aws-sdk-sagemaker 1.84.0 → 1.89.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: cc65e816372a5a95f45ed9fa9a7c64842018615c4cfcf217c5efcb341a0b4b19
4
- data.tar.gz: ab9b73ad14402139c334a87c03d0f46902a2127f175adc726389c54b60e35b86
3
+ metadata.gz: 585119d70bef179eac86bf49679eaa065a2835482dd9df729ec362c5c0541a2d
4
+ data.tar.gz: 5c73d7f43a3fe4c233d986446a1b4db9cea1c08c4d02b26c5a0569459cabc8da
5
5
  SHA512:
6
- metadata.gz: 8d6e88e135a7570e2224248e4459d66512e652562ef199ef3af27c8a22ba241d5929c68f1c1576761255f2bb08334dd995d40236b752e5f1350d8a1ad8d6f828
7
- data.tar.gz: b2b4a5730f95f4d1bc15d40bf23a0b9ee45770003c2cbcaab71cb3eab8da1929c184006c10e4e814f6206eb3ccacd1d70ff0a0bfa2d8185b076de83ac71b3c5e
6
+ metadata.gz: bd41a1fbd2149d12e0341d284c9b57a88355cc06974b0170c7910a2c73ad1944e01586acaa22a817f77f0d27efb111327131f284c44700a778e8ecbb45320271
7
+ data.tar.gz: 37a5085343513640ed8dc34aaffee5e86f7eb97b989cb471e6258b12071fbcc0b7042e6b61ed7b0088825f8ae10de4bee0c815400b89dcfd7f36577f3818d78f
data/CHANGELOG.md CHANGED
@@ -1,6 +1,31 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.89.0 (2021-06-10)
5
+ ------------------
6
+
7
+ * Feature - Using SageMaker Edge Manager with AWS IoT Greengrass v2 simplifies accessing, maintaining, and deploying models to your devices. You can now create deployable IoT Greengrass components during edge packaging jobs. You can choose to create a device fleet with or without creating an AWS IoT role alias.
8
+
9
+ 1.88.0 (2021-06-07)
10
+ ------------------
11
+
12
+ * Feature - AWS SageMaker - Releasing new APIs related to Callback steps in model building pipelines. Adds experiment integration to model building pipelines.
13
+
14
+ 1.87.0 (2021-05-05)
15
+ ------------------
16
+
17
+ * Feature - Amazon SageMaker Autopilot now provides the ability to automatically deploy the best model to an endpoint
18
+
19
+ 1.86.0 (2021-05-04)
20
+ ------------------
21
+
22
+ * Feature - Enable retrying Training and Tuning Jobs that fail with InternalServerError by setting RetryStrategy.
23
+
24
+ 1.85.0 (2021-03-30)
25
+ ------------------
26
+
27
+ * Feature - Amazon SageMaker Autopilot now supports 1) feature importance reports for AutoML jobs and 2) PartialFailures for AutoML jobs
28
+
4
29
  1.84.0 (2021-03-25)
5
30
  ------------------
6
31
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.84.0
1
+ 1.89.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.84.0'
52
+ GEM_VERSION = '1.89.0'
53
53
 
54
54
  end
@@ -419,6 +419,17 @@ module Aws::SageMaker
419
419
  #
420
420
  # </note>
421
421
  #
422
+ # <note markdown="1"> Tags that you add to a SageMaker Studio Domain or User Profile by
423
+ # calling this API are also added to any Apps that the Domain or User
424
+ # Profile launches after you call this API, but not to Apps that the
425
+ # Domain or User Profile launched before you called this API. To make
426
+ # sure that the tags associated with a Domain or User Profile are also
427
+ # added to all Apps that the Domain or User Profile launches, add the
428
+ # tags when you first create the Domain or User Profile by specifying
429
+ # them in the `Tags` parameter of CreateDomain or CreateUserProfile.
430
+ #
431
+ # </note>
432
+ #
422
433
  #
423
434
  #
424
435
  # [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
@@ -508,6 +519,13 @@ module Aws::SageMaker
508
519
  # artifact. For more information, see [Amazon SageMaker ML Lineage
509
520
  # Tracking][1].
510
521
  #
522
+ # <note markdown="1"> `CreateAction` can only be invoked from within an SageMaker managed
523
+ # environment. This includes SageMaker training jobs, processing jobs,
524
+ # transform jobs, and SageMaker notebooks. A call to `CreateAction` from
525
+ # outside one of these environments results in an error.
526
+ #
527
+ # </note>
528
+ #
511
529
  #
512
530
  #
513
531
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -827,11 +845,11 @@ module Aws::SageMaker
827
845
  req.send_request(options)
828
846
  end
829
847
 
830
- # Creates a running App for the specified UserProfile. Supported Apps
831
- # are JupyterServer and KernelGateway. This operation is automatically
832
- # invoked by Amazon SageMaker Studio upon access to the associated
833
- # Domain, and when new kernel configurations are selected by the user. A
834
- # user may have multiple Apps active simultaneously.
848
+ # Creates a running app for the specified UserProfile. Supported apps
849
+ # are `JupyterServer` and `KernelGateway`. This operation is
850
+ # automatically invoked by Amazon SageMaker Studio upon access to the
851
+ # associated Domain, and when new kernel configurations are selected by
852
+ # the user. A user may have multiple Apps active simultaneously.
835
853
  #
836
854
  # @option params [required, String] :domain_id
837
855
  # The domain ID.
@@ -840,7 +858,8 @@ module Aws::SageMaker
840
858
  # The user profile name.
841
859
  #
842
860
  # @option params [required, String] :app_type
843
- # The type of app.
861
+ # The type of app. Supported apps are `JupyterServer` and
862
+ # `KernelGateway`. `TensorBoard` is not supported.
844
863
  #
845
864
  # @option params [required, String] :app_name
846
865
  # The name of the app.
@@ -951,6 +970,13 @@ module Aws::SageMaker
951
970
  # URI of a dataset and the ECR registry path of an image. For more
952
971
  # information, see [Amazon SageMaker ML Lineage Tracking][1].
953
972
  #
973
+ # <note markdown="1"> `CreateArtifact` can only be invoked from within an SageMaker managed
974
+ # environment. This includes SageMaker training jobs, processing jobs,
975
+ # transform jobs, and SageMaker notebooks. A call to `CreateArtifact`
976
+ # from outside one of these environments results in an error.
977
+ #
978
+ # </note>
979
+ #
954
980
  #
955
981
  #
956
982
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -1025,55 +1051,65 @@ module Aws::SageMaker
1025
1051
  # Creates an Autopilot job.
1026
1052
  #
1027
1053
  # Find the best performing model after you run an Autopilot job by
1028
- # calling . Deploy that model by following the steps described in [Step
1029
- # 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
1054
+ # calling .
1030
1055
  #
1031
- # For information about how to use Autopilot, see [ Automate Model
1032
- # Development with Amazon SageMaker Autopilot][2].
1056
+ # For information about how to use Autopilot, see [Automate Model
1057
+ # Development with Amazon SageMaker Autopilot][1].
