aws-sdk-sagemaker 1.84.0 → 1.89.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -87,6 +87,7 @@ module Aws::SageMaker
87
87
  AttributeName = Shapes::StringShape.new(name: 'AttributeName')
88
88
  AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
89
89
  AuthMode = Shapes::StringShape.new(name: 'AuthMode')
90
+ AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
90
91
  AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
91
92
  AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
92
93
  AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
@@ -111,6 +112,8 @@ module Aws::SageMaker
111
112
  AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
112
113
  AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
113
114
  AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
115
+ AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
116
+ AutoMLPartialFailureReasons = Shapes::ListShape.new(name: 'AutoMLPartialFailureReasons')
114
117
  AutoMLS3DataSource = Shapes::StructureShape.new(name: 'AutoMLS3DataSource')
115
118
  AutoMLS3DataType = Shapes::StringShape.new(name: 'AutoMLS3DataType')
116
119
  AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
@@ -127,8 +130,12 @@ module Aws::SageMaker
127
130
  BooleanOperator = Shapes::StringShape.new(name: 'BooleanOperator')
128
131
  Branch = Shapes::StringShape.new(name: 'Branch')
129
132
  CacheHitResult = Shapes::StructureShape.new(name: 'CacheHitResult')
133
+ CallbackStepMetadata = Shapes::StructureShape.new(name: 'CallbackStepMetadata')
134
+ CallbackToken = Shapes::StringShape.new(name: 'CallbackToken')
135
+ CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
130
136
  CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
131
137
  CandidateName = Shapes::StringShape.new(name: 'CandidateName')
138
+ CandidateProperties = Shapes::StructureShape.new(name: 'CandidateProperties')
132
139
  CandidateSortBy = Shapes::StringShape.new(name: 'CandidateSortBy')
133
140
  CandidateStatus = Shapes::StringShape.new(name: 'CandidateStatus')
134
141
  CandidateStepArn = Shapes::StringShape.new(name: 'CandidateStepArn')
@@ -516,9 +523,14 @@ module Aws::SageMaker
516
523
  EdgePackagingJobStatus = Shapes::StringShape.new(name: 'EdgePackagingJobStatus')
517
524
  EdgePackagingJobSummaries = Shapes::ListShape.new(name: 'EdgePackagingJobSummaries')
518
525
  EdgePackagingJobSummary = Shapes::StructureShape.new(name: 'EdgePackagingJobSummary')
526
+ EdgePresetDeploymentArtifact = Shapes::StringShape.new(name: 'EdgePresetDeploymentArtifact')
527
+ EdgePresetDeploymentOutput = Shapes::StructureShape.new(name: 'EdgePresetDeploymentOutput')
528
+ EdgePresetDeploymentStatus = Shapes::StringShape.new(name: 'EdgePresetDeploymentStatus')
529
+ EdgePresetDeploymentType = Shapes::StringShape.new(name: 'EdgePresetDeploymentType')
519
530
  EdgeVersion = Shapes::StringShape.new(name: 'EdgeVersion')
520
531
  EfsUid = Shapes::StringShape.new(name: 'EfsUid')
521
532
  EnableCapture = Shapes::BooleanShape.new(name: 'EnableCapture')
533
+ EnableIotRoleAlias = Shapes::BooleanShape.new(name: 'EnableIotRoleAlias')
522
534
  EnableSagemakerServicecatalogPortfolioInput = Shapes::StructureShape.new(name: 'EnableSagemakerServicecatalogPortfolioInput')
523
535
  EnableSagemakerServicecatalogPortfolioOutput = Shapes::StructureShape.new(name: 'EnableSagemakerServicecatalogPortfolioOutput')
524
536
  Endpoint = Shapes::StructureShape.new(name: 'Endpoint')
@@ -554,6 +566,7 @@ module Aws::SageMaker
554
566
  ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
555
567
  ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
556
568
  Explainability = Shapes::StructureShape.new(name: 'Explainability')
569
+ ExplainabilityLocation = Shapes::StringShape.new(name: 'ExplainabilityLocation')
557
570
  FailureReason = Shapes::StringShape.new(name: 'FailureReason')
558
571
  FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
559
572
  FeatureDefinitions = Shapes::ListShape.new(name: 'FeatureDefinitions')
@@ -857,6 +870,7 @@ module Aws::SageMaker
857
870
  MaxRuntimePerTrainingJobInSeconds = Shapes::IntegerShape.new(name: 'MaxRuntimePerTrainingJobInSeconds')
858
871
  MaxWaitTimeInSeconds = Shapes::IntegerShape.new(name: 'MaxWaitTimeInSeconds')
859
872
  MaximumExecutionTimeoutInSeconds = Shapes::IntegerShape.new(name: 'MaximumExecutionTimeoutInSeconds')
873
+ MaximumRetryAttempts = Shapes::IntegerShape.new(name: 'MaximumRetryAttempts')
860
874
  MediaType = Shapes::StringShape.new(name: 'MediaType')
861
875
  MemberDefinition = Shapes::StructureShape.new(name: 'MemberDefinition')
862
876
  MemberDefinitions = Shapes::ListShape.new(name: 'MemberDefinitions')
@@ -878,6 +892,8 @@ module Aws::SageMaker
878
892
  ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
879
893
  ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
880
894
  ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
895
+ ModelDeployConfig = Shapes::StructureShape.new(name: 'ModelDeployConfig')
896
+ ModelDeployResult = Shapes::StructureShape.new(name: 'ModelDeployResult')
881
897
  ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
882
898
  ModelExplainabilityAppSpecification = Shapes::StructureShape.new(name: 'ModelExplainabilityAppSpecification')
883
899
  ModelExplainabilityBaselineConfig = Shapes::StructureShape.new(name: 'ModelExplainabilityBaselineConfig')
@@ -1007,6 +1023,8 @@ module Aws::SageMaker
1007
1023
  OrderKey = Shapes::StringShape.new(name: 'OrderKey')
1008
1024
  OutputConfig = Shapes::StructureShape.new(name: 'OutputConfig')
1009
1025
  OutputDataConfig = Shapes::StructureShape.new(name: 'OutputDataConfig')
1026
+ OutputParameter = Shapes::StructureShape.new(name: 'OutputParameter')
1027
+ OutputParameterList = Shapes::ListShape.new(name: 'OutputParameterList')
1010
1028
  PaginationToken = Shapes::StringShape.new(name: 'PaginationToken')
1011
1029
  Parameter = Shapes::StructureShape.new(name: 'Parameter')
1012
1030
  ParameterKey = Shapes::StringShape.new(name: 'ParameterKey')
@@ -1028,6 +1046,7 @@ module Aws::SageMaker
1028
1046
  PipelineExecution = Shapes::StructureShape.new(name: 'PipelineExecution')
1029
1047
  PipelineExecutionArn = Shapes::StringShape.new(name: 'PipelineExecutionArn')
1030
1048
  PipelineExecutionDescription = Shapes::StringShape.new(name: 'PipelineExecutionDescription')
1049
+ PipelineExecutionFailureReason = Shapes::StringShape.new(name: 'PipelineExecutionFailureReason')
1031
1050
  PipelineExecutionName = Shapes::StringShape.new(name: 'PipelineExecutionName')
1032
1051
  PipelineExecutionStatus = Shapes::StringShape.new(name: 'PipelineExecutionStatus')
1033
1052
  PipelineExecutionStep = Shapes::StructureShape.new(name: 'PipelineExecutionStep')
@@ -1035,6 +1054,7 @@ module Aws::SageMaker
1035
1054
  PipelineExecutionStepMetadata = Shapes::StructureShape.new(name: 'PipelineExecutionStepMetadata')
1036
1055
  PipelineExecutionSummary = Shapes::StructureShape.new(name: 'PipelineExecutionSummary')
1037
1056
  PipelineExecutionSummaryList = Shapes::ListShape.new(name: 'PipelineExecutionSummaryList')
1057
+ PipelineExperimentConfig = Shapes::StructureShape.new(name: 'PipelineExperimentConfig')
1038
1058
  PipelineName = Shapes::StringShape.new(name: 'PipelineName')
1039
1059
  PipelineParameterName = Shapes::StringShape.new(name: 'PipelineParameterName')
1040
1060
  PipelineStatus = Shapes::StringShape.new(name: 'PipelineStatus')
@@ -1147,6 +1167,7 @@ module Aws::SageMaker
1147
1167
  ResponseMIMETypes = Shapes::ListShape.new(name: 'ResponseMIMETypes')
1148
1168
  RetentionPolicy = Shapes::StructureShape.new(name: 'RetentionPolicy')
1149
1169
  RetentionType = Shapes::StringShape.new(name: 'RetentionType')
1170
+ RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
1150
1171
  RoleArn = Shapes::StringShape.new(name: 'RoleArn')
1151
1172
  RootAccess = Shapes::StringShape.new(name: 'RootAccess')
1152
1173
  RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
@@ -1176,6 +1197,10 @@ module Aws::SageMaker
1176
1197
  SecurityGroupId = Shapes::StringShape.new(name: 'SecurityGroupId')
1177
1198
  SecurityGroupIds = Shapes::ListShape.new(name: 'SecurityGroupIds')
1178
1199
  Seed = Shapes::IntegerShape.new(name: 'Seed')
1200
+ SendPipelineExecutionStepFailureRequest = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepFailureRequest')
1201
+ SendPipelineExecutionStepFailureResponse = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepFailureResponse')
1202
+ SendPipelineExecutionStepSuccessRequest = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepSuccessRequest')
1203
+ SendPipelineExecutionStepSuccessResponse = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepSuccessResponse')
1179
1204
  ServiceCatalogEntityId = Shapes::StringShape.new(name: 'ServiceCatalogEntityId')
1180
1205
  ServiceCatalogProvisionedProductDetails = Shapes::StructureShape.new(name: 'ServiceCatalogProvisionedProductDetails')
1181
1206
  ServiceCatalogProvisioningDetails = Shapes::StructureShape.new(name: 'ServiceCatalogProvisioningDetails')
@@ -1588,6 +1613,7 @@ module Aws::SageMaker
1588
1613
  AutoMLCandidate.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
1589
1614
  AutoMLCandidate.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
1590
1615
  AutoMLCandidate.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
1616
+ AutoMLCandidate.add_member(:candidate_properties, Shapes::ShapeRef.new(shape: CandidateProperties, location_name: "CandidateProperties"))
1591
1617
  AutoMLCandidate.struct_class = Types::AutoMLCandidate
1592
1618
 
1593
1619
  AutoMLCandidateStep.add_member(:candidate_step_type, Shapes::ShapeRef.new(shape: CandidateStepType, required: true, location_name: "CandidateStepType"))
@@ -1640,12 +1666,18 @@ module Aws::SageMaker
1640
1666
  AutoMLJobSummary.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
1641
1667
  AutoMLJobSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
1642
1668
  AutoMLJobSummary.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
1669
+ AutoMLJobSummary.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
1643
1670
  AutoMLJobSummary.struct_class = Types::AutoMLJobSummary
1644
1671
 
1645
1672
  AutoMLOutputDataConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
1646
1673
  AutoMLOutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
1647
1674
  AutoMLOutputDataConfig.struct_class = Types::AutoMLOutputDataConfig
1648
1675
 
1676
+ AutoMLPartialFailureReason.add_member(:partial_failure_message, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "PartialFailureMessage"))
1677
+ AutoMLPartialFailureReason.struct_class = Types::AutoMLPartialFailureReason
1678
+
1679
+ AutoMLPartialFailureReasons.member = Shapes::ShapeRef.new(shape: AutoMLPartialFailureReason)
1680
+
1649
1681
  AutoMLS3DataSource.add_member(:s3_data_type, Shapes::ShapeRef.new(shape: AutoMLS3DataType, required: true, location_name: "S3DataType"))
1650
1682
  AutoMLS3DataSource.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
1651
1683
  AutoMLS3DataSource.struct_class = Types::AutoMLS3DataSource
@@ -1669,6 +1701,17 @@ module Aws::SageMaker
1669
1701
  CacheHitResult.add_member(:source_pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "SourcePipelineExecutionArn"))
1670
1702
  CacheHitResult.struct_class = Types::CacheHitResult
1671
1703
 
1704
+ CallbackStepMetadata.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, location_name: "CallbackToken"))
1705
+ CallbackStepMetadata.add_member(:sqs_queue_url, Shapes::ShapeRef.new(shape: String256, location_name: "SqsQueueUrl"))
1706
+ CallbackStepMetadata.add_member(:output_parameters, Shapes::ShapeRef.new(shape: OutputParameterList, location_name: "OutputParameters"))
1707
+ CallbackStepMetadata.struct_class = Types::CallbackStepMetadata
1708
+
1709
+ CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
1710
+ CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
1711
+
1712
+ CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
1713
+ CandidateProperties.struct_class = Types::CandidateProperties
1714
+
1672
1715
  CandidateSteps.member = Shapes::ShapeRef.new(shape: AutoMLCandidateStep)
1673
1716
 
1674
1717
  CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
@@ -1879,6 +1922,7 @@ module Aws::SageMaker
1879
1922
  CreateAutoMLJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
1880
1923
  CreateAutoMLJobRequest.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
1881
1924
  CreateAutoMLJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1925
+ CreateAutoMLJobRequest.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
1882
1926
  CreateAutoMLJobRequest.struct_class = Types::CreateAutoMLJobRequest
1883
1927
 
1884
1928
  CreateAutoMLJobResponse.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
@@ -1934,6 +1978,7 @@ module Aws::SageMaker
1934
1978
  CreateDeviceFleetRequest.add_member(:description, Shapes::ShapeRef.new(shape: DeviceFleetDescription, location_name: "Description"))
1935
1979
  CreateDeviceFleetRequest.add_member(:output_config, Shapes::ShapeRef.new(shape: EdgeOutputConfig, required: true, location_name: "OutputConfig"))
1936
1980
  CreateDeviceFleetRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1981
+ CreateDeviceFleetRequest.add_member(:enable_iot_role_alias, Shapes::ShapeRef.new(shape: EnableIotRoleAlias, location_name: "EnableIotRoleAlias"))
1937
1982
  CreateDeviceFleetRequest.struct_class = Types::CreateDeviceFleetRequest
1938
1983
 
1939
1984
  CreateDomainRequest.add_member(:domain_name, Shapes::ShapeRef.new(shape: DomainName, required: true, location_name: "DomainName"))
@@ -2259,6 +2304,7 @@ module Aws::SageMaker
2259
2304
  CreateTrainingJobRequest.add_member(:profiler_config, Shapes::ShapeRef.new(shape: ProfilerConfig, location_name: "ProfilerConfig"))
2260
2305
  CreateTrainingJobRequest.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
2261
2306
  CreateTrainingJobRequest.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
2307
+ CreateTrainingJobRequest.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
2262
2308
  CreateTrainingJobRequest.struct_class = Types::CreateTrainingJobRequest
2263
2309
 
