aws-sdk-sagemaker 1.86.0 → 1.87.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +54 -16
- data/lib/aws-sdk-sagemaker/client_api.rb +13 -0
- data/lib/aws-sdk-sagemaker/types.rb +177 -75
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 45e81df582a8f46bb7d50a6580109c4227b377cf5f59586ef50a9be34360cd6f
|
4
|
+
data.tar.gz: cd0db9d973fade8261b241ae82628d4b5067c939818d47f41cbeac57b0aa18cf
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 8f261b921d2bc164337131794649947746c4aa0b4ab5f165cb77f9d76fe3c8db164a563023d01f968747d281eccbd89362ac01a3c0e7aded1794fb5748a6e335
|
7
|
+
data.tar.gz: 73ddb1e3d21f94622d02fb6f96aa8e9aff3fe8a9aac9f4d7c8632aec4c8b1e4453d453165e09cc075466ddad9422a5423a9d2c4c4cf93993923e72443073f135
|
data/CHANGELOG.md
CHANGED
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.87.0
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -419,6 +419,17 @@ module Aws::SageMaker
|
|
419
419
|
#
|
420
420
|
# </note>
|
421
421
|
#
|
422
|
+
# <note markdown="1"> Tags that you add to a SageMaker Studio Domain or User Profile by
|
423
|
+
# calling this API are also added to any Apps that the Domain or User
|
424
|
+
# Profile launches after you call this API, but not to Apps that the
|
425
|
+
# Domain or User Profile launched before you called this API. To make
|
426
|
+
# sure that the tags associated with a Domain or User Profile are also
|
427
|
+
# added to all Apps that the Domain or User Profile launches, add the
|
428
|
+
# tags when you first create the Domain or User Profile by specifying
|
429
|
+
# them in the `Tags` parameter of CreateDomain or CreateUserProfile.
|
430
|
+
#
|
431
|
+
# </note>
|
432
|
+
#
|
422
433
|
#
|
423
434
|
#
|
424
435
|
# [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
|
@@ -1064,11 +1075,15 @@ module Aws::SageMaker
|
|
1064
1075
|
# needed to store artifacts from an AutoML job. Format(s) supported:
|
1065
1076
|
# CSV.
|
1066
1077
|
#
|
1078
|
+
# <para>Specifies whether to automatically deploy the best
|
1079
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
1080
|
+
# deployed automatically.</para>
|
1081
|
+
#
|
1067
1082
|
# @option params [String] :problem_type
|
1068
1083
|
# Defines the type of supervised learning available for the candidates.
|
1069
|
-
# Options include: BinaryClassification
|
1070
|
-
# Regression
|
1071
|
-
# problem types and algorithm support][1].
|
1084
|
+
# Options include: `BinaryClassification`, `MulticlassClassification`,
|
1085
|
+
# and `Regression`. For more information, see [ Amazon SageMaker
|
1086
|
+
# Autopilot problem types and algorithm support][1].
|
1072
1087
|
#
|
1073
1088
|
#
|
1074
1089
|
#
|
@@ -1076,16 +1091,20 @@ module Aws::SageMaker
|
|
1076
1091
|
#
|
1077
1092
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1078
1093
|
# Defines the objective metric used to measure the predictive quality of
|
1079
|
-
# an AutoML job. You provide
|
1094
|
+
# an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
1080
1095
|
# Autopilot infers whether to minimize or maximize it.
|
1081
1096
|
#
|
1082
1097
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1083
|
-
# Contains CompletionCriteria and SecurityConfig settings for the
|
1084
|
-
# job.
|
1098
|
+
# Contains `CompletionCriteria` and `SecurityConfig` settings for the
|
1099
|
+
# AutoML job.
|
1085
1100
|
#
|
1086
1101
|
# @option params [required, String] :role_arn
|
1087
1102
|
# The ARN of the role that is used to access the data.
|
1088
1103
|
#
|
1104
|
+
# <para>Specifies whether to automatically deploy the best
|
1105
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
1106
|
+
# deployed automatically.</para>
|
1107
|
+
#
|
1089
1108
|
# @option params [Boolean] :generate_candidate_definitions_only
|
1090
1109
|
# Generates possible candidates without training the models. A candidate
|
1091
1110
|
# is a combination of data preprocessors, algorithms, and algorithm
|
@@ -1095,6 +1114,10 @@ module Aws::SageMaker
|
|
1095
1114
|
# Each tag consists of a key and an optional value. Tag keys must be
|
1096
1115
|
# unique per resource.
|
1097
1116
|
#
|
1117
|
+
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1118
|
+
# Specifies how to generate the endpoint name for an automatic one-click
|
1119
|
+
# Autopilot model deployment.
|
1120
|
+
#
|
1098
1121
|
# @return [Types::CreateAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1099
1122
|
#
|
1100
1123
|
# * {Types::CreateAutoMLJobResponse#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1146,6 +1169,10 @@ module Aws::SageMaker
