aws-sdk-sagemaker 1.86.0 → 1.87.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +54 -16
- data/lib/aws-sdk-sagemaker/client_api.rb +13 -0
- data/lib/aws-sdk-sagemaker/types.rb +177 -75
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 45e81df582a8f46bb7d50a6580109c4227b377cf5f59586ef50a9be34360cd6f
|
4
|
+
data.tar.gz: cd0db9d973fade8261b241ae82628d4b5067c939818d47f41cbeac57b0aa18cf
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 8f261b921d2bc164337131794649947746c4aa0b4ab5f165cb77f9d76fe3c8db164a563023d01f968747d281eccbd89362ac01a3c0e7aded1794fb5748a6e335
|
7
|
+
data.tar.gz: 73ddb1e3d21f94622d02fb6f96aa8e9aff3fe8a9aac9f4d7c8632aec4c8b1e4453d453165e09cc075466ddad9422a5423a9d2c4c4cf93993923e72443073f135
|
data/CHANGELOG.md
CHANGED
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.87.0
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -419,6 +419,17 @@ module Aws::SageMaker
|
|
419
419
|
#
|
420
420
|
# </note>
|
421
421
|
#
|
422
|
+
# <note markdown="1"> Tags that you add to a SageMaker Studio Domain or User Profile by
|
423
|
+
# calling this API are also added to any Apps that the Domain or User
|
424
|
+
# Profile launches after you call this API, but not to Apps that the
|
425
|
+
# Domain or User Profile launched before you called this API. To make
|
426
|
+
# sure that the tags associated with a Domain or User Profile are also
|
427
|
+
# added to all Apps that the Domain or User Profile launches, add the
|
428
|
+
# tags when you first create the Domain or User Profile by specifying
|
429
|
+
# them in the `Tags` parameter of CreateDomain or CreateUserProfile.
|
430
|
+
#
|
431
|
+
# </note>
|
432
|
+
#
|
422
433
|
#
|
423
434
|
#
|
424
435
|
# [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
|
@@ -1064,11 +1075,15 @@ module Aws::SageMaker
|
|
1064
1075
|
# needed to store artifacts from an AutoML job. Format(s) supported:
|
1065
1076
|
# CSV.
|
1066
1077
|
#
|
1078
|
+
# <para>Specifies whether to automatically deploy the best
|
1079
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
1080
|
+
# deployed automatically.</para>
|
1081
|
+
#
|
1067
1082
|
# @option params [String] :problem_type
|
1068
1083
|
# Defines the type of supervised learning available for the candidates.
|
1069
|
-
# Options include: BinaryClassification
|
1070
|
-
# Regression
|
1071
|
-
# problem types and algorithm support][1].
|
1084
|
+
# Options include: `BinaryClassification`, `MulticlassClassification`,
|
1085
|
+
# and `Regression`. For more information, see [ Amazon SageMaker
|
1086
|
+
# Autopilot problem types and algorithm support][1].
|
1072
1087
|
#
|
1073
1088
|
#
|
1074
1089
|
#
|
@@ -1076,16 +1091,20 @@ module Aws::SageMaker
|
|
1076
1091
|
#
|
1077
1092
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1078
1093
|
# Defines the objective metric used to measure the predictive quality of
|
1079
|
-
# an AutoML job. You provide
|
1094
|
+
# an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
1080
1095
|
# Autopilot infers whether to minimize or maximize it.
|
1081
1096
|
#
|
1082
1097
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1083
|
-
# Contains CompletionCriteria and SecurityConfig settings for the
|
1084
|
-
# job.
|
1098
|
+
# Contains `CompletionCriteria` and `SecurityConfig` settings for the
|
1099
|
+
# AutoML job.
|
1085
1100
|
#
|
1086
1101
|
# @option params [required, String] :role_arn
|
1087
1102
|
# The ARN of the role that is used to access the data.
|
1088
1103
|
#
|
1104
|
+
# <para>Specifies whether to automatically deploy the best
|
1105
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
1106
|
+
# deployed automatically.</para>
|
1107
|
+
#
|
1089
1108
|
# @option params [Boolean] :generate_candidate_definitions_only
|
1090
1109
|
# Generates possible candidates without training the models. A candidate
|
1091
1110
|
# is a combination of data preprocessors, algorithms, and algorithm
|
@@ -1095,6 +1114,10 @@ module Aws::SageMaker
|
|
1095
1114
|
# Each tag consists of a key and an optional value. Tag keys must be
|
1096
1115
|
# unique per resource.
|
1097
1116
|
#
|
1117
|
+
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1118
|
+
# Specifies how to generate the endpoint name for an automatic one-click
|
1119
|
+
# Autopilot model deployment.
|
1120
|
+
#
|
1098
1121
|
# @return [Types::CreateAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1099
1122
|
#
|
1100
1123
|
# * {Types::CreateAutoMLJobResponse#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1146,6 +1169,10 @@ module Aws::SageMaker
