aws-sdk-sagemaker 1.83.0 → 1.88.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +25 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +328 -95
- data/lib/aws-sdk-sagemaker/client_api.rb +116 -0
- data/lib/aws-sdk-sagemaker/types.rb +737 -219
- metadata +3 -4
@@ -87,6 +87,7 @@ module Aws::SageMaker
|
|
87
87
|
AttributeName = Shapes::StringShape.new(name: 'AttributeName')
|
88
88
|
AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
|
89
89
|
AuthMode = Shapes::StringShape.new(name: 'AuthMode')
|
90
|
+
AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
|
90
91
|
AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
|
91
92
|
AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
|
92
93
|
AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
|
@@ -111,6 +112,8 @@ module Aws::SageMaker
|
|
111
112
|
AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
|
112
113
|
AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
|
113
114
|
AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
|
115
|
+
AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
|
116
|
+
AutoMLPartialFailureReasons = Shapes::ListShape.new(name: 'AutoMLPartialFailureReasons')
|
114
117
|
AutoMLS3DataSource = Shapes::StructureShape.new(name: 'AutoMLS3DataSource')
|
115
118
|
AutoMLS3DataType = Shapes::StringShape.new(name: 'AutoMLS3DataType')
|
116
119
|
AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
|
@@ -127,8 +130,12 @@ module Aws::SageMaker
|
|
127
130
|
BooleanOperator = Shapes::StringShape.new(name: 'BooleanOperator')
|
128
131
|
Branch = Shapes::StringShape.new(name: 'Branch')
|
129
132
|
CacheHitResult = Shapes::StructureShape.new(name: 'CacheHitResult')
|
133
|
+
CallbackStepMetadata = Shapes::StructureShape.new(name: 'CallbackStepMetadata')
|
134
|
+
CallbackToken = Shapes::StringShape.new(name: 'CallbackToken')
|
135
|
+
CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
|
130
136
|
CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
|
131
137
|
CandidateName = Shapes::StringShape.new(name: 'CandidateName')
|
138
|
+
CandidateProperties = Shapes::StructureShape.new(name: 'CandidateProperties')
|
132
139
|
CandidateSortBy = Shapes::StringShape.new(name: 'CandidateSortBy')
|
133
140
|
CandidateStatus = Shapes::StringShape.new(name: 'CandidateStatus')
|
134
141
|
CandidateStepArn = Shapes::StringShape.new(name: 'CandidateStepArn')
|
@@ -554,6 +561,7 @@ module Aws::SageMaker
|
|
554
561
|
ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
|
555
562
|
ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
|
556
563
|
Explainability = Shapes::StructureShape.new(name: 'Explainability')
|
564
|
+
ExplainabilityLocation = Shapes::StringShape.new(name: 'ExplainabilityLocation')
|
557
565
|
FailureReason = Shapes::StringShape.new(name: 'FailureReason')
|
558
566
|
FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
|
559
567
|
FeatureDefinitions = Shapes::ListShape.new(name: 'FeatureDefinitions')
|
@@ -857,6 +865,7 @@ module Aws::SageMaker
|
|
857
865
|
MaxRuntimePerTrainingJobInSeconds = Shapes::IntegerShape.new(name: 'MaxRuntimePerTrainingJobInSeconds')
|
858
866
|
MaxWaitTimeInSeconds = Shapes::IntegerShape.new(name: 'MaxWaitTimeInSeconds')
|
859
867
|
MaximumExecutionTimeoutInSeconds = Shapes::IntegerShape.new(name: 'MaximumExecutionTimeoutInSeconds')
|
868
|
+
MaximumRetryAttempts = Shapes::IntegerShape.new(name: 'MaximumRetryAttempts')
|
860
869
|
MediaType = Shapes::StringShape.new(name: 'MediaType')
|
861
870
|
MemberDefinition = Shapes::StructureShape.new(name: 'MemberDefinition')
|
862
871
|
MemberDefinitions = Shapes::ListShape.new(name: 'MemberDefinitions')
|
@@ -878,6 +887,8 @@ module Aws::SageMaker
|
|
878
887
|
ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
|
879
888
|
ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
|
880
889
|
ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
|
890
|
+
ModelDeployConfig = Shapes::StructureShape.new(name: 'ModelDeployConfig')
|
891
|
+
ModelDeployResult = Shapes::StructureShape.new(name: 'ModelDeployResult')
|
881
892
|
ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
|
882
893
|
ModelExplainabilityAppSpecification = Shapes::StructureShape.new(name: 'ModelExplainabilityAppSpecification')
|
883
894
|
ModelExplainabilityBaselineConfig = Shapes::StructureShape.new(name: 'ModelExplainabilityBaselineConfig')
|
@@ -1007,6 +1018,8 @@ module Aws::SageMaker
|
|
1007
1018
|
OrderKey = Shapes::StringShape.new(name: 'OrderKey')
|
1008
1019
|
OutputConfig = Shapes::StructureShape.new(name: 'OutputConfig')
|
1009
1020
|
OutputDataConfig = Shapes::StructureShape.new(name: 'OutputDataConfig')
|
1021
|
+
OutputParameter = Shapes::StructureShape.new(name: 'OutputParameter')
|
1022
|
+
OutputParameterList = Shapes::ListShape.new(name: 'OutputParameterList')
|
1010
1023
|
PaginationToken = Shapes::StringShape.new(name: 'PaginationToken')
|
1011
1024
|
Parameter = Shapes::StructureShape.new(name: 'Parameter')
|
1012
1025
|
ParameterKey = Shapes::StringShape.new(name: 'ParameterKey')
|
@@ -1028,6 +1041,7 @@ module Aws::SageMaker
|
|
1028
1041
|
PipelineExecution = Shapes::StructureShape.new(name: 'PipelineExecution')
|
1029
1042
|
PipelineExecutionArn = Shapes::StringShape.new(name: 'PipelineExecutionArn')
|
1030
1043
|
PipelineExecutionDescription = Shapes::StringShape.new(name: 'PipelineExecutionDescription')
|
1044
|
+
PipelineExecutionFailureReason = Shapes::StringShape.new(name: 'PipelineExecutionFailureReason')
|
1031
1045
|
PipelineExecutionName = Shapes::StringShape.new(name: 'PipelineExecutionName')
|
1032
1046
|
PipelineExecutionStatus = Shapes::StringShape.new(name: 'PipelineExecutionStatus')
|
1033
1047
|
PipelineExecutionStep = Shapes::StructureShape.new(name: 'PipelineExecutionStep')
|
@@ -1035,6 +1049,7 @@ module Aws::SageMaker
|
|
1035
1049
|
PipelineExecutionStepMetadata = Shapes::StructureShape.new(name: 'PipelineExecutionStepMetadata')
|
1036
1050
|
PipelineExecutionSummary = Shapes::StructureShape.new(name: 'PipelineExecutionSummary')
|
1037
1051
|
PipelineExecutionSummaryList = Shapes::ListShape.new(name: 'PipelineExecutionSummaryList')
|
1052
|
+
PipelineExperimentConfig = Shapes::StructureShape.new(name: 'PipelineExperimentConfig')
|
1038
1053
|
PipelineName = Shapes::StringShape.new(name: 'PipelineName')
|
1039
1054
|
PipelineParameterName = Shapes::StringShape.new(name: 'PipelineParameterName')
|
1040
1055
|
PipelineStatus = Shapes::StringShape.new(name: 'PipelineStatus')
|
@@ -1147,6 +1162,7 @@ module Aws::SageMaker
|
|
1147
1162
|
ResponseMIMETypes = Shapes::ListShape.new(name: 'ResponseMIMETypes')
|
1148
1163
|
RetentionPolicy = Shapes::StructureShape.new(name: 'RetentionPolicy')
|
1149
1164
|
RetentionType = Shapes::StringShape.new(name: 'RetentionType')
|
1165
|
+
RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
|
1150
1166
|
RoleArn = Shapes::StringShape.new(name: 'RoleArn')
|
1151
1167
|
RootAccess = Shapes::StringShape.new(name: 'RootAccess')
|
1152
1168
|
RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
|
@@ -1176,6 +1192,10 @@ module Aws::SageMaker
|
|
1176
1192
|
SecurityGroupId = Shapes::StringShape.new(name: 'SecurityGroupId')
|
1177
1193
|
SecurityGroupIds = Shapes::ListShape.new(name: 'SecurityGroupIds')
|
1178
1194
|