1033
1058
  #
1034
1059
  #
1035
1060
  #
1036
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html
1037
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1061
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1038
1062
  #
1039
1063
  # @option params [required, String] :auto_ml_job_name
1040
- # Identifies an Autopilot job. Must be unique to your account and is
1041
- # case-insensitive.
1064
+ # Identifies an Autopilot job. The name must be unique to your account
1065
+ # and is case-insensitive.
1042
1066
  #
1043
1067
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1044
- # Similar to InputDataConfig supported by Tuning. Format(s) supported:
1045
- # CSV. Minimum of 500 rows.
1068
+ # An array of channel objects that describes the input data and its
1069
+ # location. Each channel is a named input source. Similar to
1070
+ # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum of
1071
+ # 500 rows.
1046
1072
  #
1047
1073
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1048
- # Similar to OutputDataConfig supported by Tuning. Format(s) supported:
1074
+ # Provides information about encryption and the Amazon S3 output path
1075
+ # needed to store artifacts from an AutoML job. Format(s) supported:
1049
1076
  # CSV.
1050
1077
  #
1051
1078
  # @option params [String] :problem_type
1052
- # Defines the kind of preprocessing and algorithms intended for the
1053
- # candidates. Options include: BinaryClassification,
1054
- # MulticlassClassification, and Regression.
1079
+ # Defines the type of supervised learning available for the candidates.
1080
+ # Options include: `BinaryClassification`, `MulticlassClassification`,
1081
+ # and `Regression`. For more information, see [ Amazon SageMaker
1082
+ # Autopilot problem types and algorithm support][1].
1083
+ #
1084
+ #
1085
+ #
1086
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
1055
1087
  #
1056
1088
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1057
- # Defines the objective of a an AutoML job. You provide a
1058
- # AutoMLJobObjective$MetricName and Autopilot infers whether to minimize
1059
- # or maximize it. If a metric is not specified, the most commonly used
1060
- # ObjectiveMetric for problem type is automaically selected.
1089
+ # Defines the objective metric used to measure the predictive quality of
1090
+ # an AutoML job. You provide an AutoMLJobObjective$MetricName and
1091
+ # Autopilot infers whether to minimize or maximize it.
1061
1092
  #
1062
1093
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1063
- # Contains CompletionCriteria and SecurityConfig.
1094
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
1095
+ # AutoML job.
1064
1096
  #
1065
1097
  # @option params [required, String] :role_arn
1066
1098
  # The ARN of the role that is used to access the data.
1067
1099
  #
1068
1100
  # @option params [Boolean] :generate_candidate_definitions_only
1069
- # Generates possible candidates without training a model. A candidate is
1070
- # a combination of data preprocessors, algorithms, and algorithm
1101
+ # Generates possible candidates without training the models. A candidate
1102
+ # is a combination of data preprocessors, algorithms, and algorithm
1071
1103
  # parameter settings.
1072
1104
  #
1073
1105
  # @option params [Array<Types::Tag>] :tags
1074
1106
  # Each tag consists of a key and an optional value. Tag keys must be
1075
1107
  # unique per resource.
1076
1108
  #
1109
+ # @option params [Types::ModelDeployConfig] :model_deploy_config
1110
+ # Specifies how to generate the endpoint name for an automatic one-click
1111
+ # Autopilot model deployment.
1112
+ #
1077
1113
  # @return [Types::CreateAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1078
1114
  #
1079
1115
  # * {Types::CreateAutoMLJobResponse#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1125,6 +1161,10 @@ module Aws::SageMaker
1125
1161
  # value: "TagValue", # required
1126
1162
  # },
1127
1163
  # ],
1164
+ # model_deploy_config: {
1165
+ # auto_generate_endpoint_name: false,
1166
+ # endpoint_name: "EndpointName",
1167
+ # },
1128
1168
  # })
1129
1169
  #
1130
1170
  # @example Response structure
@@ -1343,6 +1383,13 @@ module Aws::SageMaker
1343
1383
  # entities. Some examples are an endpoint and a model package. For more
1344
1384
  # information, see [Amazon SageMaker ML Lineage Tracking][1].
1345
1385
  #
1386
+ # <note markdown="1"> `CreateContext` can only be invoked from within an SageMaker managed
1387
+ # environment. This includes SageMaker training jobs, processing jobs,
1388
+ # transform jobs, and SageMaker notebooks. A call to `CreateContext`
1389
+ # from outside one of these environments results in an error.
1390
+ #
1391
+ # </note>
1392
+ #
1346
1393
  #
1347
1394
  #
1348
1395
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -1565,6 +1612,14 @@ module Aws::SageMaker
1565
1612
  # @option params [Array<Types::Tag>] :tags
1566
1613
  # Creates tags for the specified fleet.
1567
1614
  #
1615
+ # @option params [Boolean] :enable_iot_role_alias
1616
+ # Whether to create an AWS IoT Role Alias during device fleet creation.
1617
+ # The name of the role alias generated will match this pattern:
1618
+ # "SageMakerEdge-\\\{DeviceFleetName\\}".
1619
+ #
1620
+ # For example, if your device fleet is called "demo-fleet", the name
1621
+ # of the role alias will be "SageMakerEdge-demo-fleet".
1622
+ #
1568
1623
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
1569
1624
  #
1570
1625
  # @example Request syntax with placeholder values
@@ -1576,6 +1631,8 @@ module Aws::SageMaker
1576
1631
  # output_config: { # required
1577
1632
  # s3_output_location: "S3Uri", # required
1578
1633
  # kms_key_id: "KmsKeyId",
1634
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
1635
+ # preset_deployment_config: "String",
1579
1636
  # },
1580
1637
  # tags: [
1581
1638
  # {
@@ -1583,6 +1640,7 @@ module Aws::SageMaker
1583
1640
  # value: "TagValue", # required
1584
1641
  # },
1585
1642
  # ],
1643
+ # enable_iot_role_alias: false,
1586
1644
  # })
1587
1645
  #
1588
1646
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDeviceFleet AWS API Documentation
@@ -1652,18 +1710,14 @@ module Aws::SageMaker
1652
1710
  #
1653
1711
  # @option params [required, Types::UserSettings] :default_user_settings
1654
1712
  # The default settings to use to create a user profile when
1655
- # `UserSettings` isn't specified in the call to the
1656
- # [CreateUserProfile][1] API.
1713
+ # `UserSettings` isn't specified in the call to the `CreateUserProfile`
1714
+ # API.
1657
1715
  #
1658
1716
  # `SecurityGroups` is aggregated when specified in both calls. For all
1659
1717
  # other settings in `UserSettings`, the values specified in
1660
1718
  # `CreateUserProfile` take precedence over those specified in
1661
1719
  # `CreateDomain`.
1662
1720
  #
1663
- #
1664
- #
1665
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
1666
- #
1667
1721
  # @option params [required, Array<String>] :subnet_ids
1668
1722
  # The VPC subnets that Studio uses for communication.
1669
1723
  #
@@ -1674,11 +1728,10 @@ module Aws::SageMaker
1674
1728
  # @option params [Array<Types::Tag>] :tags
1675
1729
  # Tags to associated with the Domain. Each tag consists of a key and an
1676
1730
  # optional value. Tag keys must be unique per resource. Tags are
1677
- # searchable using the [Search][1] API.
