aws-sdk-sagemaker 1.84.0 → 1.89.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +25 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +340 -103
- data/lib/aws-sdk-sagemaker/client_api.rb +123 -0
- data/lib/aws-sdk-sagemaker/types.rb +772 -207
- metadata +3 -4
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 585119d70bef179eac86bf49679eaa065a2835482dd9df729ec362c5c0541a2d
|
4
|
+
data.tar.gz: 5c73d7f43a3fe4c233d986446a1b4db9cea1c08c4d02b26c5a0569459cabc8da
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: bd41a1fbd2149d12e0341d284c9b57a88355cc06974b0170c7910a2c73ad1944e01586acaa22a817f77f0d27efb111327131f284c44700a778e8ecbb45320271
|
7
|
+
data.tar.gz: 37a5085343513640ed8dc34aaffee5e86f7eb97b989cb471e6258b12071fbcc0b7042e6b61ed7b0088825f8ae10de4bee0c815400b89dcfd7f36577f3818d78f
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,31 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.89.0 (2021-06-10)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Using SageMaker Edge Manager with AWS IoT Greengrass v2 simplifies accessing, maintaining, and deploying models to your devices. You can now create deployable IoT Greengrass components during edge packaging jobs. You can choose to create a device fleet with or without creating an AWS IoT role alias.
|
8
|
+
|
9
|
+
1.88.0 (2021-06-07)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - AWS SageMaker - Releasing new APIs related to Callback steps in model building pipelines. Adds experiment integration to model building pipelines.
|
13
|
+
|
14
|
+
1.87.0 (2021-05-05)
|
15
|
+
------------------
|
16
|
+
|
17
|
+
* Feature - Amazon SageMaker Autopilot now provides the ability to automatically deploy the best model to an endpoint
|
18
|
+
|
19
|
+
1.86.0 (2021-05-04)
|
20
|
+
------------------
|
21
|
+
|
22
|
+
* Feature - Enable retrying Training and Tuning Jobs that fail with InternalServerError by setting RetryStrategy.
|
23
|
+
|
24
|
+
1.85.0 (2021-03-30)
|
25
|
+
------------------
|
26
|
+
|
27
|
+
* Feature - Amazon SageMaker Autopilot now supports 1) feature importance reports for AutoML jobs and 2) PartialFailures for AutoML jobs
|
28
|
+
|
4
29
|
1.84.0 (2021-03-25)
|
5
30
|
------------------
|
6
31
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.89.0
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -419,6 +419,17 @@ module Aws::SageMaker
|
|
419
419
|
#
|
420
420
|
# </note>
|
421
421
|
#
|
422
|
+
# <note markdown="1"> Tags that you add to a SageMaker Studio Domain or User Profile by
|
423
|
+
# calling this API are also added to any Apps that the Domain or User
|
424
|
+
# Profile launches after you call this API, but not to Apps that the
|
425
|
+
# Domain or User Profile launched before you called this API. To make
|
426
|
+
# sure that the tags associated with a Domain or User Profile are also
|
427
|
+
# added to all Apps that the Domain or User Profile launches, add the
|
428
|
+
# tags when you first create the Domain or User Profile by specifying
|
429
|
+
# them in the `Tags` parameter of CreateDomain or CreateUserProfile.
|
430
|
+
#
|
431
|
+
# </note>
|
432
|
+
#
|
422
433
|
#
|
423
434
|
#
|
424
435
|
# [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
|
@@ -508,6 +519,13 @@ module Aws::SageMaker
|
|
508
519
|
# artifact. For more information, see [Amazon SageMaker ML Lineage
|
509
520
|
# Tracking][1].
|
510
521
|
#
|
522
|
+
# <note markdown="1"> `CreateAction` can only be invoked from within an SageMaker managed
|
523
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
524
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateAction` from
|
525
|
+
# outside one of these environments results in an error.
|
526
|
+
#
|
527
|
+
# </note>
|
528
|
+
#
|
511
529
|
#
|
512
530
|
#
|
513
531
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -827,11 +845,11 @@ module Aws::SageMaker
|
|
827
845
|
req.send_request(options)
|
828
846
|
end
|
829
847
|
|
830
|
-
# Creates a running
|
831
|
-
# are JupyterServer and KernelGateway
|
832
|
-
# invoked by Amazon SageMaker Studio upon access to the
|
833
|
-
# Domain, and when new kernel configurations are selected by
|
834
|
-
# user may have multiple Apps active simultaneously.
|
848
|
+
# Creates a running app for the specified UserProfile. Supported apps
|
849
|
+
# are `JupyterServer` and `KernelGateway`. This operation is
|
850
|
+
# automatically invoked by Amazon SageMaker Studio upon access to the
|
851
|
+
# associated Domain, and when new kernel configurations are selected by
|
852
|
+
# the user. A user may have multiple Apps active simultaneously.
|
835
853
|
#
|
836
854
|
# @option params [required, String] :domain_id
|
837
855
|
# The domain ID.
|
@@ -840,7 +858,8 @@ module Aws::SageMaker
|
|
840
858
|
# The user profile name.
|
841
859
|
#
|
842
860
|
# @option params [required, String] :app_type
|
843
|
-
# The type of app.
|
861
|
+
# The type of app. Supported apps are `JupyterServer` and
|
862
|
+
# `KernelGateway`. `TensorBoard` is not supported.
|
844
863
|
#
|
845
864
|
# @option params [required, String] :app_name
|
846
865
|
# The name of the app.
|
@@ -951,6 +970,13 @@ module Aws::SageMaker
|
|
951
970
|
# URI of a dataset and the ECR registry path of an image. For more
|
952
971
|
# information, see [Amazon SageMaker ML Lineage Tracking][1].
|
953
972
|
#
|
973
|
+
# <note markdown="1"> `CreateArtifact` can only be invoked from within an SageMaker managed
|
974
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
975
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateArtifact`
|
976
|
+
# from outside one of these environments results in an error.
|
977
|
+
#
|
978
|
+
# </note>
|
979
|
+
#
|
954
980
|
#
|
955
981
|
#
|
956
982
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -1025,55 +1051,65 @@ module Aws::SageMaker