Seed = Shapes::IntegerShape.new(name: 'Seed')
|
1195
|
+
SendPipelineExecutionStepFailureRequest = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepFailureRequest')
|
1196
|
+
SendPipelineExecutionStepFailureResponse = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepFailureResponse')
|
1197
|
+
SendPipelineExecutionStepSuccessRequest = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepSuccessRequest')
|
1198
|
+
SendPipelineExecutionStepSuccessResponse = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepSuccessResponse')
|
1179
1199
|
ServiceCatalogEntityId = Shapes::StringShape.new(name: 'ServiceCatalogEntityId')
|
1180
1200
|
ServiceCatalogProvisionedProductDetails = Shapes::StructureShape.new(name: 'ServiceCatalogProvisionedProductDetails')
|
1181
1201
|
ServiceCatalogProvisioningDetails = Shapes::StructureShape.new(name: 'ServiceCatalogProvisioningDetails')
|
@@ -1268,6 +1288,9 @@ module Aws::SageMaker
|
|
1268
1288
|
Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
|
1269
1289
|
TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
|
1270
1290
|
TrafficRoutingConfigType = Shapes::StringShape.new(name: 'TrafficRoutingConfigType')
|
1291
|
+
TrainingEnvironmentKey = Shapes::StringShape.new(name: 'TrainingEnvironmentKey')
|
1292
|
+
TrainingEnvironmentMap = Shapes::MapShape.new(name: 'TrainingEnvironmentMap')
|
1293
|
+
TrainingEnvironmentValue = Shapes::StringShape.new(name: 'TrainingEnvironmentValue')
|
1271
1294
|
TrainingInputMode = Shapes::StringShape.new(name: 'TrainingInputMode')
|
1272
1295
|
TrainingInstanceCount = Shapes::IntegerShape.new(name: 'TrainingInstanceCount')
|
1273
1296
|
TrainingInstanceType = Shapes::StringShape.new(name: 'TrainingInstanceType')
|
@@ -1585,6 +1608,7 @@ module Aws::SageMaker
|
|
1585
1608
|
AutoMLCandidate.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
|
1586
1609
|
AutoMLCandidate.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
|
1587
1610
|
AutoMLCandidate.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
|
1611
|
+
AutoMLCandidate.add_member(:candidate_properties, Shapes::ShapeRef.new(shape: CandidateProperties, location_name: "CandidateProperties"))
|
1588
1612
|
AutoMLCandidate.struct_class = Types::AutoMLCandidate
|
1589
1613
|
|
1590
1614
|
AutoMLCandidateStep.add_member(:candidate_step_type, Shapes::ShapeRef.new(shape: CandidateStepType, required: true, location_name: "CandidateStepType"))
|
@@ -1637,12 +1661,18 @@ module Aws::SageMaker
|
|
1637
1661
|
AutoMLJobSummary.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
|
1638
1662
|
AutoMLJobSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
|
1639
1663
|
AutoMLJobSummary.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
|
1664
|
+
AutoMLJobSummary.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
|
1640
1665
|
AutoMLJobSummary.struct_class = Types::AutoMLJobSummary
|
1641
1666
|
|
1642
1667
|
AutoMLOutputDataConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
|
1643
1668
|
AutoMLOutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
|
1644
1669
|
AutoMLOutputDataConfig.struct_class = Types::AutoMLOutputDataConfig
|
1645
1670
|
|
1671
|
+
AutoMLPartialFailureReason.add_member(:partial_failure_message, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "PartialFailureMessage"))
|
1672
|
+
AutoMLPartialFailureReason.struct_class = Types::AutoMLPartialFailureReason
|
1673
|
+
|
1674
|
+
AutoMLPartialFailureReasons.member = Shapes::ShapeRef.new(shape: AutoMLPartialFailureReason)
|
1675
|
+
|
1646
1676
|
AutoMLS3DataSource.add_member(:s3_data_type, Shapes::ShapeRef.new(shape: AutoMLS3DataType, required: true, location_name: "S3DataType"))
|
1647
1677
|
AutoMLS3DataSource.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
|
1648
1678
|
AutoMLS3DataSource.struct_class = Types::AutoMLS3DataSource
|
@@ -1666,6 +1696,17 @@ module Aws::SageMaker
|
|
1666
1696
|
CacheHitResult.add_member(:source_pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "SourcePipelineExecutionArn"))
|
1667
1697
|
CacheHitResult.struct_class = Types::CacheHitResult
|
1668
1698
|
|
1699
|
+
CallbackStepMetadata.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, location_name: "CallbackToken"))
|
1700
|
+
CallbackStepMetadata.add_member(:sqs_queue_url, Shapes::ShapeRef.new(shape: String256, location_name: "SqsQueueUrl"))
|
1701
|
+
CallbackStepMetadata.add_member(:output_parameters, Shapes::ShapeRef.new(shape: OutputParameterList, location_name: "OutputParameters"))
|
1702
|
+
CallbackStepMetadata.struct_class = Types::CallbackStepMetadata
|
1703
|
+
|
1704
|
+
CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
|
1705
|
+
CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
|
1706
|
+
|
1707
|
+
CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
|
1708
|
+
CandidateProperties.struct_class = Types::CandidateProperties
|
1709
|
+
|
1669
1710
|
CandidateSteps.member = Shapes::ShapeRef.new(shape: AutoMLCandidateStep)
|
1670
1711
|
|
1671
1712
|
CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
|
@@ -1876,6 +1917,7 @@ module Aws::SageMaker
|
|
1876
1917
|
CreateAutoMLJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
|
1877
1918
|
CreateAutoMLJobRequest.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
|
1878
1919
|
CreateAutoMLJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
1920
|
+
CreateAutoMLJobRequest.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
1879
1921
|
CreateAutoMLJobRequest.struct_class = Types::CreateAutoMLJobRequest
|
1880
1922
|
|
1881
1923
|
CreateAutoMLJobResponse.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
|
@@ -2255,6 +2297,8 @@ module Aws::SageMaker
|
|
2255
2297
|
CreateTrainingJobRequest.add_member(:experiment_config, Shapes::ShapeRef.new(shape: ExperimentConfig, location_name: "ExperimentConfig"))
|
2256
2298
|
CreateTrainingJobRequest.add_member(:profiler_config, Shapes::ShapeRef.new(shape: ProfilerConfig, location_name: "ProfilerConfig"))
|
2257
2299
|
CreateTrainingJobRequest.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
|
2300
|
+
CreateTrainingJobRequest.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
|
2301
|
+
CreateTrainingJobRequest.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
|
2258
2302
|
CreateTrainingJobRequest.struct_class = Types::CreateTrainingJobRequest
|
2259
2303
|
|
2260
2304
|
CreateTrainingJobResponse.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
|
@@ -2690,12 +2734,15 @@ module Aws::SageMaker
|
|
2690
2734
|
DescribeAutoMLJobResponse.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
|
2691
2735
|
DescribeAutoMLJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
|
2692
2736
|
DescribeAutoMLJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
|
2737
|
+
DescribeAutoMLJobResponse.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
|
2693
2738
|
DescribeAutoMLJobResponse.add_member(:best_candidate, Shapes::ShapeRef.new(shape: AutoMLCandidate, location_name: "BestCandidate"))
|
2694
2739
|
DescribeAutoMLJobResponse.add_member(:auto_ml_job_status, Shapes::ShapeRef.new(shape: AutoMLJobStatus, required: true, location_name: "AutoMLJobStatus"))
|
2695
2740
|
DescribeAutoMLJobResponse.add_member(:auto_ml_job_secondary_status, Shapes::ShapeRef.new(shape: AutoMLJobSecondaryStatus, required: true, location_name: "AutoMLJobSecondaryStatus"))