1678
- #
1731
+ # searchable using the `Search` API.
1679
1732
  #
1680
- #
1681
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html
1733
+ # Tags that you specify for the Domain are also added to all Apps that
1734
+ # the Domain launches.
1682
1735
  #
1683
1736
  # @option params [String] :app_network_access_type
1684
1737
  # Specifies the VPC used for non-EFS traffic. The default value is
@@ -1818,6 +1871,8 @@ module Aws::SageMaker
1818
1871
  # output_config: { # required
1819
1872
  # s3_output_location: "S3Uri", # required
1820
1873
  # kms_key_id: "KmsKeyId",
1874
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
1875
+ # preset_deployment_config: "String",
1821
1876
  # },
1822
1877
  # resource_key: "KmsKeyId",
1823
1878
  # tags: [
@@ -2156,10 +2211,10 @@ module Aws::SageMaker
2156
2211
  # measuring the impact of a change to one or more inputs, while keeping
2157
2212
  # the remaining inputs constant.
2158
2213
  #
2159
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
2160
- # SDK, all experiments, trials, and trial components are automatically
2161
- # tracked, logged, and indexed. When you use the AWS SDK for Python
2162
- # (Boto), you must use the logging APIs provided by the SDK.
2214
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
2215
+ # experiments, trials, and trial components are automatically tracked,
2216
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
2217
+ # must use the logging APIs provided by the SDK.
2163
2218
  #
2164
2219
  # You can add tags to experiments, trials, trial components and then use
2165
2220
  # the Search API to search for the tags.
@@ -2737,6 +2792,9 @@ module Aws::SageMaker
2737
2792
  # s3_uri: "S3Uri", # required
2738
2793
  # local_path: "DirectoryPath",
2739
2794
  # },
2795
+ # retry_strategy: {
2796
+ # maximum_retry_attempts: 1, # required
2797
+ # },
2740
2798
  # },
2741
2799
  # training_job_definitions: [
2742
2800
  # {
@@ -2835,6 +2893,9 @@ module Aws::SageMaker
2835
2893
  # s3_uri: "S3Uri", # required
2836
2894
  # local_path: "DirectoryPath",
2837
2895
  # },
2896
+ # retry_strategy: {
2897
+ # maximum_retry_attempts: 1, # required
2898
+ # },
2838
2899
  # },
2839
2900
  # ],
2840
2901
  # warm_start_config: {
@@ -4357,10 +4418,10 @@ module Aws::SageMaker
4357
4418
  #
4358
4419
  # @option params [String] :direct_internet_access
4359
4420
  # Sets whether Amazon SageMaker provides internet access to the notebook
4360
- # instance. If you set this to `Disabled` this notebook instance will be
4361
- # able to access resources only in your VPC, and will not be able to
4362
- # connect to Amazon SageMaker training and endpoint services unless your
4363
- # configure a NAT Gateway in your VPC.
4421
+ # instance. If you set this to `Disabled` this notebook instance is able
4422
+ # to access resources only in your VPC, and is not be able to connect to
4423
+ # Amazon SageMaker training and endpoint services unless you configure a
4424
+ # NAT Gateway in your VPC.
4364
4425
  #
4365
4426
  # For more information, see [Notebook Instances Are Internet-Enabled by
4366
4427
  # Default][1]. You can set the value of this parameter to `Disabled`
@@ -4984,8 +5045,6 @@ module Aws::SageMaker
4984
5045
  # * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
4985
5046
  # Amazon SageMaker to save the results of model training.
4986
5047
  #
4987
- #
4988
- #
4989
5048
  # * `ResourceConfig` - Identifies the resources, ML compute instances,
4990
5049
  # and ML storage volumes to deploy for model training. In distributed
4991
5050
  # training, you specify more than one instance.
@@ -5001,12 +5060,15 @@ module Aws::SageMaker
5001
5060
  #
5002
5061
  # * `StoppingCondition` - To help cap training costs, use
5003
5062
  # `MaxRuntimeInSeconds` to set a time limit for training. Use
5004
- # `MaxWaitTimeInSeconds` to specify how long you are willing to wait
5005
- # for a managed spot training job to complete.
5063
+ # `MaxWaitTimeInSeconds` to specify how long a managed spot training
5064
+ # job has to complete.
5006
5065
  #
5007
5066
  # * `Environment` - The environment variables to set in the Docker
5008
5067
  # container.
5009
5068
  #
5069
+ # * `RetryStrategy` - The number of times to retry the job when the job
5070
+ # fails due to an `InternalServerError`.
5071
+ #
5010
5072
  # For more information about Amazon SageMaker, see [How It Works][3].
5011
5073
  #
5012
5074
  #
@@ -5110,9 +5172,10 @@ module Aws::SageMaker
5110
5172
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
5111
5173
  #
5112
5174
  # @option params [required, Types::StoppingCondition] :stopping_condition
5113
- # Specifies a limit to how long a model training job can run. When the
5114
- # job reaches the time limit, Amazon SageMaker ends the training job.
5115
- # Use this API to cap model training costs.
5175
+ # Specifies a limit to how long a model training job can run. It also
5176
+ # specifies how long a managed Spot training job has to complete. When
5177
+ # the job reaches the time limit, Amazon SageMaker ends the training
5178
+ # job. Use this API to cap model training costs.
5116
5179
  #
5117
5180
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
5118
5181
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -5207,6 +5270,10 @@ module Aws::SageMaker
5207
5270
  # @option params [Hash<String,String>] :environment
5208
5271
  # The environment variables to set in the Docker container.
5209
5272
  #
5273
+ # @option params [Types::RetryStrategy] :retry_strategy
5274
+ # The number of times to retry the job when the job fails due to an
5275
+ # `InternalServerError`.
5276
+ #
5210
5277
  # @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5211
5278
  #
5212
5279
  # * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
@@ -5348,6 +5415,9 @@ module Aws::SageMaker
5348
5415
  # environment: {
5349
5416
  # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
5350
5417
  # },
5418
+ # retry_strategy: {
5419
+ # maximum_retry_attempts: 1, # required
5420
+ # },
5351
5421
  # })
5352
5422
  #
5353
5423
  # @example Response structure
@@ -5573,14 +5643,14 @@ module Aws::SageMaker
5573
5643
  req.send_request(options)
5574
5644
  end
5575
5645
 
5576
- # Creates an Amazon SageMaker *trial*. A trial is a set of steps called
5577
- # *trial components* that produce a machine learning model. A trial is
5578
- # part of a single Amazon SageMaker *experiment*.
5646
+ # Creates an SageMaker *trial*. A trial is a set of steps called *trial
5647
+ # components* that produce a machine learning model. A trial is part of
5648
+ # a single SageMaker *experiment*.