|
|
1146
1169
|
# value: "TagValue", # required
|
1147
1170
|
# },
|
1148
1171
|
# ],
|
1172
|
+
# model_deploy_config: {
|
1173
|
+
# auto_generate_endpoint_name: false,
|
1174
|
+
# endpoint_name: "EndpointName",
|
1175
|
+
# },
|
1149
1176
|
# })
|
1150
1177
|
#
|
1151
1178
|
# @example Response structure
|
@@ -4386,10 +4413,10 @@ module Aws::SageMaker
|
|
4386
4413
|
#
|
4387
4414
|
# @option params [String] :direct_internet_access
|
4388
4415
|
# Sets whether Amazon SageMaker provides internet access to the notebook
|
4389
|
-
# instance. If you set this to `Disabled` this notebook instance
|
4390
|
-
#
|
4391
|
-
#
|
4392
|
-
#
|
4416
|
+
# instance. If you set this to `Disabled` this notebook instance is able
|
4417
|
+
# to access resources only in your VPC, and is not be able to connect to
|
4418
|
+
# Amazon SageMaker training and endpoint services unless you configure a
|
4419
|
+
# NAT Gateway in your VPC.
|
4393
4420
|
#
|
4394
4421
|
# For more information, see [Notebook Instances Are Internet-Enabled by
|
4395
4422
|
# Default][1]. You can set the value of this parameter to `Disabled`
|
@@ -6959,6 +6986,13 @@ module Aws::SageMaker
|
|
6959
6986
|
#
|
6960
6987
|
# </note>
|
6961
6988
|
#
|
6989
|
+
# <note markdown="1"> When you call this API to delete tags from a SageMaker Studio Domain
|
6990
|
+
# or User Profile, the deleted tags are not removed from Apps that the
|
6991
|
+
# SageMaker Studio Domain or User Profile launched before you called
|
6992
|
+
# this API.
|
6993
|
+
#
|
6994
|
+
# </note>
|
6995
|
+
#
|
6962
6996
|
# @option params [required, String] :resource_arn
|
6963
6997
|
# The Amazon Resource Name (ARN) of the resource whose tags you want to
|
6964
6998
|
# delete.
|
@@ -7553,6 +7587,8 @@ module Aws::SageMaker
|
|
7553
7587
|
# * {Types::DescribeAutoMLJobResponse#generate_candidate_definitions_only #generate_candidate_definitions_only} => Boolean
|
7554
7588
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
|
7555
7589
|
# * {Types::DescribeAutoMLJobResponse#resolved_attributes #resolved_attributes} => Types::ResolvedAttributes
|
7590
|
+
# * {Types::DescribeAutoMLJobResponse#model_deploy_config #model_deploy_config} => Types::ModelDeployConfig
|
7591
|
+
# * {Types::DescribeAutoMLJobResponse#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
|
7556
7592
|
#
|
7557
7593
|
# @example Request syntax with placeholder values
|
7558
7594
|
#
|
@@ -7610,7 +7646,7 @@ module Aws::SageMaker
|
|
7610
7646
|
# resp.best_candidate.failure_reason #=> String
|
7611
7647
|
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
7612
7648
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
7613
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
|
7649
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
|
7614
7650
|
# resp.generate_candidate_definitions_only #=> Boolean
|
7615
7651
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
7616
7652
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
@@ -7619,6 +7655,9 @@ module Aws::SageMaker
|
|
7619
7655
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
7620
7656
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
7621
7657
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
7658
|
+
# resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
|
7659
|
+
# resp.model_deploy_config.endpoint_name #=> String
|
7660
|
+
# resp.model_deploy_result.endpoint_name #=> String
|
7622
7661
|
#
|
7623
7662
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJob AWS API Documentation
|
7624
7663
|
#
|
@@ -11173,11 +11212,10 @@ module Aws::SageMaker
|
|
11173
11212
|
# Request a list of jobs, using a filter for status.
|
11174
11213
|
#
|
11175
11214
|
# @option params [String] :sort_order
|
11176
|
-
# The sort order for the results. The default is Descending
|
11215
|
+
# The sort order for the results. The default is `Descending`.
|
11177
11216
|
#
|
11178
11217
|
# @option params [String] :sort_by
|
11179
|
-
# The parameter by which to sort the results. The default is
|
11180
|
-
# AutoMLJobName.
|
11218
|
+
# The parameter by which to sort the results. The default is `Name`.
|
11181
11219
|
#
|
11182
11220
|
# @option params [Integer] :max_results
|
11183
11221
|
# Request a list of jobs up to a specified limit.
|
@@ -11214,7 +11252,7 @@ module Aws::SageMaker
|
|
11214
11252
|
# resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
|
11215
11253
|
# resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
|
11216
11254
|
# resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
11217
|
-
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
|
11255
|
+
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
|
11218
11256
|
# resp.auto_ml_job_summaries[0].creation_time #=> Time
|
11219
11257
|
# resp.auto_ml_job_summaries[0].end_time #=> Time
|
11220
11258
|
# resp.auto_ml_job_summaries[0].last_modified_time #=> Time
|
@@ -17408,7 +17446,7 @@ module Aws::SageMaker
|
|
17408
17446
|
params: params,
|
17409
17447
|
config: config)
|
17410
17448
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
17411
|
-
context[:gem_version] = '1.