|
2696
2741
|
DescribeAutoMLJobResponse.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
|
2697
2742
|
DescribeAutoMLJobResponse.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
|
2698
2743
|
DescribeAutoMLJobResponse.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: ResolvedAttributes, location_name: "ResolvedAttributes"))
|
2744
|
+
DescribeAutoMLJobResponse.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
2745
|
+
DescribeAutoMLJobResponse.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
|
2699
2746
|
DescribeAutoMLJobResponse.struct_class = Types::DescribeAutoMLJobResponse
|
2700
2747
|
|
2701
2748
|
DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
|
@@ -3149,6 +3196,8 @@ module Aws::SageMaker
|
|
3149
3196
|
DescribePipelineExecutionResponse.add_member(:pipeline_execution_display_name, Shapes::ShapeRef.new(shape: PipelineExecutionName, location_name: "PipelineExecutionDisplayName"))
|
3150
3197
|
DescribePipelineExecutionResponse.add_member(:pipeline_execution_status, Shapes::ShapeRef.new(shape: PipelineExecutionStatus, location_name: "PipelineExecutionStatus"))
|
3151
3198
|
DescribePipelineExecutionResponse.add_member(:pipeline_execution_description, Shapes::ShapeRef.new(shape: PipelineExecutionDescription, location_name: "PipelineExecutionDescription"))
|
3199
|
+
DescribePipelineExecutionResponse.add_member(:pipeline_experiment_config, Shapes::ShapeRef.new(shape: PipelineExperimentConfig, location_name: "PipelineExperimentConfig"))
|
3200
|
+
DescribePipelineExecutionResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: PipelineExecutionFailureReason, location_name: "FailureReason"))
|
3152
3201
|
DescribePipelineExecutionResponse.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
|
3153
3202
|
DescribePipelineExecutionResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
|
3154
3203
|
DescribePipelineExecutionResponse.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
|
@@ -3259,6 +3308,8 @@ module Aws::SageMaker
|
|
3259
3308
|
DescribeTrainingJobResponse.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
|
3260
3309
|
DescribeTrainingJobResponse.add_member(:profiler_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: ProfilerRuleEvaluationStatuses, location_name: "ProfilerRuleEvaluationStatuses"))
|
3261
3310
|
DescribeTrainingJobResponse.add_member(:profiling_status, Shapes::ShapeRef.new(shape: ProfilingStatus, location_name: "ProfilingStatus"))
|
3311
|
+
DescribeTrainingJobResponse.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
|
3312
|
+
DescribeTrainingJobResponse.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
|
3262
3313
|
DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
|
3263
3314
|
|
3264
3315
|
DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
|
@@ -3729,6 +3780,7 @@ module Aws::SageMaker
|
|
3729
3780
|
HyperParameterTrainingJobDefinition.add_member(:enable_inter_container_traffic_encryption, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableInterContainerTrafficEncryption"))
|
3730
3781
|
HyperParameterTrainingJobDefinition.add_member(:enable_managed_spot_training, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableManagedSpotTraining"))
|
3731
3782
|
HyperParameterTrainingJobDefinition.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
|
3783
|
+
HyperParameterTrainingJobDefinition.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
|
3732
3784
|
HyperParameterTrainingJobDefinition.struct_class = Types::HyperParameterTrainingJobDefinition
|
3733
3785
|
|
3734
3786
|
HyperParameterTrainingJobDefinitions.member = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition)
|
@@ -4734,6 +4786,13 @@ module Aws::SageMaker
|
|
4734
4786
|
ModelDataQuality.add_member(:constraints, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Constraints"))
|
4735
4787
|
ModelDataQuality.struct_class = Types::ModelDataQuality
|
4736
4788
|
|
4789
|
+
ModelDeployConfig.add_member(:auto_generate_endpoint_name, Shapes::ShapeRef.new(shape: AutoGenerateEndpointName, location_name: "AutoGenerateEndpointName"))
|
4790
|
+
ModelDeployConfig.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
|
4791
|
+
ModelDeployConfig.struct_class = Types::ModelDeployConfig
|
4792
|
+
|
4793
|
+
ModelDeployResult.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
|
4794
|
+
ModelDeployResult.struct_class = Types::ModelDeployResult
|
4795
|
+
|
4737
4796
|
ModelDigests.add_member(:artifact_digest, Shapes::ShapeRef.new(shape: ArtifactDigest, location_name: "ArtifactDigest"))
|
4738
4797
|
ModelDigests.struct_class = Types::ModelDigests
|
4739
4798
|
|
@@ -5096,6 +5155,12 @@ module Aws::SageMaker
|
|
5096
5155
|
OutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
|
5097
5156
|
OutputDataConfig.struct_class = Types::OutputDataConfig
|
5098
5157
|
|
5158
|
+
OutputParameter.add_member(:name, Shapes::ShapeRef.new(shape: String256, required: true, location_name: "Name"))
|
5159
|
+
OutputParameter.add_member(:value, Shapes::ShapeRef.new(shape: String1024, required: true, location_name: "Value"))
|
5160
|
+
OutputParameter.struct_class = Types::OutputParameter
|
5161
|
+
|
5162
|
+
OutputParameterList.member = Shapes::ShapeRef.new(shape: OutputParameter)
|
5163
|
+
|
5099
5164
|
Parameter.add_member(:name, Shapes::ShapeRef.new(shape: PipelineParameterName, required: true, location_name: "Name"))
|
5100
5165
|
Parameter.add_member(:value, Shapes::ShapeRef.new(shape: String1024, required: true, location_name: "Value"))
|
5101
5166
|
Parameter.struct_class = Types::Parameter
|
@@ -5144,6 +5209,8 @@ module Aws::SageMaker
|
|
5144
5209
|
PipelineExecution.add_member(:pipeline_execution_display_name, Shapes::ShapeRef.new(shape: PipelineExecutionName, location_name: "PipelineExecutionDisplayName"))
|
5145
5210
|
PipelineExecution.add_member(:pipeline_execution_status, Shapes::ShapeRef.new(shape: PipelineExecutionStatus, location_name: "PipelineExecutionStatus"))
|
5146
5211
|
PipelineExecution.add_member(:pipeline_execution_description, Shapes::ShapeRef.new(shape: PipelineExecutionDescription, location_name: "PipelineExecutionDescription"))
|
5212
|
+
PipelineExecution.add_member(:pipeline_experiment_config, Shapes::ShapeRef.new(shape: PipelineExperimentConfig, location_name: "PipelineExperimentConfig"))
|
5213
|
+
PipelineExecution.add_member(:failure_reason, Shapes::ShapeRef.new(shape: PipelineExecutionFailureReason, location_name: "FailureReason"))
|
5147
5214
|
PipelineExecution.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
|
5148
5215
|
PipelineExecution.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
|
5149
5216
|
PipelineExecution.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
|
@@ -5168,6 +5235,7 @@ module Aws::SageMaker
|
|
5168
5235
|
PipelineExecutionStepMetadata.add_member(:model, Shapes::ShapeRef.new(shape: ModelStepMetadata, location_name: "Model"))
|
5169
5236
|
PipelineExecutionStepMetadata.add_member(:register_model, Shapes::ShapeRef.new(shape: RegisterModelStepMetadata, location_name: "RegisterModel"))
|
5170
5237
|
PipelineExecutionStepMetadata.add_member(:condition, Shapes::ShapeRef.new(shape: ConditionStepMetadata, location_name: "Condition"))
|
5238