|
|
1146
1169
|
# value: "TagValue", # required
|
1147
1170
|
# },
|
1148
1171
|
# ],
|
1172
|
+
# model_deploy_config: {
|
1173
|
+
# auto_generate_endpoint_name: false,
|
1174
|
+
# endpoint_name: "EndpointName",
|
1175
|
+
# },
|
1149
1176
|
# })
|
1150
1177
|
#
|
1151
1178
|
# @example Response structure
|
@@ -4386,10 +4413,10 @@ module Aws::SageMaker
|
|
4386
4413
|
#
|
4387
4414
|
# @option params [String] :direct_internet_access
|
4388
4415
|
# Sets whether Amazon SageMaker provides internet access to the notebook
|
4389
|
-
# instance. If you set this to `Disabled` this notebook instance
|
4390
|
-
#
|
4391
|
-
#
|
4392
|
-
#
|
4416
|
+
# instance. If you set this to `Disabled` this notebook instance is able
|
4417
|
+
# to access resources only in your VPC, and is not be able to connect to
|
4418
|
+
# Amazon SageMaker training and endpoint services unless you configure a
|
4419
|
+
# NAT Gateway in your VPC.
|
4393
4420
|
#
|
4394
4421
|
# For more information, see [Notebook Instances Are Internet-Enabled by
|
4395
4422
|
# Default][1]. You can set the value of this parameter to `Disabled`
|
@@ -6959,6 +6986,13 @@ module Aws::SageMaker
|
|
6959
6986
|
#
|
6960
6987
|
# </note>
|
6961
6988
|
#
|
6989
|
+
# <note markdown="1"> When you call this API to delete tags from a SageMaker Studio Domain
|
6990
|
+
# or User Profile, the deleted tags are not removed from Apps that the
|
6991
|
+
# SageMaker Studio Domain or User Profile launched before you called
|
6992
|
+
# this API.
|
6993
|
+
#
|
6994
|
+
# </note>
|
6995
|
+
#
|
6962
6996
|
# @option params [required, String] :resource_arn
|
6963
6997
|
# The Amazon Resource Name (ARN) of the resource whose tags you want to
|
6964
6998
|
# delete.
|
@@ -7553,6 +7587,8 @@ module Aws::SageMaker
|
|
7553
7587
|
# * {Types::DescribeAutoMLJobResponse#generate_candidate_definitions_only #generate_candidate_definitions_only} => Boolean
|
7554
7588
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
|
7555
7589
|
# * {Types::DescribeAutoMLJobResponse#resolved_attributes #resolved_attributes} => Types::ResolvedAttributes
|
7590
|
+
# * {Types::DescribeAutoMLJobResponse#model_deploy_config #model_deploy_config} => Types::ModelDeployConfig
|
7591
|
+
# * {Types::DescribeAutoMLJobResponse#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
|
7556
7592
|
#
|
7557
7593
|
# @example Request syntax with placeholder values
|
7558
7594
|
#
|
@@ -7610,7 +7646,7 @@ module Aws::SageMaker
|
|
7610
7646
|
# resp.best_candidate.failure_reason #=> String
|
7611
7647
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
7612
7648
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
7613
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
|
7649
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
|
7614
7650
|
# resp.generate_candidate_definitions_only #=> Boolean
|
7615
7651
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
7616
7652
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
@@ -7619,6 +7655,9 @@ module Aws::SageMaker
|
|
7619
7655
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
7620
7656
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
7621
7657
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
7658
|
+
# resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
|
7659
|
+
# resp.model_deploy_config.endpoint_name #=> String
|
7660
|
+
# resp.model_deploy_result.endpoint_name #=> String
|
7622
7661
|
#
|
7623
7662
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJob AWS API Documentation
|
7624
7663
|
#
|
@@ -11173,11 +11212,10 @@ module Aws::SageMaker
|
|
11173
11212
|
# Request a list of jobs, using a filter for status.
|
11174
11213
|
#
|
11175
11214
|
# @option params [String] :sort_order
|
11176
|
-
# The sort order for the results. The default is Descending
|
11215
|
+
# The sort order for the results. The default is `Descending`.
|
11177
11216
|
#
|
11178
11217
|
# @option params [String] :sort_by
|
11179
|
-
# The parameter by which to sort the results. The default is
|
11180
|
-
# AutoMLJobName.
|
11218
|
+
# The parameter by which to sort the results. The default is `Name`.
|
11181
11219
|
#
|
11182
11220
|
# @option params [Integer] :max_results
|
11183
11221
|
# Request a list of jobs up to a specified limit.
|
@@ -11214,7 +11252,7 @@ module Aws::SageMaker
|
|
11214
11252
|
# resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
|
11215
11253
|
# resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
|
11216
11254
|
# resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
11217
|
-
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
|
11255
|
+
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
|
11218
11256
|
# resp.auto_ml_job_summaries[0].creation_time #=> Time
|
11219
11257
|
# resp.auto_ml_job_summaries[0].end_time #=> Time
|
11220
11258
|
# resp.auto_ml_job_summaries[0].last_modified_time #=> Time
|
@@ -17408,7 +17446,7 @@ module Aws::SageMaker
|
|
17408
17446
|
params: params,
|
17409
17447
|
config: config)
|
17410
17448
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
17411
|
-
context[:gem_version] = '1.