|
17449
|
+
context[:gem_version] = '1.87.0'
|
17412
17450
|
Seahorse::Client::Request.new(handlers, context)
|
17413
17451
|
end
|
17414
17452
|
|
@@ -87,6 +87,7 @@ module Aws::SageMaker
|
|
87
87
|
AttributeName = Shapes::StringShape.new(name: 'AttributeName')
|
88
88
|
AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
|
89
89
|
AuthMode = Shapes::StringShape.new(name: 'AuthMode')
|
90
|
+
AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
|
90
91
|
AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
|
91
92
|
AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
|
92
93
|
AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
|
@@ -884,6 +885,8 @@ module Aws::SageMaker
|
|
884
885
|
ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
|
885
886
|
ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
|
886
887
|
ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
|
888
|
+
ModelDeployConfig = Shapes::StructureShape.new(name: 'ModelDeployConfig')
|
889
|
+
ModelDeployResult = Shapes::StructureShape.new(name: 'ModelDeployResult')
|
887
890
|
ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
|
888
891
|
ModelExplainabilityAppSpecification = Shapes::StructureShape.new(name: 'ModelExplainabilityAppSpecification')
|
889
892
|
ModelExplainabilityBaselineConfig = Shapes::StructureShape.new(name: 'ModelExplainabilityBaselineConfig')
|
@@ -1899,6 +1902,7 @@ module Aws::SageMaker
|
|
1899
1902
|
CreateAutoMLJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
|
1900
1903
|
CreateAutoMLJobRequest.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
|
1901
1904
|
CreateAutoMLJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
1905
|
+
CreateAutoMLJobRequest.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
1902
1906
|
CreateAutoMLJobRequest.struct_class = Types::CreateAutoMLJobRequest
|
1903
1907
|
|
1904
1908
|
CreateAutoMLJobResponse.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
|
@@ -2722,6 +2726,8 @@ module Aws::SageMaker
|
|
2722
2726
|
DescribeAutoMLJobResponse.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
|
2723
2727
|
DescribeAutoMLJobResponse.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
|
2724
2728
|
DescribeAutoMLJobResponse.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: ResolvedAttributes, location_name: "ResolvedAttributes"))
|
2729
|
+
DescribeAutoMLJobResponse.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
2730
|
+
DescribeAutoMLJobResponse.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
|
2725
2731
|
DescribeAutoMLJobResponse.struct_class = Types::DescribeAutoMLJobResponse
|
2726
2732
|
|
2727
2733
|
DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
|
@@ -4763,6 +4769,13 @@ module Aws::SageMaker
|
|
4763
4769
|
ModelDataQuality.add_member(:constraints, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Constraints"))
|
4764
4770
|
ModelDataQuality.struct_class = Types::ModelDataQuality
|
4765
4771
|
|
4772
|
+
ModelDeployConfig.add_member(:auto_generate_endpoint_name, Shapes::ShapeRef.new(shape: AutoGenerateEndpointName, location_name: "AutoGenerateEndpointName"))
|
4773
|
+
ModelDeployConfig.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
|
4774
|
+
ModelDeployConfig.struct_class = Types::ModelDeployConfig
|
4775
|
+
|
4776
|
+
ModelDeployResult.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
|
4777
|
+
ModelDeployResult.struct_class = Types::ModelDeployResult
|
4778
|
+
|
4766
4779
|
ModelDigests.add_member(:artifact_digest, Shapes::ShapeRef.new(shape: ArtifactDigest, location_name: "ArtifactDigest"))