|
|
1025
1051
|
# Creates an Autopilot job.
|
1026
1052
|
#
|
1027
1053
|
# Find the best performing model after you run an Autopilot job by
|
1028
|
-
# calling .
|
1029
|
-
# 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
|
1054
|
+
# calling .
|
1030
1055
|
#
|
1031
|
-
# For information about how to use Autopilot, see [
|
1032
|
-
# Development with Amazon SageMaker Autopilot][
|
1056
|
+
# For information about how to use Autopilot, see [Automate Model
|
1057
|
+
# Development with Amazon SageMaker Autopilot][1].
|
1033
1058
|
#
|
1034
1059
|
#
|
1035
1060
|
#
|
1036
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/
|
1037
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1061
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1038
1062
|
#
|
1039
1063
|
# @option params [required, String] :auto_ml_job_name
|
1040
|
-
# Identifies an Autopilot job.
|
1041
|
-
# case-insensitive.
|
1064
|
+
# Identifies an Autopilot job. The name must be unique to your account
|
1065
|
+
# and is case-insensitive.
|
1042
1066
|
#
|
1043
1067
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
1044
|
-
#
|
1045
|
-
#
|
1068
|
+
# An array of channel objects that describes the input data and its
|
1069
|
+
# location. Each channel is a named input source. Similar to
|
1070
|
+
# `InputDataConfig` supported by . Format(s) supported: CSV. Minimum of
|
1071
|
+
# 500 rows.
|
1046
1072
|
#
|
1047
1073
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
1048
|
-
#
|
1074
|
+
# Provides information about encryption and the Amazon S3 output path
|
1075
|
+
# needed to store artifacts from an AutoML job. Format(s) supported:
|
1049
1076
|
# CSV.
|
1050
1077
|
#
|
1051
1078
|
# @option params [String] :problem_type
|
1052
|
-
# Defines the
|
1053
|
-
#
|
1054
|
-
#
|
1079
|
+
# Defines the type of supervised learning available for the candidates.
|
1080
|
+
# Options include: `BinaryClassification`, `MulticlassClassification`,
|
1081
|
+
# and `Regression`. For more information, see [ Amazon SageMaker
|
1082
|
+
# Autopilot problem types and algorithm support][1].
|
1083
|
+
#
|
1084
|
+
#
|
1085
|
+
#
|
1086
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
|
1055
1087
|
#
|
1056
1088
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1057
|
-
# Defines the objective
|
1058
|
-
#
|
1059
|
-
#
|
1060
|
-
# ObjectiveMetric for problem type is automaically selected.
|
1089
|
+
# Defines the objective metric used to measure the predictive quality of
|
1090
|
+
# an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
1091
|
+
# Autopilot infers whether to minimize or maximize it.
|
1061
1092
|
#
|
1062
1093
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1063
|
-
# Contains CompletionCriteria and SecurityConfig
|
1094
|
+
# Contains `CompletionCriteria` and `SecurityConfig` settings for the
|
1095
|
+
# AutoML job.
|
1064
1096
|
#
|
1065
1097
|
# @option params [required, String] :role_arn
|
1066
1098
|
# The ARN of the role that is used to access the data.
|
1067
1099
|
#
|
1068
1100
|
# @option params [Boolean] :generate_candidate_definitions_only
|
1069
|
-
# Generates possible candidates without training
|
1070
|
-
# a combination of data preprocessors, algorithms, and algorithm
|
1101
|
+
# Generates possible candidates without training the models. A candidate
|
1102
|
+
# is a combination of data preprocessors, algorithms, and algorithm
|
1071
1103
|
# parameter settings.
|
1072
1104
|
#
|
1073
1105
|
# @option params [Array<Types::Tag>] :tags
|
1074
1106
|
# Each tag consists of a key and an optional value. Tag keys must be
|
1075
1107
|
# unique per resource.
|
1076
1108
|
#
|
1109
|
+
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1110
|
+
# Specifies how to generate the endpoint name for an automatic one-click
|
1111
|
+
# Autopilot model deployment.
|
1112
|
+
#
|
1077
1113
|
# @return [Types::CreateAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1078
1114
|
#
|
1079
1115
|
# * {Types::CreateAutoMLJobResponse#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1125,6 +1161,10 @@ module Aws::SageMaker
|
|
1125
1161
|
# value: "TagValue", # required
|
1126
1162
|
# },
|
1127
1163
|
# ],
|
1164
|
+
# model_deploy_config: {
|
1165
|
+
# auto_generate_endpoint_name: false,
|
1166
|
+
# endpoint_name: "EndpointName",
|
1167
|
+
# },
|
1128
1168
|
# })
|
1129
1169
|
#
|
1130
1170
|
# @example Response structure
|
@@ -1343,6 +1383,13 @@ module Aws::SageMaker
|
|
1343
1383
|
# entities. Some examples are an endpoint and a model package. For more
|
1344
1384
|
# information, see [Amazon SageMaker ML Lineage Tracking][1].
|
1345
1385
|
#
|
1386
|
+
# <note markdown="1"> `CreateContext` can only be invoked from within an SageMaker managed
|
1387
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
1388
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateContext`
|
1389
|
+
# from outside one of these environments results in an error.
|
1390
|
+
#
|
1391
|
+
# </note>
|
1392
|
+
#
|
1346
1393
|
#
|
1347
1394
|
#
|
1348
1395
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -1565,6 +1612,14 @@ module Aws::SageMaker
|
|
1565
1612
|
# @option params [Array<Types::Tag>] :tags
|
1566
1613
|
# Creates tags for the specified fleet.
|
1567
1614
|
#
|
1615
|
+
# @option params [Boolean] :enable_iot_role_alias
|
1616
|
+
# Whether to create an AWS IoT Role Alias during device fleet creation.
|
1617
|
+
# The name of the role alias generated will match this pattern:
|
1618
|
+
# "SageMakerEdge-\\\{DeviceFleetName\\}".
|
1619
|
+
#
|
1620
|
+
# For example, if your device fleet is called "demo-fleet", the name
|
1621
|
+
# of the role alias will be "SageMakerEdge-demo-fleet".
|
1622
|
+
#
|
1568
1623
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
1569
1624
|
#
|
1570
1625
|
# @example Request syntax with placeholder values
|
@@ -1576,6 +1631,8 @@ module Aws::SageMaker
|
|
1576
1631
|
# output_config: { # required
|
1577
1632
|
# s3_output_location: "S3Uri", # required
|
1578
1633
|
# kms_key_id: "KmsKeyId",
|
1634
|
+
# preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
|
1635
|
+
# preset_deployment_config: "String",
|
1579
1636
|
# },
|
1580
1637
|
# tags: [
|
1581
1638
|
# {
|
@@ -1583,6 +1640,7 @@ module Aws::SageMaker
|
|
1583
1640
|
# value: "TagValue", # required
|
1584
1641
|
# },
|
1585
1642
|
# ],
|
1643
|
+
# enable_iot_role_alias: false,
|
1586
1644
|
# })
|
1587
1645
|
#
|
1588
1646
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateDeviceFleet AWS API Documentation