5579
5649
  #
5580
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
5581
- # SDK, all experiments, trials, and trial components are automatically
5582
- # tracked, logged, and indexed. When you use the AWS SDK for Python
5583
- # (Boto), you must use the logging APIs provided by the SDK.
5650
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
5651
+ # experiments, trials, and trial components are automatically tracked,
5652
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5653
+ # must use the logging APIs provided by the SDK.
5584
5654
  #
5585
5655
  # You can add tags to a trial and then use the Search API to search for
5586
5656
  # the tags.
@@ -5651,19 +5721,19 @@ module Aws::SageMaker
5651
5721
  # Trial components include pre-processing jobs, training jobs, and batch
5652
5722
  # transform jobs.
5653
5723
  #
5654
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
5655
- # SDK, all experiments, trials, and trial components are automatically
5656
- # tracked, logged, and indexed. When you use the AWS SDK for Python
5657
- # (Boto), you must use the logging APIs provided by the SDK.
5724
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
5725
+ # experiments, trials, and trial components are automatically tracked,
5726
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5727
+ # must use the logging APIs provided by the SDK.
5658
5728
  #
5659
5729
  # You can add tags to a trial component and then use the Search API to
5660
5730
  # search for the tags.
5661
5731
  #
5662
- # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an Amazon
5663
- # SageMaker managed environment. This includes Amazon SageMaker training
5664
- # jobs, processing jobs, transform jobs, and Amazon SageMaker notebooks.
5665
- # A call to `CreateTrialComponent` from outside one of these
5666
- # environments results in an error.
5732
+ # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
5733
+ # managed environment. This includes SageMaker training jobs, processing
5734
+ # jobs, transform jobs, and SageMaker notebooks. A call to
5735
+ # `CreateTrialComponent` from outside one of these environments results
5736
+ # in an error.
5667
5737
  #
5668
5738
  # </note>
5669
5739
  #
@@ -5783,7 +5853,7 @@ module Aws::SageMaker
5783
5853
  # The ID of the associated Domain.
5784
5854
  #
5785
5855
  # @option params [required, String] :user_profile_name
5786
- # A name for the UserProfile.
5856
+ # A name for the UserProfile. This value is not case sensitive.
5787
5857
  #
5788
5858
  # @option params [String] :single_sign_on_user_identifier
5789
5859
  # A specifier for the type of value specified in SingleSignOnUserValue.
@@ -5801,6 +5871,9 @@ module Aws::SageMaker
5801
5871
  # Each tag consists of a key and an optional value. Tag keys must be
5802
5872
  # unique per resource.
5803
5873
  #
5874
+ # Tags that you specify for the User Profile are also added to all Apps
5875
+ # that the User Profile launches.
5876
+ #
5804
5877
  # @option params [Types::UserSettings] :user_settings
5805
5878
  # A collection of settings.
5806
5879
  #
@@ -6451,7 +6524,7 @@ module Aws::SageMaker
6451
6524
  req.send_request(options)
6452
6525
  end
6453
6526
 
6454
- # Deletes an Amazon SageMaker experiment. All trials associated with the
6527
+ # Deletes an SageMaker experiment. All trials associated with the
6455
6528
  # experiment must be deleted first. Use the ListTrials API to get a list
6456
6529
  # of the trials associated with the experiment.
6457
6530
  #
@@ -6686,8 +6759,10 @@ module Aws::SageMaker
6686
6759
  # Marketplace to create models in Amazon SageMaker.
6687
6760
  #
6688
6761
  # @option params [required, String] :model_package_name
6689
- # The name of the model package. The name must have 1 to 63 characters.
6690
- # Valid characters are a-z, A-Z, 0-9, and - (hyphen).
6762
+ # The name or Amazon Resource Name (ARN) of the model package to delete.
6763
+ #
6764
+ # When you specify a name, the name must have 1 to 63 characters. Valid
6765
+ # characters are a-z, A-Z, 0-9, and - (hyphen).
6691
6766
  #
6692
6767
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
6693
6768
  #
@@ -6846,7 +6921,10 @@ module Aws::SageMaker
6846
6921
  req.send_request(options)
6847
6922
  end
6848
6923
 
6849
- # Deletes a pipeline if there are no in-progress executions.
6924
+ # Deletes a pipeline if there are no running instances of the pipeline.
6925
+ # To delete a pipeline, you must stop all running instances of the
6926
+ # pipeline using the `StopPipelineExecution` API. When you delete a
6927
+ # pipeline, all instances of the pipeline are deleted.
6850
6928
  #
6851
6929
  # @option params [required, String] :pipeline_name
6852
6930
  # The name of the pipeline to delete.
@@ -6915,6 +6993,13 @@ module Aws::SageMaker
6915
6993
  #
6916
6994
  # </note>
6917
6995
  #
6996
+ # <note markdown="1"> When you call this API to delete tags from a SageMaker Studio Domain
6997
+ # or User Profile, the deleted tags are not removed from Apps that the
6998
+ # SageMaker Studio Domain or User Profile launched before you called
6999
+ # this API.
7000
+ #
7001
+ # </note>
7002
+ #
6918
7003
  # @option params [required, String] :resource_arn
6919
7004
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
6920
7005
  # delete.
@@ -7483,10 +7568,10 @@ module Aws::SageMaker
7483
7568
  req.send_request(options)
7484
7569
  end
7485
7570
 
7486
- # Returns information about an Amazon SageMaker job.
7571
+ # Returns information about an Amazon SageMaker AutoML job.
7487
7572
  #
7488
7573
  # @option params [required, String] :auto_ml_job_name
7489
- # Request information about a job using that job's unique name.
7574
+ # Requests information about an AutoML job using its unique name.