|
4767
4780
|
ModelDigests.struct_class = Types::ModelDigests
|
4768
4781
|
|
@@ -1706,10 +1706,10 @@ module Aws::SageMaker
|
|
1706
1706
|
end
|
1707
1707
|
|
1708
1708
|
# An Autopilot job returns recommendations, or candidates. Each
|
1709
|
-
# candidate has futher details about the steps
|
1709
|
+
# candidate has futher details about the steps involved and the status.
|
1710
1710
|
#
|
1711
1711
|
# @!attribute [rw] candidate_name
|
1712
|
-
# The candidate
|
1712
|
+
# The name of the candidate.
|
1713
1713
|
# @return [String]
|
1714
1714
|
#
|
1715
1715
|
# @!attribute [rw] final_auto_ml_job_objective_metric
|
@@ -1717,11 +1717,11 @@ module Aws::SageMaker
|
|
1717
1717
|
# @return [Types::FinalAutoMLJobObjectiveMetric]
|
1718
1718
|
#
|
1719
1719
|
# @!attribute [rw] objective_status
|
1720
|
-
# The objective status.
|
1720
|
+
# The objective's status.
|
1721
1721
|
# @return [String]
|
1722
1722
|
#
|
1723
1723
|
# @!attribute [rw] candidate_steps
|
1724
|
-
#
|
1724
|
+
# Information about the candidate's steps.
|
1725
1725
|
# @return [Array<Types::AutoMLCandidateStep>]
|
1726
1726
|
#
|
1727
1727
|
# @!attribute [rw] candidate_status
|
@@ -1729,7 +1729,7 @@ module Aws::SageMaker
|
|
1729
1729
|
# @return [String]
|
1730
1730
|
#
|
1731
1731
|
# @!attribute [rw] inference_containers
|
1732
|
-
#
|
1732
|
+
# Information about the inference container definitions.
|
1733
1733
|
# @return [Array<Types::AutoMLContainerDefinition>]
|
1734
1734
|
#
|
1735
1735
|
# @!attribute [rw] creation_time
|
@@ -1770,20 +1770,20 @@ module Aws::SageMaker
|
|
1770
1770
|
include Aws::Structure
|
1771
1771
|
end
|
1772
1772
|
|
1773
|
-
# Information about the steps for a
|
1773
|
+
# Information about the steps for a candidate and what step it is
|
1774
1774
|
# working on.
|
1775
1775
|
#
|
1776
1776
|
# @!attribute [rw] candidate_step_type
|
1777
|
-
# Whether the
|
1777
|
+
# Whether the candidate is at the transform, training, or processing
|
1778
1778
|
# step.
|
1779
1779
|
# @return [String]
|
1780
1780
|
#
|
1781
1781
|
# @!attribute [rw] candidate_step_arn
|
1782
|
-
# The ARN for the
|
1782
|
+
# The ARN for the candidate's step.
|
1783
1783
|
# @return [String]
|
1784
1784
|
#
|
1785
1785
|
# @!attribute [rw] candidate_step_name
|
1786
|
-
# The name for the
|
1786
|
+
# The name for the candidate's step.
|
1787
1787
|
# @return [String]
|
1788
1788
|
#
|
1789
1789
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateStep AWS API Documentation
|
@@ -1848,8 +1848,8 @@ module Aws::SageMaker
|
|
1848
1848
|
# @return [String]
|
1849
1849
|
#
|
1850
1850
|
# @!attribute [rw] environment
|
1851
|
-
#
|
1852
|
-
# see .
|
1851
|
+
# The environment variables to set in the container. For more
|
1852
|
+
# information, see .
|
1853
1853
|
# @return [Hash<String,String>]
|
1854
1854
|
#
|
1855
1855
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
|
@@ -1890,14 +1890,14 @@ module Aws::SageMaker
|
|
1890
1890
|
include Aws::Structure
|
1891
1891
|
end
|
1892
1892
|
|
1893
|
-
#
|
1893
|
+
# The artifacts that are generated during an AutoML job.
|
1894
1894
|
#
|
1895
1895
|
# @!attribute [rw] candidate_definition_notebook_location
|
1896
|
-
# The URL
|
1896
|
+
# The URL of the notebook location.
|
1897
1897
|
# @return [String]
|
1898
1898
|
#
|
1899
1899
|
# @!attribute [rw] data_exploration_notebook_location
|
1900
|
-
# The URL
|
1900
|
+
# The URL of the notebook location.
|
1901
1901
|
# @return [String]
|
1902
1902
|
#
|
1903
1903
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobArtifacts AWS API Documentation