2264
2310
  CreateTrainingJobResponse.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
@@ -2694,12 +2740,15 @@ module Aws::SageMaker
2694
2740
  DescribeAutoMLJobResponse.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
2695
2741
  DescribeAutoMLJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
2696
2742
  DescribeAutoMLJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
2743
+ DescribeAutoMLJobResponse.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
2697
2744
  DescribeAutoMLJobResponse.add_member(:best_candidate, Shapes::ShapeRef.new(shape: AutoMLCandidate, location_name: "BestCandidate"))
2698
2745
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_status, Shapes::ShapeRef.new(shape: AutoMLJobStatus, required: true, location_name: "AutoMLJobStatus"))
2699
2746
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_secondary_status, Shapes::ShapeRef.new(shape: AutoMLJobSecondaryStatus, required: true, location_name: "AutoMLJobSecondaryStatus"))
2700
2747
  DescribeAutoMLJobResponse.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
2701
2748
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
2702
2749
  DescribeAutoMLJobResponse.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: ResolvedAttributes, location_name: "ResolvedAttributes"))
2750
+ DescribeAutoMLJobResponse.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
2751
+ DescribeAutoMLJobResponse.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
2703
2752
  DescribeAutoMLJobResponse.struct_class = Types::DescribeAutoMLJobResponse
2704
2753
 
2705
2754
  DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
@@ -2831,6 +2880,7 @@ module Aws::SageMaker
2831
2880
  DescribeEdgePackagingJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
2832
2881
  DescribeEdgePackagingJobResponse.add_member(:model_artifact, Shapes::ShapeRef.new(shape: S3Uri, location_name: "ModelArtifact"))
2833
2882
  DescribeEdgePackagingJobResponse.add_member(:model_signature, Shapes::ShapeRef.new(shape: String, location_name: "ModelSignature"))
2883
+ DescribeEdgePackagingJobResponse.add_member(:preset_deployment_output, Shapes::ShapeRef.new(shape: EdgePresetDeploymentOutput, location_name: "PresetDeploymentOutput"))
2834
2884
  DescribeEdgePackagingJobResponse.struct_class = Types::DescribeEdgePackagingJobResponse
2835
2885
 
2836
2886
  DescribeEndpointConfigInput.add_member(:endpoint_config_name, Shapes::ShapeRef.new(shape: EndpointConfigName, required: true, location_name: "EndpointConfigName"))
@@ -3153,6 +3203,8 @@ module Aws::SageMaker
3153
3203
  DescribePipelineExecutionResponse.add_member(:pipeline_execution_display_name, Shapes::ShapeRef.new(shape: PipelineExecutionName, location_name: "PipelineExecutionDisplayName"))
3154
3204
  DescribePipelineExecutionResponse.add_member(:pipeline_execution_status, Shapes::ShapeRef.new(shape: PipelineExecutionStatus, location_name: "PipelineExecutionStatus"))
3155
3205
  DescribePipelineExecutionResponse.add_member(:pipeline_execution_description, Shapes::ShapeRef.new(shape: PipelineExecutionDescription, location_name: "PipelineExecutionDescription"))
3206
+ DescribePipelineExecutionResponse.add_member(:pipeline_experiment_config, Shapes::ShapeRef.new(shape: PipelineExperimentConfig, location_name: "PipelineExperimentConfig"))
3207
+ DescribePipelineExecutionResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: PipelineExecutionFailureReason, location_name: "FailureReason"))
3156
3208
  DescribePipelineExecutionResponse.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
3157
3209
  DescribePipelineExecutionResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
3158
3210
  DescribePipelineExecutionResponse.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
@@ -3263,6 +3315,7 @@ module Aws::SageMaker
3263
3315
  DescribeTrainingJobResponse.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
3264
3316
  DescribeTrainingJobResponse.add_member(:profiler_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: ProfilerRuleEvaluationStatuses, location_name: "ProfilerRuleEvaluationStatuses"))
3265
3317
  DescribeTrainingJobResponse.add_member(:profiling_status, Shapes::ShapeRef.new(shape: ProfilingStatus, location_name: "ProfilingStatus"))
3318
+ DescribeTrainingJobResponse.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
3266
3319
  DescribeTrainingJobResponse.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
3267
3320
  DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
3268
3321
 
@@ -3445,6 +3498,8 @@ module Aws::SageMaker
3445
3498
 
3446
3499
  EdgeOutputConfig.add_member(:s3_output_location, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputLocation"))
3447
3500
  EdgeOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
3501
+ EdgeOutputConfig.add_member(:preset_deployment_type, Shapes::ShapeRef.new(shape: EdgePresetDeploymentType, location_name: "PresetDeploymentType"))
3502
+ EdgeOutputConfig.add_member(:preset_deployment_config, Shapes::ShapeRef.new(shape: String, location_name: "PresetDeploymentConfig"))
3448
3503
  EdgeOutputConfig.struct_class = Types::EdgeOutputConfig
3449
3504
 
3450
3505
  EdgePackagingJobSummaries.member = Shapes::ShapeRef.new(shape: EdgePackagingJobSummary)
@@ -3459,6 +3514,12 @@ module Aws::SageMaker
3459
3514
  EdgePackagingJobSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
3460
3515
  EdgePackagingJobSummary.struct_class = Types::EdgePackagingJobSummary
3461
3516
 
3517
+ EdgePresetDeploymentOutput.add_member(:type, Shapes::ShapeRef.new(shape: EdgePresetDeploymentType, required: true, location_name: "Type"))
3518
+ EdgePresetDeploymentOutput.add_member(:artifact, Shapes::ShapeRef.new(shape: EdgePresetDeploymentArtifact, location_name: "Artifact"))
3519
+ EdgePresetDeploymentOutput.add_member(:status, Shapes::ShapeRef.new(shape: EdgePresetDeploymentStatus, location_name: "Status"))
3520
+ EdgePresetDeploymentOutput.add_member(:status_message, Shapes::ShapeRef.new(shape: String, location_name: "StatusMessage"))
3521
+ EdgePresetDeploymentOutput.struct_class = Types::EdgePresetDeploymentOutput
3522
+
3462
3523
  EnableSagemakerServicecatalogPortfolioInput.struct_class = Types::EnableSagemakerServicecatalogPortfolioInput
3463
3524
 
3464
3525
  EnableSagemakerServicecatalogPortfolioOutput.struct_class = Types::EnableSagemakerServicecatalogPortfolioOutput
@@ -3734,6 +3795,7 @@ module Aws::SageMaker
3734
3795
  HyperParameterTrainingJobDefinition.add_member(:enable_inter_container_traffic_encryption, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableInterContainerTrafficEncryption"))
3735
3796
  HyperParameterTrainingJobDefinition.add_member(:enable_managed_spot_training, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableManagedSpotTraining"))
3736
3797
  HyperParameterTrainingJobDefinition.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
3798
+ HyperParameterTrainingJobDefinition.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
3737
3799
  HyperParameterTrainingJobDefinition.struct_class = Types::HyperParameterTrainingJobDefinition
3738
3800
 
3739
3801
  HyperParameterTrainingJobDefinitions.member = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition)
@@ -4739,6 +4801,13 @@ module Aws::SageMaker
4739
4801
  ModelDataQuality.add_member(:constraints, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Constraints"))
4740
4802
  ModelDataQuality.struct_class = Types::ModelDataQuality
4741
4803
 
4804
+ ModelDeployConfig.add_member(:auto_generate_endpoint_name, Shapes::ShapeRef.new(shape: AutoGenerateEndpointName, location_name: "AutoGenerateEndpointName"))
4805
+ ModelDeployConfig.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4806
+ ModelDeployConfig.struct_class = Types::ModelDeployConfig
4807
+
4808
+ ModelDeployResult.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4809
+ ModelDeployResult.struct_class = Types::ModelDeployResult
4810
+
4742
4811
  ModelDigests.add_member(:artifact_digest, Shapes::ShapeRef.new(shape: ArtifactDigest, location_name: "ArtifactDigest"))
4743
4812
  ModelDigests.struct_class = Types::ModelDigests
4744
4813
 
@@ -5101,6 +5170,12 @@ module Aws::SageMaker
5101
5170
  OutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
5102
5171
  OutputDataConfig.struct_class = Types::OutputDataConfig
5103
5172
 
5173
+ OutputParameter.add_member(:name, Shapes::ShapeRef.new(shape: String256, required: true, location_name: "Name"))
5174
+ OutputParameter.add_member(:value, Shapes::ShapeRef.new(shape: String1024, required: true, location_name: "Value"))
5175
+ OutputParameter.struct_class = Types::OutputParameter
5176
+
5177
+ OutputParameterList.member = Shapes::ShapeRef.new(shape: OutputParameter)
5178
+
5104
5179
  Parameter.add_member(:name, Shapes::ShapeRef.new(shape: PipelineParameterName, required: true, location_name: "Name"))
5105
5180
  Parameter.add_member(:value, Shapes::ShapeRef.new(shape: String1024, required: true, location_name: "Value"))
5106
5181
  Parameter.struct_class = Types::Parameter
@@ -5149,6 +5224,8 @@ module Aws::SageMaker
5149
5224
  PipelineExecution.add_member(:pipeline_execution_display_name, Shapes::ShapeRef.new(shape: PipelineExecutionName, location_name: "PipelineExecutionDisplayName"))
5150
5225
  PipelineExecution.add_member(:pipeline_execution_status, Shapes::ShapeRef.new(shape: PipelineExecutionStatus, location_name: "PipelineExecutionStatus"))
5151
5226
  PipelineExecution.add_member(:pipeline_execution_description, Shapes::ShapeRef.new(shape: PipelineExecutionDescription, location_name: "PipelineExecutionDescription"))
5227
+ PipelineExecution.add_member(:pipeline_experiment_config, Shapes::ShapeRef.new(shape: PipelineExperimentConfig, location_name: "PipelineExperimentConfig"))
5228
+ PipelineExecution.add_member(:failure_reason, Shapes::ShapeRef.new(shape: PipelineExecutionFailureReason, location_name: "FailureReason"))
5152
5229
  PipelineExecution.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
5153
5230
  PipelineExecution.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
5154
5231
  PipelineExecution.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
@@ -5173,6 +5250,7 @@ module Aws::SageMaker
5173
5250
  PipelineExecutionStepMetadata.add_member(:model, Shapes::ShapeRef.new(shape: ModelStepMetadata, location_name: "Model"))
5174
5251
  PipelineExecutionStepMetadata.add_member(:register_model, Shapes::ShapeRef.new(shape: RegisterModelStepMetadata, location_name: "RegisterModel"))
5175
5252
  PipelineExecutionStepMetadata.add_member(:condition, Shapes::ShapeRef.new(shape: ConditionStepMetadata, location_name: "Condition"))
5253
+ PipelineExecutionStepMetadata.add_member(:callback, Shapes::ShapeRef.new(shape: CallbackStepMetadata, location_name: "Callback"))
5176
5254
  PipelineExecutionStepMetadata.struct_class = Types::PipelineExecutionStepMetadata
5177
5255
 
5178
5256
  PipelineExecutionSummary.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
@@ -5184,6 +5262,10 @@ module Aws::SageMaker
5184
5262
 
5185
5263
  PipelineExecutionSummaryList.member = Shapes::ShapeRef.new(shape: PipelineExecutionSummary)
5186
5264
 
5265
+ PipelineExperimentConfig.add_member(:experiment_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "ExperimentName"))
5266
+ PipelineExperimentConfig.add_member(:trial_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "TrialName"))
5267
+ PipelineExperimentConfig.struct_class = Types::PipelineExperimentConfig
5268
+
5187
5269
  PipelineSummary.add_member(:pipeline_arn, Shapes::ShapeRef.new(shape: PipelineArn, location_name: "PipelineArn"))
5188
5270
  PipelineSummary.add_member(:pipeline_name, Shapes::ShapeRef.new(shape: PipelineName, location_name: "PipelineName"))
5189
5271
  PipelineSummary.add_member(:pipeline_display_name, Shapes::ShapeRef.new(shape: PipelineName, location_name: "PipelineDisplayName"))
@@ -5458,6 +5540,9 @@ module Aws::SageMaker
5458
5540
  RetentionPolicy.add_member(:home_efs_file_system, Shapes::ShapeRef.new(shape: RetentionType, location_name: "HomeEfsFileSystem"))
5459
5541
  RetentionPolicy.struct_class = Types::RetentionPolicy
5460
5542
 
5543
+ RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
5544
+ RetryStrategy.struct_class = Types::RetryStrategy
5545
+
5461
5546
  RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
5462
5547
  RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
5463
5548
 
@@ -5519,6 +5604,22 @@ module Aws::SageMaker
5519
5604
 
5520
5605
  SecurityGroupIds.member = Shapes::ShapeRef.new(shape: SecurityGroupId)
5521
5606
 
5607
+ SendPipelineExecutionStepFailureRequest.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, required: true, location_name: "CallbackToken"))
5608
+ SendPipelineExecutionStepFailureRequest.add_member(:failure_reason, Shapes::ShapeRef.new(shape: String256, location_name: "FailureReason"))
5609
+ SendPipelineExecutionStepFailureRequest.add_member(:client_request_token, Shapes::ShapeRef.new(shape: IdempotencyToken, location_name: "ClientRequestToken", metadata: {"idempotencyToken"=>true}))
5610
+ SendPipelineExecutionStepFailureRequest.struct_class = Types::SendPipelineExecutionStepFailureRequest
5611
+
5612
+ SendPipelineExecutionStepFailureResponse.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
5613
+ SendPipelineExecutionStepFailureResponse.struct_class = Types::SendPipelineExecutionStepFailureResponse
5614
+
5615
+ SendPipelineExecutionStepSuccessRequest.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, required: true, location_name: "CallbackToken"))
5616
+ SendPipelineExecutionStepSuccessRequest.add_member(:output_parameters, Shapes::ShapeRef.new(shape: OutputParameterList, location_name: "OutputParameters"))
5617
+ SendPipelineExecutionStepSuccessRequest.add_member(:client_request_token, Shapes::ShapeRef.new(shape: IdempotencyToken, location_name: "ClientRequestToken", metadata: {"idempotencyToken"=>true}))
5618
+ SendPipelineExecutionStepSuccessRequest.struct_class = Types::SendPipelineExecutionStepSuccessRequest
5619
+
5620
+ SendPipelineExecutionStepSuccessResponse.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
5621
+ SendPipelineExecutionStepSuccessResponse.struct_class = Types::SendPipelineExecutionStepSuccessResponse
5622
+
5522
5623
  ServiceCatalogProvisionedProductDetails.add_member(:provisioned_product_id, Shapes::ShapeRef.new(shape: ServiceCatalogEntityId, location_name: "ProvisionedProductId"))
5523
5624
  ServiceCatalogProvisionedProductDetails.add_member(:provisioned_product_status_message, Shapes::ShapeRef.new(shape: ProvisionedProductStatusMessage, location_name: "ProvisionedProductStatusMessage"))
5524
5625
  ServiceCatalogProvisionedProductDetails.struct_class = Types::ServiceCatalogProvisionedProductDetails
@@ -5687,6 +5788,7 @@ module Aws::SageMaker
5687
5788
  TrainingJob.add_member(:tensor_board_output_config, Shapes::ShapeRef.new(shape: TensorBoardOutputConfig, location_name: "TensorBoardOutputConfig"))
5688
5789
  TrainingJob.add_member(:debug_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: DebugRuleEvaluationStatuses, location_name: "DebugRuleEvaluationStatuses"))
5689
5790
  TrainingJob.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
5791
+ TrainingJob.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
5690
5792
  TrainingJob.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
5691
5793
  TrainingJob.struct_class = Types::TrainingJob
5692
5794
 