7490
7575
  #
7491
7576
  # @return [Types::DescribeAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
7492
7577
  #
@@ -7502,12 +7587,15 @@ module Aws::SageMaker
7502
7587
  # * {Types::DescribeAutoMLJobResponse#end_time #end_time} => Time
7503
7588
  # * {Types::DescribeAutoMLJobResponse#last_modified_time #last_modified_time} => Time
7504
7589
  # * {Types::DescribeAutoMLJobResponse#failure_reason #failure_reason} => String
7590
+ # * {Types::DescribeAutoMLJobResponse#partial_failure_reasons #partial_failure_reasons} => Array&lt;Types::AutoMLPartialFailureReason&gt;
7505
7591
  # * {Types::DescribeAutoMLJobResponse#best_candidate #best_candidate} => Types::AutoMLCandidate
7506
7592
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_status #auto_ml_job_status} => String
7507
7593
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_secondary_status #auto_ml_job_secondary_status} => String
7508
7594
  # * {Types::DescribeAutoMLJobResponse#generate_candidate_definitions_only #generate_candidate_definitions_only} => Boolean
7509
7595
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
7510
7596
  # * {Types::DescribeAutoMLJobResponse#resolved_attributes #resolved_attributes} => Types::ResolvedAttributes
7597
+ # * {Types::DescribeAutoMLJobResponse#model_deploy_config #model_deploy_config} => Types::ModelDeployConfig
7598
+ # * {Types::DescribeAutoMLJobResponse#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
7511
7599
  #
7512
7600
  # @example Request syntax with placeholder values
7513
7601
  #
@@ -7542,6 +7630,8 @@ module Aws::SageMaker
7542
7630
  # resp.end_time #=> Time
7543
7631
  # resp.last_modified_time #=> Time
7544
7632
  # resp.failure_reason #=> String
7633
+ # resp.partial_failure_reasons #=> Array
7634
+ # resp.partial_failure_reasons[0].partial_failure_message #=> String
7545
7635
  # resp.best_candidate.candidate_name #=> String
7546
7636
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
7547
7637
  # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
@@ -7561,8 +7651,9 @@ module Aws::SageMaker
7561
7651
  # resp.best_candidate.end_time #=> Time
7562
7652
  # resp.best_candidate.last_modified_time #=> Time
7563
7653
  # resp.best_candidate.failure_reason #=> String
7654
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
7564
7655
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
7565
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
7656
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
7566
7657
  # resp.generate_candidate_definitions_only #=> Boolean
7567
7658
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
7568
7659
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
@@ -7571,6 +7662,9 @@ module Aws::SageMaker
7571
7662
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
7572
7663
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
7573
7664
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
7665
+ # resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
7666
+ # resp.model_deploy_config.endpoint_name #=> String
7667
+ # resp.model_deploy_result.endpoint_name #=> String
7574
7668
  #
7575
7669
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJob AWS API Documentation
7576
7670
  #
@@ -7905,6 +7999,8 @@ module Aws::SageMaker
7905
7999
  # resp.device_fleet_arn #=> String
7906
8000
  # resp.output_config.s3_output_location #=> String
7907
8001
  # resp.output_config.kms_key_id #=> String
8002
+ # resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
8003
+ # resp.output_config.preset_deployment_config #=> String
7908
8004
  # resp.description #=> String
7909
8005
  # resp.creation_time #=> Time
7910
8006
  # resp.last_modified_time #=> Time
@@ -8020,6 +8116,7 @@ module Aws::SageMaker
8020
8116
  # * {Types::DescribeEdgePackagingJobResponse#last_modified_time #last_modified_time} => Time
8021
8117
  # * {Types::DescribeEdgePackagingJobResponse#model_artifact #model_artifact} => String
8022
8118
  # * {Types::DescribeEdgePackagingJobResponse#model_signature #model_signature} => String
8119
+ # * {Types::DescribeEdgePackagingJobResponse#preset_deployment_output #preset_deployment_output} => Types::EdgePresetDeploymentOutput
8023
8120
  #
8024
8121
  # @example Request syntax with placeholder values
8025
8122
  #
@@ -8037,6 +8134,8 @@ module Aws::SageMaker
8037
8134
  # resp.role_arn #=> String
8038
8135
  # resp.output_config.s3_output_location #=> String
8039
8136
  # resp.output_config.kms_key_id #=> String
8137
+ # resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
8138
+ # resp.output_config.preset_deployment_config #=> String
8040
8139
  # resp.resource_key #=> String
8041
8140
  # resp.edge_packaging_job_status #=> String, one of "STARTING", "INPROGRESS", "COMPLETED", "FAILED", "STOPPING", "STOPPED"
8042
8141
  # resp.edge_packaging_job_status_message #=> String
@@ -8044,6 +8143,10 @@ module Aws::SageMaker
8044
8143
  # resp.last_modified_time #=> Time
8045
8144
  # resp.model_artifact #=> String
8046
8145
  # resp.model_signature #=> String
8146
+ # resp.preset_deployment_output.type #=> String, one of "GreengrassV2Component"
8147
+ # resp.preset_deployment_output.artifact #=> String
8148
+ # resp.preset_deployment_output.status #=> String, one of "COMPLETED", "FAILED"
8149
+ # resp.preset_deployment_output.status_message #=> String
8047
8150
  #
8048
8151
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEdgePackagingJob AWS API Documentation
8049
8152
  #
@@ -8512,6 +8615,7 @@ module Aws::SageMaker
8512
8615
  # resp.training_job_definition.enable_managed_spot_training #=> Boolean
8513
8616
  # resp.training_job_definition.checkpoint_config.s3_uri #=> String
8514
8617
  # resp.training_job_definition.checkpoint_config.local_path #=> String
8618
+ # resp.training_job_definition.retry_strategy.maximum_retry_attempts #=> Integer
8515
8619
  # resp.training_job_definitions #=> Array
8516
8620
  # resp.training_job_definitions[0].definition_name #=> String
8517
8621
  # resp.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
@@ -8572,6 +8676,7 @@ module Aws::SageMaker
8572
8676
  # resp.training_job_definitions[0].enable_managed_spot_training #=> Boolean
8573
8677
  # resp.training_job_definitions[0].checkpoint_config.s3_uri #=> String
8574
8678
  # resp.training_job_definitions[0].checkpoint_config.local_path #=> String
8679
+ # resp.training_job_definitions[0].retry_strategy.maximum_retry_attempts #=> Integer
8575
8680
  # resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
8576
8681
  # resp.creation_time #=> Time
8577
8682
  # resp.hyper_parameter_tuning_end_time #=> Time
@@ -9035,7 +9140,11 @@ module Aws::SageMaker
9035
9140
  # packages listed on AWS Marketplace.
9036
9141
  #
9037
9142
  # @option params [required, String] :model_package_name
9038
- # The name of the model package to describe.
9143
+ # The name or Amazon Resource Name (ARN) of the model package to
9144
+ # describe.
9145
+ #
9146
+ # When you specify a name, the name must have 1 to 63 characters. Valid
9147
+ # characters are a-z, A-Z, 0-9, and - (hyphen).