|
@@ -1972,7 +1972,7 @@ module Aws::SageMaker
|
|
1972
1972
|
# @return [Types::AutoMLJobCompletionCriteria]
|
1973
1973
|
#
|
1974
1974
|
# @!attribute [rw] security_config
|
1975
|
-
#
|
1975
|
+
# The security configuration for traffic encryption or Amazon VPC
|
1976
1976
|
# settings.
|
1977
1977
|
# @return [Types::AutoMLSecurityConfig]
|
1978
1978
|
#
|
@@ -2004,23 +2004,23 @@ module Aws::SageMaker
|
|
2004
2004
|
#
|
2005
2005
|
# * `MSE`\: The mean squared error (MSE) is the average of the squared
|
2006
2006
|
# differences between the predicted and actual values. It is used
|
2007
|
-
# for regression. MSE values are always positive
|
2008
|
-
# is at predicting the actual values the smaller the MSE value.
|
2009
|
-
# the data contains outliers, they tend to dominate the MSE
|
2010
|
-
# might cause subpar prediction performance.
|
2011
|
-
#
|
2012
|
-
# * `Accuracy`\: The ratio of the number correctly classified items
|
2013
|
-
# the total number (correctly and incorrectly) classified
|
2014
|
-
# used for binary and multiclass classification.
|
2015
|
-
# the predicted class values are to the actual
|
2016
|
-
# values vary between zero and one
|
2017
|
-
# zero perfect inaccuracy.
|
2007
|
+
# for regression. MSE values are always positive: the better a model
|
2008
|
+
# is at predicting the actual values, the smaller the MSE value.
|
2009
|
+
# When the data contains outliers, they tend to dominate the MSE,
|
2010
|
+
# which might cause subpar prediction performance.
|
2011
|
+
#
|
2012
|
+
# * `Accuracy`\: The ratio of the number of correctly classified items
|
2013
|
+
# to the total number of (correctly and incorrectly) classified
|
2014
|
+
# items. It is used for binary and multiclass classification. It
|
2015
|
+
# measures how close the predicted class values are to the actual
|
2016
|
+
# values. Accuracy values vary between zero and one: one indicates
|
2017
|
+
# perfect accuracy and zero indicates perfect inaccuracy.
|
2018
2018
|
#
|
2019
2019
|
# * `F1`\: The F1 score is the harmonic mean of the precision and
|
2020
2020
|
# recall. It is used for binary classification into classes
|
2021
2021
|
# traditionally referred to as positive and negative. Predictions
|
2022
|
-
# are said to be true when they match their actual (correct) class
|
2023
|
-
# false when they do not. Precision is the ratio of the true
|
2022
|
+
# are said to be true when they match their actual (correct) class
|
2023
|
+
# and false when they do not. Precision is the ratio of the true
|
2024
2024
|
# positive predictions to all positive predictions (including the
|
2025
2025
|
# false positives) in a data set and measures the quality of the
|
2026
2026
|
# prediction when it predicts the positive class. Recall (or
|
@@ -2029,7 +2029,7 @@ module Aws::SageMaker
|
|
2029
2029
|
# predicts the actual class members in a data set. The standard F1
|
2030
2030
|
# score weighs precision and recall equally. But which metric is
|
2031
2031
|
# paramount typically depends on specific aspects of a problem. F1
|
2032
|
-
# scores vary between zero and one
|
2032
|
+
# scores vary between zero and one: one indicates the best possible
|
2033
2033
|
# performance and zero the worst.
|
2034
2034
|
#
|
2035
2035
|
# * `AUC`\: The area under the curve (AUC) metric is used to compare
|
@@ -2047,20 +2047,21 @@ module Aws::SageMaker
|
|
2047
2047
|
# The AUC score can also be interpreted as the probability that a
|
2048
2048
|
# randomly selected positive data point is more likely to be
|
2049
2049
|
# predicted positive than a randomly selected negative example. AUC
|
2050
|
-
# scores vary between zero and one
|
2051
|
-
#
|
2052
|
-
#
|
2053
|
-
#
|
2050
|
+
# scores vary between zero and one: a score of one indicates perfect
|
2051
|
+
# accuracy and a score of one half indicates that the prediction is
|
2052
|
+
# not better than a random classifier. Values under one half predict
|
2053
|
+
# less accurately than a random predictor. But such consistently bad
|
2054
|
+
# predictors can simply be inverted to obtain better than random
|
2054
2055
|
# predictors.
|
2055
2056
|
#
|
2056
2057
|
# * `F1macro`\: The F1macro score applies F1 scoring to multiclass
|
2057
2058
|
# classification. In this context, you have multiple classes to
|
2058
2059
|
# predict. You just calculate the precision and recall for each
|
2059
2060
|
# class as you did for the positive class in binary classification.
|
2060
|
-
# Then
|
2061
|
+
# Then, use these values to calculate the F1 score for each class
|
2061
2062
|
# and average them to obtain the F1macro score. F1macro scores vary
|
2062
|
-
# between zero and one
|
2063
|
-
# zero the worst.
|
2063
|
+
# between zero and one: one indicates the best possible performance
|
2064
|
+
# and zero the worst.
|
2064
2065
|
#
|
2065
2066
|
# If you do not specify a metric explicitly, the default behavior is
|
2066
2067
|
# to automatically use:
|
@@ -2226,7 +2227,7 @@ module Aws::SageMaker
|
|
2226
2227
|
# @return [Boolean]
|
2227
2228
|
#
|
2228
2229
|
# @!attribute [rw] vpc_config
|
2229
|
-
# VPC configuration.
|
2230
|
+
# The VPC configuration.
|
2230
2231
|
# @return [Types::VpcConfig]
|
2231
2232
|
#
|
2232
2233
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLSecurityConfig AWS API Documentation
