aws-sdk-sagemaker 1.86.0 → 1.87.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 70252da28bdb9fdf188757e86122657444538bbb61d8cd8ee3affc624df66fe0
4
- data.tar.gz: 4569055d7487adf471f69404f3d0755b6b65626cb1cea5adf6e89e1f9e89254d
3
+ metadata.gz: 45e81df582a8f46bb7d50a6580109c4227b377cf5f59586ef50a9be34360cd6f
4
+ data.tar.gz: cd0db9d973fade8261b241ae82628d4b5067c939818d47f41cbeac57b0aa18cf
5
5
  SHA512:
6
- metadata.gz: 295f08196ef61ed263fe7464b0040bd77c733c7c1e50e726401eecc6ccca1d16e8a944501141e1e99edc86627f38653bb71619f7fd9c5b16b1c7a79cc778c88e
7
- data.tar.gz: 94ca0e69a233115b6e3f2a07874a974d47b2b268cbed09c9db304c36ad07e5fb329ca346a95793ea3fddd2b125fec06ddb3075e9d1b777029c3a7808ef7e4521
6
+ metadata.gz: 8f261b921d2bc164337131794649947746c4aa0b4ab5f165cb77f9d76fe3c8db164a563023d01f968747d281eccbd89362ac01a3c0e7aded1794fb5748a6e335
7
+ data.tar.gz: 73ddb1e3d21f94622d02fb6f96aa8e9aff3fe8a9aac9f4d7c8632aec4c8b1e4453d453165e09cc075466ddad9422a5423a9d2c4c4cf93993923e72443073f135
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.87.0 (2021-05-05)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Autopilot now provides the ability to automatically deploy the best model to an endpoint
8
+
4
9
  1.86.0 (2021-05-04)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.86.0
1
+ 1.87.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.86.0'
52
+ GEM_VERSION = '1.87.0'
53
53
 