9039
9148
  #
9040
9149
  # @return [Types::DescribeModelPackageOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9041
9150
  #
@@ -9598,6 +9707,8 @@ module Aws::SageMaker
9598
9707
  # * {Types::DescribePipelineExecutionResponse#pipeline_execution_display_name #pipeline_execution_display_name} => String
9599
9708
  # * {Types::DescribePipelineExecutionResponse#pipeline_execution_status #pipeline_execution_status} => String
9600
9709
  # * {Types::DescribePipelineExecutionResponse#pipeline_execution_description #pipeline_execution_description} => String
9710
+ # * {Types::DescribePipelineExecutionResponse#pipeline_experiment_config #pipeline_experiment_config} => Types::PipelineExperimentConfig
9711
+ # * {Types::DescribePipelineExecutionResponse#failure_reason #failure_reason} => String
9601
9712
  # * {Types::DescribePipelineExecutionResponse#creation_time #creation_time} => Time
9602
9713
  # * {Types::DescribePipelineExecutionResponse#last_modified_time #last_modified_time} => Time
9603
9714
  # * {Types::DescribePipelineExecutionResponse#created_by #created_by} => Types::UserContext
@@ -9616,6 +9727,9 @@ module Aws::SageMaker
9616
9727
  # resp.pipeline_execution_display_name #=> String
9617
9728
  # resp.pipeline_execution_status #=> String, one of "Executing", "Stopping", "Stopped", "Failed", "Succeeded"
9618
9729
  # resp.pipeline_execution_description #=> String
9730
+ # resp.pipeline_experiment_config.experiment_name #=> String
9731
+ # resp.pipeline_experiment_config.trial_name #=> String
9732
+ # resp.failure_reason #=> String
9619
9733
  # resp.creation_time #=> Time
9620
9734
  # resp.last_modified_time #=> Time
9621
9735
  # resp.created_by.user_profile_arn #=> String
@@ -9895,6 +10009,7 @@ module Aws::SageMaker
9895
10009
  # * {Types::DescribeTrainingJobResponse#profiler_rule_configurations #profiler_rule_configurations} => Array&lt;Types::ProfilerRuleConfiguration&gt;
9896
10010
  # * {Types::DescribeTrainingJobResponse#profiler_rule_evaluation_statuses #profiler_rule_evaluation_statuses} => Array&lt;Types::ProfilerRuleEvaluationStatus&gt;
9897
10011
  # * {Types::DescribeTrainingJobResponse#profiling_status #profiling_status} => String
10012
+ # * {Types::DescribeTrainingJobResponse#retry_strategy #retry_strategy} => Types::RetryStrategy
9898
10013
  # * {Types::DescribeTrainingJobResponse#environment #environment} => Hash&lt;String,String&gt;
9899
10014
  #
9900
10015
  # @example Request syntax with placeholder values
@@ -9912,7 +10027,7 @@ module Aws::SageMaker
9912
10027
  # resp.auto_ml_job_arn #=> String
9913
10028
  # resp.model_artifacts.s3_model_artifacts #=> String
9914
10029
  # resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
9915
- # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
10030
+ # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
9916
10031
  # resp.failure_reason #=> String
9917
10032
  # resp.hyper_parameters #=> Hash
9918
10033
  # resp.hyper_parameters["HyperParameterKey"] #=> String
@@ -9957,7 +10072,7 @@ module Aws::SageMaker
9957
10072
  # resp.training_end_time #=> Time
9958
10073
  # resp.last_modified_time #=> Time
9959
10074
  # resp.secondary_status_transitions #=> Array
9960
- # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
10075
+ # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
9961
10076
  # resp.secondary_status_transitions[0].start_time #=> Time
9962
10077
  # resp.secondary_status_transitions[0].end_time #=> Time
9963
10078
  # resp.secondary_status_transitions[0].status_message #=> String
@@ -10020,6 +10135,7 @@ module Aws::SageMaker
10020
10135
  # resp.profiler_rule_evaluation_statuses[0].status_details #=> String
10021
10136
  # resp.profiler_rule_evaluation_statuses[0].last_modified_time #=> Time
10022
10137
  # resp.profiling_status #=> String, one of "Enabled", "Disabled"
10138
+ # resp.retry_strategy.maximum_retry_attempts #=> Integer
10023
10139
  # resp.environment #=> Hash
10024
10140
  # resp.environment["TrainingEnvironmentKey"] #=> String
10025
10141
  #
@@ -10266,7 +10382,7 @@ module Aws::SageMaker
10266
10382
  # The domain ID.
10267
10383
  #
10268
10384
  # @option params [required, String] :user_profile_name
10269
- # The user profile name.
10385
+ # The user profile name. This value is not case sensitive.
10270
10386
  #
10271
10387
  # @return [Types::DescribeUserProfileResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10272
10388
  #
@@ -10528,6 +10644,8 @@ module Aws::SageMaker
10528
10644
  # resp.device_fleet_name #=> String
10529
10645
  # resp.output_config.s3_output_location #=> String
10530
10646
  # resp.output_config.kms_key_id #=> String
10647
+ # resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
10648
+ # resp.output_config.preset_deployment_config #=> String
10531
10649
  # resp.description #=> String
10532
10650
  # resp.report_generated #=> Time
10533
10651
  # resp.device_stats.connected_device_count #=> Integer
@@ -11121,11 +11239,10 @@ module Aws::SageMaker
11121
11239
  # Request a list of jobs, using a filter for status.
11122
11240
  #
11123
11241
  # @option params [String] :sort_order
11124
- # The sort order for the results. The default is Descending.
11242
+ # The sort order for the results. The default is `Descending`.
11125
11243
  #
11126
11244
  # @option params [String] :sort_by
11127
- # The parameter by which to sort the results. The default is
11128
- # AutoMLJobName.
11245
+ # The parameter by which to sort the results. The default is `Name`.
11129
11246
  #
11130
11247
  # @option params [Integer] :max_results
11131
11248
  # Request a list of jobs up to a specified limit.
@@ -11162,11 +11279,13 @@ module Aws::SageMaker
11162
11279
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
11163
11280
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
11164
11281
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
11165
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
11282
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
11166
11283
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
11167
11284
  # resp.auto_ml_job_summaries[0].end_time #=> Time
11168
11285
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
11169
11286
  # resp.auto_ml_job_summaries[0].failure_reason #=> String
11287
+ # resp.auto_ml_job_summaries[0].partial_failure_reasons #=> Array
11288
+ # resp.auto_ml_job_summaries[0].partial_failure_reasons[0].partial_failure_message #=> String
11170
11289
  # resp.next_token #=> String
11171
11290
  #
11172
11291
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobs AWS API Documentation
@@ -11178,25 +11297,26 @@ module Aws::SageMaker
11178
11297
  req.send_request(options)
11179
11298
  end
11180
11299
 
11181
- # List the Candidates created for the job.
11300
+ # List the candidates created for the job.
11182
11301
  #
11183
11302
  # @option params [required, String] :auto_ml_job_name
11184
- # List the Candidates created for the job by providing the job's name.
11303
+ # List the candidates created for the job by providing the job's name.
11185
11304
  #
11186
11305
  # @option params [String] :status_equals
11187
- # List the Candidates for the job and filter by status.
11306
+ # List the candidates for the job and filter by status.
11188
11307
  #
11189
11308
  # @option params [String] :candidate_name_equals
11190
- # List the Candidates for the job and filter by candidate name.
11309
+ # List the candidates for the job and filter by candidate name.
11191
11310
  #
11192
11311
  # @option params [String] :sort_order
11193
- # The sort order for the results. The default is Ascending.
11312
+ # The sort order for the results. The default is `Ascending`.
11194
11313
  #
11195
11314
  # @option params [String] :sort_by
11196
- # The parameter by which to sort the results. The default is Descending.
11315
+ # The parameter by which to sort the results. The default is
11316
+ # `Descending`.
11197
11317
  #
11198
11318
  # @option params [Integer] :max_results
11199
- # List the job's Candidates up to a specified limit.
11319
+ # List the job's candidates up to a specified limit.