|
@@ -1652,18 +1710,14 @@ module Aws::SageMaker
|
|
1652
1710
|
#
|
1653
1711
|
# @option params [required, Types::UserSettings] :default_user_settings
|
1654
1712
|
# The default settings to use to create a user profile when
|
1655
|
-
# `UserSettings` isn't specified in the call to the
|
1656
|
-
#
|
1713
|
+
# `UserSettings` isn't specified in the call to the `CreateUserProfile`
|
1714
|
+
# API.
|
1657
1715
|
#
|
1658
1716
|
# `SecurityGroups` is aggregated when specified in both calls. For all
|
1659
1717
|
# other settings in `UserSettings`, the values specified in
|
1660
1718
|
# `CreateUserProfile` take precedence over those specified in
|
1661
1719
|
# `CreateDomain`.
|
1662
1720
|
#
|
1663
|
-
#
|
1664
|
-
#
|
1665
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateUserProfile.html
|
1666
|
-
#
|
1667
1721
|
# @option params [required, Array<String>] :subnet_ids
|
1668
1722
|
# The VPC subnets that Studio uses for communication.
|
1669
1723
|
#
|
@@ -1674,11 +1728,10 @@ module Aws::SageMaker
|
|
1674
1728
|
# @option params [Array<Types::Tag>] :tags
|
1675
1729
|
# Tags to associated with the Domain. Each tag consists of a key and an
|
1676
1730
|
# optional value. Tag keys must be unique per resource. Tags are
|
1677
|
-
# searchable using the
|
1678
|
-
#
|
1731
|
+
# searchable using the `Search` API.
|
1679
1732
|
#
|
1680
|
-
#
|
1681
|
-
#
|
1733
|
+
# Tags that you specify for the Domain are also added to all Apps that
|
1734
|
+
# the Domain launches.
|
1682
1735
|
#
|
1683
1736
|
# @option params [String] :app_network_access_type
|
1684
1737
|
# Specifies the VPC used for non-EFS traffic. The default value is
|
@@ -1818,6 +1871,8 @@ module Aws::SageMaker
|
|
1818
1871
|
# output_config: { # required
|
1819
1872
|
# s3_output_location: "S3Uri", # required
|
1820
1873
|
# kms_key_id: "KmsKeyId",
|
1874
|
+
# preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
|
1875
|
+
# preset_deployment_config: "String",
|
1821
1876
|
# },
|
1822
1877
|
# resource_key: "KmsKeyId",
|
1823
1878
|
# tags: [
|
@@ -2156,10 +2211,10 @@ module Aws::SageMaker
|
|
2156
2211
|
# measuring the impact of a change to one or more inputs, while keeping
|
2157
2212
|
# the remaining inputs constant.
|
2158
2213
|
#
|
2159
|
-
# When you use
|
2160
|
-
#
|
2161
|
-
#
|
2162
|
-
#
|
2214
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
2215
|
+
# experiments, trials, and trial components are automatically tracked,
|
2216
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
2217
|
+
# must use the logging APIs provided by the SDK.
|
2163
2218
|
#
|
2164
2219
|
# You can add tags to experiments, trials, trial components and then use
|
2165
2220
|
# the Search API to search for the tags.
|
@@ -2737,6 +2792,9 @@ module Aws::SageMaker
|
|
2737
2792
|
# s3_uri: "S3Uri", # required
|
2738
2793
|
# local_path: "DirectoryPath",
|
2739
2794
|
# },
|
2795
|
+
# retry_strategy: {
|
2796
|
+
# maximum_retry_attempts: 1, # required
|
2797
|
+
# },
|
2740
2798
|
# },
|
2741
2799
|
# training_job_definitions: [
|
2742
2800
|
# {
|
@@ -2835,6 +2893,9 @@ module Aws::SageMaker
|
|
2835
2893
|
# s3_uri: "S3Uri", # required
|
2836
2894
|
# local_path: "DirectoryPath",
|
2837
2895
|
# },
|
2896
|
+
# retry_strategy: {
|
2897
|
+
# maximum_retry_attempts: 1, # required
|
2898
|
+
# },
|
2838
2899
|
# },
|
2839
2900
|
# ],
|
2840
2901
|
# warm_start_config: {
|
@@ -4357,10 +4418,10 @@ module Aws::SageMaker
|
|
4357
4418
|
#
|
4358
4419
|
# @option params [String] :direct_internet_access
|
4359
4420
|
# Sets whether Amazon SageMaker provides internet access to the notebook
|
4360
|
-
# instance. If you set this to `Disabled` this notebook instance
|
4361
|
-
#
|
4362
|
-
#
|
4363
|
-
#
|
4421
|
+
# instance. If you set this to `Disabled` this notebook instance is able
|
4422
|
+
# to access resources only in your VPC, and is not be able to connect to
|
4423
|
+
# Amazon SageMaker training and endpoint services unless you configure a
|
4424
|
+
# NAT Gateway in your VPC.
|
4364
4425
|
#
|
4365
4426
|
# For more information, see [Notebook Instances Are Internet-Enabled by
|
4366
4427
|
# Default][1]. You can set the value of this parameter to `Disabled`
|
@@ -4984,8 +5045,6 @@ module Aws::SageMaker
|
|
4984
5045
|
# * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
|
4985
5046
|
# Amazon SageMaker to save the results of model training.
|
4986
5047
|
#
|
4987
|
-
#
|
4988
|
-
#
|
4989
5048
|
# * `ResourceConfig` - Identifies the resources, ML compute instances,
|
4990
5049
|
# and ML storage volumes to deploy for model training. In distributed
|
4991
5050
|
# training, you specify more than one instance.
|
@@ -5001,12 +5060,15 @@ module Aws::SageMaker
|
|
5001
5060
|
#
|
5002
5061
|
# * `StoppingCondition` - To help cap training costs, use
|
5003
5062
|
# `MaxRuntimeInSeconds` to set a time limit for training. Use
|
5004
|
-
# `MaxWaitTimeInSeconds` to specify how long
|
5005
|
-
#
|
5063
|
+
# `MaxWaitTimeInSeconds` to specify how long a managed spot training
|
5064
|
+
# job has to complete.
|
5006
5065
|
#
|
5007
5066
|
# * `Environment` - The environment variables to set in the Docker
|
5008
5067
|
# container.
|
5009
5068
|
#
|
5069
|
+
# * `RetryStrategy` - The number of times to retry the job when the job
|
5070
|
+
# fails due to an `InternalServerError`.
|
5071
|
+
#
|
5010
5072
|
# For more information about Amazon SageMaker, see [How It Works][3].
|
5011
5073
|
#
|
5012
5074
|
#
|
@@ -5110,9 +5172,10 @@ module Aws::SageMaker
|
|
5110
5172
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
|
5111
5173
|
#
|
5112
5174
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
5113
|
-
# Specifies a limit to how long a model training job can run.
|
5114
|
-
#
|
5115
|
-
#
|
5175
|
+
# Specifies a limit to how long a model training job can run. It also
|
5176
|
+
# specifies how long a managed Spot training job has to complete. When
|
5177
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
5178
|
+
# job. Use this API to cap model training costs.
|
5116
5179
|
#
|
5117
5180
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
5118
5181
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -5207,6 +5270,10 @@ module Aws::SageMaker
|
|
5207
5270
|
# @option params [Hash<String,String>] :environment
|
5208
5271
|
# The environment variables to set in the Docker container.
|
5209
5272
|
#
|
5273
|
+
# @option params [Types::RetryStrategy] :retry_strategy
|
5274
|
+
# The number of times to retry the job when the job fails due to an
|
5275
|
+
# `InternalServerError`.
|
5276
|
+
#
|
5210
5277
|
# @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
5211
5278
|
#
|
5212
5279
|
# * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
|
@@ -5348,6 +5415,9 @@ module Aws::SageMaker
|
|
5348
5415
|
# environment: {
|
5349
5416
|
# "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
|
5350
5417
|
# },
|
5418
|
+
# retry_strategy: {
|
5419
|
+
# maximum_retry_attempts: 1, # required
|
5420
|
+
# },
|
5351
5421
|
# })
|
5352
5422
|
#
|
5353
5423
|
# @example Response structure
|
@@ -5573,14 +5643,14 @@ module Aws::SageMaker
|
|
5573
5643
|
req.send_request(options)