54
54
  end
@@ -419,6 +419,17 @@ module Aws::SageMaker
419
419
  #
420
420
  # </note>
421
421
  #
422
+ # <note markdown="1"> Tags that you add to a SageMaker Studio Domain or User Profile by
423
+ # calling this API are also added to any Apps that the Domain or User
424
+ # Profile launches after you call this API, but not to Apps that the
425
+ # Domain or User Profile launched before you called this API. To make
426
+ # sure that the tags associated with a Domain or User Profile are also
427
+ # added to all Apps that the Domain or User Profile launches, add the
428
+ # tags when you first create the Domain or User Profile by specifying
429
+ # them in the `Tags` parameter of CreateDomain or CreateUserProfile.
430
+ #
431
+ # </note>
432
+ #
422
433
  #
423
434
  #
424
435
  # [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
@@ -1064,11 +1075,15 @@ module Aws::SageMaker
1064
1075
  # needed to store artifacts from an AutoML job. Format(s) supported:
1065
1076
  # CSV.
1066
1077
  #
1078
+ # &lt;para&gt;Specifies whether to automatically deploy the best
1079
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
1080
+ # deployed automatically.&lt;/para&gt;
1081
+ #
1067
1082
  # @option params [String] :problem_type
1068
1083
  # Defines the type of supervised learning available for the candidates.
1069
- # Options include: BinaryClassification, MulticlassClassification, and
1070
- # Regression. For more information, see [ Amazon SageMaker Autopilot
1071
- # problem types and algorithm support][1].
1084
+ # Options include: `BinaryClassification`, `MulticlassClassification`,
1085
+ # and `Regression`. For more information, see [ Amazon SageMaker
1086
+ # Autopilot problem types and algorithm support][1].
1072
1087
  #
1073
1088
  #
1074
1089
  #
@@ -1076,16 +1091,20 @@ module Aws::SageMaker
1076
1091
  #
1077
1092
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1078
1093
  # Defines the objective metric used to measure the predictive quality of
1079
- # an AutoML job. You provide a AutoMLJobObjective$MetricName and
1094
+ # an AutoML job. You provide an AutoMLJobObjective$MetricName and
1080
1095
  # Autopilot infers whether to minimize or maximize it.
1081
1096
  #
1082
1097
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1083
- # Contains CompletionCriteria and SecurityConfig settings for the AutoML
1084
- # job.
1098
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
1099
+ # AutoML job.
1085
1100
  #
1086
1101
  # @option params [required, String] :role_arn
1087
1102
  # The ARN of the role that is used to access the data.
1088
1103
  #
1104
+ # &lt;para&gt;Specifies whether to automatically deploy the best
1105
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
1106
+ # deployed automatically.&lt;/para&gt;
1107
+ #
1089
1108
  # @option params [Boolean] :generate_candidate_definitions_only
1090
1109
  # Generates possible candidates without training the models. A candidate
1091
1110
  # is a combination of data preprocessors, algorithms, and algorithm
@@ -1095,6 +1114,10 @@ module Aws::SageMaker
1095
1114
  # Each tag consists of a key and an optional value. Tag keys must be
1096
1115
  # unique per resource.
1097
1116
  #
1117
+ # @option params [Types::ModelDeployConfig] :model_deploy_config
1118
+ # Specifies how to generate the endpoint name for an automatic one-click
1119
+ # Autopilot model deployment.
1120
+ #
1098
1121
  # @return [Types::CreateAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1099
1122
  #
1100
1123
  # * {Types::CreateAutoMLJobResponse#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1146,6 +1169,10 @@ module Aws::SageMaker
1146
1169
  # value: "TagValue", # required
1147
1170
  # },
1148
1171
  # ],
1172
+ # model_deploy_config: {
1173
+ # auto_generate_endpoint_name: false,
1174
+ # endpoint_name: "EndpointName",
1175
+ # },
1149
1176
  # })
1150
1177
  #
1151
1178
  # @example Response structure
@@ -4386,10 +4413,10 @@ module Aws::SageMaker
4386
4413
  #
4387
4414
  # @option params [String] :direct_internet_access
4388
4415
  # Sets whether Amazon SageMaker provides internet access to the notebook
4389
- # instance. If you set this to `Disabled` this notebook instance will be
4390
- # able to access resources only in your VPC, and will not be able to
4391
- # connect to Amazon SageMaker training and endpoint services unless your
4392