11200
11320
  #
11201
11321
  # @option params [String] :next_token
11202
11322
  # If the previous response was truncated, you receive this token. Use it
@@ -11243,6 +11363,7 @@ module Aws::SageMaker
11243
11363
  # resp.candidates[0].end_time #=> Time
11244
11364
  # resp.candidates[0].last_modified_time #=> Time
11245
11365
  # resp.candidates[0].failure_reason #=> String
11366
+ # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
11246
11367
  # resp.next_token #=> String
11247
11368
  #
11248
11369
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
@@ -11903,7 +12024,8 @@ module Aws::SageMaker
11903
12024
  # token in the next request.
11904
12025
  #
11905
12026
  # @option params [Integer] :max_results
11906
- # The maximum number of endpoints to return in the response.
12027
+ # The maximum number of endpoints to return in the response. This value
12028
+ # defaults to 10.
11907
12029
  #
11908
12030
  # @option params [String] :name_contains
11909
12031
  # A string in endpoint names. This filter returns only endpoints whose
@@ -13532,6 +13654,11 @@ module Aws::SageMaker
13532
13654
  # resp.pipeline_execution_steps[0].metadata.model.arn #=> String
13533
13655
  # resp.pipeline_execution_steps[0].metadata.register_model.arn #=> String
13534
13656
  # resp.pipeline_execution_steps[0].metadata.condition.outcome #=> String, one of "True", "False"
13657
+ # resp.pipeline_execution_steps[0].metadata.callback.callback_token #=> String
13658
+ # resp.pipeline_execution_steps[0].metadata.callback.sqs_queue_url #=> String
13659
+ # resp.pipeline_execution_steps[0].metadata.callback.output_parameters #=> Array
13660
+ # resp.pipeline_execution_steps[0].metadata.callback.output_parameters[0].name #=> String
13661
+ # resp.pipeline_execution_steps[0].metadata.callback.output_parameters[0].value #=> String
13535
13662
  # resp.next_token #=> String
13536
13663
  #
13537
13664
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListPipelineExecutionSteps AWS API Documentation
@@ -13972,16 +14099,17 @@ module Aws::SageMaker
13972
14099
  # <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
13973
14100
  # `MaxResults` number of training jobs are first retrieved ignoring the
13974
14101
  # `StatusEquals` parameter and then they are filtered by the
13975
- # `StatusEquals` parameter, which is returned as a response. For
13976
- # example, if `ListTrainingJobs` is invoked with the following
14102
+ # `StatusEquals` parameter, which is returned as a response.
14103
+ #
14104
+ # For example, if `ListTrainingJobs` is invoked with the following
13977
14105
  # parameters:
13978
14106
  #
13979
14107
  # `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
13980
14108
  #
13981
- # Then, 100 trainings jobs with any status including those other than
13982
- # `InProgress` are selected first (sorted according the creation time,
13983
- # from the latest to the oldest) and those with status `InProgress` are
13984
- # returned.
14109
+ # First, 100 trainings jobs with any status, including those other than
14110
+ # `InProgress`, are selected (sorted according to the creation time,
14111
+ # from the most current to the oldest). Next, those with a status of
14112
+ # `InProgress` are returned.
13985
14113
  #
13986
14114
  # You can quickly test the API using the following AWS CLI code.
13987
14115
  #
@@ -14825,7 +14953,7 @@ module Aws::SageMaker
14825
14953
  # resp.results[0].training_job.auto_ml_job_arn #=> String
14826
14954
  # resp.results[0].training_job.model_artifacts.s3_model_artifacts #=> String
14827
14955
  # resp.results[0].training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
14828
- # resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
14956
+ # resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14829
14957
  # resp.results[0].training_job.failure_reason #=> String
14830
14958
  # resp.results[0].training_job.hyper_parameters #=> Hash
14831
14959
  # resp.results[0].training_job.hyper_parameters["HyperParameterKey"] #=> String
@@ -14870,7 +14998,7 @@ module Aws::SageMaker
14870
14998
  # resp.results[0].training_job.training_end_time #=> Time
14871
14999
  # resp.results[0].training_job.last_modified_time #=> Time
14872
15000
  # resp.results[0].training_job.secondary_status_transitions #=> Array
14873
- # resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
15001
+ # resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14874
15002
  # resp.results[0].training_job.secondary_status_transitions[0].start_time #=> Time
14875
15003
  # resp.results[0].training_job.secondary_status_transitions[0].end_time #=> Time
14876
15004
  # resp.results[0].training_job.secondary_status_transitions[0].status_message #=> String
@@ -14915,6 +15043,7 @@ module Aws::SageMaker
14915
15043
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
14916
15044
  # resp.results[0].training_job.environment #=> Hash
14917
15045
  # resp.results[0].training_job.environment["TrainingEnvironmentKey"] #=> String
15046
+ # resp.results[0].training_job.retry_strategy.maximum_retry_attempts #=> Integer
14918
15047
  # resp.results[0].training_job.tags #=> Array
14919
15048
  # resp.results[0].training_job.tags[0].key #=> String
14920
15049
  # resp.results[0].training_job.tags[0].value #=> String
@@ -15013,7 +15142,7 @@ module Aws::SageMaker
15013
15142
  # resp.results[0].trial_component.source_detail.training_job.auto_ml_job_arn #=> String
15014
15143
  # resp.results[0].trial_component.source_detail.training_job.model_artifacts.s3_model_artifacts #=> String
15015
15144
  # resp.results[0].trial_component.source_detail.training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
15016
- # resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
15145
+ # resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
15017
15146
  # resp.results[0].trial_component.source_detail.training_job.failure_reason #=> String
15018
15147
  # resp.results[0].trial_component.source_detail.training_job.hyper_parameters #=> Hash
15019
15148
  # resp.results[0].trial_component.source_detail.training_job.hyper_parameters["HyperParameterKey"] #=> String
@@ -15058,7 +15187,7 @@ module Aws::SageMaker
15058
15187
  # resp.results[0].trial_component.source_detail.training_job.training_end_time #=> Time
15059
15188
  # resp.results[0].trial_component.source_detail.training_job.last_modified_time #=> Time
15060
15189
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions #=> Array
15061
- # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
15190
+ # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
15062
15191
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].start_time #=> Time
15063
15192
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].end_time #=> Time
15064
15193
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status_message #=> String
@@ -15103,6 +15232,7 @@ module Aws::SageMaker
15103
15232
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
15104
15233
  # resp.results[0].trial_component.source_detail.training_job.environment #=> Hash
15105
15234
  # resp.results[0].trial_component.source_detail.training_job.environment["TrainingEnvironmentKey"] #=> String
15235
+ # resp.results[0].trial_component.source_detail.training_job.retry_strategy.maximum_retry_attempts #=> Integer
15106
15236
  # resp.results[0].trial_component.source_detail.training_job.tags #=> Array
15107
15237
  # resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
15108
15238
  # resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
@@ -15435,6 +15565,9 @@ module Aws::SageMaker
15435
15565
  # resp.results[0].pipeline_execution.pipeline_execution_display_name #=> String
15436
15566
  # resp.results[0].pipeline_execution.pipeline_execution_status #=> String, one of "Executing", "Stopping", "Stopped", "Failed", "Succeeded"
15437
15567
  # resp.results[0].pipeline_execution.pipeline_execution_description #=> String
15568
+ # resp.results[0].pipeline_execution.pipeline_experiment_config.experiment_name #=> String
15569
+ # resp.results[0].pipeline_execution.pipeline_experiment_config.trial_name #=> String
15570
+ # resp.results[0].pipeline_execution.failure_reason #=> String
15438
15571
  # resp.results[0].pipeline_execution.creation_time #=> Time
15439
15572
  # resp.results[0].pipeline_execution.last_modified_time #=> Time
15440
15573
  # resp.results[0].pipeline_execution.created_by.user_profile_arn #=> String
@@ -15483,6 +15616,99 @@ module Aws::SageMaker
15483
15616
  req.send_request(options)
15484
15617
  end
15485
15618
 
15619
+ # Notifies the pipeline that the execution of a callback step failed,
15620
+ # along with a message describing why. When a callback step is run, the
15621
+ # pipeline generates a callback token and includes the token in a
15622
+ # message sent to Amazon Simple Queue Service (Amazon SQS).