|
5574
5644
|
end
|
5575
5645
|
|
5576
|
-
# Creates an
|
5577
|
-
#
|
5578
|
-
#
|
5646
|
+
# Creates an SageMaker *trial*. A trial is a set of steps called *trial
|
5647
|
+
# components* that produce a machine learning model. A trial is part of
|
5648
|
+
# a single SageMaker *experiment*.
|
5579
5649
|
#
|
5580
|
-
# When you use
|
5581
|
-
#
|
5582
|
-
#
|
5583
|
-
#
|
5650
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
5651
|
+
# experiments, trials, and trial components are automatically tracked,
|
5652
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
5653
|
+
# must use the logging APIs provided by the SDK.
|
5584
5654
|
#
|
5585
5655
|
# You can add tags to a trial and then use the Search API to search for
|
5586
5656
|
# the tags.
|
@@ -5651,19 +5721,19 @@ module Aws::SageMaker
|
|
5651
5721
|
# Trial components include pre-processing jobs, training jobs, and batch
|
5652
5722
|
# transform jobs.
|
5653
5723
|
#
|
5654
|
-
# When you use
|
5655
|
-
#
|
5656
|
-
#
|
5657
|
-
#
|
5724
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
5725
|
+
# experiments, trials, and trial components are automatically tracked,
|
5726
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
5727
|
+
# must use the logging APIs provided by the SDK.
|
5658
5728
|
#
|
5659
5729
|
# You can add tags to a trial component and then use the Search API to
|
5660
5730
|
# search for the tags.
|
5661
5731
|
#
|
5662
|
-
# <note markdown="1"> `CreateTrialComponent` can only be invoked from within an
|
5663
|
-
#
|
5664
|
-
# jobs,
|
5665
|
-
#
|
5666
|
-
#
|
5732
|
+
# <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
|
5733
|
+
# managed environment. This includes SageMaker training jobs, processing
|
5734
|
+
# jobs, transform jobs, and SageMaker notebooks. A call to
|
5735
|
+
# `CreateTrialComponent` from outside one of these environments results
|
5736
|
+
# in an error.
|
5667
5737
|
#
|
5668
5738
|
# </note>
|
5669
5739
|
#
|
@@ -5783,7 +5853,7 @@ module Aws::SageMaker
|
|
5783
5853
|
# The ID of the associated Domain.
|
5784
5854
|
#
|
5785
5855
|
# @option params [required, String] :user_profile_name
|
5786
|
-
# A name for the UserProfile.
|
5856
|
+
# A name for the UserProfile. This value is not case sensitive.
|
5787
5857
|
#
|
5788
5858
|
# @option params [String] :single_sign_on_user_identifier
|
5789
5859
|
# A specifier for the type of value specified in SingleSignOnUserValue.
|
@@ -5801,6 +5871,9 @@ module Aws::SageMaker
|
|
5801
5871
|
# Each tag consists of a key and an optional value. Tag keys must be
|
5802
5872
|
# unique per resource.
|
5803
5873
|
#
|
5874
|
+
# Tags that you specify for the User Profile are also added to all Apps
|
5875
|
+
# that the User Profile launches.
|
5876
|
+
#
|
5804
5877
|
# @option params [Types::UserSettings] :user_settings
|
5805
5878
|
# A collection of settings.
|
5806
5879
|
#
|
@@ -6451,7 +6524,7 @@ module Aws::SageMaker
|
|
6451
6524
|
req.send_request(options)
|
6452
6525
|
end
|
6453
6526
|
|
6454
|
-
# Deletes an
|
6527
|
+
# Deletes an SageMaker experiment. All trials associated with the
|
6455
6528
|
# experiment must be deleted first. Use the ListTrials API to get a list
|
6456
6529
|
# of the trials associated with the experiment.
|
6457
6530
|
#
|
@@ -6686,8 +6759,10 @@ module Aws::SageMaker
|
|
6686
6759
|
# Marketplace to create models in Amazon SageMaker.
|
6687
6760
|
#
|
6688
6761
|
# @option params [required, String] :model_package_name
|
6689
|
-
# The name
|
6690
|
-
#
|
6762
|
+
# The name or Amazon Resource Name (ARN) of the model package to delete.
|
6763
|
+
#
|
6764
|
+
# When you specify a name, the name must have 1 to 63 characters. Valid
|
6765
|
+
# characters are a-z, A-Z, 0-9, and - (hyphen).
|
6691
6766
|
#
|
6692
6767
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
6693
6768
|
#
|
@@ -6846,7 +6921,10 @@ module Aws::SageMaker
|
|
6846
6921
|
req.send_request(options)
|
6847
6922
|
end
|
6848
6923
|
|
6849
|
-
# Deletes a pipeline if there are no
|
6924
|
+
# Deletes a pipeline if there are no running instances of the pipeline.
|
6925
|
+
# To delete a pipeline, you must stop all running instances of the
|
6926
|
+
# pipeline using the `StopPipelineExecution` API. When you delete a
|
6927
|
+
# pipeline, all instances of the pipeline are deleted.
|
6850
6928
|
#
|
6851
6929
|
# @option params [required, String] :pipeline_name
|
6852
6930
|
# The name of the pipeline to delete.
|
@@ -6915,6 +6993,13 @@ module Aws::SageMaker
|
|
6915
6993
|
#
|
6916
6994
|
# </note>
|
6917
6995
|
#
|
6996
|
+
# <note markdown="1"> When you call this API to delete tags from a SageMaker Studio Domain
|
6997
|
+
# or User Profile, the deleted tags are not removed from Apps that the
|
6998
|
+
# SageMaker Studio Domain or User Profile launched before you called
|
6999
|
+
# this API.
|
7000
|
+
#
|
7001
|
+
# </note>
|
7002
|
+
#
|
6918
7003
|
# @option params [required, String] :resource_arn
|
6919
7004
|
# The Amazon Resource Name (ARN) of the resource whose tags you want to
|
6920
7005
|
# delete.
|
@@ -7483,10 +7568,10 @@ module Aws::SageMaker
|
|
7483
7568
|
req.send_request(options)
|
7484
7569
|
end
|
7485
7570
|
|
7486
|
-
# Returns information about an Amazon SageMaker job.
|
7571
|
+
# Returns information about an Amazon SageMaker AutoML job.
|
7487
7572
|
#
|
7488
7573
|
# @option params [required, String] :auto_ml_job_name
|
7489
|
-
#
|
7574
|
+
# Requests information about an AutoML job using its unique name.
|
7490
7575
|
#
|
7491
7576
|