@@ -5982,6 +6084,7 @@ module Aws::SageMaker
5982
6084
  UpdateDeviceFleetRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "RoleArn"))
5983
6085
  UpdateDeviceFleetRequest.add_member(:description, Shapes::ShapeRef.new(shape: DeviceFleetDescription, location_name: "Description"))
5984
6086
  UpdateDeviceFleetRequest.add_member(:output_config, Shapes::ShapeRef.new(shape: EdgeOutputConfig, required: true, location_name: "OutputConfig"))
6087
+ UpdateDeviceFleetRequest.add_member(:enable_iot_role_alias, Shapes::ShapeRef.new(shape: EnableIotRoleAlias, location_name: "EnableIotRoleAlias"))
5985
6088
  UpdateDeviceFleetRequest.struct_class = Types::UpdateDeviceFleetRequest
5986
6089
 
5987
6090
  UpdateDevicesRequest.add_member(:device_fleet_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "DeviceFleetName"))
@@ -8259,6 +8362,26 @@ module Aws::SageMaker
8259
8362
  )
8260
8363
  end)
8261
8364
 
8365
+ api.add_operation(:send_pipeline_execution_step_failure, Seahorse::Model::Operation.new.tap do |o|
8366
+ o.name = "SendPipelineExecutionStepFailure"
8367
+ o.http_method = "POST"
8368
+ o.http_request_uri = "/"
8369
+ o.input = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepFailureRequest)
8370
+ o.output = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepFailureResponse)
8371
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
8372
+ o.errors << Shapes::ShapeRef.new(shape: ResourceLimitExceeded)
8373
+ end)
8374
+
8375
+ api.add_operation(:send_pipeline_execution_step_success, Seahorse::Model::Operation.new.tap do |o|
8376
+ o.name = "SendPipelineExecutionStepSuccess"
8377
+ o.http_method = "POST"
8378
+ o.http_request_uri = "/"
8379
+ o.input = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepSuccessRequest)
8380
+ o.output = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepSuccessResponse)
8381
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
8382
+ o.errors << Shapes::ShapeRef.new(shape: ResourceLimitExceeded)
8383
+ end)
8384
+
8262
8385
  api.add_operation(:start_monitoring_schedule, Seahorse::Model::Operation.new.tap do |o|
8263
8386
  o.name = "StartMonitoringSchedule"
8264
8387
  o.http_method = "POST"
@@ -1706,10 +1706,10 @@ module Aws::SageMaker
1706
1706
  end
1707
1707
 
1708
1708
  # An Autopilot job returns recommendations, or candidates. Each
1709
- # candidate has futher details about the steps involed, and the status.
1709
+ # candidate has futher details about the steps involved and the status.
1710
1710
  #
1711
1711
  # @!attribute [rw] candidate_name
1712
- # The candidate name.
1712
+ # The name of the candidate.
1713
1713
  # @return [String]
1714
1714
  #
1715
1715
  # @!attribute [rw] final_auto_ml_job_objective_metric
@@ -1717,11 +1717,11 @@ module Aws::SageMaker
1717
1717
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1718
1718
  #
1719
1719
  # @!attribute [rw] objective_status
1720
- # The objective status.
1720
+ # The objective's status.
1721
1721
  # @return [String]
1722
1722
  #
1723
1723
  # @!attribute [rw] candidate_steps
1724
- # The candidate's steps.
1724
+ # Information about the candidate's steps.
1725
1725
  # @return [Array<Types::AutoMLCandidateStep>]
1726
1726
  #
1727
1727
  # @!attribute [rw] candidate_status
@@ -1729,7 +1729,7 @@ module Aws::SageMaker
1729
1729
  # @return [String]
1730
1730
  #
1731
1731
  # @!attribute [rw] inference_containers
1732
- # The inference containers.
1732
+ # Information about the inference container definitions.
1733
1733
  # @return [Array<Types::AutoMLContainerDefinition>]
1734
1734
  #
1735
1735
  # @!attribute [rw] creation_time
@@ -1748,6 +1748,10 @@ module Aws::SageMaker
1748
1748
  # The failure reason.
1749
1749
  # @return [String]
1750
1750
  #
1751
+ # @!attribute [rw] candidate_properties
1752
+ # The AutoML candidate's properties.
1753
+ # @return [Types::CandidateProperties]
1754
+ #
1751
1755
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
1752
1756
  #
1753
1757
  class AutoMLCandidate < Struct.new(
@@ -1760,25 +1764,26 @@ module Aws::SageMaker
1760
1764
  :creation_time,
1761
1765
  :end_time,
1762
1766
  :last_modified_time,
1763
- :failure_reason)
1767
+ :failure_reason,
1768
+ :candidate_properties)
1764
1769
  SENSITIVE = []
1765
1770
  include Aws::Structure
1766
1771
  end
1767
1772
 
1768
- # Information about the steps for a Candidate, and what step it is
1773
+ # Information about the steps for a candidate and what step it is
1769
1774
  # working on.
1770
1775
  #
1771
1776
  # @!attribute [rw] candidate_step_type
1772
- # Whether the Candidate is at the transform, training, or processing
1777
+ # Whether the candidate is at the transform, training, or processing
1773
1778
  # step.
1774
1779
  # @return [String]
1775
1780
  #
1776
1781
  # @!attribute [rw] candidate_step_arn
1777
- # The ARN for the Candidate's step.
1782
+ # The ARN for the candidate's step.
1778
1783
  # @return [String]
1779
1784
  #
1780
1785
  # @!attribute [rw] candidate_step_name
1781
- # The name for the Candidate's step.
1786
+ # The name for the candidate's step.
1782
1787
  # @return [String]
1783
1788
  #
1784
1789
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateStep AWS API Documentation
@@ -1791,8 +1796,8 @@ module Aws::SageMaker
1791
1796
  include Aws::Structure
1792
1797
  end
1793
1798
 
1794
- # Similar to Channel. A channel is a named input source that training
1795
- # algorithms can consume. Refer to Channel for detailed descriptions.
1799
+ # A channel is a named input source that training algorithms can
1800
+ # consume. For more information, see .
1796
1801
  #
1797
1802
  # @note When making an API call, you may pass AutoMLChannel
1798
1803
  # data as a hash:
@@ -1809,16 +1814,16 @@ module Aws::SageMaker
1809
1814
  # }
1810
1815
  #
1811
1816
  # @!attribute [rw] data_source
1812
- # The data source.
1817
+ # The data source for an AutoML channel.
1813
1818
  # @return [Types::AutoMLDataSource]
1814
1819
  #
1815
1820
  # @!attribute [rw] compression_type
1816
- # You can use Gzip or None. The default value is None.
1821
+ # You can use `Gzip` or `None`. The default value is `None`.
1817
1822
  # @return [String]
1818
1823
  #
1819
1824
  # @!attribute [rw] target_attribute_name
1820
- # The name of the target variable in supervised learning, a.k.a.
1821
- # 'y'.
1825
+ # The name of the target variable in supervised learning, usually
1826
+ # represented by 'y'.
1822
1827
  # @return [String]
1823
1828
  #
1824
1829
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
@@ -1832,22 +1837,19 @@ module Aws::SageMaker
1832
1837
  end
1833
1838
 
1834
1839
  # A list of container definitions that describe the different containers
1835
- # that make up one AutoML candidate. Refer to ContainerDefinition for
1836
- # more details.
1840
+ # that make up an AutoML candidate. For more information, see .
1837
1841
  #
1838
1842
  # @!attribute [rw] image
1839
- # The ECR path of the container. Refer to ContainerDefinition for more
1840
- # details.
1843
+ # The ECR path of the container. For more information, see .
1841
1844
  # @return [String]
1842
1845
  #
1843
1846
  # @!attribute [rw] model_data_url
1844
- # The location of the model artifacts. Refer to ContainerDefinition
1845
- # for more details.
1847
+ # The location of the model artifacts. For more information, see .
1846
1848
  # @return [String]
1847
1849
  #
1848
1850
  # @!attribute [rw] environment
1849
- # Environment variables to set in the container. Refer to
1850
- # ContainerDefinition for more details.
1851
+ # The environment variables to set in the container. For more
1852
+ # information, see .
1851
1853
  # @return [Hash<String,String>]
1852
1854
  #
1853
1855
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -1888,14 +1890,14 @@ module Aws::SageMaker
1888
1890
  include Aws::Structure
1889
1891
  end
1890
1892
 
1891
- # Artifacts that are generation during a job.
1893
+ # The artifacts that are generated during an AutoML job.
1892
1894
  #
1893
1895
  # @!attribute [rw] candidate_definition_notebook_location
1894
- # The URL to the notebook location.
1896
+ # The URL of the notebook location.
1895
1897
  # @return [String]
1896
1898
  #
1897
1899
  # @!attribute [rw] data_exploration_notebook_location
1898
- # The URL to the notebook location.
1900
+ # The URL of the notebook location.
1899
1901
  # @return [String]
1900
1902
  #
1901
1903
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobArtifacts AWS API Documentation
@@ -1924,13 +1926,12 @@ module Aws::SageMaker
1924
1926
  # @return [Integer]
1925
1927
  #
1926
1928
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
1927
- # The maximum time, in seconds, a job is allowed to run.
1929
+ # The maximum time, in seconds, a training job is allowed to run as
1930
+ # part of an AutoML job.
1928
1931
  # @return [Integer]
1929
1932
  #
1930
1933
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
1931
- # The maximum time, in seconds, an AutoML job is allowed to wait for a
1932
- # trial to complete. It must be equal to or greater than
1933
- # MaxRuntimePerTrainingJobInSeconds.
1934
+ # The maximum runtime, in seconds, an AutoML job has to complete.
1934
1935
  # @return [Integer]
1935
1936
  #
1936
1937
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
@@ -1943,7 +1944,7 @@ module Aws::SageMaker
1943
1944
  include Aws::Structure
1944
1945
  end
1945
1946
 
1946
- # A collection of settings used for a job.
1947
+ # A collection of settings used for an AutoML job.
1947
1948
  #
1948
1949
  # @note When making an API call, you may pass AutoMLJobConfig
1949
1950
  # data as a hash:
@@ -1965,12 +1966,12 @@ module Aws::SageMaker
1965
1966
  # }
1966
1967
  #
1967
1968
  # @!attribute [rw] completion_criteria
1968
- # How long a job is allowed to run, or how many candidates a job is
1969
- # allowed to generate.
1969
+ # How long an AutoML job is allowed to run, or how many candidates a
1970
+ # job is allowed to generate.
1970
1971
  # @return [Types::AutoMLJobCompletionCriteria]
1971
1972
  #
1972
1973
  # @!attribute [rw] security_config
1973
- # Security configuration for traffic encryption or Amazon VPC
1974
+ # The security configuration for traffic encryption or Amazon VPC
1974
1975
  # settings.
1975
1976
  # @return [Types::AutoMLSecurityConfig]
1976
1977
  #
@@ -2002,23 +2003,23 @@ module Aws::SageMaker
2002
2003
  #
2003
2004
  # * `MSE`\: The mean squared error (MSE) is the average of the squared
2004
2005
  # differences between the predicted and actual values. It is used
2005
- # for regression. MSE values are always positive, the better a model
2006
- # is at predicting the actual values the smaller the MSE value. When
2007
- # the data contains outliers, they tend to dominate the MSE which
2008
- # might cause subpar prediction performance.
2009
- #
2010
- # * `Accuracy`\: The ratio of the number correctly classified items to
2011
- # the total number (correctly and incorrectly) classified. It is
2012
- # used for binary and multiclass classification. Measures how close
2013
- # the predicted class values are to the actual values. Accuracy
2014
- # values vary between zero and one, one being perfect accuracy and
2015
- # zero perfect inaccuracy.
2006
+ # for regression. MSE values are always positive: the better a model
2007
+ # is at predicting the actual values, the smaller the MSE value.
2008
+ # When the data contains outliers, they tend to dominate the MSE,
2009
+ # which might cause subpar prediction performance.
2010
+ #
2011
+ # * `Accuracy`\: The ratio of the number of correctly classified items
2012
+ # to the total number of (correctly and incorrectly) classified
2013
+ # items. It is used for binary and multiclass classification. It
2014
+ # measures how close the predicted class values are to the actual
2015
+ # values. Accuracy values vary between zero and one: one indicates
2016
+ # perfect accuracy and zero indicates perfect inaccuracy.
2016
2017
  #
2017
2018
  # * `F1`\: The F1 score is the harmonic mean of the precision and
2018
2019
  # recall. It is used for binary classification into classes
2019
2020
  # traditionally referred to as positive and negative. Predictions
2020
- # are said to be true when they match their actual (correct) class;
2021
- # false when they do not. Precision is the ratio of the true
2021
+ # are said to be true when they match their actual (correct) class
2022
+ # and false when they do not. Precision is the ratio of the true
2022
2023
  # positive predictions to all positive predictions (including the
2023
2024
  # false positives) in a data set and measures the quality of the
2024
2025
  # prediction when it predicts the positive class. Recall (or
@@ -2027,7 +2028,7 @@ module Aws::SageMaker
2027
2028
  # predicts the actual class members in a data set. The standard F1
2028
2029
  # score weighs precision and recall equally. But which metric is
2029
2030
  # paramount typically depends on specific aspects of a problem. F1
2030
- # scores vary between zero and one, one being the best possible
2031
+ # scores vary between zero and one: one indicates the best possible
2031
2032
  # performance and zero the worst.
2032
2033
  #
2033
2034
  # * `AUC`\: The area under the curve (AUC) metric is used to compare
@@ -2045,20 +2046,21 @@ module Aws::SageMaker
2045
2046
  # The AUC score can also be interpreted as the probability that a
2046
2047
  # randomly selected positive data point is more likely to be
2047
2048
  # predicted positive than a randomly selected negative example. AUC
2048
- # scores vary between zero and one, one being perfect accuracy and
2049
- # one half not better than a random classifier. Values less that one
2050
- # half predict worse than a random predictor and such consistently
2051
- # bad predictors can be inverted to obtain better than random
2049
+ # scores vary between zero and one: a score of one indicates perfect
2050
+ # accuracy and a score of one half indicates that the prediction is
2051
+ # not better than a random classifier. Values under one half predict
2052
+ # less accurately than a random predictor. But such consistently bad
2053
+ # predictors can simply be inverted to obtain better than random
2052
2054
  # predictors.
2053
2055
  #
2054
2056
  # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
2055
2057
  # classification. In this context, you have multiple classes to
2056
2058
  # predict. You just calculate the precision and recall for each
2057
2059
  # class as you did for the positive class in binary classification.
2058
- # Then used these values to calculate the F1 score for each class
2060
+ # Then, use these values to calculate the F1 score for each class
2059
2061
  # and average them to obtain the F1macro score. F1macro scores vary
2060
- # between zero and one, one being the best possible performance and
2061
- # zero the worst.
2062
+ # between zero and one: one indicates the best possible performance
2063
+ # and zero the worst.
2062
2064
  #
2063
2065
  # If you do not specify a metric explicitly, the default behavior is
2064
2066
  # to automatically use:
@@ -2078,26 +2080,26 @@ module Aws::SageMaker
2078
2080
  include Aws::Structure
2079
2081
  end
2080
2082
 