- # configure a NAT Gateway in your VPC.
4416
+ # instance. If you set this to `Disabled` this notebook instance is able
4417
+ # to access resources only in your VPC, and is not be able to connect to
4418
+ # Amazon SageMaker training and endpoint services unless you configure a
4419
+ # NAT Gateway in your VPC.
4393
4420
  #
4394
4421
  # For more information, see [Notebook Instances Are Internet-Enabled by
4395
4422
  # Default][1]. You can set the value of this parameter to `Disabled`
@@ -6959,6 +6986,13 @@ module Aws::SageMaker
6959
6986
  #
6960
6987
  # </note>
6961
6988
  #
6989
+ # <note markdown="1"> When you call this API to delete tags from a SageMaker Studio Domain
6990
+ # or User Profile, the deleted tags are not removed from Apps that the
6991
+ # SageMaker Studio Domain or User Profile launched before you called
6992
+ # this API.
6993
+ #
6994
+ # </note>
6995
+ #
6962
6996
  # @option params [required, String] :resource_arn
6963
6997
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
6964
6998
  # delete.
@@ -7553,6 +7587,8 @@ module Aws::SageMaker
7553
7587
  # * {Types::DescribeAutoMLJobResponse#generate_candidate_definitions_only #generate_candidate_definitions_only} => Boolean
7554
7588
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
7555
7589
  # * {Types::DescribeAutoMLJobResponse#resolved_attributes #resolved_attributes} => Types::ResolvedAttributes
7590
+ # * {Types::DescribeAutoMLJobResponse#model_deploy_config #model_deploy_config} => Types::ModelDeployConfig
7591
+ # * {Types::DescribeAutoMLJobResponse#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
7556
7592
  #
7557
7593
  # @example Request syntax with placeholder values
7558
7594
  #
@@ -7610,7 +7646,7 @@ module Aws::SageMaker
7610
7646
  # resp.best_candidate.failure_reason #=> String
7611
7647
  # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
7612
7648
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
7613
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
7649
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
7614
7650
  # resp.generate_candidate_definitions_only #=> Boolean
7615
7651
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
7616
7652
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
@@ -7619,6 +7655,9 @@ module Aws::SageMaker
7619
7655
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
7620
7656
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
7621
7657
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
7658
+ # resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
7659
+ # resp.model_deploy_config.endpoint_name #=> String
7660
+ # resp.model_deploy_result.endpoint_name #=> String
7622
7661
  #
7623
7662
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJob AWS API Documentation
7624
7663
  #
@@ -11173,11 +11212,10 @@ module Aws::SageMaker
11173
11212
  # Request a list of jobs, using a filter for status.
11174
11213
  #
11175
11214
  # @option params [String] :sort_order
11176
- # The sort order for the results. The default is Descending.
11215
+ # The sort order for the results. The default is `Descending`.
11177
11216
  #
11178
11217
  # @option params [String] :sort_by
11179
- # The parameter by which to sort the results. The default is
11180
- # AutoMLJobName.
11218
+ # The parameter by which to sort the results. The default is `Name`.
11181
11219
  #
11182
11220
  # @option params [Integer] :max_results
11183
11221
  # Request a list of jobs up to a specified limit.
@@ -11214,7 +11252,7 @@ module Aws::SageMaker
11214
11252
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
11215
11253
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
11216
11254
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
11217
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
11255
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
11218
11256
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
11219
11257
  # resp.auto_ml_job_summaries[0].end_time #=> Time
11220
11258
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
@@ -17408,7 +17446,7 @@ module Aws::SageMaker
17408
17446
  params: params,
17409
17447
  config: config)
17410
17448
  context[:gem_name] = 'aws-sdk-sagemaker'
17411
- context[:gem_version] = '1.86.0'
17449
+ context[:gem_version] = '1.87.0'
17412
17450
  Seahorse::Client::Request.new(handlers, context)
17413
17451
  end
17414
17452
 
