the transform, training, or processing
1778
1778
  # step.
1779
1779
  # @return [String]
1780
1780
  #
1781
1781
  # @!attribute [rw] candidate_step_arn
1782
- # The ARN for the Candidate's step.
1782
+ # The ARN for the candidate's step.
1783
1783
  # @return [String]
1784
1784
  #
1785
1785
  # @!attribute [rw] candidate_step_name
1786
- # The name for the Candidate's step.
1786
+ # The name for the candidate's step.
1787
1787
  # @return [String]
1788
1788
  #
1789
1789
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateStep AWS API Documentation
@@ -1848,8 +1848,8 @@ module Aws::SageMaker
1848
1848
  # @return [String]
1849
1849
  #
1850
1850
  # @!attribute [rw] environment
1851
- # Environment variables to set in the container. For more information,
1852
- # see .
1851
+ # The environment variables to set in the container. For more
1852
+ # information, see .
1853
1853
  # @return [Hash<String,String>]
1854
1854
  #
1855
1855
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -1890,14 +1890,14 @@ module Aws::SageMaker
1890
1890
  include Aws::Structure
1891
1891
  end
1892
1892
 
1893
- # Artifacts that are generation during a job.
1893
+ # The artifacts that are generated during an AutoML job.
1894
1894
  #
1895
1895
  # @!attribute [rw] candidate_definition_notebook_location
1896
- # The URL to the notebook location.
1896
+ # The URL of the notebook location.
1897
1897
  # @return [String]
1898
1898
  #
1899
1899
  # @!attribute [rw] data_exploration_notebook_location
1900
- # The URL to the notebook location.
1900
+ # The URL of the notebook location.
1901
1901
  # @return [String]
1902
1902
  #
1903
1903
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobArtifacts AWS API Documentation
@@ -1972,7 +1972,7 @@ module Aws::SageMaker
1972
1972
  # @return [Types::AutoMLJobCompletionCriteria]
1973
1973
  #
1974
1974
  # @!attribute [rw] security_config
1975
- # Security configuration for traffic encryption or Amazon VPC
1975
+ # The security configuration for traffic encryption or Amazon VPC
1976
1976
  # settings.
1977
1977
  # @return [Types::AutoMLSecurityConfig]
1978
1978
  #
@@ -2004,23 +2004,23 @@ module Aws::SageMaker
2004
2004
  #
2005
2005
  # * `MSE`\: The mean squared error (MSE) is the average of the squared
2006
2006
  # differences between the predicted and actual values. It is used
2007
- # for regression. MSE values are always positive, the better a model
2008
- # is at predicting the actual values the smaller the MSE value. When
2009
- # the data contains outliers, they tend to dominate the MSE which
2010
- # might cause subpar prediction performance.
2011
- #
2012
- # * `Accuracy`\: The ratio of the number correctly classified items to
2013
- # the total number (correctly and incorrectly) classified. It is
2014
- # used for binary and multiclass classification. Measures how close
2015
- # the predicted class values are to the actual values. Accuracy
2016
- # values vary between zero and one, one being perfect accuracy and
2017
- # zero perfect inaccuracy.
2007
+ # for regression. MSE values are always positive: the better a model
2008
+ # is at predicting the actual values, the smaller the MSE value.
2009
+ # When the data contains outliers, they tend to dominate the MSE,
2010
+ # which might cause subpar prediction performance.
2011
+ #
2012
+ # * `Accuracy`\: The ratio of the number of correctly classified items
2013
+ # to the total number of (correctly and incorrectly) classified
2014
+ # items. It is used for binary and multiclass classification. It
2015
+ # measures how close the predicted class values are to the actual
2016
+ # values. Accuracy values vary between zero and one: one indicates
2017
+ # perfect accuracy and zero indicates perfect inaccuracy.