|
+
PipelineExecutionStepMetadata.add_member(:callback, Shapes::ShapeRef.new(shape: CallbackStepMetadata, location_name: "Callback"))
|
5171
5239
|
PipelineExecutionStepMetadata.struct_class = Types::PipelineExecutionStepMetadata
|
5172
5240
|
|
5173
5241
|
PipelineExecutionSummary.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
|
@@ -5179,6 +5247,10 @@ module Aws::SageMaker
|
|
5179
5247
|
|
5180
5248
|
PipelineExecutionSummaryList.member = Shapes::ShapeRef.new(shape: PipelineExecutionSummary)
|
5181
5249
|
|
5250
|
+
PipelineExperimentConfig.add_member(:experiment_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "ExperimentName"))
|
5251
|
+
PipelineExperimentConfig.add_member(:trial_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "TrialName"))
|
5252
|
+
PipelineExperimentConfig.struct_class = Types::PipelineExperimentConfig
|
5253
|
+
|
5182
5254
|
PipelineSummary.add_member(:pipeline_arn, Shapes::ShapeRef.new(shape: PipelineArn, location_name: "PipelineArn"))
|
5183
5255
|
PipelineSummary.add_member(:pipeline_name, Shapes::ShapeRef.new(shape: PipelineName, location_name: "PipelineName"))
|
5184
5256
|
PipelineSummary.add_member(:pipeline_display_name, Shapes::ShapeRef.new(shape: PipelineName, location_name: "PipelineDisplayName"))
|
@@ -5453,6 +5525,9 @@ module Aws::SageMaker
|
|
5453
5525
|
RetentionPolicy.add_member(:home_efs_file_system, Shapes::ShapeRef.new(shape: RetentionType, location_name: "HomeEfsFileSystem"))
|
5454
5526
|
RetentionPolicy.struct_class = Types::RetentionPolicy
|
5455
5527
|
|
5528
|
+
RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
|
5529
|
+
RetryStrategy.struct_class = Types::RetryStrategy
|
5530
|
+
|
5456
5531
|
RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
|
5457
5532
|
RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
|
5458
5533
|
|
@@ -5514,6 +5589,22 @@ module Aws::SageMaker
|
|
5514
5589
|
|
5515
5590
|
SecurityGroupIds.member = Shapes::ShapeRef.new(shape: SecurityGroupId)
|
5516
5591
|
|
5592
|
+
SendPipelineExecutionStepFailureRequest.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, required: true, location_name: "CallbackToken"))
|
5593
|
+
SendPipelineExecutionStepFailureRequest.add_member(:failure_reason, Shapes::ShapeRef.new(shape: String256, location_name: "FailureReason"))
|
5594
|
+
SendPipelineExecutionStepFailureRequest.add_member(:client_request_token, Shapes::ShapeRef.new(shape: IdempotencyToken, location_name: "ClientRequestToken", metadata: {"idempotencyToken"=>true}))
|
5595
|
+
SendPipelineExecutionStepFailureRequest.struct_class = Types::SendPipelineExecutionStepFailureRequest
|
5596
|
+
|
5597
|
+
SendPipelineExecutionStepFailureResponse.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
|
5598
|
+
SendPipelineExecutionStepFailureResponse.struct_class = Types::SendPipelineExecutionStepFailureResponse
|
5599
|
+
|
5600
|
+
SendPipelineExecutionStepSuccessRequest.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, required: true, location_name: "CallbackToken"))
|
5601
|
+
SendPipelineExecutionStepSuccessRequest.add_member(:output_parameters, Shapes::ShapeRef.new(shape: OutputParameterList, location_name: "OutputParameters"))
|
5602
|
+
SendPipelineExecutionStepSuccessRequest.add_member(:client_request_token, Shapes::ShapeRef.new(shape: IdempotencyToken, location_name: "ClientRequestToken", metadata: {"idempotencyToken"=>true}))
|
5603
|
+
SendPipelineExecutionStepSuccessRequest.struct_class = Types::SendPipelineExecutionStepSuccessRequest
|
5604
|
+
|
5605
|
+
SendPipelineExecutionStepSuccessResponse.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
|
5606
|
+
SendPipelineExecutionStepSuccessResponse.struct_class = Types::SendPipelineExecutionStepSuccessResponse
|
5607
|
+
|
5517
5608
|
ServiceCatalogProvisionedProductDetails.add_member(:provisioned_product_id, Shapes::ShapeRef.new(shape: ServiceCatalogEntityId, location_name: "ProvisionedProductId"))
|
5518
5609
|
ServiceCatalogProvisionedProductDetails.add_member(:provisioned_product_status_message, Shapes::ShapeRef.new(shape: ProvisionedProductStatusMessage, location_name: "ProvisionedProductStatusMessage"))
|
5519
5610
|
ServiceCatalogProvisionedProductDetails.struct_class = Types::ServiceCatalogProvisionedProductDetails
|
@@ -5642,6 +5733,9 @@ module Aws::SageMaker
|
|
5642
5733
|
TrafficRoutingConfig.add_member(:canary_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "CanarySize"))
|
5643
5734
|
TrafficRoutingConfig.struct_class = Types::TrafficRoutingConfig
|
5644
5735
|
|
5736
|
+
TrainingEnvironmentMap.key = Shapes::ShapeRef.new(shape: TrainingEnvironmentKey)
|
5737
|
+
TrainingEnvironmentMap.value = Shapes::ShapeRef.new(shape: TrainingEnvironmentValue)
|
5738
|
+
|
5645
5739
|
TrainingInstanceTypes.member = Shapes::ShapeRef.new(shape: TrainingInstanceType)
|
5646
5740
|
|
5647
5741
|
TrainingJob.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, location_name: "TrainingJobName"))
|
@@ -5678,6 +5772,8 @@ module Aws::SageMaker
|
|
5678
5772
|
TrainingJob.add_member(:debug_rule_configurations, Shapes::ShapeRef.new(shape: DebugRuleConfigurations, location_name: "DebugRuleConfigurations"))
|
5679
5773
|
TrainingJob.add_member(:tensor_board_output_config, Shapes::ShapeRef.new(shape: TensorBoardOutputConfig, location_name: "TensorBoardOutputConfig"))
|
5680
5774
|
TrainingJob.add_member(:debug_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: DebugRuleEvaluationStatuses, location_name: "DebugRuleEvaluationStatuses"))
|
5775
|
+
TrainingJob.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
|
5776
|
+
TrainingJob.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
|
5681
5777
|
TrainingJob.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
5682
5778
|
TrainingJob.struct_class = Types::TrainingJob
|
5683
5779
|
|
@@ -8250,6 +8346,26 @@ module Aws::SageMaker
|
|
8250
8346
|
)
|
8251
8347
|
end)
|
8252
8348
|
|
8349
|
+
api.add_operation(:send_pipeline_execution_step_failure, Seahorse::Model::Operation.new.tap do |o|
|
8350
|
+
o.name = "SendPipelineExecutionStepFailure"
|
8351
|
+
o.http_method = "POST"
|
8352
|
+
o.http_request_uri = "/"
|
8353
|
+
o.input = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepFailureRequest)
|
8354
|
+
o.output = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepFailureResponse)
|
8355
|
+
o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
|
8356
|
+
o.errors << Shapes::ShapeRef.new(shape: ResourceLimitExceeded)
|
8357
|
+
end)
|
8358
|
+
|
8359
|
+
api.add_operation(:send_pipeline_execution_step_success, Seahorse::Model::Operation.new.tap do |o|
|
8360
|
+
o.name = "SendPipelineExecutionStepSuccess"
|
8361
|
+
o.http_method = "POST"
|
8362
|
+
o.http_request_uri = "/"
|
8363
|
+
o.input = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepSuccessRequest)
|
8364
|
+
o.output = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepSuccessResponse)
|
8365
|
+
o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
|
8366
|
+
o.errors << Shapes::ShapeRef.new(shape: ResourceLimitExceeded)
|
8367
|
+
end)
|
8368
|
+
|
8253
8369
|
api.add_operation(:start_monitoring_schedule, Seahorse::Model::Operation.new.tap do |o|
|
8254
8370
|
o.name = "StartMonitoringSchedule"
|
8255
8371
|
o.http_method = "POST"