@@ -87,6 +87,7 @@ module Aws::SageMaker
87
87
  AttributeName = Shapes::StringShape.new(name: 'AttributeName')
88
88
  AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
89
89
  AuthMode = Shapes::StringShape.new(name: 'AuthMode')
90
+ AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
90
91
  AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
91
92
  AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
92
93
  AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
@@ -884,6 +885,8 @@ module Aws::SageMaker
884
885
  ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
885
886
  ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
886
887
  ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
888
+ ModelDeployConfig = Shapes::StructureShape.new(name: 'ModelDeployConfig')
889
+ ModelDeployResult = Shapes::StructureShape.new(name: 'ModelDeployResult')
887
890
  ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
888
891
  ModelExplainabilityAppSpecification = Shapes::StructureShape.new(name: 'ModelExplainabilityAppSpecification')
889
892
  ModelExplainabilityBaselineConfig = Shapes::StructureShape.new(name: 'ModelExplainabilityBaselineConfig')
@@ -1899,6 +1902,7 @@ module Aws::SageMaker
1899
1902
  CreateAutoMLJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
1900
1903
  CreateAutoMLJobRequest.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
1901
1904
  CreateAutoMLJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1905
+ CreateAutoMLJobRequest.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
1902
1906
  CreateAutoMLJobRequest.struct_class = Types::CreateAutoMLJobRequest
1903
1907
 
1904
1908
  CreateAutoMLJobResponse.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
@@ -2722,6 +2726,8 @@ module Aws::SageMaker
2722
2726
  DescribeAutoMLJobResponse.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
2723
2727
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
2724
2728
  DescribeAutoMLJobResponse.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: ResolvedAttributes, location_name: "ResolvedAttributes"))
2729
+ DescribeAutoMLJobResponse.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
2730
+ DescribeAutoMLJobResponse.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
2725
2731
  DescribeAutoMLJobResponse.struct_class = Types::DescribeAutoMLJobResponse
2726
2732
 
2727
2733
  DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
@@ -4763,6 +4769,13 @@ module Aws::SageMaker
4763
4769
  ModelDataQuality.add_member(:constraints, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Constraints"))
4764
4770
  ModelDataQuality.struct_class = Types::ModelDataQuality
4765
4771
 
4772
+ ModelDeployConfig.add_member(:auto_generate_endpoint_name, Shapes::ShapeRef.new(shape: AutoGenerateEndpointName, location_name: "AutoGenerateEndpointName"))
4773
+ ModelDeployConfig.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4774
+ ModelDeployConfig.struct_class = Types::ModelDeployConfig
4775
+
4776
+ ModelDeployResult.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4777
+ ModelDeployResult.struct_class = Types::ModelDeployResult
4778
+
4766
4779
  ModelDigests.add_member(:artifact_digest, Shapes::ShapeRef.new(shape: ArtifactDigest, location_name: "ArtifactDigest"))
4767
4780
  ModelDigests.struct_class = Types::ModelDigests
4768
4781
 
@@ -1706,10 +1706,10 @@ module Aws::SageMaker
1706
1706
  end
1707
1707
 
1708
1708
  # An Autopilot job returns recommendations, or candidates. Each
1709
- # candidate has futher details about the steps involed, and the status.
1709
+ # candidate has futher details about the steps involved and the status.
1710
1710
  #
1711
1711
  # @!attribute [rw] candidate_name
1712
- # The candidate name.
1712
+ # The name of the candidate.
1713
1713
  # @return [String]
1714
1714
  #
1715
1715
  # @!attribute [rw] final_auto_ml_job_objective_metric
@@ -1717,11 +1717,11 @@ module Aws::SageMaker
1717
1717
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1718
1718
  #
1719
1719
  # @!attribute [rw] objective_status
1720
- # The objective status.
1720
+ # The objective's status.
1721
1721
  # @return [String]
1722
1722
  #
1723
1723
  # @!attribute [rw] candidate_steps
1724
- # The candidate's steps.
1724
+ # Information about the candidate's steps.
1725
1725
  # @return [Array<Types::AutoMLCandidateStep>]
1726
1726
  #
1727
1727
  # @!attribute [rw] candidate_status
@@ -1729,7 +1729,7 @@ module Aws::SageMaker
1729
1729
  # @return [String]
1730
1730
  #
1731
1731
  # @!attribute [rw] inference_containers
1732
- # The inference containers.
1732
+ # Information about the inference container definitions.
1733
1733
  # @return [Array<Types::AutoMLContainerDefinition>]
1734
1734
  #
1735
1735
  # @!attribute [rw] creation_time
@@ -1770,20 +1770,20 @@ module Aws::SageMaker
1770
1770
  include Aws::Structure
1771
1771
  end
1772
1772
 