2081
- # Provides a summary about a job.
2083
+ # Provides a summary about an AutoML job.
2082
2084
  #
2083
2085
  # @!attribute [rw] auto_ml_job_name
2084
- # The name of the object you are requesting.
2086
+ # The name of the AutoML you are requesting.
2085
2087
  # @return [String]
2086
2088
  #
2087
2089
  # @!attribute [rw] auto_ml_job_arn
2088
- # The ARN of the job.
2090
+ # The ARN of the AutoML job.
2089
2091
  # @return [String]
2090
2092
  #
2091
2093
  # @!attribute [rw] auto_ml_job_status
2092
- # The job's status.
2094
+ # The status of the AutoML job.
2093
2095
  # @return [String]
2094
2096
  #
2095
2097
  # @!attribute [rw] auto_ml_job_secondary_status
2096
- # The job's secondary status.
2098
+ # The secondary status of the AutoML job.
2097
2099
  # @return [String]
2098
2100
  #
2099
2101
  # @!attribute [rw] creation_time
2100
- # When the job was created.
2102
+ # When the AutoML job was created.
2101
2103
  # @return [Time]
2102
2104
  #
2103
2105
  # @!attribute [rw] end_time
@@ -2105,13 +2107,17 @@ module Aws::SageMaker
2105
2107
  # @return [Time]
2106
2108
  #
2107
2109
  # @!attribute [rw] last_modified_time
2108
- # When the job was last modified.
2110
+ # When the AutoML job was last modified.
2109
2111
  # @return [Time]
2110
2112
  #
2111
2113
  # @!attribute [rw] failure_reason
2112
- # The failure reason of a job.
2114
+ # The failure reason of an AutoML job.
2113
2115
  # @return [String]
2114
2116
  #
2117
+ # @!attribute [rw] partial_failure_reasons
2118
+ # The list of reasons for partial failures within an AutoML job.
2119
+ # @return [Array<Types::AutoMLPartialFailureReason>]
2120
+ #
2115
2121
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
2116
2122
  #
2117
2123
  class AutoMLJobSummary < Struct.new(
@@ -2122,7 +2128,8 @@ module Aws::SageMaker
2122
2128
  :creation_time,
2123
2129
  :end_time,
2124
2130
  :last_modified_time,
2125
- :failure_reason)
2131
+ :failure_reason,
2132
+ :partial_failure_reasons)
2126
2133
  SENSITIVE = []
2127
2134
  include Aws::Structure
2128
2135
  end
@@ -2154,6 +2161,21 @@ module Aws::SageMaker
2154
2161
  include Aws::Structure
2155
2162
  end
2156
2163
 
2164
+ # The reason for a partial failure of an AutoML job.
2165
+ #
2166
+ # @!attribute [rw] partial_failure_message
2167
+ # The message containing the reason for a partial failure of an AutoML
2168
+ # job.
2169
+ # @return [String]
2170
+ #
2171
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLPartialFailureReason AWS API Documentation
2172
+ #
2173
+ class AutoMLPartialFailureReason < Struct.new(
2174
+ :partial_failure_message)
2175
+ SENSITIVE = []
2176
+ include Aws::Structure
2177
+ end
2178
+
2157
2179
  # The Amazon S3 data source.
2158
2180
  #
2159
2181
  # @note When making an API call, you may pass AutoMLS3DataSource
@@ -2204,7 +2226,7 @@ module Aws::SageMaker
2204
2226
  # @return [Boolean]
2205
2227
  #
2206
2228
  # @!attribute [rw] vpc_config
2207
- # VPC configuration.
2229
+ # The VPC configuration.
2208
2230
  # @return [Types::VpcConfig]
2209
2231
  #
2210
2232
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLSecurityConfig AWS API Documentation
@@ -2317,6 +2339,61 @@ module Aws::SageMaker
2317
2339
  include Aws::Structure
2318
2340
  end
2319
2341
 
2342
+ # Metadata about a callback step.
2343
+ #
2344
+ # @!attribute [rw] callback_token
2345
+ # The pipeline generated token from the Amazon SQS queue.
2346
+ # @return [String]
2347
+ #
2348
+ # @!attribute [rw] sqs_queue_url
2349
+ # The URL of the Amazon Simple Queue Service (Amazon SQS) queue used
2350
+ # by the callback step.
2351
+ # @return [String]
2352
+ #
2353
+ # @!attribute [rw] output_parameters
2354
+ # A list of the output parameters of the callback step.
2355
+ # @return [Array<Types::OutputParameter>]
2356
+ #
2357
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CallbackStepMetadata AWS API Documentation
2358
+ #
2359
+ class CallbackStepMetadata < Struct.new(
2360
+ :callback_token,
2361
+ :sqs_queue_url,
2362
+ :output_parameters)
2363
+ SENSITIVE = []
2364
+ include Aws::Structure
2365
+ end
2366
+
2367
+ # The location of artifacts for an AutoML candidate job.
2368
+ #
2369
+ # @!attribute [rw] explainability
2370
+ # The Amazon S3 prefix to the explainability artifacts generated for
2371
+ # the AutoML candidate.
2372
+ # @return [String]
2373
+ #
2374
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
2375
+ #
2376
+ class CandidateArtifactLocations < Struct.new(
2377
+ :explainability)
2378
+ SENSITIVE = []
2379
+ include Aws::Structure
2380
+ end
2381
+
2382
+ # The properties of an AutoML candidate job.
2383
+ #
2384
+ # @!attribute [rw] candidate_artifact_locations
2385
+ # The Amazon S3 prefix to the artifacts generated for an AutoML
2386
+ # candidate.
2387
+ # @return [Types::CandidateArtifactLocations]
2388
+ #
2389
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
2390
+ #
2391
+ class CandidateProperties < Struct.new(
2392
+ :candidate_artifact_locations)
2393
+ SENSITIVE = []
2394
+ include Aws::Structure
2395
+ end
2396
+
2320
2397
  # Currently, the `CapacitySize` API is not supported.
2321
2398
  #
2322
2399
  # @note When making an API call, you may pass CapacitySize
@@ -2861,8 +2938,8 @@ module Aws::SageMaker
2861
2938
  include Aws::Structure
2862
2939
  end
2863
2940
 
2864
- # There was a conflict when you attempted to modify an experiment,
2865
- # trial, or trial component.
2941
+ # There was a conflict when you attempted to modify a SageMaker entity
2942
+ # such as an `Experiment` or `Artifact`.
2866
2943
  #
2867
2944
  # @!attribute [rw] message
2868
2945
  # @return [String]
@@ -3628,7 +3705,8 @@ module Aws::SageMaker
3628
3705
  # @return [String]
3629
3706
  #
3630
3707
  # @!attribute [rw] app_type
3631
- # The type of app.
3708
+ # The type of app. Supported apps are `JupyterServer` and
3709
+ # `KernelGateway`. `TensorBoard` is not supported.
3632
3710
  # @return [String]
3633
3711
  #
3634
3712
  # @!attribute [rw] app_name
@@ -3801,39 +3879,51 @@ module Aws::SageMaker
3801
3879
  # value: "TagValue", # required
3802
3880
  # },
3803
3881
  # ],
3882
+ # model_deploy_config: {
3883
+ # auto_generate_endpoint_name: false,
3884
+ # endpoint_name: "EndpointName",
3885
+ # },
3804
3886
  # }
3805
3887
  #
3806
3888
  # @!attribute [rw] auto_ml_job_name
3807
- # Identifies an Autopilot job. Must be unique to your account and is
3808
- # case-insensitive.
3889
+ # Identifies an Autopilot job. The name must be unique to your account
3890
+ # and is case-insensitive.
3809
3891
  # @return [String]
3810
3892
  #
3811
3893
  # @!attribute [rw] input_data_config
3812
- # Similar to InputDataConfig supported by Tuning. Format(s) supported:
3813
- # CSV. Minimum of 500 rows.
3894
+ # An array of channel objects that describes the input data and its
3895
+ # location. Each channel is a named input source. Similar to
3896
+ # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum
3897
+ # of 500 rows.
3814
3898
  # @return [Array<Types::AutoMLChannel>]
3815
3899
  #
3816
3900
  # @!attribute [rw] output_data_config
3817
- # Similar to OutputDataConfig supported by Tuning. Format(s)
3818
- # supported: CSV.
3901
+ # Provides information about encryption and the Amazon S3 output path
3902
+ # needed to store artifacts from an AutoML job. Format(s) supported:
3903
+ # CSV.
3819
3904
  # @return [Types::AutoMLOutputDataConfig]
3820
3905
  #
3821
3906
  # @!attribute [rw] problem_type
3822
- # Defines the kind of preprocessing and algorithms intended for the
3823
- # candidates. Options include: BinaryClassification,
3824
- # MulticlassClassification, and Regression.
3907
+ # Defines the type of supervised learning available for the
3908
+ # candidates. Options include: `BinaryClassification`,
3909
+ # `MulticlassClassification`, and `Regression`. For more information,
3910
+ # see [ Amazon SageMaker Autopilot problem types and algorithm
3911
+ # support][1].
3912
+ #
3913
+ #
3914
+ #
3915
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
3825
3916
  # @return [String]
3826
3917
  #
3827
3918
  # @!attribute [rw] auto_ml_job_objective
3828
- # Defines the objective of a an AutoML job. You provide a
3829
- # AutoMLJobObjective$MetricName and Autopilot infers whether to
3830
- # minimize or maximize it. If a metric is not specified, the most
3831
- # commonly used ObjectiveMetric for problem type is automaically
3832
- # selected.
3919
+ # Defines the objective metric used to measure the predictive quality
3920
+ # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
3921
+ # Autopilot infers whether to minimize or maximize it.
3833
3922
  # @return [Types::AutoMLJobObjective]
3834
3923
  #
3835
3924
  # @!attribute [rw] auto_ml_job_config
3836
- # Contains CompletionCriteria and SecurityConfig.
3925
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
3926
+ # AutoML job.
3837
3927
  # @return [Types::AutoMLJobConfig]
3838
3928
  #
3839
3929
  # @!attribute [rw] role_arn
@@ -3841,9 +3931,9 @@ module Aws::SageMaker
3841
3931
  # @return [String]
3842
3932
  #
3843
3933
  # @!attribute [rw] generate_candidate_definitions_only
3844
- # Generates possible candidates without training a model. A candidate
3845
- # is a combination of data preprocessors, algorithms, and algorithm
3846
- # parameter settings.
3934
+ # Generates possible candidates without training the models. A
3935
+ # candidate is a combination of data preprocessors, algorithms, and
3936
+ # algorithm parameter settings.
3847
3937
  # @return [Boolean]
3848
3938
  #
3849
3939
  # @!attribute [rw] tags
@@ -3851,6 +3941,11 @@ module Aws::SageMaker
3851
3941
  # unique per resource.
3852
3942
  # @return [Array<Types::Tag>]
3853
3943
  #
3944
+ # @!attribute [rw] model_deploy_config
3945
+ # Specifies how to generate the endpoint name for an automatic
3946
+ # one-click Autopilot model deployment.
3947
+ # @return [Types::ModelDeployConfig]
3948
+ #
3854
3949
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobRequest AWS API Documentation
3855
3950
  #
3856
3951
  class CreateAutoMLJobRequest < Struct.new(
@@ -3862,13 +3957,15 @@ module Aws::SageMaker
3862
3957
  :auto_ml_job_config,
3863
3958
  :role_arn,
3864
3959
  :generate_candidate_definitions_only,
3865
- :tags)
3960
+ :tags,
3961
+ :model_deploy_config)
3866
3962
  SENSITIVE = []
3867
3963
  include Aws::Structure
3868
3964
  end
3869
3965
 