|
@@ -2339,11 +2340,11 @@ module Aws::SageMaker
|
|
2339
2340
|
include Aws::Structure
|
2340
2341
|
end
|
2341
2342
|
|
2342
|
-
#
|
2343
|
+
# The location of artifacts for an AutoML candidate job.
|
2343
2344
|
#
|
2344
2345
|
# @!attribute [rw] explainability
|
2345
|
-
# The S3 prefix to the explainability artifacts generated for
|
2346
|
-
# AutoML candidate.
|
2346
|
+
# The Amazon S3 prefix to the explainability artifacts generated for
|
2347
|
+
# the AutoML candidate.
|
2347
2348
|
# @return [String]
|
2348
2349
|
#
|
2349
2350
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
|
@@ -2357,7 +2358,8 @@ module Aws::SageMaker
|
|
2357
2358
|
# The properties of an AutoML candidate job.
|
2358
2359
|
#
|
2359
2360
|
# @!attribute [rw] candidate_artifact_locations
|
2360
|
-
# The S3 prefix to the artifacts generated for an AutoML
|
2361
|
+
# The Amazon S3 prefix to the artifacts generated for an AutoML
|
2362
|
+
# candidate.
|
2361
2363
|
# @return [Types::CandidateArtifactLocations]
|
2362
2364
|
#
|
2363
2365
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
|
@@ -3853,6 +3855,10 @@ module Aws::SageMaker
|
|
3853
3855
|
# value: "TagValue", # required
|
3854
3856
|
# },
|
3855
3857
|
# ],
|
3858
|
+
# model_deploy_config: {
|
3859
|
+
# auto_generate_endpoint_name: false,
|
3860
|
+
# endpoint_name: "EndpointName",
|
3861
|
+
# },
|
3856
3862
|
# }
|
3857
3863
|
#
|
3858
3864
|
# @!attribute [rw] auto_ml_job_name
|
@@ -3871,13 +3877,17 @@ module Aws::SageMaker
|
|
3871
3877
|
# Provides information about encryption and the Amazon S3 output path
|
3872
3878
|
# needed to store artifacts from an AutoML job. Format(s) supported:
|
3873
3879
|
# CSV.
|
3880
|
+
#
|
3881
|
+
# <para>Specifies whether to automatically deploy the best
|
3882
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
3883
|
+
# deployed automatically.</para>
|
3874
3884
|
# @return [Types::AutoMLOutputDataConfig]
|
3875
3885
|
#
|
3876
3886
|
# @!attribute [rw] problem_type
|
3877
3887
|
# Defines the type of supervised learning available for the
|
3878
|
-
# candidates. Options include: BinaryClassification
|
3879
|
-
# MulticlassClassification
|
3880
|
-
# [ Amazon SageMaker Autopilot problem types and algorithm
|
3888
|
+
# candidates. Options include: `BinaryClassification`,
|
3889
|
+
# `MulticlassClassification`, and `Regression`. For more information,
|
3890
|
+
# see [ Amazon SageMaker Autopilot problem types and algorithm
|
3881
3891
|
# support][1].
|
3882
3892
|
#
|
3883
3893
|
#
|
@@ -3887,17 +3897,21 @@ module Aws::SageMaker
|
|
3887
3897
|
#
|
3888
3898
|
# @!attribute [rw] auto_ml_job_objective
|
3889
3899
|
# Defines the objective metric used to measure the predictive quality
|
3890
|
-
# of an AutoML job. You provide
|
3900
|
+
# of an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
3891
3901
|
# Autopilot infers whether to minimize or maximize it.
|
3892
3902
|
# @return [Types::AutoMLJobObjective]
|
3893
3903
|
#
|
3894
3904
|
# @!attribute [rw] auto_ml_job_config
|
3895
|
-
# Contains CompletionCriteria and SecurityConfig settings for the
|
3905
|
+
# Contains `CompletionCriteria` and `SecurityConfig` settings for the
|
3896
3906
|
# AutoML job.
|
3897
3907
|
# @return [Types::AutoMLJobConfig]
|
3898
3908
|
#
|
3899
3909
|
# @!attribute [rw] role_arn
|
3900
3910
|
# The ARN of the role that is used to access the data.
|
3911
|
+
#
|
3912
|
+
# <para>Specifies whether to automatically deploy the best
|
3913
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
3914
|
+
# deployed automatically.</para>
|
3901
3915
|
# @return [String]
|
3902
3916
|
#
|
3903
3917
|
# @!attribute [rw] generate_candidate_definitions_only
|
@@ -3911,6 +3925,11 @@ module Aws::SageMaker
|
|
3911
3925
|
# unique per resource.
|
3912
3926
|
# @return [Array<Types::Tag>]
|
3913
3927
|
#
|
3928
|
+
# @!attribute [rw] model_deploy_config
|
3929
|
+
# Specifies how to generate the endpoint name for an automatic
|
3930
|
+
# one-click Autopilot model deployment.
|
3931
|
+
# @return [Types::ModelDeployConfig]
|
3932
|
+
#
|
3914
3933
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobRequest AWS API Documentation
|
3915
3934
|
#
|
3916
3935
|
class CreateAutoMLJobRequest < Struct.new(
|
@@ -3922,7 +3941,8 @@ module Aws::SageMaker
|
|
3922
3941
|
:auto_ml_job_config,
|
3923
3942
|
:role_arn,
|
3924
3943
|
:generate_candidate_definitions_only,
|
3925
|
-
:tags
|
3944
|
+
:tags,
|
3945
|
+
:model_deploy_config)
|
3926
3946
|
SENSITIVE = []