1773
- # Information about the steps for a Candidate, and what step it is
1773
+ # Information about the steps for a candidate and what step it is
1774
1774
  # working on.
1775
1775
  #
1776
1776
  # @!attribute [rw] candidate_step_type
1777
- # Whether the Candidate is at the transform, training, or processing
1777
+ # Whether the candidate is at the transform, training, or processing
1778
1778
  # step.
1779
1779
  # @return [String]
1780
1780
  #
1781
1781
  # @!attribute [rw] candidate_step_arn
1782
- # The ARN for the Candidate's step.
1782
+ # The ARN for the candidate's step.
1783
1783
  # @return [String]
1784
1784
  #
1785
1785
  # @!attribute [rw] candidate_step_name
1786
- # The name for the Candidate's step.
1786
+ # The name for the candidate's step.
1787
1787
  # @return [String]
1788
1788
  #
1789
1789
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateStep AWS API Documentation
@@ -1848,8 +1848,8 @@ module Aws::SageMaker
1848
1848
  # @return [String]
1849
1849
  #
1850
1850
  # @!attribute [rw] environment
1851
- # Environment variables to set in the container. For more information,
1852
- # see .
1851
+ # The environment variables to set in the container. For more
1852
+ # information, see .
1853
1853
  # @return [Hash<String,String>]
1854
1854
  #
1855
1855
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -1890,14 +1890,14 @@ module Aws::SageMaker
1890
1890
  include Aws::Structure
1891
1891
  end
1892
1892
 
1893
- # Artifacts that are generation during a job.
1893
+ # The artifacts that are generated during an AutoML job.
1894
1894
  #
1895
1895
  # @!attribute [rw] candidate_definition_notebook_location
1896
- # The URL to the notebook location.
1896
+ # The URL of the notebook location.
1897
1897
  # @return [String]
1898
1898
  #
1899
1899
  # @!attribute [rw] data_exploration_notebook_location
1900
- # The URL to the notebook location.
1900
+ # The URL of the notebook location.
1901
1901
  # @return [String]
1902
1902
  #
1903
1903
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobArtifacts AWS API Documentation
@@ -1972,7 +1972,7 @@ module Aws::SageMaker
1972
1972
  # @return [Types::AutoMLJobCompletionCriteria]
1973
1973
  #
1974
1974
  # @!attribute [rw] security_config
1975
- # Security configuration for traffic encryption or Amazon VPC
1975
+ # The security configuration for traffic encryption or Amazon VPC
1976
1976
  # settings.
1977
1977
  # @return [Types::AutoMLSecurityConfig]
1978
1978
  #
@@ -2004,23 +2004,23 @@ module Aws::SageMaker
2004
2004
  #
2005
2005
  # * `MSE`\: The mean squared error (MSE) is the average of the squared
2006
2006
  # differences between the predicted and actual values. It is used
2007
- # for regression. MSE values are always positive, the better a model
2008
- # is at predicting the actual values the smaller the MSE value. When
2009
- # the data contains outliers, they tend to dominate the MSE which
2010
- # might cause subpar prediction performance.
2011
- #
2012
- # * `Accuracy`\: The ratio of the number correctly classified items to
2013
- # the total number (correctly and incorrectly) classified. It is
2014
- # used for binary and multiclass classification. Measures how close
2015
- # the predicted class values are to the actual values. Accuracy
2016
- # values vary between zero and one, one being perfect accuracy and
2017
- # zero perfect inaccuracy.
2007
+ # for regression. MSE values are always positive: the better a model
2008
+ # is at predicting the actual values, the smaller the MSE value.
2009
+ # When the data contains outliers, they tend to dominate the MSE,
2010
+ # which might cause subpar prediction performance.
2011
+ #
2012
+ # * `Accuracy`\: The ratio of the number of correctly classified items
2013
+ # to the total number of (correctly and incorrectly) classified
2014
+ # items. It is used for binary and multiclass classification. It
2015
+ # measures how close the predicted class values are to the actual
2016
+ # values. Accuracy values vary between zero and one: one indicates
2017
+ # perfect accuracy and zero indicates perfect inaccuracy.
2018
2018
  #
2019
2019
  # * `F1`\: The F1 score is the harmonic mean of the precision and
2020
2020
  # recall. It is used for binary classification into classes
2021
2021
  # traditionally referred to as positive and negative. Predictions
2022
- # are said to be true when they match their actual (correct) class;
2023
- # false when they do not. Precision is the ratio of the true
2022
+ # are said to be true when they match their actual (correct) class
2023
+ # and false when they do not. Precision is the ratio of the true
2024
2024
  # positive predictions to all positive predictions (including the
2025
2025
  # false positives) in a data set and measures the quality of the
2026
2026
  # prediction when it predicts the positive class. Recall (or
@@ -2029,7 +2029,7 @@ module Aws::SageMaker
2029
2029
  # predicts the actual class members in a data set. The standard F1
2030
2030
  # score weighs precision and recall equally. But which metric is
2031
2031
  # paramount typically depends on specific aspects of a problem. F1
2032
- # scores vary between zero and one, one being the best possible
2032
+ # scores vary between zero and one: one indicates the best possible
2033
2033
  # performance and zero the worst.
2034
2034
  #
2035
2035
  # * `AUC`\: The area under the curve (AUC) metric is used to compare
@@ -2047,20 +2047,21 @@ module Aws::SageMaker
2047
2047
  # The AUC score can also be interpreted as the probability that a
2048
2048
  # randomly selected positive data point is more likely to be
2049
2049
  # predicted positive than a randomly selected negative example. AUC
2050
- # scores vary between zero and one, one being perfect accuracy and
2051
- # one half not better than a random classifier. Values less that one
2052
- # half predict worse than a random predictor and such consistently
2053
- # bad predictors can be inverted to obtain better than random
2050
+ # scores vary between zero and one: a score of one indicates perfect
2051
+ # accuracy and a score of one half indicates that the prediction is
2052
+ # not better than a random classifier. Values under one half predict
2053
+ # less accurately than a random predictor. But such consistently bad
2054
+ # predictors can simply be inverted to obtain better than random
2054
2055
  # predictors.
2055
2056
  #
2056
2057
  # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
2057
2058
  # classification. In this context, you have multiple classes to
2058
2059
  # predict. You just calculate the precision and recall for each
2059
2060
  # class as you did for the positive class in binary classification.
2060
- # Then used these values to calculate the F1 score for each class
2061
+ # Then, use these values to calculate the F1 score for each class
2061
2062
  # and average them to obtain the F1macro score. F1macro scores vary
2062
- # between zero and one, one being the best possible performance and
2063
- # zero the worst.
2063
+ # between zero and one: one indicates the best possible performance
2064
+ # and zero the worst.
2064
2065
  #
2065
2066
  # If you do not specify a metric explicitly, the default behavior is
2066
2067
  # to automatically use:
@@ -2226,7 +2227,7 @@ module Aws::SageMaker
2226
2227
  # @return [Boolean]
2227
2228
  #
2228
2229
  # @!attribute [rw] vpc_config
2229
- # VPC configuration.
2230
+ # The VPC configuration.
2230
2231
  # @return [Types::VpcConfig]
2231
2232
  #
2232
2233
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLSecurityConfig AWS API Documentation
@@ -2339,11 +2340,11 @@ module Aws::SageMaker
2339
2340
  include Aws::Structure
2340
2341
  end
2341
2342
 