|
@@ -1706,10 +1706,10 @@ module Aws::SageMaker
|
|
1706
1706
|
end
|
1707
1707
|
|
1708
1708
|
# An Autopilot job returns recommendations, or candidates. Each
|
1709
|
-
# candidate has futher details about the steps
|
1709
|
+
# candidate has futher details about the steps involved and the status.
|
1710
1710
|
#
|
1711
1711
|
# @!attribute [rw] candidate_name
|
1712
|
-
# The candidate
|
1712
|
+
# The name of the candidate.
|
1713
1713
|
# @return [String]
|
1714
1714
|
#
|
1715
1715
|
# @!attribute [rw] final_auto_ml_job_objective_metric
|
@@ -1717,11 +1717,11 @@ module Aws::SageMaker
|
|
1717
1717
|
# @return [Types::FinalAutoMLJobObjectiveMetric]
|
1718
1718
|
#
|
1719
1719
|
# @!attribute [rw] objective_status
|
1720
|
-
# The objective status.
|
1720
|
+
# The objective's status.
|
1721
1721
|
# @return [String]
|
1722
1722
|
#
|
1723
1723
|
# @!attribute [rw] candidate_steps
|
1724
|
-
#
|
1724
|
+
# Information about the candidate's steps.
|
1725
1725
|
# @return [Array<Types::AutoMLCandidateStep>]
|
1726
1726
|
#
|
1727
1727
|
# @!attribute [rw] candidate_status
|
@@ -1729,7 +1729,7 @@ module Aws::SageMaker
|
|
1729
1729
|
# @return [String]
|
1730
1730
|
#
|
1731
1731
|
# @!attribute [rw] inference_containers
|
1732
|
-
#
|
1732
|
+
# Information about the inference container definitions.
|
1733
1733
|
# @return [Array<Types::AutoMLContainerDefinition>]
|
1734
1734
|
#
|
1735
1735
|
# @!attribute [rw] creation_time
|
@@ -1748,6 +1748,10 @@ module Aws::SageMaker
|
|
1748
1748
|
# The failure reason.
|
1749
1749
|
# @return [String]
|
1750
1750
|
#
|
1751
|
+
# @!attribute [rw] candidate_properties
|
1752
|
+
# The AutoML candidate's properties.
|
1753
|
+
# @return [Types::CandidateProperties]
|
1754
|
+
#
|
1751
1755
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
|
1752
1756
|
#
|
1753
1757
|
class AutoMLCandidate < Struct.new(
|
@@ -1760,25 +1764,26 @@ module Aws::SageMaker
|
|
1760
1764
|
:creation_time,
|
1761
1765
|
:end_time,
|
1762
1766
|
:last_modified_time,
|
1763
|
-
:failure_reason
|
1767
|
+
:failure_reason,
|
1768
|
+
:candidate_properties)
|
1764
1769
|
SENSITIVE = []
|
1765
1770
|
include Aws::Structure
|
1766
1771
|
end
|
1767
1772
|
|
1768
|
-
# Information about the steps for a
|
1773
|
+
# Information about the steps for a candidate and what step it is
|
1769
1774
|
# working on.
|
1770
1775
|
#
|
1771
1776
|
# @!attribute [rw] candidate_step_type
|
1772
|
-
# Whether the
|
1777
|
+
# Whether the candidate is at the transform, training, or processing
|
1773
1778
|
# step.
|
1774
1779
|
# @return [String]
|
1775
1780
|
#
|
1776
1781
|
# @!attribute [rw] candidate_step_arn
|
1777
|
-
# The ARN for the
|
1782
|
+
# The ARN for the candidate's step.
|
1778
1783
|
# @return [String]
|
1779
1784
|
#
|
1780
1785
|
# @!attribute [rw] candidate_step_name
|
1781
|
-
# The name for the
|
1786
|
+
# The name for the candidate's step.
|
1782
1787
|
# @return [String]
|
1783
1788
|
#
|
1784
1789
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateStep AWS API Documentation
|
@@ -1791,8 +1796,8 @@ module Aws::SageMaker
|
|
1791
1796
|
include Aws::Structure
|
1792
1797
|
end
|
1793
1798
|
|
1794
|
-
#
|
1795
|
-
#
|
1799
|
+
# A channel is a named input source that training algorithms can
|
1800
|
+
# consume. For more information, see .
|
1796
1801
|
#
|
1797
1802
|
# @note When making an API call, you may pass AutoMLChannel
|
1798
1803
|
# data as a hash:
|
@@ -1809,16 +1814,16 @@ module Aws::SageMaker
|
|
1809
1814
|
# }
|
1810
1815
|
#
|
1811
1816
|
# @!attribute [rw] data_source
|
1812
|
-
# The data source.
|
1817
|
+
# The data source for an AutoML channel.
|
1813
1818
|
# @return [Types::AutoMLDataSource]
|
1814
1819
|
#
|
1815
1820
|
# @!attribute [rw] compression_type
|
1816
|
-
# You can use Gzip or None
|
1821
|
+
# You can use `Gzip` or `None`. The default value is `None`.
|
1817
1822
|
# @return [String]
|
1818
1823
|
#
|
1819
1824
|
# @!attribute [rw] target_attribute_name
|
1820
|
-
# The name of the target variable in supervised learning,
|
1821
|
-
# 'y'.
|
1825
|
+
# The name of the target variable in supervised learning, usually
|
1826
|
+
# represented by 'y'.
|
1822
1827
|
# @return [String]
|
1823
1828
|
#
|
1824
1829
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
|
@@ -1832,22 +1837,19 @@ module Aws::SageMaker
|
|
1832
1837
|
end
|
1833
1838
|
|
1834
1839
|
# A list of container definitions that describe the different containers
|
1835
|
-
# that make up
|
1836
|
-
# more details.
|
1840
|
+
# that make up an AutoML candidate. For more information, see .
|
1837
1841
|
#
|
1838
1842
|
# @!attribute [rw] image
|
1839
|
-
# The ECR path of the container.
|
1840
|
-
# details.
|
1843
|
+
# The ECR path of the container. For more information, see .
|
1841
1844
|
# @return [String]
|
1842
1845
|
#
|
1843
1846
|
# @!attribute [rw] model_data_url
|
1844
|
-
# The location of the model artifacts.
|
1845
|
-
# for more details.
|
1847
|
+
# The location of the model artifacts. For more information, see .
|
1846
1848
|
# @return [String]
|
1847
1849
|
#
|
1848
1850
|
# @!attribute [rw] environment
|
1849
|
-
#
|
1850
|
-
#
|
1851
|
+
# The environment variables to set in the container. For more
|
1852
|
+
# information, see .
|
1851
1853
|
# @return [Hash<String,String>]
|
1852
1854
|
#
|
1853
1855
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
|
@@ -1888,14 +1890,14 @@ module Aws::SageMaker
|
|
1888
1890
|
include Aws::Structure
|
1889
1891
|
end
|
1890
1892
|
|
1891
|
-
#
|
1893
|
+
# The artifacts that are generated during an AutoML job.
|
1892
1894
|
#
|
1893
1895
|
# @!attribute [rw] candidate_definition_notebook_location
|
1894
|
-
# The URL
|
1896
|
+
# The URL of the notebook location.
|
1895
1897
|
# @return [String]
|
1896
1898
|
#
|
1897
1899
|
# @!attribute [rw] data_exploration_notebook_location
|
1898
|
-
# The URL
|
1900
|
+
# The URL of the notebook location.
|
1899
1901
|
# @return [String]
|
1900
1902
|
#
|
1901
1903
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobArtifacts AWS API Documentation