2018
2018
  #
2019
2019
  # * `F1`\: The F1 score is the harmonic mean of the precision and
2020
2020
  # recall. It is used for binary classification into classes
2021
2021
  # traditionally referred to as positive and negative. Predictions
2022
- # are said to be true when they match their actual (correct) class;
2023
- # false when they do not. Precision is the ratio of the true
2022
+ # are said to be true when they match their actual (correct) class
2023
+ # and false when they do not. Precision is the ratio of the true
2024
2024
  # positive predictions to all positive predictions (including the
2025
2025
  # false positives) in a data set and measures the quality of the
2026
2026
  # prediction when it predicts the positive class. Recall (or
@@ -2029,7 +2029,7 @@ module Aws::SageMaker
2029
2029
  # predicts the actual class members in a data set. The standard F1
2030
2030
  # score weighs precision and recall equally. But which metric is
2031
2031
  # paramount typically depends on specific aspects of a problem. F1
2032
- # scores vary between zero and one, one being the best possible
2032
+ # scores vary between zero and one: one indicates the best possible
2033
2033
  # performance and zero the worst.
2034
2034
  #
2035
2035
  # * `AUC`\: The area under the curve (AUC) metric is used to compare
@@ -2047,20 +2047,21 @@ module Aws::SageMaker
2047
2047
  # The AUC score can also be interpreted as the probability that a
2048
2048
  # randomly selected positive data point is more likely to be
2049
2049
  # predicted positive than a randomly selected negative example. AUC
2050
- # scores vary between zero and one, one being perfect accuracy and
2051
- # one half not better than a random classifier. Values less that one
2052
- # half predict worse than a random predictor and such consistently
2053
- # bad predictors can be inverted to obtain better than random
2050
+ # scores vary between zero and one: a score of one indicates perfect
2051
+ # accuracy and a score of one half indicates that the prediction is
2052
+ # not better than a random classifier. Values under one half predict
2053
+ # less accurately than a random predictor. But such consistently bad
2054
+ # predictors can simply be inverted to obtain better than random
2054
2055
  # predictors.
2055
2056
  #
2056
2057
  # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
2057
2058
  # classification. In this context, you have multiple classes to
2058
2059
  # predict. You just calculate the precision and recall for each
2059
2060
  # class as you did for the positive class in binary classification.
2060
- # Then used these values to calculate the F1 score for each class
2061
+ # Then, use these values to calculate the F1 score for each class
2061
2062
  # and average them to obtain the F1macro score. F1macro scores vary
2062
- # between zero and one, one being the best possible performance and
2063
- # zero the worst.
2063
+ # between zero and one: one indicates the best possible performance
2064
+ # and zero the worst.
2064
2065
  #
2065
2066
  # If you do not specify a metric explicitly, the default behavior is
2066
2067
  # to automatically use:
@@ -2226,7 +2227,7 @@ module Aws::SageMaker
2226
2227
  # @return [Boolean]
2227
2228
  #
2228
2229
  # @!attribute [rw] vpc_config
2229
- # VPC configuration.
2230
+ # The VPC configuration.
2230
2231
  # @return [Types::VpcConfig]
2231
2232
  #
2232
2233
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLSecurityConfig AWS API Documentation
@@ -2339,11 +2340,11 @@ module Aws::SageMaker
2339
2340
  include Aws::Structure
2340
2341
  end
2341
2342
 
2342
- # Location of artifacts for an AutoML candidate job.
2343
+ # The location of artifacts for an AutoML candidate job.
2343
2344
  #
2344
2345
  # @!attribute [rw] explainability
2345
- # The S3 prefix to the explainability artifacts generated for the
2346
- # AutoML candidate.
2346
+ # The Amazon S3 prefix to the explainability artifacts generated for
2347
+ # the AutoML candidate.
2347
2348
  # @return [String]
2348
2349
  #
2349
2350
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
@@ -2357,7 +2358,8 @@ module Aws::SageMaker
2357
2358
  # The properties of an AutoML candidate job.
2358
2359
  #
2359
2360
  # @!attribute [rw] candidate_artifact_locations
2360
- # The S3 prefix to the artifacts generated for an AutoML candidate.
2361
+ # The Amazon S3 prefix to the artifacts generated for an AutoML
2362
+ # candidate.