|
17449
|
+
context[:gem_version] = '1.87.0'
|
17412
17450
|
Seahorse::Client::Request.new(handlers, context)
|
17413
17451
|
end
|
17414
17452
|
|
@@ -87,6 +87,7 @@ module Aws::SageMaker
|
|
87
87
|
AttributeName = Shapes::StringShape.new(name: 'AttributeName')
|
88
88
|
AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
|
89
89
|
AuthMode = Shapes::StringShape.new(name: 'AuthMode')
|
90
|
+
AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
|
90
91
|
AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
|
91
92
|
AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
|
92
93
|
AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
|
@@ -884,6 +885,8 @@ module Aws::SageMaker
|
|
884
885
|
ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
|
885
886
|
ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
|
886
887
|
ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
|
888
|
+
ModelDeployConfig = Shapes::StructureShape.new(name: 'ModelDeployConfig')
|
889
|
+
ModelDeployResult = Shapes::StructureShape.new(name: 'ModelDeployResult')
|
887
890
|
ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
|
888
891
|
ModelExplainabilityAppSpecification = Shapes::StructureShape.new(name: 'ModelExplainabilityAppSpecification')
|
889
892
|
ModelExplainabilityBaselineConfig = Shapes::StructureShape.new(name: 'ModelExplainabilityBaselineConfig')
|
@@ -1899,6 +1902,7 @@ module Aws::SageMaker
|
|
1899
1902
|
CreateAutoMLJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
|
1900
1903
|
CreateAutoMLJobRequest.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
|
1901
1904
|
CreateAutoMLJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
1905
|
+
CreateAutoMLJobRequest.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
1902
1906
|
CreateAutoMLJobRequest.struct_class = Types::CreateAutoMLJobRequest
|
1903
1907
|
|
1904
1908
|
CreateAutoMLJobResponse.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
|
@@ -2722,6 +2726,8 @@ module Aws::SageMaker
|
|
2722
2726
|
DescribeAutoMLJobResponse.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
|
2723
2727
|
DescribeAutoMLJobResponse.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
|
2724
2728
|
DescribeAutoMLJobResponse.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: ResolvedAttributes, location_name: "ResolvedAttributes"))
|
2729
|
+
DescribeAutoMLJobResponse.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
2730
|
+
DescribeAutoMLJobResponse.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
|
2725
2731
|
DescribeAutoMLJobResponse.struct_class = Types::DescribeAutoMLJobResponse
|
2726
2732
|
|
2727
2733
|
DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
|
@@ -4763,6 +4769,13 @@ module Aws::SageMaker
|
|
4763
4769
|
ModelDataQuality.add_member(:constraints, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Constraints"))
|
4764
4770
|
ModelDataQuality.struct_class = Types::ModelDataQuality
|
4765
4771
|
|
4772
|
+
ModelDeployConfig.add_member(:auto_generate_endpoint_name, Shapes::ShapeRef.new(shape: AutoGenerateEndpointName, location_name: "AutoGenerateEndpointName"))
|
4773
|
+
ModelDeployConfig.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
|
4774
|
+
ModelDeployConfig.struct_class = Types::ModelDeployConfig
|
4775
|
+
|
4776
|
+
ModelDeployResult.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
|
4777
|
+
ModelDeployResult.struct_class = Types::ModelDeployResult
|
4778
|
+
|
4766
4779
|
ModelDigests.add_member(:artifact_digest, Shapes::ShapeRef.new(shape: ArtifactDigest, location_name: "ArtifactDigest"))