# @return [Types::DescribeAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
7492
7577
|
#
|
@@ -7502,12 +7587,15 @@ module Aws::SageMaker
|
|
7502
7587
|
# * {Types::DescribeAutoMLJobResponse#end_time #end_time} => Time
|
7503
7588
|
# * {Types::DescribeAutoMLJobResponse#last_modified_time #last_modified_time} => Time
|
7504
7589
|
# * {Types::DescribeAutoMLJobResponse#failure_reason #failure_reason} => String
|
7590
|
+
# * {Types::DescribeAutoMLJobResponse#partial_failure_reasons #partial_failure_reasons} => Array<Types::AutoMLPartialFailureReason>
|
7505
7591
|
# * {Types::DescribeAutoMLJobResponse#best_candidate #best_candidate} => Types::AutoMLCandidate
|
7506
7592
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_status #auto_ml_job_status} => String
|
7507
7593
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_secondary_status #auto_ml_job_secondary_status} => String
|
7508
7594
|
# * {Types::DescribeAutoMLJobResponse#generate_candidate_definitions_only #generate_candidate_definitions_only} => Boolean
|
7509
7595
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
|
7510
7596
|
# * {Types::DescribeAutoMLJobResponse#resolved_attributes #resolved_attributes} => Types::ResolvedAttributes
|
7597
|
+
# * {Types::DescribeAutoMLJobResponse#model_deploy_config #model_deploy_config} => Types::ModelDeployConfig
|
7598
|
+
# * {Types::DescribeAutoMLJobResponse#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
|
7511
7599
|
#
|
7512
7600
|
# @example Request syntax with placeholder values
|
7513
7601
|
#
|
@@ -7542,6 +7630,8 @@ module Aws::SageMaker
|
|
7542
7630
|
# resp.end_time #=> Time
|
7543
7631
|
# resp.last_modified_time #=> Time
|
7544
7632
|
# resp.failure_reason #=> String
|
7633
|
+
# resp.partial_failure_reasons #=> Array
|
7634
|
+
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
7545
7635
|
# resp.best_candidate.candidate_name #=> String
|
7546
7636
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
7547
7637
|
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
@@ -7561,8 +7651,9 @@ module Aws::SageMaker
|
|
7561
7651
|
# resp.best_candidate.end_time #=> Time
|
7562
7652
|
# resp.best_candidate.last_modified_time #=> Time
|
7563
7653
|
# resp.best_candidate.failure_reason #=> String
|
7654
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
7564
7655
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
7565
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
|
7656
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
|
7566
7657
|
# resp.generate_candidate_definitions_only #=> Boolean
|
7567
7658
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
7568
7659
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
@@ -7571,6 +7662,9 @@ module Aws::SageMaker
|
|
7571
7662
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
7572
7663
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
7573
7664
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
7665
|
+
# resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
|
7666
|
+
# resp.model_deploy_config.endpoint_name #=> String
|
7667
|
+
# resp.model_deploy_result.endpoint_name #=> String
|
7574
7668
|
#
|
7575
7669
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJob AWS API Documentation
|
7576
7670
|
#
|
@@ -7905,6 +7999,8 @@ module Aws::SageMaker
|
|
7905
7999
|
# resp.device_fleet_arn #=> String
|
7906
8000
|
# resp.output_config.s3_output_location #=> String
|
7907
8001
|
# resp.output_config.kms_key_id #=> String
|
8002
|
+
# resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
|
8003
|
+
# resp.output_config.preset_deployment_config #=> String
|
7908
8004
|
# resp.description #=> String
|
7909
8005
|
# resp.creation_time #=> Time
|
7910
8006
|
# resp.last_modified_time #=> Time
|
@@ -8020,6 +8116,7 @@ module Aws::SageMaker
|
|
8020
8116
|
# * {Types::DescribeEdgePackagingJobResponse#last_modified_time #last_modified_time} => Time
|
8021
8117
|
# * {Types::DescribeEdgePackagingJobResponse#model_artifact #model_artifact} => String
|
8022
8118
|
# * {Types::DescribeEdgePackagingJobResponse#model_signature #model_signature} => String
|
8119
|
+
# * {Types::DescribeEdgePackagingJobResponse#preset_deployment_output #preset_deployment_output} => Types::EdgePresetDeploymentOutput
|
8023
8120
|
#
|
8024
8121
|
# @example Request syntax with placeholder values
|
8025
8122
|
#
|
@@ -8037,6 +8134,8 @@ module Aws::SageMaker
|
|
8037
8134
|
# resp.role_arn #=> String
|
8038
8135
|
# resp.output_config.s3_output_location #=> String
|
8039
8136
|
# resp.output_config.kms_key_id #=> String
|
8137
|
+
# resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
|
8138
|
+
# resp.output_config.preset_deployment_config #=> String
|
8040
8139
|
# resp.resource_key #=> String
|
8041
8140
|
# resp.edge_packaging_job_status #=> String, one of "STARTING", "INPROGRESS", "COMPLETED", "FAILED", "STOPPING", "STOPPED"
|
8042
8141
|
# resp.edge_packaging_job_status_message #=> String
|
@@ -8044,6 +8143,10 @@ module Aws::SageMaker
|
|
8044
8143
|
# resp.last_modified_time #=> Time
|
8045
8144
|
# resp.model_artifact #=> String
|
8046
8145
|
# resp.model_signature #=> String
|
8146
|
+
# resp.preset_deployment_output.type #=> String, one of "GreengrassV2Component"
|
8147
|
+
# resp.preset_deployment_output.artifact #=> String
|
8148
|
+
# resp.preset_deployment_output.status #=> String, one of "COMPLETED", "FAILED"
|
8149
|
+
# resp.preset_deployment_output.status_message #=> String
|
8047
8150
|
#
|
8048
8151
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEdgePackagingJob AWS API Documentation