2361
2363
  # @return [Types::CandidateArtifactLocations]
2362
2364
  #
2363
2365
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
@@ -3853,6 +3855,10 @@ module Aws::SageMaker
3853
3855
  # value: "TagValue", # required
3854
3856
  # },
3855
3857
  # ],
3858
+ # model_deploy_config: {
3859
+ # auto_generate_endpoint_name: false,
3860
+ # endpoint_name: "EndpointName",
3861
+ # },
3856
3862
  # }
3857
3863
  #
3858
3864
  # @!attribute [rw] auto_ml_job_name
@@ -3871,13 +3877,17 @@ module Aws::SageMaker
3871
3877
  # Provides information about encryption and the Amazon S3 output path
3872
3878
  # needed to store artifacts from an AutoML job. Format(s) supported:
3873
3879
  # CSV.
3880
+ #
3881
+ # &lt;para&gt;Specifies whether to automatically deploy the best
3882
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
3883
+ # deployed automatically.&lt;/para&gt;
3874
3884
  # @return [Types::AutoMLOutputDataConfig]
3875
3885
  #
3876
3886
  # @!attribute [rw] problem_type
3877
3887
  # Defines the type of supervised learning available for the
3878
- # candidates. Options include: BinaryClassification,
3879
- # MulticlassClassification, and Regression. For more information, see
3880
- # [ Amazon SageMaker Autopilot problem types and algorithm
3888
+ # candidates. Options include: `BinaryClassification`,
3889
+ # `MulticlassClassification`, and `Regression`. For more information,
3890
+ # see [ Amazon SageMaker Autopilot problem types and algorithm
3881
3891
  # support][1].
3882
3892
  #
3883
3893
  #
@@ -3887,17 +3897,21 @@ module Aws::SageMaker
3887
3897
  #
3888
3898
  # @!attribute [rw] auto_ml_job_objective
3889
3899
  # Defines the objective metric used to measure the predictive quality
3890
- # of an AutoML job. You provide a AutoMLJobObjective$MetricName and
3900
+ # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
3891
3901
  # Autopilot infers whether to minimize or maximize it.
3892
3902
  # @return [Types::AutoMLJobObjective]
3893
3903
  #
3894
3904
  # @!attribute [rw] auto_ml_job_config
3895
- # Contains CompletionCriteria and SecurityConfig settings for the
3905
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
3896
3906
  # AutoML job.
3897
3907
  # @return [Types::AutoMLJobConfig]
3898
3908
  #
3899
3909
  # @!attribute [rw] role_arn
3900
3910
  # The ARN of the role that is used to access the data.
3911
+ #
3912
+ # &lt;para&gt;Specifies whether to automatically deploy the best
3913
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
3914
+ # deployed automatically.&lt;/para&gt;
3901
3915
  # @return [String]
3902
3916
  #
3903
3917
  # @!attribute [rw] generate_candidate_definitions_only
@@ -3911,6 +3925,11 @@ module Aws::SageMaker
3911
3925
  # unique per resource.
3912
3926
  # @return [Array<Types::Tag>]
3913
3927
  #
3928
+ # @!attribute [rw] model_deploy_config
3929
+ # Specifies how to generate the endpoint name for an automatic
3930
+ # one-click Autopilot model deployment.
3931
+ # @return [Types::ModelDeployConfig]
3932
+ #
3914
3933
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobRequest AWS API Documentation
3915
3934
  #
3916
3935
  class CreateAutoMLJobRequest < Struct.new(
@@ -3922,7 +3941,8 @@ module Aws::SageMaker
3922
3941
  :auto_ml_job_config,
3923
3942
  :role_arn,
3924
3943
  :generate_candidate_definitions_only,
3925
- :tags)
3944
+ :tags,
3945
+ :model_deploy_config)
3926
3946
  SENSITIVE = []
3927
3947
  include Aws::Structure
3928
3948
  end
@@ -7090,9 +7110,9 @@ module Aws::SageMaker
7090
7110
  # @!attribute [rw] direct_internet_access
7091
7111
  # Sets whether Amazon SageMaker provides internet access to the
7092
7112
  # notebook instance. If you set this to `Disabled` this notebook
7093
- # instance will be able to access resources only in your VPC, and will
7094
- # not be able to connect to Amazon SageMaker training and endpoint
7095
- # services unless your configure a NAT Gateway in your VPC.