|
3927
3947
|
include Aws::Structure
|
3928
3948
|
end
|
@@ -7090,9 +7110,9 @@ module Aws::SageMaker
|
|
7090
7110
|
# @!attribute [rw] direct_internet_access
|
7091
7111
|
# Sets whether Amazon SageMaker provides internet access to the
|
7092
7112
|
# notebook instance. If you set this to `Disabled` this notebook
|
7093
|
-
# instance
|
7094
|
-
#
|
7095
|
-
#
|
7113
|
+
# instance is able to access resources only in your VPC, and is not be
|
7114
|
+
# able to connect to Amazon SageMaker training and endpoint services
|
7115
|
+
# unless you configure a NAT Gateway in your VPC.
|
7096
7116
|
#
|
7097
7117
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
7098
7118
|
# by Default][1]. You can set the value of this parameter to
|
@@ -9029,7 +9049,9 @@ module Aws::SageMaker
|
|
9029
9049
|
# The valid values are `None` and `Input`. The default value is
|
9030
9050
|
# `None`, which specifies not to join the input with the transformed
|
9031
9051
|
# data. If you want the batch transform job to join the original input
|
9032
|
-
# data with the transformed data, set `JoinSource` to `Input`.
|
9052
|
+
# data with the transformed data, set `JoinSource` to `Input`. You can
|
9053
|
+
# specify `OutputFilter` as an additional filter to select a portion
|
9054
|
+
# of the joined dataset and store it in the output file.
|
9033
9055
|
#
|
9034
9056
|
# For JSON or JSONLines objects, such as a JSON array, Amazon
|
9035
9057
|
# SageMaker adds the transformed data to the input JSON object in an
|
@@ -9039,10 +9061,18 @@ module Aws::SageMaker
|
|
9039
9061
|
# file, and the input data is stored under the `SageMakerInput` key
|
9040
9062
|
# and the results are stored in `SageMakerOutput`.
|
9041
9063
|
#
|
9042
|
-
# For CSV
|
9043
|
-
# the
|
9044
|
-
#
|
9045
|
-
# the transformed data and the output
|
9064
|
+
# For CSV data, Amazon SageMaker takes each row as a JSON array and
|
9065
|
+
# joins the transformed data with the input by appending each
|
9066
|
+
# transformed row to the end of the input. The joined data has the
|
9067
|
+
# original input data followed by the transformed data and the output
|
9068
|
+
# is a CSV file.
|
9069
|
+
#
|
9070
|
+
# For information on how joining in applied, see [Workflow for
|
9071
|
+
# Associating Inferences with Input Records][1].
|
9072
|
+
#
|
9073
|
+
#
|
9074
|
+
#
|
9075
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow
|
9046
9076
|
# @return [String]
|
9047
9077
|
#
|
9048
9078
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
|
@@ -10968,7 +10998,7 @@ module Aws::SageMaker
|
|
10968
10998
|
# @return [Time]
|
10969
10999
|
#
|
10970
11000
|
# @!attribute [rw] failure_reason
|
10971
|
-
# Returns the job
|
11001
|
+
# Returns the failure reason for an AutoML job, when applicable.
|
10972
11002
|
# @return [String]
|
10973
11003
|
#
|
10974
11004
|
# @!attribute [rw] partial_failure_reasons
|
@@ -10976,11 +11006,11 @@ module Aws::SageMaker
|
|
10976
11006
|
# @return [Array<Types::AutoMLPartialFailureReason>]
|
10977
11007
|
#
|
10978
11008
|
# @!attribute [rw] best_candidate
|
10979
|
-
# Returns the job's
|
11009
|
+
# Returns the job's best `AutoMLCandidate`.
|
10980
11010
|
# @return [Types::AutoMLCandidate]
|
10981
11011
|
#
|
10982
11012
|
# @!attribute [rw] auto_ml_job_status
|
10983
|
-
# Returns the status of the AutoML job
|
11013
|
+
# Returns the status of the AutoML job.
|
10984
11014
|
# @return [String]
|
10985
11015
|
#
|
10986
11016
|
# @!attribute [rw] auto_ml_job_secondary_status
|
@@ -10988,21 +11018,31 @@ module Aws::SageMaker
|
|
10988
11018
|
# @return [String]
|
10989
11019
|
#
|
10990
11020
|
# @!attribute [rw] generate_candidate_definitions_only
|
10991
|
-
#
|
11021
|
+
# Indicates whether the output for an AutoML job generates candidate
|
11022
|
+
# definitions only.
|
10992
11023
|
# @return [Boolean]
|
10993
11024
|
#
|
10994
11025
|
# @!attribute [rw] auto_ml_job_artifacts
|
10995
11026
|
# Returns information on the job's artifacts found in
|
10996
|
-
# AutoMLJobArtifacts
|
11027
|
+
# `AutoMLJobArtifacts`.
|
10997
11028
|
# @return [Types::AutoMLJobArtifacts]
|
10998
11029
|
#
|
10999
11030
|
# @!attribute [rw] resolved_attributes
|
11000
|
-
# This contains ProblemType
|
11001
|
-
# CompletionCriteria
|
11002
|
-
# auto-inferred. If you do provide them,
|
11003
|
-
# provide.
|
11031
|
+
# This contains `ProblemType`, `AutoMLJobObjective` and
|
11032
|
+
# `CompletionCriteria`. If you do not provide these values, they are
|
11033
|
+
# auto-inferred. If you do provide them, the values used are the ones
|
11034
|
+
# you provide.
|
11004
11035
|
# @return [Types::ResolvedAttributes]
|
11005
11036
|
#
|
11037
|
+
# @!attribute [rw] model_deploy_config
|
11038
|
+
# Indicates whether the model was deployed automatically to an
|
11039
|
+
# endpoint and the name of that endpoint if deployed automatically.
|
11040
|
+
# @return [Types::ModelDeployConfig]
|
11041
|
+
#
|
11042
|
+
# @!attribute [rw] model_deploy_result
|
11043
|
+
# Provides information about endpoint for the model deployment.
|
11044
|
+
# @return [Types::ModelDeployResult]
|
11045
|
+
#
|
11006
11046
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
|
11007
11047
|
#
|
11008
11048
|
class DescribeAutoMLJobResponse < Struct.new(
|
@@ -11024,7 +11064,9 @@ module Aws::SageMaker
|
|
11024
11064
|
:auto_ml_job_secondary_status,
|
11025
11065
|
:generate_candidate_definitions_only,
|
11026
11066
|
:auto_ml_job_artifacts,
|
11027
|
-
:resolved_attributes
|
11067
|
+
:resolved_attributes,
|
11068
|
+
:model_deploy_config,
|
11069
|
+
:model_deploy_result)
|
11028
11070
|
SENSITIVE = []