|
8049
8152
|
#
|
@@ -8512,6 +8615,7 @@ module Aws::SageMaker
|
|
8512
8615
|
# resp.training_job_definition.enable_managed_spot_training #=> Boolean
|
8513
8616
|
# resp.training_job_definition.checkpoint_config.s3_uri #=> String
|
8514
8617
|
# resp.training_job_definition.checkpoint_config.local_path #=> String
|
8618
|
+
# resp.training_job_definition.retry_strategy.maximum_retry_attempts #=> Integer
|
8515
8619
|
# resp.training_job_definitions #=> Array
|
8516
8620
|
# resp.training_job_definitions[0].definition_name #=> String
|
8517
8621
|
# resp.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
|
@@ -8572,6 +8676,7 @@ module Aws::SageMaker
|
|
8572
8676
|
# resp.training_job_definitions[0].enable_managed_spot_training #=> Boolean
|
8573
8677
|
# resp.training_job_definitions[0].checkpoint_config.s3_uri #=> String
|
8574
8678
|
# resp.training_job_definitions[0].checkpoint_config.local_path #=> String
|
8679
|
+
# resp.training_job_definitions[0].retry_strategy.maximum_retry_attempts #=> Integer
|
8575
8680
|
# resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
8576
8681
|
# resp.creation_time #=> Time
|
8577
8682
|
# resp.hyper_parameter_tuning_end_time #=> Time
|
@@ -9035,7 +9140,11 @@ module Aws::SageMaker
|
|
9035
9140
|
# packages listed on AWS Marketplace.
|
9036
9141
|
#
|
9037
9142
|
# @option params [required, String] :model_package_name
|
9038
|
-
# The name of the model package to
|
9143
|
+
# The name or Amazon Resource Name (ARN) of the model package to
|
9144
|
+
# describe.
|
9145
|
+
#
|
9146
|
+
# When you specify a name, the name must have 1 to 63 characters. Valid
|
9147
|
+
# characters are a-z, A-Z, 0-9, and - (hyphen).
|
9039
9148
|
#
|
9040
9149
|
# @return [Types::DescribeModelPackageOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
9041
9150
|
#
|
@@ -9598,6 +9707,8 @@ module Aws::SageMaker
|
|
9598
9707
|
# * {Types::DescribePipelineExecutionResponse#pipeline_execution_display_name #pipeline_execution_display_name} => String
|
9599
9708
|
# * {Types::DescribePipelineExecutionResponse#pipeline_execution_status #pipeline_execution_status} => String
|
9600
9709
|
# * {Types::DescribePipelineExecutionResponse#pipeline_execution_description #pipeline_execution_description} => String
|
9710
|
+
# * {Types::DescribePipelineExecutionResponse#pipeline_experiment_config #pipeline_experiment_config} => Types::PipelineExperimentConfig
|
9711
|
+
# * {Types::DescribePipelineExecutionResponse#failure_reason #failure_reason} => String
|
9601
9712
|
# * {Types::DescribePipelineExecutionResponse#creation_time #creation_time} => Time
|
9602
9713
|
# * {Types::DescribePipelineExecutionResponse#last_modified_time #last_modified_time} => Time
|
9603
9714
|
# * {Types::DescribePipelineExecutionResponse#created_by #created_by} => Types::UserContext
|
@@ -9616,6 +9727,9 @@ module Aws::SageMaker
|
|
9616
9727
|
# resp.pipeline_execution_display_name #=> String
|
9617
9728
|
# resp.pipeline_execution_status #=> String, one of "Executing", "Stopping", "Stopped", "Failed", "Succeeded"
|
9618
9729
|
# resp.pipeline_execution_description #=> String
|
9730
|
+
# resp.pipeline_experiment_config.experiment_name #=> String
|
9731
|
+
# resp.pipeline_experiment_config.trial_name #=> String
|
9732
|
+
# resp.failure_reason #=> String
|
9619
9733
|
# resp.creation_time #=> Time
|
9620
9734
|
# resp.last_modified_time #=> Time
|
9621
9735
|
# resp.created_by.user_profile_arn #=> String
|
@@ -9895,6 +10009,7 @@ module Aws::SageMaker
|
|
9895
10009
|
# * {Types::DescribeTrainingJobResponse#profiler_rule_configurations #profiler_rule_configurations} => Array<Types::ProfilerRuleConfiguration>
|
9896
10010
|
# * {Types::DescribeTrainingJobResponse#profiler_rule_evaluation_statuses #profiler_rule_evaluation_statuses} => Array<Types::ProfilerRuleEvaluationStatus>
|
9897
10011
|
# * {Types::DescribeTrainingJobResponse#profiling_status #profiling_status} => String
|
10012
|
+
# * {Types::DescribeTrainingJobResponse#retry_strategy #retry_strategy} => Types::RetryStrategy
|
9898
10013
|
# * {Types::DescribeTrainingJobResponse#environment #environment} => Hash<String,String>
|
9899
10014
|
#
|
9900
10015
|
# @example Request syntax with placeholder values
|
@@ -9912,7 +10027,7 @@ module Aws::SageMaker
|
|
9912
10027
|
# resp.auto_ml_job_arn #=> String
|
9913
10028
|
# resp.model_artifacts.s3_model_artifacts #=> String
|
9914
10029
|
# resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
9915
|
-
# resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
10030
|
+
# resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
9916
10031
|
# resp.failure_reason #=> String
|
9917
10032
|
# resp.hyper_parameters #=> Hash
|
9918
10033
|
# resp.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -9957,7 +10072,7 @@ module Aws::SageMaker
|
|
9957
10072
|
# resp.training_end_time #=> Time
|
9958
10073
|
# resp.last_modified_time #=> Time
|
9959
10074
|
# resp.secondary_status_transitions #=> Array
|
9960
|
-
# resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
10075
|
+
# resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
9961
10076
|
# resp.secondary_status_transitions[0].start_time #=> Time
|
9962
10077
|
# resp.secondary_status_transitions[0].end_time #=> Time
|
9963
10078
|
# resp.secondary_status_transitions[0].status_message #=> String
|
@@ -10020,6 +10135,7 @@ module Aws::SageMaker
|
|
10020
10135
|
# resp.profiler_rule_evaluation_statuses[0].status_details #=> String
|
10021
10136
|
# resp.profiler_rule_evaluation_statuses[0].last_modified_time #=> Time
|
10022
10137
|
# resp.profiling_status #=> String, one of "Enabled", "Disabled"
|
10138
|
+
# resp.retry_strategy.maximum_retry_attempts #=> Integer
|
10023
10139
|
# resp.environment #=> Hash
|
10024
10140
|
# resp.environment["TrainingEnvironmentKey"] #=> String
|
10025
10141
|
#
|
@@ -10266,7 +10382,7 @@ module Aws::SageMaker
|
|
10266
10382
|
# The domain ID.
|
10267
10383
|
#
|
10268
10384
|
# @option params [required, String] :user_profile_name
|
10269
|
-
# The user profile name.
|
10385
|
+
# The user profile name. This value is not case sensitive.
|
10270
10386
|
#
|
10271
10387
|
# @return [Types::DescribeUserProfileResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10272
10388
|
#
|
@@ -10528,6 +10644,8 @@ module Aws::SageMaker
|
|
10528
10644
|
# resp.device_fleet_name #=> String
|
10529
10645
|
# resp.output_config.s3_output_location #=> String
|
10530
10646
|
# resp.output_config.kms_key_id #=> String
|
10647
|
+
# resp.output_config.preset_deployment_type #=> String, one of "GreengrassV2Component"
|
10648
|
+
# resp.output_config.preset_deployment_config #=> String
|
10531
10649
|
# resp.description #=> String
|
10532
10650
|
# resp.report_generated #=> Time
|
10533
10651
|
# resp.device_stats.connected_device_count #=> Integer
|
@@ -11121,11 +11239,10 @@ module Aws::SageMaker
|
|
11121
11239
|
# Request a list of jobs, using a filter for status.
|
11122
11240
|
#
|
11123
11241
|
# @option params [String] :sort_order
|
11124
|
-
# The sort order for the results. The default is Descending
|
11242
|
+
# The sort order for the results. The default is `Descending`.
|
11125
11243
|
#
|
11126
11244
|
# @option params [String] :sort_by
|
11127
|
-
# The parameter by which to sort the results. The default is
|
11128
|
-
# AutoMLJobName.
|
11245
|
+
# The parameter by which to sort the results. The default is `Name`.
|
11129
11246
|
#
|
11130
11247
|
# @option params [Integer] :max_results
|
11131
11248
|
# Request a list of jobs up to a specified limit.
|
@@ -11162,11 +11279,13 @@ module Aws::SageMaker
|
|
11162
11279
|
# resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
|
11163
11280
|
# resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
|
11164
11281
|
# resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
11165
|
-
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
|
11282
|
+
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
|
11166
11283
|
# resp.auto_ml_job_summaries[0].creation_time #=> Time
|
11167
11284
|
# resp.auto_ml_job_summaries[0].end_time #=> Time
|
11168
11285
|
# resp.auto_ml_job_summaries[0].last_modified_time #=> Time
|
11169
11286
|
# resp.auto_ml_job_summaries[0].failure_reason #=> String
|
11287
|
+
# resp.auto_ml_job_summaries[0].partial_failure_reasons #=> Array
|
11288
|
+
# resp.auto_ml_job_summaries[0].partial_failure_reasons[0].partial_failure_message #=> String
|
11170
11289
|
# resp.next_token #=> String
|
11171
11290
|
#
|
11172
11291
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobs AWS API Documentation
|
@@ -11178,25 +11297,26 @@ module Aws::SageMaker
|
|
11178
11297
|
req.send_request(options)