|
4767
4780
|
ModelDigests.struct_class = Types::ModelDigests
|
4768
4781
|
|
@@ -1706,10 +1706,10 @@ module Aws::SageMaker
|
|
1706
1706
|
end
|
1707
1707
|
|
1708
1708
|
# An Autopilot job returns recommendations, or candidates. Each
|
1709
|
-
# candidate has futher details about the steps
|
1709
|
+
# candidate has futher details about the steps involved and the status.
|
1710
1710
|
#
|
1711
1711
|
# @!attribute [rw] candidate_name
|
1712
|
-
# The candidate
|
1712
|
+
# The name of the candidate.
|
1713
1713
|
# @return [String]
|
1714
1714
|
#
|
1715
1715
|
# @!attribute [rw] final_auto_ml_job_objective_metric
|
@@ -1717,11 +1717,11 @@ module Aws::SageMaker
|
|
1717
1717
|
# @return [Types::FinalAutoMLJobObjectiveMetric]
|
1718
1718
|
#
|
1719
1719
|
# @!attribute [rw] objective_status
|
1720
|
-
# The objective status.
|
1720
|
+
# The objective's status.
|
1721
1721
|
# @return [String]
|
1722
1722
|
#
|
1723
1723
|
# @!attribute [rw] candidate_steps
|
1724
|
-
#
|
1724
|
+
# Information about the candidate's steps.
|
1725
1725
|
# @return [Array<Types::AutoMLCandidateStep>]
|
1726
1726
|
#
|
1727
1727
|
# @!attribute [rw] candidate_status
|
@@ -1729,7 +1729,7 @@ module Aws::SageMaker
|
|
1729
1729
|
# @return [String]
|
1730
1730
|
#
|
1731
1731
|
# @!attribute [rw] inference_containers
|
1732
|
-
#
|
1732
|
+
# Information about the inference container definitions.
|
1733
1733
|
# @return [Array<Types::AutoMLContainerDefinition>]
|
1734
1734
|
#
|
1735
1735
|
# @!attribute [rw] creation_time
|
@@ -1770,20 +1770,20 @@ module Aws::SageMaker
|
|
1770
1770
|
include Aws::Structure
|
1771
1771
|
end
|
1772
1772
|
|
1773
|
-
# Information about the steps for a
|
1773
|
+
# Information about the steps for a candidate and what step it is
|
1774
1774
|
# working on.
|
1775
1775
|
#
|
1776
1776
|
# @!attribute [rw] candidate_step_type
|
1777
|
-
# Whether the
|
1777
|
+
# Whether the candidate is at the transform, training, or processing
|
1778
1778
|
# step.
|
1779
1779
|
# @return [String]
|
1780
1780
|
#
|
1781
1781
|
# @!attribute [rw] candidate_step_arn
|
1782
|
-
# The ARN for the
|
1782
|
+
# The ARN for the candidate's step.
|
1783
1783
|
# @return [String]
|
1784
1784
|
#
|
1785
1785
|
# @!attribute [rw] candidate_step_name
|
1786
|
-
# The name for the
|
1786
|
+
# The name for the candidate's step.
|
1787
1787
|
# @return [String]
|
1788
1788
|
#
|
1789
1789
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateStep AWS API Documentation
|
@@ -1848,8 +1848,8 @@ module Aws::SageMaker
|
|
1848
1848
|
# @return [String]
|
1849
1849
|
#
|
1850
1850
|
# @!attribute [rw] environment
|
1851
|
-
#
|
1852
|
-
# see .
|
1851
|
+
# The environment variables to set in the container. For more
|
1852
|
+
# information, see .
|
1853
1853
|
# @return [Hash<String,String>]
|
1854
1854
|
#
|
1855
1855
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
|
@@ -1890,14 +1890,14 @@ module Aws::SageMaker
|
|
1890
1890
|
include Aws::Structure
|
1891
1891
|
end
|
1892
1892
|
|
1893
|
-
#
|
1893
|
+
# The artifacts that are generated during an AutoML job.
|
1894
1894
|
#
|
1895
1895
|
# @!attribute [rw] candidate_definition_notebook_location
|
1896
|
-
# The URL
|
1896
|
+
# The URL of the notebook location.
|
1897
1897
|
# @return [String]
|
1898
1898
|
#
|
1899
1899
|
# @!attribute [rw] data_exploration_notebook_location
|
1900
|
-
# The URL
|
1900
|
+
# The URL of the notebook location.
|
1901
1901
|
# @return [String]
|
1902
1902
|
#
|
1903
1903
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobArtifacts AWS API Documentation