|
11029
11071
|
include Aws::Structure
|
11030
11072
|
end
|
@@ -14112,7 +14154,7 @@ module Aws::SageMaker
|
|
14112
14154
|
#
|
14113
14155
|
# * `LaunchingMLInstances`
|
14114
14156
|
#
|
14115
|
-
# * `
|
14157
|
+
# * `PreparingTraining`
|
14116
14158
|
#
|
14117
14159
|
# * `DownloadingTrainingImage`
|
14118
14160
|
# @return [String]
|
@@ -19438,6 +19480,7 @@ module Aws::SageMaker
|
|
19438
19480
|
# @return [String]
|
19439
19481
|
#
|
19440
19482
|
# @!attribute [rw] work_requester_account_id
|
19483
|
+
# The AWS account ID of the account used to start the labeling job.
|
19441
19484
|
# @return [String]
|
19442
19485
|
#
|
19443
19486
|
# @!attribute [rw] creation_time
|
@@ -20372,12 +20415,11 @@ module Aws::SageMaker
|
|
20372
20415
|
# @return [String]
|
20373
20416
|
#
|
20374
20417
|
# @!attribute [rw] sort_order
|
20375
|
-
# The sort order for the results. The default is Descending
|
20418
|
+
# The sort order for the results. The default is `Descending`.
|
20376
20419
|
# @return [String]
|
20377
20420
|
#
|
20378
20421
|
# @!attribute [rw] sort_by
|
20379
|
-
# The parameter by which to sort the results. The default is
|
20380
|
-
# AutoMLJobName.
|
20422
|
+
# The parameter by which to sort the results. The default is `Name`.
|
20381
20423
|
# @return [String]
|
20382
20424
|
#
|
20383
20425
|
# @!attribute [rw] max_results
|
@@ -20483,7 +20525,7 @@ module Aws::SageMaker
|
|
20483
20525
|
end
|
20484
20526
|
|
20485
20527
|
# @!attribute [rw] candidates
|
20486
|
-
# Summaries about the
|
20528
|
+
# Summaries about the `AutoMLCandidates`.
|
20487
20529
|
# @return [Array<Types::AutoMLCandidate>]
|
20488
20530
|
#
|
20489
20531
|
# @!attribute [rw] next_token
|
@@ -24520,7 +24562,7 @@ module Aws::SageMaker
|
|
24520
24562
|
#
|
24521
24563
|
# Model artifacts are the output that results from training a model, and
|
24522
24564
|
# typically consist of trained parameters, a model defintion that
|
24523
|
-
#
|
24565
|
+
# describes how to compute inferences, and other metadata.
|
24524
24566
|
#
|
24525
24567
|
# @!attribute [rw] s3_model_artifacts
|
24526
24568
|
# The path of the S3 object that contains the model artifacts. For
|
@@ -24708,6 +24750,66 @@ module Aws::SageMaker
|
|
24708
24750
|
include Aws::Structure
|
24709
24751
|
end
|
24710
24752
|
|
24753
|
+
# Specifies how to generate the endpoint name for an automatic one-click
|
24754
|
+
# Autopilot model deployment.
|
24755
|
+
#
|
24756
|
+
# @note When making an API call, you may pass ModelDeployConfig
|
24757
|
+
# data as a hash:
|
24758
|
+
#
|
24759
|
+
# {
|
24760
|
+
# auto_generate_endpoint_name: false,
|
24761
|
+
# endpoint_name: "EndpointName",
|
24762
|
+
# }
|
24763
|
+
#
|
24764
|
+
# @!attribute [rw] auto_generate_endpoint_name
|
24765
|
+
# Set to `True` to automatically generate an endpoint name for a
|
24766
|
+
# one-click Autopilot model deployment; set to `False` otherwise. The
|
24767
|
+
# default value is `True`.
|
24768
|
+
#
|
24769
|
+
# <note markdown="1"> If you set `AutoGenerateEndpointName` to `True`, do not specify the
|
24770
|
+
# `EndpointName`; otherwise a 400 error is thrown.
|
24771
|
+
#
|
24772
|
+
# </note>
|
24773
|
+
# @return [Boolean]
|
24774
|
+
#
|
24775
|
+
# @!attribute [rw] endpoint_name
|
24776
|
+
# Specifies the endpoint name to use for a one-click Autopilot model
|
24777
|
+
# deployment if the endpoint name is not generated automatically.
|
24778
|
+
#
|
24779
|
+
# <note markdown="1"> Specify the `EndpointName` if and only if you set
|
24780
|
+
# `AutoGenerateEndpointName` to `False`; otherwise a 400 error is
|
24781
|
+
# thrown.
|
24782
|
+
#
|
24783
|
+
# </note>
|
24784
|
+
# @return [String]
|
24785
|
+
#
|
24786
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployConfig AWS API Documentation
|
24787
|
+
#
|
24788
|
+
class ModelDeployConfig < Struct.new(
|
24789
|
+
:auto_generate_endpoint_name,
|
24790
|
+
:endpoint_name)
|
24791
|
+
SENSITIVE = []
|
24792
|
+
include Aws::Structure
|
24793
|
+
end
|
24794
|
+
|
24795
|
+
# Provides information about the endpoint of the model deployment.
|
24796
|
+
#
|
24797
|
+
# @!attribute [rw] endpoint_name
|
24798
|
+
# The name of the endpoint to which the model has been deployed.
|
24799
|
+
#
|
24800
|
+
# <note markdown="1"> If model deployment fails, this field is omitted from the response.
|
24801
|
+
#
|
24802
|
+
# </note>
|
24803
|
+
# @return [String]
|
24804
|
+
#
|
24805
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployResult AWS API Documentation
|
24806
|
+
#
|
24807
|
+
class ModelDeployResult < Struct.new(
|
24808
|
+
:endpoint_name)
|
24809
|
+
SENSITIVE = []
|
24810
|
+
include Aws::Structure
|
24811
|
+
end
|
24812
|
+
|
24711
24813
|
# Provides information to verify the integrity of stored model
|
24712
24814
|
# artifacts.
|
24713
24815
|
#
|
@@ -27487,7 +27589,7 @@ module Aws::SageMaker
|
|
27487
27589
|
#
|
27488
27590
|
#
|
27489
27591
|
#
|
27490
|
-
# [1]: https://docs.aws.amazon.com/
|
27592
|
+
# [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
|
27491
27593
|
# [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
|
27492
27594
|
# @return [String]
|
27493
27595
|
#
|
@@ -29788,7 +29890,7 @@ module Aws::SageMaker
|
|
29788
29890
|
include Aws::Structure
|
29789
29891
|
end
|
29790
29892
|
|
29791
|
-
#
|
29893
|
+
# Resource being accessed is in use.
|
29792
29894
|
#
|
29793
29895
|
# @!attribute [rw] message
|
29794
29896
|
# @return [String]
|
@@ -29845,7 +29947,7 @@ module Aws::SageMaker
|
|
29845
29947
|
include Aws::Structure
|
29846
29948
|
end
|
29847
29949
|
|
29848
|
-
#
|
29950
|
+
# Resource being access is not found.
|
29849
29951
|
#
|
29850
29952
|
# @!attribute [rw] message
|
29851
29953
|
# @return [String]
|
@@ -33380,7 +33482,7 @@ module Aws::SageMaker
|
|
33380
33482
|
include Aws::Structure
|
33381
33483
|
end
|
33382
33484
|
|
33383
|
-
# Represents an amount of money in United States dollars
|
33485
|
+
# Represents an amount of money in United States dollars.
|
33384
33486
|
#
|
33385
33487
|
# @note When making an API call, you may pass USD
|
33386
33488
|
# data as a hash:
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.87.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2021-05-
|
11
|
+
date: 2021-05-05 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|