2342
- # Location of artifacts for an AutoML candidate job.
2343
+ # The location of artifacts for an AutoML candidate job.
2343
2344
  #
2344
2345
  # @!attribute [rw] explainability
2345
- # The S3 prefix to the explainability artifacts generated for the
2346
- # AutoML candidate.
2346
+ # The Amazon S3 prefix to the explainability artifacts generated for
2347
+ # the AutoML candidate.
2347
2348
  # @return [String]
2348
2349
  #
2349
2350
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
@@ -2357,7 +2358,8 @@ module Aws::SageMaker
2357
2358
  # The properties of an AutoML candidate job.
2358
2359
  #
2359
2360
  # @!attribute [rw] candidate_artifact_locations
2360
- # The S3 prefix to the artifacts generated for an AutoML candidate.
2361
+ # The Amazon S3 prefix to the artifacts generated for an AutoML
2362
+ # candidate.
2361
2363
  # @return [Types::CandidateArtifactLocations]
2362
2364
  #
2363
2365
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
@@ -3853,6 +3855,10 @@ module Aws::SageMaker
3853
3855
  # value: "TagValue", # required
3854
3856
  # },
3855
3857
  # ],
3858
+ # model_deploy_config: {
3859
+ # auto_generate_endpoint_name: false,
3860
+ # endpoint_name: "EndpointName",
3861
+ # },
3856
3862
  # }
3857
3863
  #
3858
3864
  # @!attribute [rw] auto_ml_job_name
@@ -3871,13 +3877,17 @@ module Aws::SageMaker
3871
3877
  # Provides information about encryption and the Amazon S3 output path
3872
3878
  # needed to store artifacts from an AutoML job. Format(s) supported:
3873
3879
  # CSV.
3880
+ #
3881
+ # &lt;para&gt;Specifies whether to automatically deploy the best
3882
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
3883
+ # deployed automatically.&lt;/para&gt;
3874
3884
  # @return [Types::AutoMLOutputDataConfig]
3875
3885
  #
3876
3886
  # @!attribute [rw] problem_type
3877
3887
  # Defines the type of supervised learning available for the
3878
- # candidates. Options include: BinaryClassification,
3879
- # MulticlassClassification, and Regression. For more information, see
3880
- # [ Amazon SageMaker Autopilot problem types and algorithm
3888
+ # candidates. Options include: `BinaryClassification`,
3889
+ # `MulticlassClassification`, and `Regression`. For more information,
3890
+ # see [ Amazon SageMaker Autopilot problem types and algorithm
3881
3891
  # support][1].
3882
3892
  #
3883
3893
  #
@@ -3887,17 +3897,21 @@ module Aws::SageMaker
3887
3897
  #
3888
3898
  # @!attribute [rw] auto_ml_job_objective
3889
3899
  # Defines the objective metric used to measure the predictive quality
3890
- # of an AutoML job. You provide a AutoMLJobObjective$MetricName and
3900
+ # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
3891
3901
  # Autopilot infers whether to minimize or maximize it.
3892
3902
  # @return [Types::AutoMLJobObjective]
3893
3903
  #
3894
3904
  # @!attribute [rw] auto_ml_job_config
3895
- # Contains CompletionCriteria and SecurityConfig settings for the
3905
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
3896
3906
  # AutoML job.
3897
3907
  # @return [Types::AutoMLJobConfig]
3898
3908
  #
3899
3909
  # @!attribute [rw] role_arn
3900
3910
  # The ARN of the role that is used to access the data.
3911
+ #
3912
+ # &lt;para&gt;Specifies whether to automatically deploy the best
3913
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
3914
+ # deployed automatically.&lt;/para&gt;
3901
3915
  # @return [String]
3902
3916
  #
3903
3917
  # @!attribute [rw] generate_candidate_definitions_only
@@ -3911,6 +3925,11 @@ module Aws::SageMaker
3911
3925
  # unique per resource.
3912
3926
  # @return [Array<Types::Tag>]
3913
3927
  #
3928
+ # @!attribute [rw] model_deploy_config
3929
+ # Specifies how to generate the endpoint name for an automatic
3930
+ # one-click Autopilot model deployment.
3931
+ # @return [Types::ModelDeployConfig]
3932
+ #
3914
3933
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobRequest AWS API Documentation
3915
3934
  #
3916
3935
  class CreateAutoMLJobRequest < Struct.new(
@@ -3922,7 +3941,8 @@ module Aws::SageMaker
3922
3941
  :auto_ml_job_config,
3923
3942
  :role_arn,
3924
3943
  :generate_candidate_definitions_only,
3925
- :tags)
3944
+ :tags,
3945
+ :model_deploy_config)
3926
3946
  SENSITIVE = []
3927
3947
  include Aws::Structure
3928
3948
  end
@@ -7090,9 +7110,9 @@ module Aws::SageMaker
7090
7110
  # @!attribute [rw] direct_internet_access
7091
7111
  # Sets whether Amazon SageMaker provides internet access to the
7092
7112
  # notebook instance. If you set this to `Disabled` this notebook
7093
- # instance will be able to access resources only in your VPC, and will
7094
- # not be able to connect to Amazon SageMaker training and endpoint
7095
- # services unless your configure a NAT Gateway in your VPC.
7113
+ # instance is able to access resources only in your VPC, and is not be
7114
+ # able to connect to Amazon SageMaker training and endpoint services
7115
+ # unless you configure a NAT Gateway in your VPC.
7096
7116
  #
7097
7117
  # For more information, see [Notebook Instances Are Internet-Enabled
7098
7118
  # by Default][1]. You can set the value of this parameter to
@@ -9029,7 +9049,9 @@ module Aws::SageMaker
9029
9049
  # The valid values are `None` and `Input`. The default value is
9030
9050
  # `None`, which specifies not to join the input with the transformed
9031
9051
  # data. If you want the batch transform job to join the original input
9032
- # data with the transformed data, set `JoinSource` to `Input`.
9052
+ # data with the transformed data, set `JoinSource` to `Input`. You can
9053
+ # specify `OutputFilter` as an additional filter to select a portion
9054
+ # of the joined dataset and store it in the output file.
9033
9055
  #
9034
9056