|
@@ -1972,7 +1972,7 @@ module Aws::SageMaker
|
|
1972
1972
|
# @return [Types::AutoMLJobCompletionCriteria]
|
1973
1973
|
#
|
1974
1974
|
# @!attribute [rw] security_config
|
1975
|
-
#
|
1975
|
+
# The security configuration for traffic encryption or Amazon VPC
|
1976
1976
|
# settings.
|
1977
1977
|
# @return [Types::AutoMLSecurityConfig]
|
1978
1978
|
#
|
@@ -2004,23 +2004,23 @@ module Aws::SageMaker
|
|
2004
2004
|
#
|
2005
2005
|
# * `MSE`\: The mean squared error (MSE) is the average of the squared
|
2006
2006
|
# differences between the predicted and actual values. It is used
|
2007
|
-
# for regression. MSE values are always positive
|
2008
|
-
# is at predicting the actual values the smaller the MSE value.
|
2009
|
-
# the data contains outliers, they tend to dominate the MSE
|
2010
|
-
# might cause subpar prediction performance.
|
2011
|
-
#
|
2012
|
-
# * `Accuracy`\: The ratio of the number correctly classified items
|
2013
|
-
# the total number (correctly and incorrectly) classified
|
2014
|
-
# used for binary and multiclass classification.
|
2015
|
-
# the predicted class values are to the actual
|
2016
|
-
# values vary between zero and one
|
2017
|
-
# zero perfect inaccuracy.
|
2007
|
+
# for regression. MSE values are always positive: the better a model
|
2008
|
+
# is at predicting the actual values, the smaller the MSE value.
|
2009
|
+
# When the data contains outliers, they tend to dominate the MSE,
|
2010
|
+
# which might cause subpar prediction performance.
|
2011
|
+
#
|
2012
|
+
# * `Accuracy`\: The ratio of the number of correctly classified items
|
2013
|
+
# to the total number of (correctly and incorrectly) classified
|
2014
|
+
# items. It is used for binary and multiclass classification. It
|
2015
|
+
# measures how close the predicted class values are to the actual
|
2016
|
+
# values. Accuracy values vary between zero and one: one indicates
|
2017
|
+
# perfect accuracy and zero indicates perfect inaccuracy.
|
2018
2018
|
#
|
2019
2019
|
# * `F1`\: The F1 score is the harmonic mean of the precision and
|
2020
2020
|
# recall. It is used for binary classification into classes
|
2021
2021
|
# traditionally referred to as positive and negative. Predictions
|
2022
|
-
# are said to be true when they match their actual (correct) class
|
2023
|
-
# false when they do not. Precision is the ratio of the true
|
2022
|
+
# are said to be true when they match their actual (correct) class
|
2023
|
+
# and false when they do not. Precision is the ratio of the true
|
2024
2024
|
# positive predictions to all positive predictions (including the
|
2025
2025
|
# false positives) in a data set and measures the quality of the
|
2026
2026
|
# prediction when it predicts the positive class. Recall (or
|
@@ -2029,7 +2029,7 @@ module Aws::SageMaker
|
|
2029
2029
|
# predicts the actual class members in a data set. The standard F1
|
2030
2030
|
# score weighs precision and recall equally. But which metric is
|
2031
2031
|
# paramount typically depends on specific aspects of a problem. F1
|
2032
|
-
# scores vary between zero and one
|
2032
|
+
# scores vary between zero and one: one indicates the best possible
|
2033
2033
|
# performance and zero the worst.
|
2034
2034
|
#
|
2035
2035
|
# * `AUC`\: The area under the curve (AUC) metric is used to compare
|
@@ -2047,20 +2047,21 @@ module Aws::SageMaker
|
|
2047
2047
|
# The AUC score can also be interpreted as the probability that a
|
2048
2048
|
# randomly selected positive data point is more likely to be
|
2049
2049
|
# predicted positive than a randomly selected negative example. AUC
|
2050
|
-
# scores vary between zero and one
|
2051
|
-
#
|
2052
|
-
#
|
2053
|
-
#
|
2050
|
+
# scores vary between zero and one: a score of one indicates perfect
|
2051
|
+
# accuracy and a score of one half indicates that the prediction is
|
2052
|
+
# not better than a random classifier. Values under one half predict
|
2053
|
+
# less accurately than a random predictor. But such consistently bad
|
2054
|
+
# predictors can simply be inverted to obtain better than random
|
2054
2055
|
# predictors.
|
2055
2056
|
#
|
2056
2057
|
# * `F1macro`\: The F1macro score applies F1 scoring to multiclass
|
2057
2058
|
# classification. In this context, you have multiple classes to
|
2058
2059
|
# predict. You just calculate the precision and recall for each
|
2059
2060
|
# class as you did for the positive class in binary classification.
|
2060
|
-
# Then
|
2061
|
+
# Then, use these values to calculate the F1 score for each class
|
2061
2062
|
# and average them to obtain the F1macro score. F1macro scores vary
|
2062
|
-
# between zero and one
|
2063
|
-
# zero the worst.
|
2063
|
+
# between zero and one: one indicates the best possible performance
|
2064
|
+
# and zero the worst.
|
2064
2065
|
#
|
2065
2066
|
# If you do not specify a metric explicitly, the default behavior is
|
2066
2067
|
# to automatically use:
|
@@ -2226,7 +2227,7 @@ module Aws::SageMaker
|
|
2226
2227
|
# @return [Boolean]
|
2227
2228
|
#
|
2228
2229
|
# @!attribute [rw] vpc_config
|
2229
|
-
# VPC configuration.
|
2230
|
+
# The VPC configuration.
|
2230
2231
|
# @return [Types::VpcConfig]
|
2231
2232
|
#
|
2232
2233
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLSecurityConfig AWS API Documentation