|
11179
11298
|
end
|
11180
11299
|
|
11181
|
-
# List the
|
11300
|
+
# List the candidates created for the job.
|
11182
11301
|
#
|
11183
11302
|
# @option params [required, String] :auto_ml_job_name
|
11184
|
-
# List the
|
11303
|
+
# List the candidates created for the job by providing the job's name.
|
11185
11304
|
#
|
11186
11305
|
# @option params [String] :status_equals
|
11187
|
-
# List the
|
11306
|
+
# List the candidates for the job and filter by status.
|
11188
11307
|
#
|
11189
11308
|
# @option params [String] :candidate_name_equals
|
11190
|
-
# List the
|
11309
|
+
# List the candidates for the job and filter by candidate name.
|
11191
11310
|
#
|
11192
11311
|
# @option params [String] :sort_order
|
11193
|
-
# The sort order for the results. The default is Ascending
|
11312
|
+
# The sort order for the results. The default is `Ascending`.
|
11194
11313
|
#
|
11195
11314
|
# @option params [String] :sort_by
|
11196
|
-
# The parameter by which to sort the results. The default is
|
11315
|
+
# The parameter by which to sort the results. The default is
|
11316
|
+
# `Descending`.
|
11197
11317
|
#
|
11198
11318
|
# @option params [Integer] :max_results
|
11199
|
-
# List the job's
|
11319
|
+
# List the job's candidates up to a specified limit.
|
11200
11320
|
#
|
11201
11321
|
# @option params [String] :next_token
|
11202
11322
|
# If the previous response was truncated, you receive this token. Use it
|
@@ -11243,6 +11363,7 @@ module Aws::SageMaker
|
|
11243
11363
|
# resp.candidates[0].end_time #=> Time
|
11244
11364
|
# resp.candidates[0].last_modified_time #=> Time
|
11245
11365
|
# resp.candidates[0].failure_reason #=> String
|
11366
|
+
# resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
|
11246
11367
|
# resp.next_token #=> String
|
11247
11368
|
#
|
11248
11369
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
|
@@ -11903,7 +12024,8 @@ module Aws::SageMaker
|
|
11903
12024
|
# token in the next request.
|
11904
12025
|
#
|
11905
12026
|
# @option params [Integer] :max_results
|
11906
|
-
# The maximum number of endpoints to return in the response.
|
12027
|
+
# The maximum number of endpoints to return in the response. This value
|
12028
|
+
# defaults to 10.
|
11907
12029
|
#
|
11908
12030
|
# @option params [String] :name_contains
|
11909
12031
|
# A string in endpoint names. This filter returns only endpoints whose
|
@@ -13532,6 +13654,11 @@ module Aws::SageMaker
|
|
13532
13654
|
# resp.pipeline_execution_steps[0].metadata.model.arn #=> String
|
13533
13655
|
# resp.pipeline_execution_steps[0].metadata.register_model.arn #=> String
|
13534
13656
|
# resp.pipeline_execution_steps[0].metadata.condition.outcome #=> String, one of "True", "False"
|
13657
|
+
# resp.pipeline_execution_steps[0].metadata.callback.callback_token #=> String
|
13658
|
+
# resp.pipeline_execution_steps[0].metadata.callback.sqs_queue_url #=> String
|
13659
|
+
# resp.pipeline_execution_steps[0].metadata.callback.output_parameters #=> Array
|
13660
|
+
# resp.pipeline_execution_steps[0].metadata.callback.output_parameters[0].name #=> String
|
13661
|
+
# resp.pipeline_execution_steps[0].metadata.callback.output_parameters[0].value #=> String
|
13535
13662
|
# resp.next_token #=> String
|
13536
13663
|
#
|
13537
13664
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListPipelineExecutionSteps AWS API Documentation
|
@@ -13972,16 +14099,17 @@ module Aws::SageMaker
|
|
13972
14099
|
# <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
|
13973
14100
|
# `MaxResults` number of training jobs are first retrieved ignoring the
|
13974
14101
|
# `StatusEquals` parameter and then they are filtered by the
|
13975
|
-
# `StatusEquals` parameter, which is returned as a response.
|
13976
|
-
#
|
14102
|
+
# `StatusEquals` parameter, which is returned as a response.
|
14103
|
+
#
|
14104
|
+
# For example, if `ListTrainingJobs` is invoked with the following
|
13977
14105
|
# parameters:
|
13978
14106
|
#
|
13979
14107
|
# `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
|
13980
14108
|
#
|
13981
|
-
#
|
13982
|
-
# `InProgress
|
13983
|
-
# from the
|
13984
|
-
# returned.
|
14109
|
+
# First, 100 trainings jobs with any status, including those other than
|
14110
|
+
# `InProgress`, are selected (sorted according to the creation time,
|
14111
|
+
# from the most current to the oldest). Next, those with a status of
|
14112
|
+
# `InProgress` are returned.
|
13985
14113
|
#
|
13986
14114
|
# You can quickly test the API using the following AWS CLI code.
|
13987
14115
|
#
|
@@ -14825,7 +14953,7 @@ module Aws::SageMaker
|
|
14825
14953
|
# resp.results[0].training_job.auto_ml_job_arn #=> String
|
14826
14954
|
# resp.results[0].training_job.model_artifacts.s3_model_artifacts #=> String
|
14827
14955
|
# resp.results[0].training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
14828
|
-
# resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
14956
|
+
# resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14829
14957
|
# resp.results[0].training_job.failure_reason #=> String
|
14830
14958
|
# resp.results[0].training_job.hyper_parameters #=> Hash
|
14831
14959
|
# resp.results[0].training_job.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -14870,7 +14998,7 @@ module Aws::SageMaker
|
|
14870
14998
|
# resp.results[0].training_job.training_end_time #=> Time
|
14871
14999
|
# resp.results[0].training_job.last_modified_time #=> Time
|
14872
15000
|
# resp.results[0].training_job.secondary_status_transitions #=> Array
|
14873
|
-
# resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
15001
|
+
# resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14874
15002
|
# resp.results[0].training_job.secondary_status_transitions[0].start_time #=> Time
|
14875
15003
|
# resp.results[0].training_job.secondary_status_transitions[0].end_time #=> Time
|
14876
15004
|
# resp.results[0].training_job.secondary_status_transitions[0].status_message #=> String
|
@@ -14915,6 +15043,7 @@ module Aws::SageMaker
|
|
14915
15043
|
# resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
|
14916
15044
|
# resp.results[0].training_job.environment #=> Hash
|
14917
15045
|
# resp.results[0].training_job.environment["TrainingEnvironmentKey"] #=> String
|
15046
|
+
# resp.results[0].training_job.retry_strategy.maximum_retry_attempts #=> Integer
|
14918
15047
|
# resp.results[0].training_job.tags #=> Array
|
14919
15048
|
# resp.results[0].training_job.tags[0].key #=> String
|
14920
15049
|
# resp.results[0].training_job.tags[0].value #=> String
|
@@ -15013,7 +15142,7 @@ module Aws::SageMaker
|
|
15013
15142
|
# resp.results[0].trial_component.source_detail.training_job.auto_ml_job_arn #=> String
|
15014
15143
|
# resp.results[0].trial_component.source_detail.training_job.model_artifacts.s3_model_artifacts #=> String
|
15015
15144
|
# resp.results[0].trial_component.source_detail.training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
15016
|
-
# resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
15145
|
+
# resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
15017
15146
|
# resp.results[0].trial_component.source_detail.training_job.failure_reason #=> String
|
15018
15147
|
# resp.results[0].trial_component.source_detail.training_job.hyper_parameters #=> Hash
|
15019
15148
|
# resp.results[0].trial_component.source_detail.training_job.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -15058,7 +15187,7 @@ module Aws::SageMaker
|
|
15058
15187
|
# resp.results[0].trial_component.source_detail.training_job.training_end_time #=> Time
|
15059
15188
|
# resp.results[0].trial_component.source_detail.training_job.last_modified_time #=> Time
|
15060
15189
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions #=> Array
|
15061
|
-
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
15190
|
+
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
15062
15191
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].start_time #=> Time
|
15063
15192
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].end_time #=> Time
|
15064
15193
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status_message #=> String
|
@@ -15103,6 +15232,7 @@ module Aws::SageMaker
|
|
15103
15232
|
# resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
|
15104
15233
|
# resp.results[0].trial_component.source_detail.training_job.environment #=> Hash
|
15105
15234
|
# resp.results[0].trial_component.source_detail.training_job.environment["TrainingEnvironmentKey"] #=> String
|
15235
|
+
# resp.results[0].trial_component.source_detail.training_job.retry_strategy.maximum_retry_attempts #=> Integer
|
15106
15236
|
# resp.results[0].trial_component.source_detail.training_job.tags #=> Array
|
15107
15237
|
# resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
|
15108
15238
|
# resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
|
@@ -15435,6 +15565,9 @@ module Aws::SageMaker
|
|
15435
15565
|
# resp.results[0].pipeline_execution.pipeline_execution_display_name #=> String
|
15436
15566
|
# resp.results[0].pipeline_execution.pipeline_execution_status #=> String, one of "Executing", "Stopping", "Stopped", "Failed", "Succeeded"
|
15437
15567
|
# resp.results[0].pipeline_execution.pipeline_execution_description #=> String
|
15568
|
+
# resp.results[0].pipeline_execution.pipeline_experiment_config.experiment_name #=> String
|
15569
|
+
# resp.results[0].pipeline_execution.pipeline_experiment_config.trial_name #=> String
|
15570
|
+
# resp.results[0].pipeline_execution.failure_reason #=> String
|
15438
15571
|
# resp.results[0].pipeline_execution.creation_time #=> Time
|
15439
15572
|
# resp.results[0].pipeline_execution.last_modified_time #=> Time
|
15440
15573
|
# resp.results[0].pipeline_execution.created_by.user_profile_arn #=> String
|
@@ -15483,6 +15616,99 @@ module Aws::SageMaker
|
|
15483
15616
|
req.send_request(options)