|
@@ -1924,13 +1926,12 @@ module Aws::SageMaker
|
|
1924
1926
|
# @return [Integer]
|
1925
1927
|
#
|
1926
1928
|
# @!attribute [rw] max_runtime_per_training_job_in_seconds
|
1927
|
-
# The maximum time, in seconds, a job is allowed to run
|
1929
|
+
# The maximum time, in seconds, a training job is allowed to run as
|
1930
|
+
# part of an AutoML job.
|
1928
1931
|
# @return [Integer]
|
1929
1932
|
#
|
1930
1933
|
# @!attribute [rw] max_auto_ml_job_runtime_in_seconds
|
1931
|
-
# The maximum
|
1932
|
-
# trial to complete. It must be equal to or greater than
|
1933
|
-
# MaxRuntimePerTrainingJobInSeconds.
|
1934
|
+
# The maximum runtime, in seconds, an AutoML job has to complete.
|
1934
1935
|
# @return [Integer]
|
1935
1936
|
#
|
1936
1937
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
|
@@ -1943,7 +1944,7 @@ module Aws::SageMaker
|
|
1943
1944
|
include Aws::Structure
|
1944
1945
|
end
|
1945
1946
|
|
1946
|
-
# A collection of settings used for
|
1947
|
+
# A collection of settings used for an AutoML job.
|
1947
1948
|
#
|
1948
1949
|
# @note When making an API call, you may pass AutoMLJobConfig
|
1949
1950
|
# data as a hash:
|
@@ -1965,12 +1966,12 @@ module Aws::SageMaker
|
|
1965
1966
|
# }
|
1966
1967
|
#
|
1967
1968
|
# @!attribute [rw] completion_criteria
|
1968
|
-
# How long
|
1969
|
-
# allowed to generate.
|
1969
|
+
# How long an AutoML job is allowed to run, or how many candidates a
|
1970
|
+
# job is allowed to generate.
|
1970
1971
|
# @return [Types::AutoMLJobCompletionCriteria]
|
1971
1972
|
#
|
1972
1973
|
# @!attribute [rw] security_config
|
1973
|
-
#
|
1974
|
+
# The security configuration for traffic encryption or Amazon VPC
|
1974
1975
|
# settings.
|
1975
1976
|
# @return [Types::AutoMLSecurityConfig]
|
1976
1977
|
#
|
@@ -2002,23 +2003,23 @@ module Aws::SageMaker
|
|
2002
2003
|
#
|
2003
2004
|
# * `MSE`\: The mean squared error (MSE) is the average of the squared
|
2004
2005
|
# differences between the predicted and actual values. It is used
|
2005
|
-
# for regression. MSE values are always positive
|
2006
|
-
# is at predicting the actual values the smaller the MSE value.
|
2007
|
-
# the data contains outliers, they tend to dominate the MSE
|
2008
|
-
# might cause subpar prediction performance.
|
2009
|
-
#
|
2010
|
-
# * `Accuracy`\: The ratio of the number correctly classified items
|
2011
|
-
# the total number (correctly and incorrectly) classified
|
2012
|
-
# used for binary and multiclass classification.
|
2013
|
-
# the predicted class values are to the actual
|
2014
|
-
# values vary between zero and one
|
2015
|
-
# zero perfect inaccuracy.
|
2006
|
+
# for regression. MSE values are always positive: the better a model
|
2007
|
+
# is at predicting the actual values, the smaller the MSE value.
|
2008
|
+
# When the data contains outliers, they tend to dominate the MSE,
|
2009
|
+
# which might cause subpar prediction performance.
|
2010
|
+
#
|
2011
|
+
# * `Accuracy`\: The ratio of the number of correctly classified items
|
2012
|
+
# to the total number of (correctly and incorrectly) classified
|
2013
|
+
# items. It is used for binary and multiclass classification. It
|
2014
|
+
# measures how close the predicted class values are to the actual
|
2015
|
+
# values. Accuracy values vary between zero and one: one indicates
|
2016
|
+
# perfect accuracy and zero indicates perfect inaccuracy.
|
2016
2017
|
#
|
2017
2018
|
# * `F1`\: The F1 score is the harmonic mean of the precision and
|
2018
2019
|
# recall. It is used for binary classification into classes
|
2019
2020
|
# traditionally referred to as positive and negative. Predictions
|
2020
|
-
# are said to be true when they match their actual (correct) class
|
2021
|
-
# false when they do not. Precision is the ratio of the true
|
2021
|
+
# are said to be true when they match their actual (correct) class
|
2022
|
+
# and false when they do not. Precision is the ratio of the true
|
2022
2023
|
# positive predictions to all positive predictions (including the
|
2023
2024
|
# false positives) in a data set and measures the quality of the
|
2024
2025
|
# prediction when it predicts the positive class. Recall (or
|
@@ -2027,7 +2028,7 @@ module Aws::SageMaker
|
|
2027
2028
|
# predicts the actual class members in a data set. The standard F1
|
2028
2029
|
# score weighs precision and recall equally. But which metric is
|
2029
2030
|
# paramount typically depends on specific aspects of a problem. F1
|
2030
|
-
# scores vary between zero and one
|
2031
|
+
# scores vary between zero and one: one indicates the best possible
|
2031
2032
|
# performance and zero the worst.
|
2032
2033
|
#
|
2033
2034
|
# * `AUC`\: The area under the curve (AUC) metric is used to compare
|
@@ -2045,20 +2046,21 @@ module Aws::SageMaker
|
|
2045
2046
|
# The AUC score can also be interpreted as the probability that a
|
2046
2047
|
# randomly selected positive data point is more likely to be
|
2047
2048
|
# predicted positive than a randomly selected negative example. AUC
|
2048
|
-
# scores vary between zero and one
|
2049
|
-
#
|
2050
|
-
#
|
2051
|
-
#
|
2049
|
+
# scores vary between zero and one: a score of one indicates perfect
|
2050
|
+
# accuracy and a score of one half indicates that the prediction is
|
2051
|
+
# not better than a random classifier. Values under one half predict
|
2052
|
+
# less accurately than a random predictor. But such consistently bad
|
2053
|
+
# predictors can simply be inverted to obtain better than random
|
2052
2054
|
# predictors.
|
2053
2055
|
#
|
2054
2056
|
# * `F1macro`\: The F1macro score applies F1 scoring to multiclass
|
2055
2057
|
# classification. In this context, you have multiple classes to
|
2056
2058
|
# predict. You just calculate the precision and recall for each
|
2057
2059
|
# class as you did for the positive class in binary classification.
|
2058
|
-
# Then
|
2060
|
+
# Then, use these values to calculate the F1 score for each class
|
2059
2061
|
# and average them to obtain the F1macro score. F1macro scores vary
|
2060
|
-
# between zero and one
|
2061
|
-
# zero the worst.
|
2062
|
+
# between zero and one: one indicates the best possible performance
|
2063
|
+
# and zero the worst.
|
2062
2064
|
#
|
2063
2065
|
# If you do not specify a metric explicitly, the default behavior is
|
2064
2066
|
# to automatically use:
|
@@ -2078,26 +2080,26 @@ module Aws::SageMaker
|
|
2078
2080
|
include Aws::Structure
|
2079
2081
|
end
|
2080
2082
|
|
2081
|
-
# Provides a summary about
|
2083
|
+
# Provides a summary about an AutoML job.
|
2082
2084
|
#
|
2083
2085
|
# @!attribute [rw] auto_ml_job_name
|
2084
|
-
# The name of the
|
2086
|
+
# The name of the AutoML you are requesting.
|
2085
2087
|
# @return [String]
|
2086
2088
|
#
|
2087
2089
|
# @!attribute [rw] auto_ml_job_arn
|
2088
|
-
# The ARN of the job.
|
2090
|
+
# The ARN of the AutoML job.
|
2089
2091
|
# @return [String]
|
2090
2092
|
#
|
2091
2093
|
# @!attribute [rw] auto_ml_job_status
|
2092
|
-
# The job
|
2094
|
+
# The status of the AutoML job.
|
2093
2095
|
# @return [String]
|
2094
2096
|
#
|
2095
2097
|
# @!attribute [rw] auto_ml_job_secondary_status
|
2096
|
-
# The
|
2098
|
+
# The secondary status of the AutoML job.
|
2097
2099
|
# @return [String]
|
2098
2100
|
#
|
2099
2101
|
# @!attribute [rw] creation_time
|
2100
|
-
# When the job was created.
|
2102
|
+
# When the AutoML job was created.
|
2101
2103
|
# @return [Time]
|
2102
2104
|
#
|
2103
2105
|
# @!attribute [rw] end_time
|
@@ -2105,13 +2107,17 @@ module Aws::SageMaker
|
|
2105
2107
|
# @return [Time]
|
2106
2108
|
#
|
2107
2109
|
# @!attribute [rw] last_modified_time
|
2108
|
-
# When the job was last modified.
|
2110
|
+
# When the AutoML job was last modified.
|
2109
2111
|
# @return [Time]
|
2110
2112
|
#
|
2111
2113
|
# @!attribute [rw] failure_reason
|
2112
|
-
# The failure reason of
|
2114
|
+
# The failure reason of an AutoML job.
|
2113
2115
|
# @return [String]
|
2114
2116
|
#
|
2117
|
+
# @!attribute [rw] partial_failure_reasons
|
2118
|
+
# The list of reasons for partial failures within an AutoML job.
|
2119
|
+
# @return [Array<Types::AutoMLPartialFailureReason>]
|
2120
|
+
#
|
2115
2121
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
|
2116
2122
|
#
|
2117
2123
|
class AutoMLJobSummary < Struct.new(
|
@@ -2122,7 +2128,8 @@ module Aws::SageMaker
|
|
2122
2128
|
:creation_time,
|
2123
2129
|
:end_time,
|
2124
2130
|
:last_modified_time,
|
2125
|
-
:failure_reason
|
2131
|
+
:failure_reason,
|
2132
|
+
:partial_failure_reasons)
|
2126
2133
|
SENSITIVE = []