  # For JSON or JSONLines objects, such as a JSON array, Amazon
9035
9057
  # SageMaker adds the transformed data to the input JSON object in an
@@ -9039,10 +9061,18 @@ module Aws::SageMaker
9039
9061
  # file, and the input data is stored under the `SageMakerInput` key
9040
9062
  # and the results are stored in `SageMakerOutput`.
9041
9063
  #
9042
- # For CSV files, Amazon SageMaker combines the transformed data with
9043
- # the input data at the end of the input data and stores it in the
9044
- # output file. The joined data has the joined input data followed by
9045
- # the transformed data and the output is a CSV file.
9064
+ # For CSV data, Amazon SageMaker takes each row as a JSON array and
9065
+ # joins the transformed data with the input by appending each
9066
+ # transformed row to the end of the input. The joined data has the
9067
+ # original input data followed by the transformed data and the output
9068
+ # is a CSV file.
9069
+ #
9070
+ # For information on how joining in applied, see [Workflow for
9071
+ # Associating Inferences with Input Records][1].
9072
+ #
9073
+ #
9074
+ #
9075
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow
9046
9076
  # @return [String]
9047
9077
  #
9048
9078
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
@@ -10968,7 +10998,7 @@ module Aws::SageMaker
10968
10998
  # @return [Time]
10969
10999
  #
10970
11000
  # @!attribute [rw] failure_reason
10971
- # Returns the job's FailureReason.
11001
+ # Returns the failure reason for an AutoML job, when applicable.
10972
11002
  # @return [String]
10973
11003
  #
10974
11004
  # @!attribute [rw] partial_failure_reasons
@@ -10976,11 +11006,11 @@ module Aws::SageMaker
10976
11006
  # @return [Array<Types::AutoMLPartialFailureReason>]
10977
11007
  #
10978
11008
  # @!attribute [rw] best_candidate
10979
- # Returns the job's BestCandidate.
11009
+ # Returns the job's best `AutoMLCandidate`.
10980
11010
  # @return [Types::AutoMLCandidate]
10981
11011
  #
10982
11012
  # @!attribute [rw] auto_ml_job_status
10983
- # Returns the status of the AutoML job's AutoMLJobStatus.
11013
+ # Returns the status of the AutoML job.
10984
11014
  # @return [String]
10985
11015
  #
10986
11016
  # @!attribute [rw] auto_ml_job_secondary_status
@@ -10988,21 +11018,31 @@ module Aws::SageMaker
10988
11018
  # @return [String]
10989
11019
  #
10990
11020
  # @!attribute [rw] generate_candidate_definitions_only
10991
- # Returns the job's output from GenerateCandidateDefinitionsOnly.
11021
+ # Indicates whether the output for an AutoML job generates candidate
11022
+ # definitions only.
10992
11023
  # @return [Boolean]
10993
11024
  #
10994
11025
  # @!attribute [rw] auto_ml_job_artifacts
10995
11026
  # Returns information on the job's artifacts found in
10996
- # AutoMLJobArtifacts.
11027
+ # `AutoMLJobArtifacts`.
10997
11028
  # @return [Types::AutoMLJobArtifacts]
10998
11029
  #
10999
11030
  # @!attribute [rw] resolved_attributes
11000
- # This contains ProblemType, AutoMLJobObjective and
11001
- # CompletionCriteria. If you do not provide these values, they are
11002
- # auto-inferred. If you do provide them, they are the values you
11003
- # provide.
11031
+ # This contains `ProblemType`, `AutoMLJobObjective` and
11032
+ # `CompletionCriteria`. If you do not provide these values, they are
11033
+ # auto-inferred. If you do provide them, the values used are the ones
11034
+ # you provide.
11004
11035
  # @return [Types::ResolvedAttributes]
11005
11036
  #
11037
+ # @!attribute [rw] model_deploy_config
11038
+ # Indicates whether the model was deployed automatically to an
11039
+ # endpoint and the name of that endpoint if deployed automatically.
11040
+ # @return [Types::ModelDeployConfig]
11041
+ #
11042
+ # @!attribute [rw] model_deploy_result
11043
+ # Provides information about endpoint for the model deployment.
11044
+ # @return [Types::ModelDeployResult]
11045
+ #
11006
11046
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
11007
11047
  #
11008
11048
  class DescribeAutoMLJobResponse < Struct.new(
@@ -11024,7 +11064,9 @@ module Aws::SageMaker
11024
11064
  :auto_ml_job_secondary_status,
11025
11065
  :generate_candidate_definitions_only,
11026
11066
  :auto_ml_job_artifacts,
11027
- :resolved_attributes)
11067
+ :resolved_attributes,
11068
+ :model_deploy_config,
11069
+ :model_deploy_result)
11028
11070
  SENSITIVE = []
11029
11071
  include Aws::Structure
11030
11072
  end
@@ -14112,7 +14154,7 @@ module Aws::SageMaker
14112
14154
  #
14113
14155
  # * `LaunchingMLInstances`
14114
14156
  #
14115
- # * `PreparingTrainingStack`
14157
+ # * `PreparingTraining`
14116
14158
  #
14117
14159
  # * `DownloadingTrainingImage`
14118
14160
  # @return [String]
@@ -19438,6 +19480,7 @@ module Aws::SageMaker
19438
19480
  # @return [String]
19439
19481
  #
19440
19482
  # @!attribute [rw] work_requester_account_id
19483
+ # The AWS account ID of the account used to start the labeling job.
19441
19484
  # @return [String]
19442
19485
  #
19443
19486
  # @!attribute [rw] creation_time
@@ -20372,12 +20415,11 @@ module Aws::SageMaker
20372
20415
  # @return [String]
20373
20416
  #
20374
20417
  # @!attribute [rw] sort_order
20375
- # The sort order for the results. The default is Descending.
20418
+ # The sort order for the results. The default is `Descending`.
20376
20419
  # @return [String]
20377
20420
  #
20378
20421
  # @!attribute [rw] sort_by
20379
- # The parameter by which to sort the results. The default is
20380
- # AutoMLJobName.
20422
+ # The parameter by which to sort the results. The default is `Name`.
20381
20423
  # @return [String]
20382
20424
  #
20383
20425
  # @!attribute [rw] max_results
@@ -20483,7 +20525,7 @@ module Aws::SageMaker
20483
20525
  end
20484
20526
 