7113
+ # instance is able to access resources only in your VPC, and is not be
7114
+ # able to connect to Amazon SageMaker training and endpoint services
7115
+ # unless you configure a NAT Gateway in your VPC.
7096
7116
  #
7097
7117
  # For more information, see [Notebook Instances Are Internet-Enabled
7098
7118
  # by Default][1]. You can set the value of this parameter to
@@ -9029,7 +9049,9 @@ module Aws::SageMaker
9029
9049
  # The valid values are `None` and `Input`. The default value is
9030
9050
  # `None`, which specifies not to join the input with the transformed
9031
9051
  # data. If you want the batch transform job to join the original input
9032
- # data with the transformed data, set `JoinSource` to `Input`.
9052
+ # data with the transformed data, set `JoinSource` to `Input`. You can
9053
+ # specify `OutputFilter` as an additional filter to select a portion
9054
+ # of the joined dataset and store it in the output file.
9033
9055
  #
9034
9056
  # For JSON or JSONLines objects, such as a JSON array, Amazon
9035
9057
  # SageMaker adds the transformed data to the input JSON object in an
@@ -9039,10 +9061,18 @@ module Aws::SageMaker
9039
9061
  # file, and the input data is stored under the `SageMakerInput` key
9040
9062
  # and the results are stored in `SageMakerOutput`.
9041
9063
  #
9042
- # For CSV files, Amazon SageMaker combines the transformed data with
9043
- # the input data at the end of the input data and stores it in the
9044
- # output file. The joined data has the joined input data followed by
9045
- # the transformed data and the output is a CSV file.
9064
+ # For CSV data, Amazon SageMaker takes each row as a JSON array and
9065
+ # joins the transformed data with the input by appending each
9066
+ # transformed row to the end of the input. The joined data has the
9067
+ # original input data followed by the transformed data and the output
9068
+ # is a CSV file.
9069
+ #
9070
+ # For information on how joining in applied, see [Workflow for
9071
+ # Associating Inferences with Input Records][1].
9072
+ #
9073
+ #
9074
+ #
9075
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow
9046
9076
  # @return [String]
9047
9077
  #
9048
9078
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
@@ -10968,7 +10998,7 @@ module Aws::SageMaker
10968
10998
  # @return [Time]
10969
10999
  #
10970
11000
  # @!attribute [rw] failure_reason
10971
- # Returns the job's FailureReason.
11001
+ # Returns the failure reason for an AutoML job, when applicable.
10972
11002
  # @return [String]
10973
11003
  #
10974
11004
  # @!attribute [rw] partial_failure_reasons
@@ -10976,11 +11006,11 @@ module Aws::SageMaker
10976
11006
  # @return [Array<Types::AutoMLPartialFailureReason>]
10977
11007
  #
10978
11008
  # @!attribute [rw] best_candidate
10979
- # Returns the job's BestCandidate.
11009
+ # Returns the job's best `AutoMLCandidate`.
10980
11010
  # @return [Types::AutoMLCandidate]
10981
11011
  #
10982
11012
  # @!attribute [rw] auto_ml_job_status
10983
- # Returns the status of the AutoML job's AutoMLJobStatus.
11013
+ # Returns the status of the AutoML job.
10984
11014
  # @return [String]
10985
11015
  #
10986
11016
  # @!attribute [rw] auto_ml_job_secondary_status
@@ -10988,21 +11018,31 @@ module Aws::SageMaker
10988
11018
  # @return [String]
10989
11019
  #
10990
11020
  # @!attribute [rw] generate_candidate_definitions_only
10991
- # Returns the job's output from GenerateCandidateDefinitionsOnly.
11021
+ # Indicates whether the output for an AutoML job generates candidate
11022
+ # definitions only.
10992
11023
  # @return [Boolean]
10993
11024
  #
10994
11025
  # @!attribute [rw] auto_ml_job_artifacts
10995
11026
  # Returns information on the job's artifacts found in
10996
- # AutoMLJobArtifacts.
11027
+ # `AutoMLJobArtifacts`.