|
2127
2134
|
include Aws::Structure
|
2128
2135
|
end
|
@@ -2154,6 +2161,21 @@ module Aws::SageMaker
|
|
2154
2161
|
include Aws::Structure
|
2155
2162
|
end
|
2156
2163
|
|
2164
|
+
# The reason for a partial failure of an AutoML job.
|
2165
|
+
#
|
2166
|
+
# @!attribute [rw] partial_failure_message
|
2167
|
+
# The message containing the reason for a partial failure of an AutoML
|
2168
|
+
# job.
|
2169
|
+
# @return [String]
|
2170
|
+
#
|
2171
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLPartialFailureReason AWS API Documentation
|
2172
|
+
#
|
2173
|
+
class AutoMLPartialFailureReason < Struct.new(
|
2174
|
+
:partial_failure_message)
|
2175
|
+
SENSITIVE = []
|
2176
|
+
include Aws::Structure
|
2177
|
+
end
|
2178
|
+
|
2157
2179
|
# The Amazon S3 data source.
|
2158
2180
|
#
|
2159
2181
|
# @note When making an API call, you may pass AutoMLS3DataSource
|
@@ -2204,7 +2226,7 @@ module Aws::SageMaker
|
|
2204
2226
|
# @return [Boolean]
|
2205
2227
|
#
|
2206
2228
|
# @!attribute [rw] vpc_config
|
2207
|
-
# VPC configuration.
|
2229
|
+
# The VPC configuration.
|
2208
2230
|
# @return [Types::VpcConfig]
|
2209
2231
|
#
|
2210
2232
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLSecurityConfig AWS API Documentation
|
@@ -2317,6 +2339,61 @@ module Aws::SageMaker
|
|
2317
2339
|
include Aws::Structure
|
2318
2340
|
end
|
2319
2341
|
|
2342
|
+
# Metadata about a callback step.
|
2343
|
+
#
|
2344
|
+
# @!attribute [rw] callback_token
|
2345
|
+
# The pipeline generated token from the Amazon SQS queue.
|
2346
|
+
# @return [String]
|
2347
|
+
#
|
2348
|
+
# @!attribute [rw] sqs_queue_url
|
2349
|
+
# The URL of the Amazon Simple Queue Service (Amazon SQS) queue used
|
2350
|
+
# by the callback step.
|
2351
|
+
# @return [String]
|
2352
|
+
#
|
2353
|
+
# @!attribute [rw] output_parameters
|
2354
|
+
# A list of the output parameters of the callback step.
|
2355
|
+
# @return [Array<Types::OutputParameter>]
|
2356
|
+
#
|
2357
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CallbackStepMetadata AWS API Documentation
|
2358
|
+
#
|
2359
|
+
class CallbackStepMetadata < Struct.new(
|
2360
|
+
:callback_token,
|
2361
|
+
:sqs_queue_url,
|
2362
|
+
:output_parameters)
|
2363
|
+
SENSITIVE = []
|
2364
|
+
include Aws::Structure
|
2365
|
+
end
|
2366
|
+
|
2367
|
+
# The location of artifacts for an AutoML candidate job.
|
2368
|
+
#
|
2369
|
+
# @!attribute [rw] explainability
|
2370
|
+
# The Amazon S3 prefix to the explainability artifacts generated for
|
2371
|
+
# the AutoML candidate.
|
2372
|
+
# @return [String]
|
2373
|
+
#
|
2374
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
|
2375
|
+
#
|
2376
|
+
class CandidateArtifactLocations < Struct.new(
|
2377
|
+
:explainability)
|
2378
|
+
SENSITIVE = []
|
2379
|
+
include Aws::Structure
|
2380
|
+
end
|
2381
|
+
|
2382
|
+
# The properties of an AutoML candidate job.
|
2383
|
+
#
|
2384
|
+
# @!attribute [rw] candidate_artifact_locations
|
2385
|
+
# The Amazon S3 prefix to the artifacts generated for an AutoML
|
2386
|
+
# candidate.
|
2387
|
+
# @return [Types::CandidateArtifactLocations]
|
2388
|
+
#
|
2389
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
|
2390
|
+
#
|
2391
|
+
class CandidateProperties < Struct.new(
|
2392
|
+
:candidate_artifact_locations)
|
2393
|
+
SENSITIVE = []