3870
3966
  # @!attribute [rw] auto_ml_job_arn
3871
- # When a job is created, it is assigned a unique ARN.
3967
+ # The unique ARN that is assigned to the AutoML job when it is
3968
+ # created.
3872
3969
  # @return [String]
3873
3970
  #
3874
3971
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobResponse AWS API Documentation
@@ -4302,6 +4399,8 @@ module Aws::SageMaker
4302
4399
  # output_config: { # required
4303
4400
  # s3_output_location: "S3Uri", # required
4304
4401
  # kms_key_id: "KmsKeyId",
4402
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
4403
+ # preset_deployment_config: "String",
4305
4404
  # },
4306
4405
  # tags: [
4307
4406
  # {
@@ -4309,6 +4408,7 @@ module Aws::SageMaker
4309
4408
  # value: "TagValue", # required
4310
4409
  # },
4311
4410
  # ],
4411
+ # enable_iot_role_alias: false,
4312
4412
  # }
4313
4413
  #
4314
4414
  # @!attribute [rw] device_fleet_name
@@ -4333,6 +4433,15 @@ module Aws::SageMaker
4333
4433
  # Creates tags for the specified fleet.
4334
4434
  # @return [Array<Types::Tag>]
4335
4435
  #
4436
+ # @!attribute [rw] enable_iot_role_alias
4437
+ # Whether to create an AWS IoT Role Alias during device fleet
4438
+ # creation. The name of the role alias generated will match this
4439
+ # pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
4440
+ #
4441
+ # For example, if your device fleet is called "demo-fleet", the name
4442
+ # of the role alias will be "SageMakerEdge-demo-fleet".
4443
+ # @return [Boolean]
4444
+ #
4336
4445
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDeviceFleetRequest AWS API Documentation
4337
4446
  #
4338
4447
  class CreateDeviceFleetRequest < Struct.new(
@@ -4340,7 +4449,8 @@ module Aws::SageMaker
4340
4449
  :role_arn,
4341
4450
  :description,
4342
4451
  :output_config,
4343
- :tags)
4452
+ :tags,
4453
+ :enable_iot_role_alias)
4344
4454
  SENSITIVE = []
4345
4455
  include Aws::Structure
4346
4456
  end
@@ -4412,16 +4522,12 @@ module Aws::SageMaker
4412
4522
  # @!attribute [rw] default_user_settings
4413
4523
  # The default settings to use to create a user profile when
4414
4524
  # `UserSettings` isn't specified in the call to the
4415
- # [CreateUserProfile][1] API.
4525
+ # `CreateUserProfile` API.
4416
4526
  #
4417
4527
  # `SecurityGroups` is aggregated when specified in both calls. For all
4418
4528
  # other settings in `UserSettings`, the values specified in
4419
4529
  # `CreateUserProfile` take precedence over those specified in
4420
4530
  # `CreateDomain`.
4421
- #
4422
- #
4423
- #
4424
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
4425
4531
  # @return [Types::UserSettings]
4426
4532
  #
4427
4533
  # @!attribute [rw] subnet_ids
@@ -4436,11 +4542,10 @@ module Aws::SageMaker
4436
4542
  # @!attribute [rw] tags
4437
4543
  # Tags to associated with the Domain. Each tag consists of a key and
4438
4544
  # an optional value. Tag keys must be unique per resource. Tags are
4439
- # searchable using the [Search][1] API.
4440
- #
4545
+ # searchable using the `Search` API.
4441
4546
  #
4442
- #
4443
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
4547
+ # Tags that you specify for the Domain are also added to all Apps that
4548
+ # the Domain launches.
4444
4549
  # @return [Array<Types::Tag>]
4445
4550
  #
4446
4551
  # @!attribute [rw] app_network_access_type
@@ -4509,6 +4614,8 @@ module Aws::SageMaker
4509
4614
  # output_config: { # required
4510
4615
  # s3_output_location: "S3Uri", # required
4511
4616
  # kms_key_id: "KmsKeyId",
4617
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
4618
+ # preset_deployment_config: "String",
4512
4619
  # },
4513
4620
  # resource_key: "KmsKeyId",
4514
4621
  # tags: [
@@ -5295,6 +5402,9 @@ module Aws::SageMaker
5295
5402
  # s3_uri: "S3Uri", # required
5296
5403
  # local_path: "DirectoryPath",
5297
5404
  # },
5405
+ # retry_strategy: {
5406
+ # maximum_retry_attempts: 1, # required
5407
+ # },
5298
5408
  # },
5299
5409
  # training_job_definitions: [
5300
5410
  # {
@@ -5393,6 +5503,9 @@ module Aws::SageMaker
5393
5503
  # s3_uri: "S3Uri", # required
5394
5504
  # local_path: "DirectoryPath",
5395
5505
  # },
5506
+ # retry_strategy: {
5507
+ # maximum_retry_attempts: 1, # required
5508
+ # },
5396
5509
  # },
5397
5510
  # ],
5398
5511
  # warm_start_config: {
@@ -7028,9 +7141,9 @@ module Aws::SageMaker
7028
7141
  # @!attribute [rw] direct_internet_access
7029
7142
  # Sets whether Amazon SageMaker provides internet access to the
7030
7143
  # notebook instance. If you set this to `Disabled` this notebook
7031
- # instance will be able to access resources only in your VPC, and will
7032
- # not be able to connect to Amazon SageMaker training and endpoint
7033
- # services unless your configure a NAT Gateway in your VPC.
7144
+ # instance is able to access resources only in your VPC, and is not be
7145
+ # able to connect to Amazon SageMaker training and endpoint services
7146
+ # unless you configure a NAT Gateway in your VPC.
7034
7147
  #
7035
7148
  # For more information, see [Notebook Instances Are Internet-Enabled
7036
7149
  # by Default][1]. You can set the value of this parameter to
@@ -7770,6 +7883,9 @@ module Aws::SageMaker
7770
7883
  # environment: {
7771
7884
  # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
7772
7885
  # },
7886
+ # retry_strategy: {
7887
+ # maximum_retry_attempts: 1, # required
7888
+ # },
7773
7889
  # }
7774
7890
  #
7775
7891
  # @!attribute [rw] training_job_name
@@ -7876,9 +7992,10 @@ module Aws::SageMaker
7876
7992
  # @return [Types::VpcConfig]
7877
7993
  #
7878
7994
  # @!attribute [rw] stopping_condition
7879
- # Specifies a limit to how long a model training job can run. When the
7880
- # job reaches the time limit, Amazon SageMaker ends the training job.
7881
- # Use this API to cap model training costs.
7995
+ # Specifies a limit to how long a model training job can run. It also
7996
+ # specifies how long a managed Spot training job has to complete. When
7997
+ # the job reaches the time limit, Amazon SageMaker ends the training
7998
+ # job. Use this API to cap model training costs.
7882
7999
  #
7883
8000
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
7884
8001
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -7987,6 +8104,11 @@ module Aws::SageMaker
7987
8104
  # The environment variables to set in the Docker container.
7988
8105
  # @return [Hash<String,String>]
7989
8106
  #
8107
+ # @!attribute [rw] retry_strategy
8108
+ # The number of times to retry the job when the job fails due to an
8109
+ # `InternalServerError`.
8110
+ # @return [Types::RetryStrategy]
8111
+ #
7990
8112
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
7991
8113
  #
7992
8114
  class CreateTrainingJobRequest < Struct.new(
@@ -8010,7 +8132,8 @@ module Aws::SageMaker
8010
8132
  :experiment_config,
8011
8133
  :profiler_config,
8012
8134
  :profiler_rule_configurations,
8013
- :environment)
8135
+ :environment,
8136
+ :retry_strategy)
8014
8137
  SENSITIVE = []
8015
8138
  include Aws::Structure
8016
8139
  end
@@ -8488,7 +8611,7 @@ module Aws::SageMaker
8488
8611
  # @return [String]
8489
8612
  #
8490
8613
  # @!attribute [rw] user_profile_name
8491
- # A name for the UserProfile.
8614
+ # A name for the UserProfile. This value is not case sensitive.
8492
8615
  # @return [String]
8493
8616
  #
8494
8617
  # @!attribute [rw] single_sign_on_user_identifier
@@ -8510,6 +8633,9 @@ module Aws::SageMaker
8510
8633
  # @!attribute [rw] tags
8511
8634
  # Each tag consists of a key and an optional value. Tag keys must be
8512
8635
  # unique per resource.
8636
+ #
8637
+ # Tags that you specify for the User Profile are also added to all
8638
+ # Apps that the User Profile launches.
8513
8639
  # @return [Array<Types::Tag>]
8514
8640
  #
8515
8641
  # @!attribute [rw] user_settings
@@ -8954,7 +9080,9 @@ module Aws::SageMaker
8954
9080
  # The valid values are `None` and `Input`. The default value is
8955
9081
  # `None`, which specifies not to join the input with the transformed
8956
9082
  # data. If you want the batch transform job to join the original input
8957
- # data with the transformed data, set `JoinSource` to `Input`.
9083
+ # data with the transformed data, set `JoinSource` to `Input`. You can
9084
+ # specify `OutputFilter` as an additional filter to select a portion
9085
+ # of the joined dataset and store it in the output file.
8958
9086
  #
8959
9087
  # For JSON or JSONLines objects, such as a JSON array, Amazon
8960
9088
  # SageMaker adds the transformed data to the input JSON object in an
@@ -8964,10 +9092,18 @@ module Aws::SageMaker
8964
9092
  # file, and the input data is stored under the `SageMakerInput` key
8965
9093
  # and the results are stored in `SageMakerOutput`.
8966
9094
  #
8967
- # For CSV files, Amazon SageMaker combines the transformed data with
8968
- # the input data at the end of the input data and stores it in the
8969
- # output file. The joined data has the joined input data followed by
8970
- # the transformed data and the output is a CSV file.
9095
+ # For CSV data, Amazon SageMaker takes each row as a JSON array and
9096
+ # joins the transformed data with the input by appending each
9097
+ # transformed row to the end of the input. The joined data has the
9098
+ # original input data followed by the transformed data and the output
9099
+ # is a CSV file.
9100
+ #
9101
+ # For information on how joining in applied, see [Workflow for
9102
+ # Associating Inferences with Input Records][1].
9103
+ #
9104
+ #
9105
+ #
9106
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow
8971
9107
  # @return [String]
8972
9108
  #
8973
9109
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
@@ -9998,8 +10134,11 @@ module Aws::SageMaker
9998
10134
  # }
9999
10135
  #
10000
10136
  # @!attribute [rw] model_package_name
10001
- # The name of the model package. The name must have 1 to 63
10002
- # characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
10137
+ # The name or Amazon Resource Name (ARN) of the model package to
10138
+ # delete.
10139
+ #
10140
+ # When you specify a name, the name must have 1 to 63 characters.
10141
+ # Valid characters are a-z, A-Z, 0-9, and - (hyphen).
10003
10142
  # @return [String]
10004
10143
  #
10005
10144
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteModelPackageInput AWS API Documentation
@@ -10834,7 +10973,7 @@ module Aws::SageMaker
10834
10973
  # }
10835
10974
  #
10836
10975
  # @!attribute [rw] auto_ml_job_name
10837
- # Request information about a job using that job's unique name.
10976
+ # Requests information about an AutoML job using its unique name.
10838
10977
  # @return [String]
10839
10978
  #
10840
10979
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobRequest AWS API Documentation
@@ -10846,15 +10985,15 @@ module Aws::SageMaker
10846
10985
  end
10847
10986
 