|
@@ -2339,11 +2340,11 @@ module Aws::SageMaker
|
|
2339
2340
|
include Aws::Structure
|
2340
2341
|
end
|
2341
2342
|
|
2342
|
-
#
|
2343
|
+
# The location of artifacts for an AutoML candidate job.
|
2343
2344
|
#
|
2344
2345
|
# @!attribute [rw] explainability
|
2345
|
-
# The S3 prefix to the explainability artifacts generated for
|
2346
|
-
# AutoML candidate.
|
2346
|
+
# The Amazon S3 prefix to the explainability artifacts generated for
|
2347
|
+
# the AutoML candidate.
|
2347
2348
|
# @return [String]
|
2348
2349
|
#
|
2349
2350
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
|
@@ -2357,7 +2358,8 @@ module Aws::SageMaker
|
|
2357
2358
|
# The properties of an AutoML candidate job.
|
2358
2359
|
#
|
2359
2360
|
# @!attribute [rw] candidate_artifact_locations
|
2360
|
-
# The S3 prefix to the artifacts generated for an AutoML
|
2361
|
+
# The Amazon S3 prefix to the artifacts generated for an AutoML
|
2362
|
+
# candidate.
|
2361
2363
|
# @return [Types::CandidateArtifactLocations]
|
2362
2364
|
#
|
2363
2365
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
|
@@ -3853,6 +3855,10 @@ module Aws::SageMaker
|
|
3853
3855
|
# value: "TagValue", # required
|
3854
3856
|
# },
|
3855
3857
|
# ],
|
3858
|
+
# model_deploy_config: {
|
3859
|
+
# auto_generate_endpoint_name: false,
|
3860
|
+
# endpoint_name: "EndpointName",
|
3861
|
+
# },
|
3856
3862
|
# }
|
3857
3863
|
#
|
3858
3864
|
# @!attribute [rw] auto_ml_job_name
|
@@ -3871,13 +3877,17 @@ module Aws::SageMaker
|
|
3871
3877
|
# Provides information about encryption and the Amazon S3 output path
|
3872
3878
|
# needed to store artifacts from an AutoML job. Format(s) supported:
|
3873
3879
|
# CSV.
|
3880
|
+
#
|
3881
|
+
# <para>Specifies whether to automatically deploy the best
|
3882
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
3883
|
+
# deployed automatically.</para>
|
3874
3884
|
# @return [Types::AutoMLOutputDataConfig]
|
3875
3885
|
#
|
3876
3886
|
# @!attribute [rw] problem_type
|
3877
3887
|
# Defines the type of supervised learning available for the
|
3878
|
-
# candidates. Options include: BinaryClassification
|
3879
|
-
# MulticlassClassification
|
3880
|
-
# [ Amazon SageMaker Autopilot problem types and algorithm
|
3888
|
+
# candidates. Options include: `BinaryClassification`,
|
3889
|
+
# `MulticlassClassification`, and `Regression`. For more information,
|
3890
|
+
# see [ Amazon SageMaker Autopilot problem types and algorithm
|
3881
3891
|
# support][1].
|
3882
3892
|
#
|
3883
3893
|
#
|
@@ -3887,17 +3897,21 @@ module Aws::SageMaker
|
|
3887
3897
|
#
|
3888
3898
|
# @!attribute [rw] auto_ml_job_objective
|
3889
3899
|
# Defines the objective metric used to measure the predictive quality
|
3890
|
-
# of an AutoML job. You provide
|
3900
|
+
# of an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
3891
3901
|
# Autopilot infers whether to minimize or maximize it.
|
3892
3902
|
# @return [Types::AutoMLJobObjective]
|
3893
3903
|
#
|
3894
3904
|
# @!attribute [rw] auto_ml_job_config
|
3895
|
-
# Contains CompletionCriteria and SecurityConfig settings for the
|
3905
|
+
# Contains `CompletionCriteria` and `SecurityConfig` settings for the
|
3896
3906
|
# AutoML job.
|
3897
3907
|
# @return [Types::AutoMLJobConfig]
|
3898
3908
|
#
|
3899
3909
|
# @!attribute [rw] role_arn
|
3900
3910
|
# The ARN of the role that is used to access the data.
|
3911
|
+
#
|
3912
|
+
# <para>Specifies whether to automatically deploy the best
|
3913
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
3914
|
+
# deployed automatically.</para>
|
3901
3915
|
# @return [String]
|
3902
3916
|
#
|
3903
3917
|
# @!attribute [rw] generate_candidate_definitions_only
|
@@ -3911,6 +3925,11 @@ module Aws::SageMaker
|
|
3911
3925
|
# unique per resource.
|
3912
3926
|
# @return [Array<Types::Tag>]
|
3913
3927
|
#
|
3928
|
+
# @!attribute [rw] model_deploy_config
|
3929
|
+
# Specifies how to generate the endpoint name for an automatic
|
3930
|
+
# one-click Autopilot model deployment.
|
3931
|
+
# @return [Types::ModelDeployConfig]
|
3932
|
+
#
|
3914
3933
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobRequest AWS API Documentation
|
3915
3934
|
#
|
3916
3935
|
class CreateAutoMLJobRequest < Struct.new(
|
@@ -3922,7 +3941,8 @@ module Aws::SageMaker
|
|
3922
3941
|
:auto_ml_job_config,
|
3923
3942
|
:role_arn,
|
3924
3943
|
:generate_candidate_definitions_only,
|
3925
|
-
:tags
|
3944
|
+
:tags,
|
3945
|
+
:model_deploy_config)
|
3926
3946
|
SENSITIVE = []