10997
11028
  # @return [Types::AutoMLJobArtifacts]
10998
11029
  #
10999
11030
  # @!attribute [rw] resolved_attributes
11000
- # This contains ProblemType, AutoMLJobObjective and
11001
- # CompletionCriteria. If you do not provide these values, they are
11002
- # auto-inferred. If you do provide them, they are the values you
11003
- # provide.
11031
+ # This contains `ProblemType`, `AutoMLJobObjective` and
11032
+ # `CompletionCriteria`. If you do not provide these values, they are
11033
+ # auto-inferred. If you do provide them, the values used are the ones
11034
+ # you provide.
11004
11035
  # @return [Types::ResolvedAttributes]
11005
11036
  #
11037
+ # @!attribute [rw] model_deploy_config
11038
+ # Indicates whether the model was deployed automatically to an
11039
+ # endpoint and the name of that endpoint if deployed automatically.
11040
+ # @return [Types::ModelDeployConfig]
11041
+ #
11042
+ # @!attribute [rw] model_deploy_result
11043
+ # Provides information about endpoint for the model deployment.
11044
+ # @return [Types::ModelDeployResult]
11045
+ #
11006
11046
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
11007
11047
  #
11008
11048
  class DescribeAutoMLJobResponse < Struct.new(
@@ -11024,7 +11064,9 @@ module Aws::SageMaker
11024
11064
  :auto_ml_job_secondary_status,
11025
11065
  :generate_candidate_definitions_only,
11026
11066
  :auto_ml_job_artifacts,
11027
- :resolved_attributes)
11067
+ :resolved_attributes,
11068
+ :model_deploy_config,
11069
+ :model_deploy_result)
11028
11070
  SENSITIVE = []
11029
11071
  include Aws::Structure
11030
11072
  end
@@ -14112,7 +14154,7 @@ module Aws::SageMaker
14112
14154
  #
14113
14155
  # * `LaunchingMLInstances`
14114
14156
  #
14115
- # * `PreparingTrainingStack`
14157
+ # * `PreparingTraining`
14116
14158
  #
14117
14159
  # * `DownloadingTrainingImage`
14118
14160
  # @return [String]
@@ -19438,6 +19480,7 @@ module Aws::SageMaker
19438
19480
  # @return [String]
19439
19481
  #
19440
19482
  # @!attribute [rw] work_requester_account_id
19483
+ # The AWS account ID of the account used to start the labeling job.
19441
19484
  # @return [String]
19442
19485
  #
19443
19486
  # @!attribute [rw] creation_time
@@ -20372,12 +20415,11 @@ module Aws::SageMaker
20372
20415
  # @return [String]
20373
20416
  #
20374
20417
  # @!attribute [rw] sort_order
20375
- # The sort order for the results. The default is Descending.
20418
+ # The sort order for the results. The default is `Descending`.
20376
20419
  # @return [String]
20377
20420
  #
20378
20421
  # @!attribute [rw] sort_by
20379
- # The parameter by which to sort the results. The default is
20380
- # AutoMLJobName.
20422
+ # The parameter by which to sort the results. The default is `Name`.
20381
20423
  # @return [String]
20382
20424
  #
20383
20425
  # @!attribute [rw] max_results
@@ -20483,7 +20525,7 @@ module Aws::SageMaker
20483
20525
  end
20484
20526
 
20485
20527
  # @!attribute [rw] candidates
20486
- # Summaries about the Candidates.
20528
+ # Summaries about the `AutoMLCandidates`.
20487
20529
  # @return [Array<Types::AutoMLCandidate>]
20488
20530
  #
20489
20531
  # @!attribute [rw] next_token
@@ -24520,7 +24562,7 @@ module Aws::SageMaker
24520
24562
  #
24521
24563
  # Model artifacts are the output that results from training a model, and
24522
24564
  # typically consist of trained parameters, a model defintion that
24523
- # desribes how to compute inferences, and other metadata.
24565
+ # describes how to compute inferences, and other metadata.
24524
24566
  #
24525
24567
  # @!attribute [rw] s3_model_artifacts
24526
24568
  # The path of the S3 object that contains the model artifacts. For
@@ -24708,6 +24750,66 @@ module Aws::SageMaker
24708
24750
  include Aws::Structure
24709
24751
  end
24710
24752
 
24753
+ # Specifies how to generate the endpoint name for an automatic one-click
24754
+ # Autopilot model deployment.