10848
10987
  # @!attribute [rw] auto_ml_job_name
10849
- # Returns the name of a job.
10988
+ # Returns the name of the AutoML job.
10850
10989
  # @return [String]
10851
10990
  #
10852
10991
  # @!attribute [rw] auto_ml_job_arn
10853
- # Returns the job's ARN.
10992
+ # Returns the ARN of the AutoML job.
10854
10993
  # @return [String]
10855
10994
  #
10856
10995
  # @!attribute [rw] input_data_config
10857
- # Returns the job's input data config.
10996
+ # Returns the input data configuration for the AutoML job..
10858
10997
  # @return [Array<Types::AutoMLChannel>]
10859
10998
  #
10860
10999
  # @!attribute [rw] output_data_config
@@ -10877,15 +11016,15 @@ module Aws::SageMaker
10877
11016
  # @return [String]
10878
11017
  #
10879
11018
  # @!attribute [rw] auto_ml_job_config
10880
- # Returns the job's config.
11019
+ # Returns the configuration for the AutoML job.
10881
11020
  # @return [Types::AutoMLJobConfig]
10882
11021
  #
10883
11022
  # @!attribute [rw] creation_time
10884
- # Returns the job's creation time.
11023
+ # Returns the creation time of the AutoML job.
10885
11024
  # @return [Time]
10886
11025
  #
10887
11026
  # @!attribute [rw] end_time
10888
- # Returns the job's end time.
11027
+ # Returns the end time of the AutoML job.
10889
11028
  # @return [Time]
10890
11029
  #
10891
11030
  # @!attribute [rw] last_modified_time
@@ -10893,37 +11032,51 @@ module Aws::SageMaker
10893
11032
  # @return [Time]
10894
11033
  #
10895
11034
  # @!attribute [rw] failure_reason
10896
- # Returns the job's FailureReason.
11035
+ # Returns the failure reason for an AutoML job, when applicable.
10897
11036
  # @return [String]
10898
11037
  #
11038
+ # @!attribute [rw] partial_failure_reasons
11039
+ # Returns a list of reasons for partial failures within an AutoML job.
11040
+ # @return [Array<Types::AutoMLPartialFailureReason>]
11041
+ #
10899
11042
  # @!attribute [rw] best_candidate
10900
- # Returns the job's BestCandidate.
11043
+ # Returns the job's best `AutoMLCandidate`.
10901
11044
  # @return [Types::AutoMLCandidate]
10902
11045
  #
10903
11046
  # @!attribute [rw] auto_ml_job_status
10904
- # Returns the job's AutoMLJobStatus.
11047
+ # Returns the status of the AutoML job.
10905
11048
  # @return [String]
10906
11049
  #
10907
11050
  # @!attribute [rw] auto_ml_job_secondary_status
10908
- # Returns the job's AutoMLJobSecondaryStatus.
11051
+ # Returns the secondary status of the AutoML job.
10909
11052
  # @return [String]
10910
11053
  #
10911
11054
  # @!attribute [rw] generate_candidate_definitions_only
10912
- # Returns the job's output from GenerateCandidateDefinitionsOnly.
11055
+ # Indicates whether the output for an AutoML job generates candidate
11056
+ # definitions only.
10913
11057
  # @return [Boolean]
10914
11058
  #
10915
11059
  # @!attribute [rw] auto_ml_job_artifacts
10916
11060
  # Returns information on the job's artifacts found in
10917
- # AutoMLJobArtifacts.
11061
+ # `AutoMLJobArtifacts`.
10918
11062
  # @return [Types::AutoMLJobArtifacts]
10919
11063
  #
10920
11064
  # @!attribute [rw] resolved_attributes
10921
- # This contains ProblemType, AutoMLJobObjective and
10922
- # CompletionCriteria. They're auto-inferred values, if not provided
10923
- # by you. If you do provide them, then they'll be the same as
10924
- # provided.
11065
+ # This contains `ProblemType`, `AutoMLJobObjective` and
11066
+ # `CompletionCriteria`. If you do not provide these values, they are
11067
+ # auto-inferred. If you do provide them, the values used are the ones
11068
+ # you provide.
10925
11069
  # @return [Types::ResolvedAttributes]
10926
11070
  #
11071
+ # @!attribute [rw] model_deploy_config
11072
+ # Indicates whether the model was deployed automatically to an
11073
+ # endpoint and the name of that endpoint if deployed automatically.
11074
+ # @return [Types::ModelDeployConfig]
11075
+ #
11076
+ # @!attribute [rw] model_deploy_result
11077
+ # Provides information about endpoint for the model deployment.
11078
+ # @return [Types::ModelDeployResult]
11079
+ #
10927
11080
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
10928
11081
  #
10929
11082
  class DescribeAutoMLJobResponse < Struct.new(
@@ -10939,12 +11092,15 @@ module Aws::SageMaker
10939
11092
  :end_time,
10940
11093
  :last_modified_time,
10941
11094
  :failure_reason,
11095
+ :partial_failure_reasons,
10942
11096
  :best_candidate,
10943
11097
  :auto_ml_job_status,
10944
11098
  :auto_ml_job_secondary_status,
10945
11099
  :generate_candidate_definitions_only,
10946
11100
  :auto_ml_job_artifacts,
10947
- :resolved_attributes)
11101
+ :resolved_attributes,
11102
+ :model_deploy_config,
11103
+ :model_deploy_result)
10948
11104
  SENSITIVE = []
10949
11105
  include Aws::Structure
10950
11106
  end
@@ -11643,6 +11799,10 @@ module Aws::SageMaker
11643
11799
  # The signature document of files in the model artifact.
11644
11800
  # @return [String]
11645
11801
  #
11802
+ # @!attribute [rw] preset_deployment_output
11803
+ # The output of a SageMaker Edge Manager deployable resource.
11804
+ # @return [Types::EdgePresetDeploymentOutput]
11805
+ #
11646
11806
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEdgePackagingJobResponse AWS API Documentation
11647
11807
  #
11648
11808
  class DescribeEdgePackagingJobResponse < Struct.new(
@@ -11659,7 +11819,8 @@ module Aws::SageMaker
11659
11819
  :creation_time,
11660
11820
  :last_modified_time,
11661
11821
  :model_artifact,
11662
- :model_signature)
11822
+ :model_signature,
11823
+ :preset_deployment_output)
11663
11824
  SENSITIVE = []
11664
11825
  include Aws::Structure
11665
11826
  end
@@ -12922,7 +13083,11 @@ module Aws::SageMaker
12922
13083
  # }
12923
13084
  #
12924
13085
  # @!attribute [rw] model_package_name
12925
- # The name of the model package to describe.
13086
+ # The name or Amazon Resource Name (ARN) of the model package to
13087
+ # describe.
13088
+ #
13089
+ # When you specify a name, the name must have 1 to 63 characters.
13090
+ # Valid characters are a-z, A-Z, 0-9, and - (hyphen).
12926
13091
  # @return [String]
12927
13092
  #
12928
13093
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageInput AWS API Documentation
@@ -13540,6 +13705,15 @@ module Aws::SageMaker
13540
13705
  # The description of the pipeline execution.
13541
13706
  # @return [String]
13542
13707
  #
13708
+ # @!attribute [rw] pipeline_experiment_config
13709
+ # Specifies the names of the experiment and trial created by a
13710
+ # pipeline.
13711
+ # @return [Types::PipelineExperimentConfig]
13712
+ #
13713
+ # @!attribute [rw] failure_reason
13714
+ # If the execution failed, a message describing why.
13715
+ # @return [String]
13716
+ #
13543
13717
  # @!attribute [rw] creation_time
13544
13718
  # The time when the pipeline execution was created.
13545
13719
  # @return [Time]
@@ -13566,6 +13740,8 @@ module Aws::SageMaker
13566
13740
  :pipeline_execution_display_name,
13567
13741
  :pipeline_execution_status,
13568
13742
  :pipeline_execution_description,
13743
+ :pipeline_experiment_config,
13744
+ :failure_reason,
13569
13745
  :creation_time,
13570
13746
  :last_modified_time,
13571
13747
  :created_by,
@@ -14032,7 +14208,7 @@ module Aws::SageMaker
14032
14208
  #
14033
14209
  # * `LaunchingMLInstances`
14034
14210
  #
14035
- # * `PreparingTrainingStack`
14211
+ # * `PreparingTraining`
14036
14212
  #
14037
14213
  # * `DownloadingTrainingImage`
14038
14214
  # @return [String]
@@ -14083,9 +14259,9 @@ module Aws::SageMaker
14083
14259
  #
14084
14260
  # @!attribute [rw] stopping_condition
14085
14261
  # Specifies a limit to how long a model training job can run. It also
14086
- # specifies the maximum time to wait for a spot instance. When the job
14087
- # reaches the time limit, Amazon SageMaker ends the training job. Use
14088
- # this API to cap model training costs.
14262
+ # specifies how long a managed Spot training job has to complete. When
14263
+ # the job reaches the time limit, Amazon SageMaker ends the training
14264
+ # job. Use this API to cap model training costs.
14089
14265
  #
14090
14266
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
14091
14267
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -14234,6 +14410,11 @@ module Aws::SageMaker
14234
14410
  # Profiling status of a training job.
14235
14411
  # @return [String]
14236
14412
  #
14413
+ # @!attribute [rw] retry_strategy
14414
+ # The number of times to retry the job when the job fails due to an
14415
+ # `InternalServerError`.
14416
+ # @return [Types::RetryStrategy]
14417
+ #
14237
14418
  # @!attribute [rw] environment
14238
14419
  # The environment variables to set in the Docker container.
14239
14420
  # @return [Hash<String,String>]
@@ -14279,6 +14460,7 @@ module Aws::SageMaker
14279
14460
  :profiler_rule_configurations,
14280
14461
  :profiler_rule_evaluation_statuses,
14281
14462
  :profiling_status,
14463
+ :retry_strategy,
14282
14464
  :environment)
14283
14465
  SENSITIVE = []
14284
14466
  include Aws::Structure
@@ -14661,7 +14843,7 @@ module Aws::SageMaker
14661
14843
  # @return [String]
14662
14844
  #
14663
14845
  # @!attribute [rw] user_profile_name
14664
- # The user profile name.
14846
+ # The user profile name. This value is not case sensitive.
14665
14847
  # @return [String]
14666
14848
  #
14667
14849
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfileRequest AWS API Documentation
@@ -15168,6 +15350,8 @@ module Aws::SageMaker
15168
15350
  # {
15169
15351
  # s3_output_location: "S3Uri", # required
15170
15352
  # kms_key_id: "KmsKeyId",
15353
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
15354
+ # preset_deployment_config: "String",
15171
15355
  # }
15172
15356
  #
15173
15357
  # @!attribute [rw] s3_output_location
@@ -15181,11 +15365,57 @@ module Aws::SageMaker
15181
15365
  # KMS key for Amazon S3 for your role's account.
15182
15366
  # @return [String]
15183
15367
  #
15368
+ # @!attribute [rw] preset_deployment_type
15369
+ # The deployment type SageMaker Edge Manager will create. Currently
15370
+ # only supports AWS IoT Greengrass Version 2 components.
15371
+ # @return [String]
15372
+ #
15373
+ # @!attribute [rw] preset_deployment_config
15374
+ # The configuration used to create deployment artifacts. Specify
15375
+ # configuration options with a JSON string. The available
15376
+ # configuration options for each type are:
15377
+ #
15378
+ # * `ComponentName` (optional) - Name of the GreenGrass V2 component.
15379
+ # If not specified, the default name generated consists of
15380
+ # "SagemakerEdgeManager" and the name of your SageMaker Edge
15381
+ # Manager packaging job.
15382
+ #
15383
+ # * `ComponentDescription` (optional) - Description of the component.
15384
+ #
15385
+ # * `ComponentVersion` (optional) - The version of the component.
15386
+ #
15387
+ # <note markdown="1"> AWS IoT Greengrass uses semantic versions for components. Semantic
15388
+ # versions follow a<i> major.minor.patch</i> number system. For
15389
+ # example, version 1.0.0 represents the first major release for a
15390
+ # component. For more information, see the [semantic version
15391
+ # specification][1].
15392
+ #
15393
+ # </note>
15394
+ #
15395
+ # * `PlatformOS` (optional) - The name of the operating system for the
15396
+ # platform. Supported platforms include Windows and Linux.
15397
+ #
15398
+ # * `PlatformArchitecture` (optional) - The processor architecture for
15399
+ # the platform.
15400
+ #
15401
+ # Supported architectures Windows include: Windows32\_x86,
15402
+ # Windows64\_x64.
15403
+ #
15404
+ # Supported architectures for Linux include: Linux x86\_64, Linux
15405
+ # ARMV8.
15406
+ #
15407
+ #
15408
+ #
15409
+ # [1]: https://semver.org/
15410
+ # @return [String]
15411
+ #
15184
15412
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EdgeOutputConfig AWS API Documentation
15185
15413
  #
15186
15414
  class EdgeOutputConfig < Struct.new(
15187
15415
  :s3_output_location,
15188
- :kms_key_id)
15416
+ :kms_key_id,
15417
+ :preset_deployment_type,
15418
+ :preset_deployment_config)
15189
15419
  SENSITIVE = []
15190
15420
  include Aws::Structure
15191
15421
  end
@@ -15239,6 +15469,36 @@ module Aws::SageMaker
15239
15469
  include Aws::Structure
15240
15470
  end
15241
15471
 
15472
+ # The output of a SageMaker Edge Manager deployable resource.
15473
+ #
15474
+ # @!attribute [rw] type
15475
+ # The deployment type created by SageMaker Edge Manager. Currently
15476
+ # only supports AWS IoT Greengrass Version 2 components.
15477
+ # @return [String]
15478
+ #
15479
+ # @!attribute [rw] artifact
15480
+ # The Amazon Resource Name (ARN) of the generated deployable resource.
15481
+ # @return [String]
15482
+ #
15483
+ # @!attribute [rw] status
15484
+ # The status of the deployable resource.
15485
+ # @return [String]
15486
+ #
15487
+ # @!attribute [rw] status_message
15488
+ # Returns a message describing the status of the deployed resource.
15489
+ # @return [String]
15490
+ #
15491
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EdgePresetDeploymentOutput AWS API Documentation
15492
+ #
15493
+ class EdgePresetDeploymentOutput < Struct.new(
15494
+ :type,
15495
+ :artifact,
15496
+ :status,
15497
+ :status_message)
15498
+ SENSITIVE = []
15499
+ include Aws::Structure
15500
+ end
15501
+
15242
15502
  # @api private
15243
15503
  #
15244
15504
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EnableSagemakerServicecatalogPortfolioInput AWS API Documentation
@@ -15385,7 +15645,7 @@ module Aws::SageMaker
15385
15645
  #
15386
15646
  # @!attribute [rw] s3_data_distribution_type
15387
15647
  # Whether input data distributed in Amazon S3 is fully replicated or
15388
- # sharded by an S3 key. Defauts to `FullyReplicated`
15648
+ # sharded by an S3 key. Defaults to `FullyReplicated`
15389
15649
  # @return [String]
15390
15650
  #
15391
15651
  # @!attribute [rw] features_attribute
@@ -17931,6 +18191,9 @@ module Aws::SageMaker
17931
18191
  # s3_uri: "S3Uri", # required
17932
18192
  # local_path: "DirectoryPath",
17933
18193
  # },
18194
+ # retry_strategy: {
18195
+ # maximum_retry_attempts: 1, # required
18196
+ # },
17934
18197
  # }
17935
18198
  #
17936
18199
  # @!attribute [rw] definition_name
@@ -18012,10 +18275,9 @@ module Aws::SageMaker
18012
18275
  #
18013
18276
  # @!attribute [rw] stopping_condition
18014
18277
  # Specifies a limit to how long a model hyperparameter training job
18015
- # can run. It also specifies how long you are willing to wait for a
18016
- # managed spot training job to complete. When the job reaches the a
18017
- # limit, Amazon SageMaker ends the training job. Use this API to cap
18018
- # model training costs.
18278
+ # can run. It also specifies how long a managed spot training job has
18279
+ # to complete. When the job reaches the time limit, Amazon SageMaker
18280
+ # ends the training job. Use this API to cap model training costs.
18019
18281
  # @return [Types::StoppingCondition]
18020
18282
  #
18021
18283
  # @!attribute [rw] enable_network_isolation
@@ -18047,6 +18309,11 @@ module Aws::SageMaker
18047
18309
  # training checkpoint data.
18048
18310
  # @return [Types::CheckpointConfig]
18049
18311
  #
18312
+ # @!attribute [rw] retry_strategy
18313
+ # The number of times to retry the job when the job fails due to an
18314
+ # `InternalServerError`.
18315
+ # @return [Types::RetryStrategy]
18316
+ #
18050
18317
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
18051
18318
  #
18052
18319
  class HyperParameterTrainingJobDefinition < Struct.new(
@@ -18064,7 +18331,8 @@ module Aws::SageMaker
18064
18331
  :enable_network_isolation,
18065
18332
  :enable_inter_container_traffic_encryption,
18066
18333
  :enable_managed_spot_training,
18067
- :checkpoint_config)
18334
+ :checkpoint_config,
18335
+ :retry_strategy)
18068
18336
  SENSITIVE = []
18069
18337
  include Aws::Structure
18070
18338
  end
@@ -19126,7 +19394,8 @@ module Aws::SageMaker
19126
19394
  # }
19127
19395
  #
19128
19396
  # @!attribute [rw] name
19129
- # The name of the kernel.
19397
+ # The name of the Jupyter kernel in the image. This value is case
19398
+ # sensitive.
19130
19399
  # @return [String]
19131
19400
  #
19132
19401
  # @!attribute [rw] display_name
@@ -19344,6 +19613,7 @@ module Aws::SageMaker
19344
19613
  # @return [String]
19345
19614
  #
19346
19615
  # @!attribute [rw] work_requester_account_id
19616
+ # The AWS account ID of the account used to start the labeling job.
19347
19617
  # @return [String]
19348
19618
  #
19349
19619
  # @!attribute [rw] creation_time
@@ -19468,6 +19738,9 @@ module Aws::SageMaker
19468
19738
  #
19469
19739
  # @!attribute [rw] sns_topic_arn
19470
19740
  # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
19741
+ # Provide a `SnsTopicArn` if you want to do real time chaining to
19742
+ # another streaming job and receive an Amazon SNS notifications each
19743
+ # time a data object is submitted by a worker.
19471
19744
  #
19472
19745
  # If you provide an `SnsTopicArn` in `OutputConfig`, when workers
19473
19746
  # complete labeling tasks, Ground Truth will send labeling task output
@@ -20275,12 +20548,11 @@ module Aws::SageMaker
20275
20548
  # @return [String]
20276
20549
  #
20277
20550
  # @!attribute [rw] sort_order
20278
- # The sort order for the results. The default is Descending.
20551
+ # The sort order for the results. The default is `Descending`.
20279
20552
  # @return [String]
20280
20553
  #
20281
20554
  # @!attribute [rw] sort_by
20282
- # The parameter by which to sort the results. The default is
20283
- # AutoMLJobName.
20555
+ # The parameter by which to sort the results. The default is `Name`.
20284
20556
  # @return [String]
20285
20557
  #
20286
20558
  # @!attribute [rw] max_results
@@ -20341,29 +20613,29 @@ module Aws::SageMaker
20341
20613
  # }
20342
20614
  #
20343
20615
  # @!attribute [rw] auto_ml_job_name
20344
- # List the Candidates created for the job by providing the job's
20616
+ # List the candidates created for the job by providing the job's
20345
20617
  # name.
20346
20618
  # @return [String]
20347
20619
  #
20348
20620
  # @!attribute [rw] status_equals
20349
- # List the Candidates for the job and filter by status.
20621
+ # List the candidates for the job and filter by status.
20350
20622
  # @return [String]
20351
20623
  #
20352
20624
  # @!attribute [rw] candidate_name_equals
20353
- # List the Candidates for the job and filter by candidate name.
20625
+ # List the candidates for the job and filter by candidate name.
20354
20626
  # @return [String]
20355
20627
  #
20356
20628
  # @!attribute [rw] sort_order
20357
- # The sort order for the results. The default is Ascending.
20629
+ # The sort order for the results. The default is `Ascending`.
20358
20630
  # @return [String]
20359
20631
  #
20360
20632
  # @!attribute [rw] sort_by
20361
20633
  # The parameter by which to sort the results. The default is
20362
- # Descending.
20634
+ # `Descending`.
20363
20635
  # @return [String]
20364
20636
  #
20365
20637
  # @!attribute [rw] max_results
20366
- # List the job's Candidates up to a specified limit.
20638
+ # List the job's candidates up to a specified limit.
20367
20639
  # @return [Integer]
20368
20640
  #
20369
20641
  # @!attribute [rw] next_token
@@ -20386,7 +20658,7 @@ module Aws::SageMaker
20386
20658
  end
20387
20659
 