|
3927
3947
|
include Aws::Structure
|
3928
3948
|
end
|
@@ -7090,9 +7110,9 @@ module Aws::SageMaker
|
|
7090
7110
|
# @!attribute [rw] direct_internet_access
|
7091
7111
|
# Sets whether Amazon SageMaker provides internet access to the
|
7092
7112
|
# notebook instance. If you set this to `Disabled` this notebook
|
7093
|
-
# instance
|
7094
|
-
#
|
7095
|
-
#
|
7113
|
+
# instance is able to access resources only in your VPC, and is not be
|
7114
|
+
# able to connect to Amazon SageMaker training and endpoint services
|
7115
|
+
# unless you configure a NAT Gateway in your VPC.
|
7096
7116
|
#
|
7097
7117
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
7098
7118
|
# by Default][1]. You can set the value of this parameter to
|
@@ -9029,7 +9049,9 @@ module Aws::SageMaker
|
|
9029
9049
|
# The valid values are `None` and `Input`. The default value is
|
9030
9050
|
# `None`, which specifies not to join the input with the transformed
|
9031
9051
|
# data. If you want the batch transform job to join the original input
|
9032
|
-
# data with the transformed data, set `JoinSource` to `Input`.
|
9052
|
+
# data with the transformed data, set `JoinSource` to `Input`. You can
|
9053
|
+
# specify `OutputFilter` as an additional filter to select a portion
|
9054
|
+
# of the joined dataset and store it in the output file.
|
9033
9055
|
#
|
9034
9056
|
# For JSON or JSONLines objects, such as a JSON array, Amazon
|
9035
9057
|
# SageMaker adds the transformed data to the input JSON object in an
|
@@ -9039,10 +9061,18 @@ module Aws::SageMaker
|
|
9039
9061
|
# file, and the input data is stored under the `SageMakerInput` key
|
9040
9062
|
# and the results are stored in `SageMakerOutput`.
|
9041
9063
|
#
|
9042
|
-
# For CSV
|
9043
|
-
# the
|
9044
|
-
#
|
9045
|
-
# the transformed data and the output
|
9064
|
+
# For CSV data, Amazon SageMaker takes each row as a JSON array and
|
9065
|
+
# joins the transformed data with the input by appending each
|
9066
|
+
# transformed row to the end of the input. The joined data has the
|
9067
|
+
# original input data followed by the transformed data and the output
|
9068
|
+
# is a CSV file.
|
9069
|
+
#
|
9070
|
+
# For information on how joining in applied, see [Workflow for
|
9071
|
+
# Associating Inferences with Input Records][1].
|
9072
|
+
#
|
9073
|
+
#
|
9074
|
+
#
|
9075
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow
|
9046
9076
|
# @return [String]
|
9047
9077
|
#
|
9048
9078
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
|
@@ -10968,7 +10998,7 @@ module Aws::SageMaker
|
|
10968
10998
|
# @return [Time]
|
10969
10999
|
#
|
10970
11000
|
# @!attribute [rw] failure_reason
|
10971
|
-
# Returns the job
|
11001
|
+
# Returns the failure reason for an AutoML job, when applicable.
|
10972
11002
|
# @return [String]
|
10973
11003
|
#
|
10974
11004
|
# @!attribute [rw] partial_failure_reasons
|
@@ -10976,11 +11006,11 @@ module Aws::SageMaker
|
|
10976
11006
|
# @return [Array<Types::AutoMLPartialFailureReason>]
|
10977
11007
|
#
|
10978
11008
|
# @!attribute [rw] best_candidate
|
10979
|
-
# Returns the job's
|
11009
|
+
# Returns the job's best `AutoMLCandidate`.
|
10980
11010
|
# @return [Types::AutoMLCandidate]
|
10981
11011
|
#
|
10982
11012
|
# @!attribute [rw] auto_ml_job_status
|
10983
|
-
# Returns the status of the AutoML job
|
11013
|
+
# Returns the status of the AutoML job.
|
10984
11014
|
# @return [String]
|
10985
11015
|
#
|
10986
11016
|
# @!attribute [rw] auto_ml_job_secondary_status
|
@@ -10988,21 +11018,31 @@ module Aws::SageMaker
|
|
10988
11018
|
# @return [String]
|
10989
11019
|
#
|
10990
11020
|
# @!attribute [rw] generate_candidate_definitions_only
|
10991
|
-
#
|
11021
|
+
# Indicates whether the output for an AutoML job generates candidate
|
11022
|
+
# definitions only.
|
10992
11023
|
# @return [Boolean]
|
10993
11024
|
#
|
10994
11025
|
# @!attribute [rw] auto_ml_job_artifacts
|
10995
11026
|
# Returns information on the job's artifacts found in
|
10996
|
-
# AutoMLJobArtifacts
|
11027
|
+
# `AutoMLJobArtifacts`.
|
10997
11028
|
# @return [Types::AutoMLJobArtifacts]
|
10998
11029
|
#
|
10999
11030
|
# @!attribute [rw] resolved_attributes
|
11000
|
-
# This contains ProblemType
|
11001
|
-
# CompletionCriteria
|
11002
|
-
# auto-inferred. If you do provide them,
|
11003
|
-
# provide.
|
11031
|
+
# This contains `ProblemType`, `AutoMLJobObjective` and
|
11032
|
+
# `CompletionCriteria`. If you do not provide these values, they are
|
11033
|
+
# auto-inferred. If you do provide them, the values used are the ones
|
11034
|
+
# you provide.
|
11004
11035
|
# @return [Types::ResolvedAttributes]
|
11005
11036
|
#
|
11037
|
+
# @!attribute [rw] model_deploy_config
|
11038
|
+
# Indicates whether the model was deployed automatically to an
|
11039
|
+
# endpoint and the name of that endpoint if deployed automatically.
|
11040
|
+
# @return [Types::ModelDeployConfig]
|
11041
|
+
#
|
11042
|
+
# @!attribute [rw] model_deploy_result
|
11043
|
+
# Provides information about endpoint for the model deployment.
|
11044
|
+
# @return [Types::ModelDeployResult]
|
11045
|
+
#
|
11006
11046
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
|
11007
11047
|
#
|
11008
11048
|
class DescribeAutoMLJobResponse < Struct.new(
|
@@ -11024,7 +11064,9 @@ module Aws::SageMaker
|
|
11024
11064
|
:auto_ml_job_secondary_status,
|
11025
11065
|
:generate_candidate_definitions_only,
|
11026
11066
|
:auto_ml_job_artifacts,
|
11027
|
-
:resolved_attributes
|
11067
|
+
:resolved_attributes,
|
11068
|
+
:model_deploy_config,
|
11069
|
+
:model_deploy_result)
|
11028
11070
|
SENSITIVE = []