15623
+ #
15624
+ # @option params [required, String] :callback_token
15625
+ # The pipeline generated token from the Amazon SQS queue.
15626
+ #
15627
+ # @option params [String] :failure_reason
15628
+ # A message describing why the step failed.
15629
+ #
15630
+ # @option params [String] :client_request_token
15631
+ # A unique, case-sensitive identifier that you provide to ensure the
15632
+ # idempotency of the operation. An idempotent operation completes no
15633
+ # more than one time.
15634
+ #
15635
+ # **A suitable default value is auto-generated.** You should normally
15636
+ # not need to pass this option.**
15637
+ #
15638
+ # @return [Types::SendPipelineExecutionStepFailureResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
15639
+ #
15640
+ # * {Types::SendPipelineExecutionStepFailureResponse#pipeline_execution_arn #pipeline_execution_arn} => String
15641
+ #
15642
+ # @example Request syntax with placeholder values
15643
+ #
15644
+ # resp = client.send_pipeline_execution_step_failure({
15645
+ # callback_token: "CallbackToken", # required
15646
+ # failure_reason: "String256",
15647
+ # client_request_token: "IdempotencyToken",
15648
+ # })
15649
+ #
15650
+ # @example Response structure
15651
+ #
15652
+ # resp.pipeline_execution_arn #=> String
15653
+ #
15654
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailure AWS API Documentation
15655
+ #
15656
+ # @overload send_pipeline_execution_step_failure(params = {})
15657
+ # @param [Hash] params ({})
15658
+ def send_pipeline_execution_step_failure(params = {}, options = {})
15659
+ req = build_request(:send_pipeline_execution_step_failure, params)
15660
+ req.send_request(options)
15661
+ end
15662
+
15663
+ # Notifies the pipeline that the execution of a callback step succeeded
15664
+ # and provides a list of the step's output parameters. When a callback
15665
+ # step is run, the pipeline generates a callback token and includes the
15666
+ # token in a message sent to Amazon Simple Queue Service (Amazon SQS).
15667
+ #
15668
+ # @option params [required, String] :callback_token
15669
+ # The pipeline generated token from the Amazon SQS queue.
15670
+ #
15671
+ # @option params [Array<Types::OutputParameter>] :output_parameters
15672
+ # A list of the output parameters of the callback step.
15673
+ #
15674
+ # @option params [String] :client_request_token
15675
+ # A unique, case-sensitive identifier that you provide to ensure the
15676
+ # idempotency of the operation. An idempotent operation completes no
15677
+ # more than one time.
15678
+ #
15679
+ # **A suitable default value is auto-generated.** You should normally
15680
+ # not need to pass this option.**
15681
+ #
15682
+ # @return [Types::SendPipelineExecutionStepSuccessResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
15683
+ #
15684
+ # * {Types::SendPipelineExecutionStepSuccessResponse#pipeline_execution_arn #pipeline_execution_arn} => String
15685
+ #
15686
+ # @example Request syntax with placeholder values
15687
+ #
15688
+ # resp = client.send_pipeline_execution_step_success({
15689
+ # callback_token: "CallbackToken", # required
15690
+ # output_parameters: [
15691
+ # {
15692
+ # name: "String256", # required
15693
+ # value: "String1024", # required
15694
+ # },
15695
+ # ],
15696
+ # client_request_token: "IdempotencyToken",
15697
+ # })
15698
+ #
15699
+ # @example Response structure
15700
+ #
15701
+ # resp.pipeline_execution_arn #=> String
15702
+ #
15703
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccess AWS API Documentation
15704
+ #
15705
+ # @overload send_pipeline_execution_step_success(params = {})
15706
+ # @param [Hash] params ({})
15707
+ def send_pipeline_execution_step_success(params = {}, options = {})
15708
+ req = build_request(:send_pipeline_execution_step_success, params)
15709
+ req.send_request(options)
15710
+ end
15711
+
15486
15712
  # Starts a previously stopped monitoring schedule.
15487
15713
  #
15488
15714
  # <note markdown="1"> By default, when you successfully create a new schedule, the status of
@@ -16116,6 +16342,14 @@ module Aws::SageMaker
16116
16342
  # @option params [required, Types::EdgeOutputConfig] :output_config
16117
16343
  # Output configuration for storing sample data collected by the fleet.
16118
16344
  #
16345
+ # @option params [Boolean] :enable_iot_role_alias
16346
+ # Whether to create an AWS IoT Role Alias during device fleet creation.
16347
+ # The name of the role alias generated will match this pattern:
16348
+ # "SageMakerEdge-\\\{DeviceFleetName\\}".
16349
+ #
16350
+ # For example, if your device fleet is called "demo-fleet", the name
16351
+ # of the role alias will be "SageMakerEdge-demo-fleet".
16352
+ #
16119
16353
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
16120
16354
  #
16121
16355
  # @example Request syntax with placeholder values
@@ -16127,7 +16361,10 @@ module Aws::SageMaker
16127
16361
  # output_config: { # required
16128
16362
  # s3_output_location: "S3Uri", # required
16129
16363
  # kms_key_id: "KmsKeyId",
16364
+ # preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
16365
+ # preset_deployment_config: "String",
16130
16366
  # },
16367
+ # enable_iot_role_alias: false,
16131
16368
  # })
16132
16369
  #
16133
16370
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateDeviceFleet AWS API Documentation
@@ -17348,7 +17585,7 @@ module Aws::SageMaker
17348
17585
  params: params,
17349
17586
  config: config)
17350
17587
  context[:gem_name] = 'aws-sdk-sagemaker'
17351
- context[:gem_version] = '1.84.0'
17588
+ context[:gem_version] = '1.89.0'
17352
17589
  Seahorse::Client::Request.new(handlers, context)
17353
17590
  end
17354
17591