20388
20660
  # @!attribute [rw] candidates
20389
- # Summaries about the Candidates.
20661
+ # Summaries about the `AutoMLCandidates`.
20390
20662
  # @return [Array<Types::AutoMLCandidate>]
20391
20663
  #
20392
20664
  # @!attribute [rw] next_token
@@ -21187,7 +21459,8 @@ module Aws::SageMaker
21187
21459
  # @return [String]
21188
21460
  #
21189
21461
  # @!attribute [rw] max_results
21190
- # The maximum number of endpoints to return in the response.
21462
+ # The maximum number of endpoints to return in the response. This
21463
+ # value defaults to 10.
21191
21464
  # @return [Integer]
21192
21465
  #
21193
21466
  # @!attribute [rw] name_contains
@@ -24422,7 +24695,7 @@ module Aws::SageMaker
24422
24695
  #
24423
24696
  # Model artifacts are the output that results from training a model, and
24424
24697
  # typically consist of trained parameters, a model defintion that
24425
- # desribes how to compute inferences, and other metadata.
24698
+ # describes how to compute inferences, and other metadata.
24426
24699
  #
24427
24700
  # @!attribute [rw] s3_model_artifacts
24428
24701
  # The path of the S3 object that contains the model artifacts. For
@@ -24610,6 +24883,66 @@ module Aws::SageMaker
24610
24883
  include Aws::Structure
24611
24884
  end
24612
24885
 
24886
+ # Specifies how to generate the endpoint name for an automatic one-click
24887
+ # Autopilot model deployment.
24888
+ #
24889
+ # @note When making an API call, you may pass ModelDeployConfig
24890
+ # data as a hash:
24891
+ #
24892
+ # {
24893
+ # auto_generate_endpoint_name: false,
24894
+ # endpoint_name: "EndpointName",
24895
+ # }
24896
+ #
24897
+ # @!attribute [rw] auto_generate_endpoint_name
24898
+ # Set to `True` to automatically generate an endpoint name for a
24899
+ # one-click Autopilot model deployment; set to `False` otherwise. The
24900
+ # default value is `False`.
24901
+ #
24902
+ # <note markdown="1"> If you set `AutoGenerateEndpointName` to `True`, do not specify the
24903
+ # `EndpointName`; otherwise a 400 error is thrown.
24904
+ #
24905
+ # </note>
24906
+ # @return [Boolean]
24907
+ #
24908
+ # @!attribute [rw] endpoint_name
24909
+ # Specifies the endpoint name to use for a one-click Autopilot model
24910
+ # deployment if the endpoint name is not generated automatically.
24911
+ #
24912
+ # <note markdown="1"> Specify the `EndpointName` if and only if you set
24913
+ # `AutoGenerateEndpointName` to `False`; otherwise a 400 error is
24914
+ # thrown.
24915
+ #
24916
+ # </note>
24917
+ # @return [String]
24918
+ #
24919
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployConfig AWS API Documentation
24920
+ #
24921
+ class ModelDeployConfig < Struct.new(
24922
+ :auto_generate_endpoint_name,
24923
+ :endpoint_name)
24924
+ SENSITIVE = []
24925
+ include Aws::Structure
24926
+ end
24927
+
24928
+ # Provides information about the endpoint of the model deployment.
24929
+ #
24930
+ # @!attribute [rw] endpoint_name
24931
+ # The name of the endpoint to which the model has been deployed.
24932
+ #
24933
+ # <note markdown="1"> If model deployment fails, this field is omitted from the response.
24934
+ #
24935
+ # </note>
24936
+ # @return [String]
24937
+ #
24938
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployResult AWS API Documentation
24939
+ #
24940
+ class ModelDeployResult < Struct.new(
24941
+ :endpoint_name)
24942
+ SENSITIVE = []
24943
+ include Aws::Structure
24944
+ end
24945
+
24613
24946
  # Provides information to verify the integrity of stored model
24614
24947
  # artifacts.
24615
24948
  #
@@ -26445,6 +26778,13 @@ module Aws::SageMaker
26445
26778
  #
26446
26779
  # @!attribute [rw] max_runtime_in_seconds
26447
26780
  # The maximum runtime allowed in seconds.
26781
+ #
26782
+ # <note markdown="1"> The `MaxRuntimeInSeconds` cannot exceed the frequency of the job.
26783
+ # For data quality and model explainability, this can be up to 3600
26784
+ # seconds for an hourly schedule. For model bias and model quality
26785
+ # hourly schedules, this can be up to 1800 seconds.
26786
+ #
26787
+ # </note>
26448
26788
  # @return [Integer]
26449
26789
  #
26450
26790
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MonitoringStoppingCondition AWS API Documentation
@@ -27382,7 +27722,7 @@ module Aws::SageMaker
27382
27722
  #
27383
27723
  #
27384
27724
  #
27385
- # [1]: https://docs.aws.amazon.com/mazonS3/latest/dev/UsingKMSEncryption.html
27725
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
27386
27726
  # [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
27387
27727
  # @return [String]
27388
27728
  #
@@ -27400,6 +27740,33 @@ module Aws::SageMaker
27400
27740
  include Aws::Structure
27401
27741
  end
27402
27742
 
27743
+ # An output parameter of a pipeline step.
27744
+ #
27745
+ # @note When making an API call, you may pass OutputParameter
27746
+ # data as a hash:
27747
+ #
27748
+ # {
27749
+ # name: "String256", # required
27750
+ # value: "String1024", # required
27751
+ # }
27752
+ #
27753
+ # @!attribute [rw] name
27754
+ # The name of the output parameter.
27755
+ # @return [String]
27756
+ #
27757
+ # @!attribute [rw] value
27758
+ # The value of the output parameter.
27759
+ # @return [String]
27760
+ #
27761
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputParameter AWS API Documentation
27762
+ #
27763
+ class OutputParameter < Struct.new(
27764
+ :name,
27765
+ :value)
27766
+ SENSITIVE = []
27767
+ include Aws::Structure
27768
+ end
27769
+
27403
27770
  # Assigns a value to a named Pipeline parameter.
27404
27771
  #
27405
27772
  # @note When making an API call, you may pass Parameter
@@ -27679,6 +28046,15 @@ module Aws::SageMaker
27679
28046
  # The description of the pipeline execution.
27680
28047
  # @return [String]
27681
28048
  #
28049
+ # @!attribute [rw] pipeline_experiment_config
28050
+ # Specifies the names of the experiment and trial created by a
28051
+ # pipeline.
28052
+ # @return [Types::PipelineExperimentConfig]
28053
+ #
28054
+ # @!attribute [rw] failure_reason
28055
+ # If the execution failed, a message describing why.
28056
+ # @return [String]
28057
+ #
27682
28058
  # @!attribute [rw] creation_time
27683
28059
  # The creation time of the pipeline execution.
27684
28060
  # @return [Time]
@@ -27709,6 +28085,8 @@ module Aws::SageMaker
27709
28085
  :pipeline_execution_display_name,
27710
28086
  :pipeline_execution_status,
27711
28087
  :pipeline_execution_description,
28088
+ :pipeline_experiment_config,
28089
+ :failure_reason,
27712
28090
  :creation_time,
27713
28091
  :last_modified_time,
27714
28092
  :created_by,
@@ -27747,7 +28125,7 @@ module Aws::SageMaker
27747
28125
  # @return [String]
27748
28126
  #
27749
28127
  # @!attribute [rw] metadata
27750
- # The metadata for the step execution.
28128
+ # Metadata for the step execution.
27751
28129
  # @return [Types::PipelineExecutionStepMetadata]
27752
28130
  #
27753
28131
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExecutionStep AWS API Documentation
@@ -27794,6 +28172,10 @@ module Aws::SageMaker
27794
28172
  # condition.
27795
28173
  # @return [Types::ConditionStepMetadata]
27796
28174
  #
28175
+ # @!attribute [rw] callback
28176
+ # Metadata about a callback step.
28177
+ # @return [Types::CallbackStepMetadata]
28178
+ #
27797
28179
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExecutionStepMetadata AWS API Documentation
27798
28180
  #
27799
28181
  class PipelineExecutionStepMetadata < Struct.new(
@@ -27802,7 +28184,8 @@ module Aws::SageMaker
27802
28184
  :transform_job,
27803
28185
  :model,
27804
28186
  :register_model,
27805
- :condition)
28187
+ :condition,
28188
+ :callback)
27806
28189
  SENSITIVE = []
27807
28190
  include Aws::Structure
27808
28191
  end
@@ -27841,6 +28224,25 @@ module Aws::SageMaker
27841
28224
  include Aws::Structure
27842
28225
  end
27843
28226
 
28227
+ # Specifies the names of the experiment and trial created by a pipeline.
28228
+ #
28229
+ # @!attribute [rw] experiment_name
28230
+ # The name of the experiment.
28231
+ # @return [String]
28232
+ #
28233
+ # @!attribute [rw] trial_name
28234
+ # The name of the trial.
28235
+ # @return [String]
28236
+ #
28237
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExperimentConfig AWS API Documentation
28238
+ #
28239
+ class PipelineExperimentConfig < Struct.new(
28240
+ :experiment_name,
28241
+ :trial_name)
28242
+ SENSITIVE = []
28243
+ include Aws::Structure
28244
+ end
28245
+
27844
28246
  # A summary of a pipeline.
27845
28247
  #
27846
28248
  # @!attribute [rw] pipeline_arn
@@ -28510,10 +28912,10 @@ module Aws::SageMaker
28510
28912
  include Aws::Structure
28511
28913
  end
28512
28914
 
28513
- # Identifies a model that you want to host and the resources to deploy
28514
- # for hosting it. If you are deploying multiple models, tell Amazon
28515
- # SageMaker how to distribute traffic among the models by specifying
28516
- # variant weights.
28915
+ # Identifies a model that you want to host and the resources chosen to
28916
+ # deploy for hosting it. If you are deploying multiple models, tell
28917
+ # Amazon SageMaker how to distribute traffic among the models by
28918
+ # specifying variant weights.
28517
28919
  #
28518
28920
  # @note When making an API call, you may pass ProductionVariant
28519
28921
  # data as a hash:
@@ -29812,6 +30214,32 @@ module Aws::SageMaker
29812
30214
  include Aws::Structure
29813
30215
  end
29814
30216
 
30217
+ # The retry strategy to use when a training job fails due to an
30218
+ # `InternalServerError`. `RetryStrategy` is specified as part of the
30219
+ # `CreateTrainingJob` and `CreateHyperParameterTuningJob` requests. You
30220
+ # can add the `StoppingCondition` parameter to the request to limit the
30221
+ # training time for the complete job.
30222
+ #
30223
+ # @note When making an API call, you may pass RetryStrategy
30224
+ # data as a hash:
30225
+ #
30226
+ # {
30227
+ # maximum_retry_attempts: 1, # required
30228
+ # }
30229
+ #
30230
+ # @!attribute [rw] maximum_retry_attempts
30231
+ # The number of times to retry the job. When the job is retried, it's
30232
+ # `SecondaryStatus` is changed to `STARTING`.
30233
+ # @return [Integer]
30234
+ #
30235
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RetryStrategy AWS API Documentation
30236
+ #
30237
+ class RetryStrategy < Struct.new(
30238
+ :maximum_retry_attempts)
30239
+ SENSITIVE = []
30240
+ include Aws::Structure
30241
+ end
30242
+
29815
30243
  # Describes the S3 data source.
29816
30244
  #
29817
30245
  # @note When making an API call, you may pass S3DataSource
@@ -30426,6 +30854,107 @@ module Aws::SageMaker
30426
30854
  include Aws::Structure
30427
30855
  end
30428
30856
 