24755
+ #
24756
+ # @note When making an API call, you may pass ModelDeployConfig
24757
+ # data as a hash:
24758
+ #
24759
+ # {
24760
+ # auto_generate_endpoint_name: false,
24761
+ # endpoint_name: "EndpointName",
24762
+ # }
24763
+ #
24764
+ # @!attribute [rw] auto_generate_endpoint_name
24765
+ # Set to `True` to automatically generate an endpoint name for a
24766
+ # one-click Autopilot model deployment; set to `False` otherwise. The
24767
+ # default value is `True`.
24768
+ #
24769
+ # <note markdown="1"> If you set `AutoGenerateEndpointName` to `True`, do not specify the
24770
+ # `EndpointName`; otherwise a 400 error is thrown.
24771
+ #
24772
+ # </note>
24773
+ # @return [Boolean]
24774
+ #
24775
+ # @!attribute [rw] endpoint_name
24776
+ # Specifies the endpoint name to use for a one-click Autopilot model
24777
+ # deployment if the endpoint name is not generated automatically.
24778
+ #
24779
+ # <note markdown="1"> Specify the `EndpointName` if and only if you set
24780
+ # `AutoGenerateEndpointName` to `False`; otherwise a 400 error is
24781
+ # thrown.
24782
+ #
24783
+ # </note>
24784
+ # @return [String]
24785
+ #
24786
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployConfig AWS API Documentation
24787
+ #
24788
+ class ModelDeployConfig < Struct.new(
24789
+ :auto_generate_endpoint_name,
24790
+ :endpoint_name)
24791
+ SENSITIVE = []
24792
+ include Aws::Structure
24793
+ end
24794
+
24795
+ # Provides information about the endpoint of the model deployment.
24796
+ #
24797
+ # @!attribute [rw] endpoint_name
24798
+ # The name of the endpoint to which the model has been deployed.
24799
+ #
24800
+ # <note markdown="1"> If model deployment fails, this field is omitted from the response.
24801
+ #
24802
+ # </note>
24803
+ # @return [String]
24804
+ #
24805
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployResult AWS API Documentation
24806
+ #
24807
+ class ModelDeployResult < Struct.new(
24808
+ :endpoint_name)
24809
+ SENSITIVE = []
24810
+ include Aws::Structure
24811
+ end
24812
+
24711
24813
  # Provides information to verify the integrity of stored model
24712
24814
  # artifacts.
24713
24815
  #
@@ -27487,7 +27589,7 @@ module Aws::SageMaker
27487
27589
  #
27488
27590
  #
27489
27591
  #
27490
- # [1]: https://docs.aws.amazon.com/mazonS3/latest/dev/UsingKMSEncryption.html
27592
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
27491
27593
  # [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
27492
27594
  # @return [String]
27493
27595
  #
@@ -29788,7 +29890,7 @@ module Aws::SageMaker
29788
29890
  include Aws::Structure
29789
29891
  end
29790
29892
 
29791
- # The resource being accessed is in use.
29893
+ # Resource being accessed is in use.
29792
29894
  #
29793
29895
  # @!attribute [rw] message
29794
29896
  # @return [String]
@@ -29845,7 +29947,7 @@ module Aws::SageMaker
29845
29947
  include Aws::Structure
29846
29948
  end
29847
29949
 
29848
- # The resource being accessed was not found.
29950
+ # Resource being access is not found.
29849
29951
  #
29850
29952
  # @!attribute [rw] message
29851
29953
  # @return [String]
@@ -33380,7 +33482,7 @@ module Aws::SageMaker
33380
33482
  include Aws::Structure
33381
33483
  end
33382
33484
 
33383
- # Represents an amount of money in United States dollars/
33485
+ # Represents an amount of money in United States dollars.
33384
33486
  #
33385
33487
  # @note When making an API call, you may pass USD
33386
33488
  # data as a hash:
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.86.0
4
+ version: 1.87.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-05-04 00:00:00.000000000 Z
11
+ date: 2021-05-05 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core