|
11029
11071
|
include Aws::Structure
|
11030
11072
|
end
|
@@ -14112,7 +14154,7 @@ module Aws::SageMaker
|
|
14112
14154
|
#
|
14113
14155
|
# * `LaunchingMLInstances`
|
14114
14156
|
#
|
14115
|
-
# * `
|
14157
|
+
# * `PreparingTraining`
|
14116
14158
|
#
|
14117
14159
|
# * `DownloadingTrainingImage`
|
14118
14160
|
# @return [String]
|
@@ -19438,6 +19480,7 @@ module Aws::SageMaker
|
|
19438
19480
|
# @return [String]
|
19439
19481
|
#
|
19440
19482
|
# @!attribute [rw] work_requester_account_id
|
19483
|
+
# The AWS account ID of the account used to start the labeling job.
|
19441
19484
|
# @return [String]
|
19442
19485
|
#
|
19443
19486
|
# @!attribute [rw] creation_time
|
@@ -20372,12 +20415,11 @@ module Aws::SageMaker
|
|
20372
20415
|
# @return [String]
|
20373
20416
|
#
|
20374
20417
|
# @!attribute [rw] sort_order
|
20375
|
-
# The sort order for the results. The default is Descending
|
20418
|
+
# The sort order for the results. The default is `Descending`.
|
20376
20419
|
# @return [String]
|
20377
20420
|
#
|
20378
20421
|
# @!attribute [rw] sort_by
|
20379
|
-
# The parameter by which to sort the results. The default is
|
20380
|
-
# AutoMLJobName.
|
20422
|
+
# The parameter by which to sort the results. The default is `Name`.
|
20381
20423
|
# @return [String]
|
20382
20424
|
#
|
20383
20425
|
# @!attribute [rw] max_results
|
@@ -20483,7 +20525,7 @@ module Aws::SageMaker
|
|
20483
20525
|
end
|
20484
20526
|
|
20485
20527
|
# @!attribute [rw] candidates
|
20486
|
-
# Summaries about the
|
20528
|
+
# Summaries about the `AutoMLCandidates`.
|
20487
20529
|
# @return [Array<Types::AutoMLCandidate>]
|
20488
20530
|
#
|
20489
20531
|
# @!attribute [rw] next_token
|
@@ -24520,7 +24562,7 @@ module Aws::SageMaker
|
|
24520
24562
|
#
|
24521
24563
|
# Model artifacts are the output that results from training a model, and
|
24522
24564
|
# typically consist of trained parameters, a model defintion that
|
24523
|
-
#
|
24565
|
+
# describes how to compute inferences, and other metadata.
|
24524
24566
|
#
|
24525
24567
|
# @!attribute [rw] s3_model_artifacts
|
24526
24568
|
# The path of the S3 object that contains the model artifacts. For
|
@@ -24708,6 +24750,66 @@ module Aws::SageMaker
|
|
24708
24750
|
include Aws::Structure
|
24709
24751
|
end
|
24710
24752
|
|
24753
|
+
# Specifies how to generate the endpoint name for an automatic one-click
|
24754
|
+
# Autopilot model deployment.
|
24755
|
+
#
|
24756
|
+
# @note When making an API call, you may pass ModelDeployConfig
|
24757
|
+
# data as a hash:
|
24758
|
+
#
|
24759
|
+
# {
|
24760
|
+
# auto_generate_endpoint_name: false,
|
24761
|
+
# endpoint_name: "EndpointName",
|
24762
|
+
# }
|
24763
|
+
#
|
24764
|
+
# @!attribute [rw] auto_generate_endpoint_name
|
24765
|
+
# Set to `True` to automatically generate an endpoint name for a
|
24766
|
+
# one-click Autopilot model deployment; set to `False` otherwise. The
|
24767
|
+
# default value is `True`.
|
24768
|
+
#
|
24769
|
+
# <note markdown="1"> If you set `AutoGenerateEndpointName` to `True`, do not specify the
|
24770
|
+
# `EndpointName`; otherwise a 400 error is thrown.
|
24771
|
+
#
|
24772
|
+
# </note>
|
24773
|
+
# @return [Boolean]
|
24774
|
+
#
|
24775
|
+
# @!attribute [rw] endpoint_name
|
24776
|
+
# Specifies the endpoint name to use for a one-click Autopilot model
|
24777
|
+
# deployment if the endpoint name is not generated automatically.
|
24778
|
+
#
|
24779
|
+
# <note markdown="1"> Specify the `EndpointName` if and only if you set
|
24780
|
+
# `AutoGenerateEndpointName` to `False`; otherwise a 400 error is
|
24781
|
+
# thrown.
|
24782
|
+
#
|
24783
|
+
# </note>
|
24784
|
+
# @return [String]
|
24785
|
+
#
|
24786
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployConfig AWS API Documentation
|
24787
|
+
#
|
24788
|
+
class ModelDeployConfig < Struct.new(
|
24789
|
+
:auto_generate_endpoint_name,
|
24790
|
+
:endpoint_name)
|
24791
|
+
SENSITIVE = []
|
24792
|
+
include Aws::Structure
|
24793
|
+
end
|
24794
|
+
|
24795
|
+
# Provides information about the endpoint of the model deployment.
|
24796
|
+
#
|
24797
|
+
# @!attribute [rw] endpoint_name
|
24798
|
+
# The name of the endpoint to which the model has been deployed.
|
24799
|
+
#
|
24800
|
+
# <note markdown="1"> If model deployment fails, this field is omitted from the response.
|
24801
|
+
#
|
24802
|
+
# </note>
|
24803
|
+
# @return [String]
|
24804
|
+
#
|
24805
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployResult AWS API Documentation
|
24806
|
+
#
|
24807
|
+
class ModelDeployResult < Struct.new(
|
24808
|
+
:endpoint_name)
|
24809
|
+
SENSITIVE = []
|
24810
|
+
include Aws::Structure
|
24811
|
+
end
|
24812
|
+
|
24711
24813
|
# Provides information to verify the integrity of stored model
|
24712
24814
|
# artifacts.
|
24713
24815
|
#
|
@@ -27487,7 +27589,7 @@ module Aws::SageMaker
|
|
27487
27589
|
#
|
27488
27590
|
#
|
27489
27591
|
#
|
27490
|
-
# [1]: https://docs.aws.amazon.com/
|
27592
|
+
# [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
|
27491
27593
|
# [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
|
27492
27594
|
# @return [String]
|
27493
27595
|
#
|
@@ -29788,7 +29890,7 @@ module Aws::SageMaker
|
|
29788
29890
|
include Aws::Structure
|
29789
29891
|
end
|
29790
29892
|
|
29791
|
-
#
|
29893
|
+
# Resource being accessed is in use.
|
29792
29894
|
#
|
29793
29895
|
# @!attribute [rw] message
|
29794
29896
|
# @return [String]
|
@@ -29845,7 +29947,7 @@ module Aws::SageMaker
|
|
29845
29947
|
include Aws::Structure
|
29846
29948
|
end
|
29847
29949
|
|
29848
|
-
#
|
29950
|
+
# Resource being access is not found.
|
29849
29951
|
#
|
29850
29952
|
# @!attribute [rw] message
|
29851
29953
|
# @return [String]
|
@@ -33380,7 +33482,7 @@ module Aws::SageMaker
|
|
33380
33482
|
include Aws::Structure
|
33381
33483
|
end
|
33382
33484
|
|
33383
|
-
# Represents an amount of money in United States dollars
|
33485
|
+
# Represents an amount of money in United States dollars.
|
33384
33486
|
#
|
33385
33487
|
# @note When making an API call, you may pass USD
|
33386
33488
|
# data as a hash:
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.87.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-05-
|
11
|
+
date: 2021-05-05 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|