30857
+ # @note When making an API call, you may pass SendPipelineExecutionStepFailureRequest
30858
+ # data as a hash:
30859
+ #
30860
+ # {
30861
+ # callback_token: "CallbackToken", # required
30862
+ # failure_reason: "String256",
30863
+ # client_request_token: "IdempotencyToken",
30864
+ # }
30865
+ #
30866
+ # @!attribute [rw] callback_token
30867
+ # The pipeline generated token from the Amazon SQS queue.
30868
+ # @return [String]
30869
+ #
30870
+ # @!attribute [rw] failure_reason
30871
+ # A message describing why the step failed.
30872
+ # @return [String]
30873
+ #
30874
+ # @!attribute [rw] client_request_token
30875
+ # A unique, case-sensitive identifier that you provide to ensure the
30876
+ # idempotency of the operation. An idempotent operation completes no
30877
+ # more than one time.
30878
+ #
30879
+ # **A suitable default value is auto-generated.** You should normally
30880
+ # not need to pass this option.
30881
+ # @return [String]
30882
+ #
30883
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailureRequest AWS API Documentation
30884
+ #
30885
+ class SendPipelineExecutionStepFailureRequest < Struct.new(
30886
+ :callback_token,
30887
+ :failure_reason,
30888
+ :client_request_token)
30889
+ SENSITIVE = []
30890
+ include Aws::Structure
30891
+ end
30892
+
30893
+ # @!attribute [rw] pipeline_execution_arn
30894
+ # The Amazon Resource Name (ARN) of the pipeline execution.
30895
+ # @return [String]
30896
+ #
30897
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailureResponse AWS API Documentation
30898
+ #
30899
+ class SendPipelineExecutionStepFailureResponse < Struct.new(
30900
+ :pipeline_execution_arn)
30901
+ SENSITIVE = []
30902
+ include Aws::Structure
30903
+ end
30904
+
30905
+ # @note When making an API call, you may pass SendPipelineExecutionStepSuccessRequest
30906
+ # data as a hash:
30907
+ #
30908
+ # {
30909
+ # callback_token: "CallbackToken", # required
30910
+ # output_parameters: [
30911
+ # {
30912
+ # name: "String256", # required
30913
+ # value: "String1024", # required
30914
+ # },
30915
+ # ],
30916
+ # client_request_token: "IdempotencyToken",
30917
+ # }
30918
+ #
30919
+ # @!attribute [rw] callback_token
30920
+ # The pipeline generated token from the Amazon SQS queue.
30921
+ # @return [String]
30922
+ #
30923
+ # @!attribute [rw] output_parameters
30924
+ # A list of the output parameters of the callback step.
30925
+ # @return [Array<Types::OutputParameter>]
30926
+ #
30927
+ # @!attribute [rw] client_request_token
30928
+ # A unique, case-sensitive identifier that you provide to ensure the
30929
+ # idempotency of the operation. An idempotent operation completes no
30930
+ # more than one time.
30931
+ #
30932
+ # **A suitable default value is auto-generated.** You should normally
30933
+ # not need to pass this option.
30934
+ # @return [String]
30935
+ #
30936
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccessRequest AWS API Documentation
30937
+ #
30938
+ class SendPipelineExecutionStepSuccessRequest < Struct.new(
30939
+ :callback_token,
30940
+ :output_parameters,
30941
+ :client_request_token)
30942
+ SENSITIVE = []
30943
+ include Aws::Structure
30944
+ end
30945
+
30946
+ # @!attribute [rw] pipeline_execution_arn
30947
+ # The Amazon Resource Name (ARN) of the pipeline execution.
30948
+ # @return [String]
30949
+ #
30950
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccessResponse AWS API Documentation
30951
+ #
30952
+ class SendPipelineExecutionStepSuccessResponse < Struct.new(
30953
+ :pipeline_execution_arn)
30954
+ SENSITIVE = []
30955
+ include Aws::Structure
30956
+ end
30957
+
30429
30958
  # Details of a provisioned service catalog product. For information
30430
30959
  # about service catalog, see [What is AWS Service Catalog][1].
30431
30960
  #
@@ -30528,14 +31057,9 @@ module Aws::SageMaker
30528
31057
 
30529
31058
  # Specifies options for sharing SageMaker Studio notebooks. These
30530
31059
  # settings are specified as part of `DefaultUserSettings` when the
30531
- # [CreateDomain][1] API is called, and as part of `UserSettings` when
30532
- # the [CreateUserProfile][2] API is called. When `SharingSettings` is
30533
- # not specified, notebook sharing isn't allowed.
30534
- #
30535
- #
30536
- #
30537
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
30538
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
31060
+ # `CreateDomain` API is called, and as part of `UserSettings` when the
31061
+ # `CreateUserProfile` API is called. When `SharingSettings` is not
31062
+ # specified, notebook sharing isn't allowed.
30539
31063
  #
30540
31064
  # @note When making an API call, you may pass SharingSettings
30541
31065
  # data as a hash:
@@ -31049,11 +31573,11 @@ module Aws::SageMaker
31049
31573
  include Aws::Structure
31050
31574
  end
31051
31575
 
31052
- # Specifies a limit to how long a model training or compilation job can
31053
- # run. It also specifies how long you are willing to wait for a managed
31054
- # spot training job to complete. When the job reaches the time limit,
31055
- # Amazon SageMaker ends the training or compilation job. Use this API to
31056
- # cap model training costs.
31576
+ # Specifies a limit to how long a model training job, model compilation
31577
+ # job, or hyperparameter tuning job can run. It also specifies how long
31578
+ # a managed Spot training job has to complete. When the job reaches the
31579
+ # time limit, Amazon SageMaker ends the training or compilation job. Use
31580
+ # this API to cap model training costs.
31057
31581
  #
31058
31582
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
31059
31583
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -31083,18 +31607,27 @@ module Aws::SageMaker
31083
31607
  # }
31084
31608
  #
31085
31609
  # @!attribute [rw] max_runtime_in_seconds
31086
- # The maximum length of time, in seconds, that the training or
31087
- # compilation job can run. If job does not complete during this time,
31088
- # Amazon SageMaker ends the job. If value is not specified, default
31089
- # value is 1 day. The maximum value is 28 days.
31610
+ # The maximum length of time, in seconds, that a training or
31611
+ # compilation job can run. If the job does not complete during this
31612
+ # time, Amazon SageMaker ends the job.
31613
+ #
31614
+ # When `RetryStrategy` is specified in the job request,
31615
+ # `MaxRuntimeInSeconds` specifies the maximum time for all of the
31616
+ # attempts in total, not each individual attempt.
31617
+ #
31618
+ # The default value is 1 day. The maximum value is 28 days.
31090
31619
  # @return [Integer]
31091
31620
  #
31092
31621
  # @!attribute [rw] max_wait_time_in_seconds
31093
- # The maximum length of time, in seconds, how long you are willing to
31094
- # wait for a managed spot training job to complete. It is the amount
31095
- # of time spent waiting for Spot capacity plus the amount of time the
31096
- # training job runs. It must be equal to or greater than
31097
- # `MaxRuntimeInSeconds`.
31622
+ # The maximum length of time, in seconds, that a managed Spot training
31623
+ # job has to complete. It is the amount of time spent waiting for Spot
31624
+ # capacity plus the amount of time the job can run. It must be equal
31625
+ # to or greater than `MaxRuntimeInSeconds`. If the job does not
31626
+ # complete during this time, Amazon SageMaker ends the job.
31627
+ #
31628
+ # When `RetryStrategy` is specified in the job request,
31629
+ # `MaxWaitTimeInSeconds` specifies the maximum time for all of the
31630
+ # attempts in total, not each individual attempt.
31098
31631
  # @return [Integer]
31099
31632
  #
31100
31633
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
@@ -31167,7 +31700,23 @@ module Aws::SageMaker
31167
31700
  include Aws::Structure
31168
31701
  end
31169
31702
 
31170
- # Describes a tag.
31703
+ # A tag object that consists of a key and an optional value, used to
31704
+ # manage metadata for Amazon SageMaker AWS resources.
31705
+ #
31706
+ # You can add tags to notebook instances, training jobs, hyperparameter
31707
+ # tuning jobs, batch transform jobs, models, labeling jobs, work teams,
31708
+ # endpoint configurations, and endpoints. For more information on adding
31709
+ # tags to Amazon SageMaker resources, see AddTags.
31710
+ #
31711
+ # For more information on adding metadata to your AWS resources with
31712
+ # tagging, see [Tagging AWS resources][1]. For advice on best practices
31713
+ # for managing AWS resources with tagging, see [Tagging Best Practices:
31714
+ # Implement an Effective AWS Resource Tagging Strategy][2].
31715
+ #
31716
+ #
31717
+ #
31718
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
31719
+ # [2]: https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf
31171
31720
  #
31172
31721
  # @note When making an API call, you may pass Tag
31173
31722
  # data as a hash:
@@ -31178,7 +31727,7 @@ module Aws::SageMaker
31178
31727
  # }
31179
31728
  #
31180
31729
  # @!attribute [rw] key
31181
- # The tag key.
31730
+ # The tag key. Tag keys must be unique per resource.
31182
31731
  # @return [String]
31183
31732
  #
31184
31733
  # @!attribute [rw] value
@@ -31489,9 +32038,10 @@ module Aws::SageMaker
31489
32038
  # @return [Types::VpcConfig]
31490
32039
  #
31491
32040
  # @!attribute [rw] stopping_condition
31492
- # Specifies a limit to how long a model training job can run. When the
31493
- # job reaches the time limit, Amazon SageMaker ends the training job.
31494
- # Use this API to cap model training costs.
32041
+ # Specifies a limit to how long a model training job can run. It also
32042
+ # specifies how long a managed Spot training job has to complete. When
32043
+ # the job reaches the time limit, Amazon SageMaker ends the training
32044
+ # job. Use this API to cap model training costs.
31495
32045
  #
31496
32046
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
31497
32047
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -31616,6 +32166,11 @@ module Aws::SageMaker
31616
32166
  # The environment variables to set in the Docker container.
31617
32167
  # @return [Hash<String,String>]
31618
32168
  #
32169
+ # @!attribute [rw] retry_strategy
32170
+ # The number of times to retry the job when the job fails due to an
32171
+ # `InternalServerError`.
32172
+ # @return [Types::RetryStrategy]
32173
+ #
31619
32174
  # @!attribute [rw] tags
31620
32175
  # An array of key-value pairs. You can use tags to categorize your AWS
31621
32176
  # resources in different ways, for example, by purpose, owner, or
@@ -31664,6 +32219,7 @@ module Aws::SageMaker
31664
32219
  :tensor_board_output_config,
31665
32220
  :debug_rule_evaluation_statuses,
31666
32221
  :environment,
32222
+ :retry_strategy,
31667
32223
  :tags)
31668
32224
  SENSITIVE = []
31669
32225
  include Aws::Structure
@@ -31757,9 +32313,10 @@ module Aws::SageMaker
31757
32313
  # @return [Types::ResourceConfig]
31758
32314
  #
31759
32315
  # @!attribute [rw] stopping_condition
31760
- # Specifies a limit to how long a model training job can run. When the
31761
- # job reaches the time limit, Amazon SageMaker ends the training job.
31762
- # Use this API to cap model training costs.
32316
+ # Specifies a limit to how long a model training job can run. It also
32317
+ # specifies how long a managed Spot training job has to complete. When
32318
+ # the job reaches the time limit, Amazon SageMaker ends the training
32319
+ # job. Use this API to cap model training costs.
31763
32320
  #
31764
32321
  # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
31765
32322
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -32092,7 +32649,7 @@ module Aws::SageMaker
32092
32649
  #
32093
32650
  #
32094
32651
  # [1]: https://mxnet.apache.org/api/faq/recordio
32095
- # [2]: https://www.tensorflow.org/guide/datasets#consuming_tfrecord_data
32652
+ # [2]: https://www.tensorflow.org/guide/data#consuming_tfrecord_data
32096
32653
  # @return [String]
32097
32654
  #
32098
32655
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformInput AWS API Documentation
@@ -33237,7 +33794,7 @@ module Aws::SageMaker
33237
33794
  include Aws::Structure
33238
33795
  end
33239
33796
 
33240
- # Represents an amount of money in United States dollars/
33797
+ # Represents an amount of money in United States dollars.
33241
33798
  #
33242
33799
  # @note When making an API call, you may pass USD
33243
33800
  # data as a hash:
@@ -33655,7 +34212,10 @@ module Aws::SageMaker
33655
34212
  # output_config: { # required
33656
34213
  # s3_output_location: "S3Uri", # required
33657
34214
  # kms_key_id: "KmsKeyId",
34215
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
34216
+ # preset_deployment_config: "String",
33658
34217
  # },
34218
+ # enable_iot_role_alias: false,
33659
34219
  # }
33660
34220
  #
33661
34221
  # @!attribute [rw] device_fleet_name
@@ -33674,13 +34234,23 @@ module Aws::SageMaker
33674
34234
  # Output configuration for storing sample data collected by the fleet.
33675
34235
  # @return [Types::EdgeOutputConfig]
33676
34236
  #
34237
+ # @!attribute [rw] enable_iot_role_alias
34238
+ # Whether to create an AWS IoT Role Alias during device fleet
34239
+ # creation. The name of the role alias generated will match this
34240
+ # pattern: "SageMakerEdge-\\\{DeviceFleetName\\}".
34241
+ #
34242
+ # For example, if your device fleet is called "demo-fleet", the name
34243
+ # of the role alias will be "SageMakerEdge-demo-fleet".
34244
+ # @return [Boolean]
34245
+ #
33677
34246
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateDeviceFleetRequest AWS API Documentation
33678
34247
  #
33679
34248
  class UpdateDeviceFleetRequest < Struct.new(
33680
34249
  :device_fleet_name,
33681
34250
  :role_arn,
33682
34251
  :description,
33683
- :output_config)
34252
+ :output_config,
34253
+ :enable_iot_role_alias)
33684
34254
  SENSITIVE = []
33685
34255
  include Aws::Structure
33686
34256
  end
@@ -35016,20 +35586,15 @@ module Aws::SageMaker
35016
35586
  end
35017
35587
 
35018
35588
  # A collection of settings that apply to users of Amazon SageMaker
35019
- # Studio. These settings are specified when the [CreateUserProfile][1]
35020
- # API is called, and as `DefaultUserSettings` when the [CreateDomain][2]
35021
- # API is called.
35589
+ # Studio. These settings are specified when the `CreateUserProfile` API
35590
+ # is called, and as `DefaultUserSettings` when the `CreateDomain` API is
35591
+ # called.
35022
35592
  #
35023
35593
  # `SecurityGroups` is aggregated when specified in both calls. For all
35024
35594
  # other settings in `UserSettings`, the values specified in
35025
35595
  # `CreateUserProfile` take precedence over those specified in
35026
35596
  # `CreateDomain`.
35027
35597
  #
35028
- #
35029
- #
35030
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
35031
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateDomain.html
35032
- #
35033
35598
  # @note When making an API call, you may pass UserSettings
35034
35599
  # data as a hash:
35035
35600
  #