20485
20527
  # @!attribute [rw] candidates
20486
- # Summaries about the Candidates.
20528
+ # Summaries about the `AutoMLCandidates`.
20487
20529
  # @return [Array<Types::AutoMLCandidate>]
20488
20530
  #
20489
20531
  # @!attribute [rw] next_token
@@ -24520,7 +24562,7 @@ module Aws::SageMaker
24520
24562
  #
24521
24563
  # Model artifacts are the output that results from training a model, and
24522
24564
  # typically consist of trained parameters, a model defintion that
24523
- # desribes how to compute inferences, and other metadata.
24565
+ # describes how to compute inferences, and other metadata.
24524
24566
  #
24525
24567
  # @!attribute [rw] s3_model_artifacts
24526
24568
  # The path of the S3 object that contains the model artifacts. For
@@ -24708,6 +24750,66 @@ module Aws::SageMaker
24708
24750
  include Aws::Structure
24709
24751
  end
24710
24752
 
24753
+ # Specifies how to generate the endpoint name for an automatic one-click
24754
+ # Autopilot model deployment.
24755
+ #
24756
+ # @note When making an API call, you may pass ModelDeployConfig
24757
+ # data as a hash:
24758
+ #
24759
+ # {
24760
+ # auto_generate_endpoint_name: false,
24761
+ # endpoint_name: "EndpointName",
24762
+ # }
24763
+ #
24764
+ # @!attribute [rw] auto_generate_endpoint_name
24765
+ # Set to `True` to automatically generate an endpoint name for a
24766
+ # one-click Autopilot model deployment; set to `False` otherwise. The
24767
+ # default value is `True`.
24768
+ #
24769
+ # <note markdown="1"> If you set `AutoGenerateEndpointName` to `True`, do not specify the
24770
+ # `EndpointName`; otherwise a 400 error is thrown.
24771
+ #
24772
+ # </note>
24773
+ # @return [Boolean]
24774
+ #
24775
+ # @!attribute [rw] endpoint_name
24776
+ # Specifies the endpoint name to use for a one-click Autopilot model
24777
+ # deployment if the endpoint name is not generated automatically.
24778
+ #
24779
+ # <note markdown="1"> Specify the `EndpointName` if and only if you set
24780
+ # `AutoGenerateEndpointName` to `False`; otherwise a 400 error is
24781
+ # thrown.
24782
+ #
24783
+ # </note>
24784
+ # @return [String]
24785
+ #
24786
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployConfig AWS API Documentation
24787
+ #
24788
+ class ModelDeployConfig < Struct.new(
24789
+ :auto_generate_endpoint_name,
24790
+ :endpoint_name)
24791
+ SENSITIVE = []
24792
+ include Aws::Structure
24793
+ end
24794
+
24795
+ # Provides information about the endpoint of the model deployment.
24796
+ #
24797
+ # @!attribute [rw] endpoint_name
24798
+ # The name of the endpoint to which the model has been deployed.
24799
+ #
24800
+ # <note markdown="1"> If model deployment fails, this field is omitted from the response.
24801
+ #
24802
+ # </note>
24803
+ # @return [String]
24804
+ #
24805
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployResult AWS API Documentation
24806
+ #
24807
+ class ModelDeployResult < Struct.new(
24808
+ :endpoint_name)
24809
+ SENSITIVE = []
24810
+ include Aws::Structure
24811
+ end
24812
+
24711
24813
  # Provides information to verify the integrity of stored model
24712
24814
  # artifacts.
24713
24815
  #
@@ -27487,7 +27589,7 @@ module Aws::SageMaker
27487
27589
  #
27488
27590
  #
27489
27591
  #
27490
- # [1]: https://docs.aws.amazon.com/mazonS3/latest/dev/UsingKMSEncryption.html
27592
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
27491
27593
  # [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
27492
27594
  # @return [String]
27493
27595
  #
@@ -29788,7 +29890,7 @@ module Aws::SageMaker
29788
29890
  include Aws::Structure
29789
29891
  end
29790
29892
 
29791
- # The resource being accessed is in use.
29893
+ # Resource being accessed is in use.
29792
29894
  #
29793
29895
  # @!attribute [rw] message
29794
29896
  # @return [String]
@@ -29845,7 +29947,7 @@ module Aws::SageMaker
29845
29947
  include Aws::Structure
29846
29948
  end
29847
29949
 
29848
- # The resource being accessed was not found.
29950
+ # Resource being access is not found.
29849
29951
  #
29850
29952
  # @!attribute [rw] message
29851
29953
  # @return [String]
@@ -33380,7 +33482,7 @@ module Aws::SageMaker
33380
33482
  include Aws::Structure
33381
33483
  end
33382
33484
 
33383
- # Represents an amount of money in United States dollars/
33485
+ # Represents an amount of money in United States dollars.
33384
33486
  #
33385
33487
  # @note When making an API call, you may pass USD
33386
33488
  # data as a hash:
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.86.0
4
+ version: 1.87.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-05-04 00:00:00.000000000 Z
11
+ date: 2021-05-05 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core