|
15484
15617
|
end
|
15485
15618
|
|
15619
|
+
# Notifies the pipeline that the execution of a callback step failed,
|
15620
|
+
# along with a message describing why. When a callback step is run, the
|
15621
|
+
# pipeline generates a callback token and includes the token in a
|
15622
|
+
# message sent to Amazon Simple Queue Service (Amazon SQS).
|
15623
|
+
#
|
15624
|
+
# @option params [required, String] :callback_token
|
15625
|
+
# The pipeline generated token from the Amazon SQS queue.
|
15626
|
+
#
|
15627
|
+
# @option params [String] :failure_reason
|
15628
|
+
# A message describing why the step failed.
|
15629
|
+
#
|
15630
|
+
# @option params [String] :client_request_token
|
15631
|
+
# A unique, case-sensitive identifier that you provide to ensure the
|
15632
|
+
# idempotency of the operation. An idempotent operation completes no
|
15633
|
+
# more than one time.
|
15634
|
+
#
|
15635
|
+
# **A suitable default value is auto-generated.** You should normally
|
15636
|
+
# not need to pass this option.**
|
15637
|
+
#
|
15638
|
+
# @return [Types::SendPipelineExecutionStepFailureResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
15639
|
+
#
|
15640
|
+
# * {Types::SendPipelineExecutionStepFailureResponse#pipeline_execution_arn #pipeline_execution_arn} => String
|
15641
|
+
#
|
15642
|
+
# @example Request syntax with placeholder values
|
15643
|
+
#
|
15644
|
+
# resp = client.send_pipeline_execution_step_failure({
|
15645
|
+
# callback_token: "CallbackToken", # required
|
15646
|
+
# failure_reason: "String256",
|
15647
|
+
# client_request_token: "IdempotencyToken",
|
15648
|
+
# })
|
15649
|
+
#
|
15650
|
+
# @example Response structure
|
15651
|
+
#
|
15652
|
+
# resp.pipeline_execution_arn #=> String
|
15653
|
+
#
|
15654
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailure AWS API Documentation
|
15655
|
+
#
|
15656
|
+
# @overload send_pipeline_execution_step_failure(params = {})
|
15657
|
+
# @param [Hash] params ({})
|
15658
|
+
def send_pipeline_execution_step_failure(params = {}, options = {})
|
15659
|
+
req = build_request(:send_pipeline_execution_step_failure, params)
|
15660
|
+
req.send_request(options)
|
15661
|
+
end
|
15662
|
+
|
15663
|
+
# Notifies the pipeline that the execution of a callback step succeeded
|
15664
|
+
# and provides a list of the step's output parameters. When a callback
|
15665
|
+
# step is run, the pipeline generates a callback token and includes the
|
15666
|
+
# token in a message sent to Amazon Simple Queue Service (Amazon SQS).
|
15667
|
+
#
|
15668
|
+
# @option params [required, String] :callback_token
|
15669
|
+
# The pipeline generated token from the Amazon SQS queue.
|
15670
|
+
#
|
15671
|
+
# @option params [Array<Types::OutputParameter>] :output_parameters
|
15672
|
+
# A list of the output parameters of the callback step.
|
15673
|
+
#
|
15674
|
+
# @option params [String] :client_request_token
|
15675
|
+
# A unique, case-sensitive identifier that you provide to ensure the
|
15676
|
+
# idempotency of the operation. An idempotent operation completes no
|
15677
|
+
# more than one time.
|
15678
|
+
#
|
15679
|
+
# **A suitable default value is auto-generated.** You should normally
|
15680
|
+
# not need to pass this option.**
|
15681
|
+
#
|
15682
|
+
# @return [Types::SendPipelineExecutionStepSuccessResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
15683
|
+
#
|
15684
|
+
# * {Types::SendPipelineExecutionStepSuccessResponse#pipeline_execution_arn #pipeline_execution_arn} => String
|
15685
|
+
#
|
15686
|
+
# @example Request syntax with placeholder values
|
15687
|
+
#
|
15688
|
+
# resp = client.send_pipeline_execution_step_success({
|
15689
|
+
# callback_token: "CallbackToken", # required
|
15690
|
+
# output_parameters: [
|
15691
|
+
# {
|
15692
|
+
# name: "String256", # required
|
15693
|
+
# value: "String1024", # required
|
15694
|
+
# },
|
15695
|
+
# ],
|
15696
|
+
# client_request_token: "IdempotencyToken",
|
15697
|
+
# })
|
15698
|
+
#
|
15699
|
+
# @example Response structure
|
15700
|
+
#
|
15701
|
+
# resp.pipeline_execution_arn #=> String
|
15702
|
+
#
|
15703
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccess AWS API Documentation
|
15704
|
+
#
|
15705
|
+
# @overload send_pipeline_execution_step_success(params = {})
|
15706
|
+
# @param [Hash] params ({})
|
15707
|
+
def send_pipeline_execution_step_success(params = {}, options = {})
|
15708
|
+
req = build_request(:send_pipeline_execution_step_success, params)
|
15709
|
+
req.send_request(options)
|
15710
|
+
end
|
15711
|
+
|
15486
15712
|
# Starts a previously stopped monitoring schedule.
|
15487
15713
|
#
|
15488
15714
|
# <note markdown="1"> By default, when you successfully create a new schedule, the status of
|
@@ -16116,6 +16342,14 @@ module Aws::SageMaker
|
|
16116
16342
|
# @option params [required, Types::EdgeOutputConfig] :output_config
|
16117
16343
|
# Output configuration for storing sample data collected by the fleet.
|
16118
16344
|
#
|
16345
|
+
# @option params [Boolean] :enable_iot_role_alias
|
16346
|
+
# Whether to create an AWS IoT Role Alias during device fleet creation.
|
16347
|
+
# The name of the role alias generated will match this pattern:
|
16348
|
+
# "SageMakerEdge-\\\{DeviceFleetName\\}".
|
16349
|
+
#
|
16350
|
+
# For example, if your device fleet is called "demo-fleet", the name
|
16351
|
+
# of the role alias will be "SageMakerEdge-demo-fleet".
|
16352
|
+
#
|
16119
16353
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
16120
16354
|
#
|
16121
16355
|
# @example Request syntax with placeholder values
|
@@ -16127,7 +16361,10 @@ module Aws::SageMaker
|
|
16127
16361
|
# output_config: { # required
|
16128
16362
|
# s3_output_location: "S3Uri", # required
|
16129
16363
|
# kms_key_id: "KmsKeyId",
|
16364
|
+
# preset_deployment_type: "GreengrassV2Component", # accepts GreengrassV2Component
|
16365
|
+
# preset_deployment_config: "String",
|
16130
16366
|
# },
|
16367
|
+
# enable_iot_role_alias: false,
|
16131
16368
|
# })
|
16132
16369
|
#
|
16133
16370
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateDeviceFleet AWS API Documentation
|
@@ -17348,7 +17585,7 @@ module Aws::SageMaker
|
|
17348
17585
|
params: params,
|
17349
17586
|
config: config)
|
17350
17587
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
17351
|
-
context[:gem_version] = '1.
|
17588
|
+
context[:gem_version] = '1.89.0'
|
17352
17589
|
Seahorse::Client::Request.new(handlers, context)
|
17353
17590
|
end
|
17354
17591
|
|