|
2394
|
+
include Aws::Structure
|
2395
|
+
end
|
2396
|
+
|
2320
2397
|
# Currently, the `CapacitySize` API is not supported.
|
2321
2398
|
#
|
2322
2399
|
# @note When making an API call, you may pass CapacitySize
|
@@ -2861,8 +2938,8 @@ module Aws::SageMaker
|
|
2861
2938
|
include Aws::Structure
|
2862
2939
|
end
|
2863
2940
|
|
2864
|
-
# There was a conflict when you attempted to modify
|
2865
|
-
#
|
2941
|
+
# There was a conflict when you attempted to modify a SageMaker entity
|
2942
|
+
# such as an `Experiment` or `Artifact`.
|
2866
2943
|
#
|
2867
2944
|
# @!attribute [rw] message
|
2868
2945
|
# @return [String]
|
@@ -3628,7 +3705,8 @@ module Aws::SageMaker
|
|
3628
3705
|
# @return [String]
|
3629
3706
|
#
|
3630
3707
|
# @!attribute [rw] app_type
|
3631
|
-
# The type of app.
|
3708
|
+
# The type of app. Supported apps are `JupyterServer` and
|
3709
|
+
# `KernelGateway`. `TensorBoard` is not supported.
|
3632
3710
|
# @return [String]
|
3633
3711
|
#
|
3634
3712
|
# @!attribute [rw] app_name
|
@@ -3801,39 +3879,51 @@ module Aws::SageMaker
|
|
3801
3879
|
# value: "TagValue", # required
|
3802
3880
|
# },
|
3803
3881
|
# ],
|
3882
|
+
# model_deploy_config: {
|
3883
|
+
# auto_generate_endpoint_name: false,
|
3884
|
+
# endpoint_name: "EndpointName",
|
3885
|
+
# },
|
3804
3886
|
# }
|
3805
3887
|
#
|
3806
3888
|
# @!attribute [rw] auto_ml_job_name
|
3807
|
-
# Identifies an Autopilot job.
|
3808
|
-
# case-insensitive.
|
3889
|
+
# Identifies an Autopilot job. The name must be unique to your account
|
3890
|
+
# and is case-insensitive.
|
3809
3891
|
# @return [String]
|
3810
3892
|
#
|
3811
3893
|
# @!attribute [rw] input_data_config
|
3812
|
-
#
|
3813
|
-
#
|
3894
|
+
# An array of channel objects that describes the input data and its
|
3895
|
+
# location. Each channel is a named input source. Similar to
|
3896
|
+
# `InputDataConfig` supported by . Format(s) supported: CSV. Minimum
|
3897
|
+
# of 500 rows.
|
3814
3898
|
# @return [Array<Types::AutoMLChannel>]
|
3815
3899
|
#
|
3816
3900
|
# @!attribute [rw] output_data_config
|
3817
|
-
#
|
3818
|
-
# supported:
|
3901
|
+
# Provides information about encryption and the Amazon S3 output path
|
3902
|
+
# needed to store artifacts from an AutoML job. Format(s) supported:
|
3903
|
+
# CSV.
|
3819
3904
|
# @return [Types::AutoMLOutputDataConfig]
|
3820
3905
|
#
|
3821
3906
|
# @!attribute [rw] problem_type
|
3822
|
-
# Defines the
|
3823
|
-
# candidates. Options include: BinaryClassification
|
3824
|
-
# MulticlassClassification
|
3907
|
+
# Defines the type of supervised learning available for the
|
3908
|
+
# candidates. Options include: `BinaryClassification`,
|
3909
|
+
# `MulticlassClassification`, and `Regression`. For more information,
|
3910
|
+
# see [ Amazon SageMaker Autopilot problem types and algorithm
|
3911
|
+
# support][1].
|
3912
|
+
#
|
3913
|
+
#
|
3914
|
+
#
|
3915
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
|
3825
3916
|
# @return [String]
|
3826
3917
|
#
|
3827
3918
|
# @!attribute [rw] auto_ml_job_objective
|
3828
|
-
# Defines the objective
|
3829
|
-
# AutoMLJobObjective$MetricName and
|
3830
|
-
# minimize or maximize it.
|
3831
|
-
# commonly used ObjectiveMetric for problem type is automaically
|
3832
|
-
# selected.
|
3919
|
+
# Defines the objective metric used to measure the predictive quality
|
3920
|
+
# of an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
3921
|
+
# Autopilot infers whether to minimize or maximize it.
|
3833
3922
|
# @return [Types::AutoMLJobObjective]
|
3834
3923
|
#
|
3835
3924
|
# @!attribute [rw] auto_ml_job_config
|
3836
|
-
# Contains CompletionCriteria and SecurityConfig
|
3925
|
+
# Contains `CompletionCriteria` and `SecurityConfig` settings for the
|
3926
|
+
# AutoML job.
|
3837
3927
|
# @return [Types::AutoMLJobConfig]
|
3838
3928
|
#
|
3839
3929
|
# @!attribute [rw] role_arn
|
@@ -3841,9 +3931,9 @@ module Aws::SageMaker
|
|
3841
3931
|
# @return [String]
|
3842
3932
|
#
|
3843
3933
|
# @!attribute [rw] generate_candidate_definitions_only
|
3844
|
-
# Generates possible candidates without training
|
3845
|
-
# is a combination of data preprocessors, algorithms, and
|
3846
|
-
# parameter settings.
|
3934
|
+
# Generates possible candidates without training the models. A
|
3935
|
+
# candidate is a combination of data preprocessors, algorithms, and
|
3936
|
+
# algorithm parameter settings.
|
3847
3937
|
# @return [Boolean]
|
3848
3938
|
#
|
3849
3939
|
# @!attribute [rw] tags
|
@@ -3851,6 +3941,11 @@ module Aws::SageMaker
|
|
3851
3941
|
# unique per resource.
|
3852
3942
|
# @return [Array<Types::Tag>]
|
3853
3943
|
#
|
3944
|
+
# @!attribute [rw] model_deploy_config
|
3945
|
+
# Specifies how to generate the endpoint name for an automatic
|
3946
|
+
# one-click Autopilot model deployment.
|
3947
|
+
# @return [Types::ModelDeployConfig]
|
3948
|
+
#
|
3854
3949
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobRequest AWS API Documentation
|
3855
3950
|
#
|
3856
3951
|
class CreateAutoMLJobRequest < Struct.new(
|
@@ -3862,13 +3957,15 @@ module Aws::SageMaker
|
|
3862
3957
|
:auto_ml_job_config,
|
3863
3958
|
:role_arn,
|
3864
3959
|
:generate_candidate_definitions_only,
|
3865
|
-
:tags
|
3960
|
+
:tags,
|
3961
|
+
:model_deploy_config)
|
3866
3962
|
SENSITIVE = []
|
3867
3963
|
include Aws::Structure
|
3868
3964
|
end
|
3869
3965
|
|
3870
3966
|
# @!attribute [rw] auto_ml_job_arn
|
3871
|
-
#
|
3967
|
+
# The unique ARN that is assigned to the AutoML job when it is
|
3968
|
+
# created.
|
3872
3969
|
# @return [String]
|
3873
3970
|
#
|
3874
3971
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobResponse AWS API Documentation
|
@@ -4410,7 +4507,14 @@ module Aws::SageMaker
|
|
4410
4507
|
# @return [String]
|
4411
4508
|
#
|
4412
4509
|
# @!attribute [rw] default_user_settings
|
4413
|
-
# The default user
|
4510
|
+
# The default settings to use to create a user profile when
|
4511
|
+
# `UserSettings` isn't specified in the call to the
|
4512
|
+
# `CreateUserProfile` API.
|
4513
|
+
#
|
4514
|
+
# `SecurityGroups` is aggregated when specified in both calls. For all
|
4515
|
+
# other settings in `UserSettings`, the values specified in
|
4516
|
+
# `CreateUserProfile` take precedence over those specified in
|
4517
|
+
# `CreateDomain`.
|
4414
4518
|
# @return [Types::UserSettings]
|
4415
4519
|
#
|
4416
4520
|
# @!attribute [rw] subnet_ids
|
@@ -4425,7 +4529,10 @@ module Aws::SageMaker
|
|
4425
4529
|
# @!attribute [rw] tags
|
4426
4530
|
# Tags to associated with the Domain. Each tag consists of a key and
|
4427
4531
|
# an optional value. Tag keys must be unique per resource. Tags are
|
4428
|
-
# searchable using the Search API.
|
4532
|
+
# searchable using the `Search` API.
|
4533
|
+
#
|
4534
|
+
# Tags that you specify for the Domain are also added to all Apps that
|
4535
|
+
# the Domain launches.
|
4429
4536
|
# @return [Array<Types::Tag>]
|
4430
4537
|
#
|
4431
4538
|
# @!attribute [rw] app_network_access_type
|
@@ -5280,6 +5387,9 @@ module Aws::SageMaker
|
|
5280
5387
|
# s3_uri: "S3Uri", # required
|
5281
5388
|
# local_path: "DirectoryPath",
|
5282
5389
|
# },
|
5390
|
+
# retry_strategy: {
|
5391
|
+
# maximum_retry_attempts: 1, # required
|
5392
|
+
# },
|
5283
5393
|
# },
|
5284
5394
|
# training_job_definitions: [
|
5285
5395
|
# {
|
@@ -5378,6 +5488,9 @@ module Aws::SageMaker
|
|
5378
5488
|
# s3_uri: "S3Uri", # required
|
5379
5489
|
# local_path: "DirectoryPath",
|
5380
5490
|
# },
|
5491
|
+
# retry_strategy: {
|
5492
|
+
# maximum_retry_attempts: 1, # required
|
5493
|
+
# },
|
5381
5494
|
# },
|
5382
5495
|
# ],
|
5383
5496
|
# warm_start_config: {
|
@@ -7013,9 +7126,9 @@ module Aws::SageMaker
|
|
7013
7126
|
# @!attribute [rw] direct_internet_access
|
7014
7127
|
# Sets whether Amazon SageMaker provides internet access to the
|
7015
7128
|
# notebook instance. If you set this to `Disabled` this notebook
|
7016
|
-
# instance
|
7017
|
-
#
|
7018
|
-
#
|
7129
|
+
# instance is able to access resources only in your VPC, and is not be
|
7130
|
+
# able to connect to Amazon SageMaker training and endpoint services
|
7131
|
+
# unless you configure a NAT Gateway in your VPC.
|
7019
7132
|
#
|
7020
7133
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
7021
7134
|
# by Default][1]. You can set the value of this parameter to
|
@@ -7752,6 +7865,12 @@ module Aws::SageMaker
|
|
7752
7865
|
# },
|
7753
7866
|
# },
|
7754
7867
|
# ],
|
7868
|
+
# environment: {
|
7869
|
+
# "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
|
7870
|
+
# },
|
7871
|
+
# retry_strategy: {
|
7872
|
+
# maximum_retry_attempts: 1, # required
|
7873
|
+
# },
|
7755
7874
|
# }
|
7756
7875
|
#
|
7757
7876
|
# @!attribute [rw] training_job_name
|
@@ -7858,9 +7977,10 @@ module Aws::SageMaker
|
|
7858
7977
|
# @return [Types::VpcConfig]
|
7859
7978
|
#
|
7860
7979
|
# @!attribute [rw] stopping_condition
|
7861
|
-
# Specifies a limit to how long a model training job can run.
|
7862
|
-
#
|
7863
|
-
#
|
7980
|
+
# Specifies a limit to how long a model training job can run. It also
|
7981
|
+
# specifies how long a managed Spot training job has to complete. When
|
7982
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
7983
|
+
# job. Use this API to cap model training costs.
|
7864
7984
|
#
|
7865
7985
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
7866
7986
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -7965,6 +8085,15 @@ module Aws::SageMaker
|
|
7965
8085
|
# and framework metrics.
|
7966
8086
|
# @return [Array<Types::ProfilerRuleConfiguration>]
|
7967
8087
|
#
|
8088
|
+
# @!attribute [rw] environment
|
8089
|
+
# The environment variables to set in the Docker container.
|
8090
|
+
# @return [Hash<String,String>]
|
8091
|
+
#
|
8092
|
+
# @!attribute [rw] retry_strategy
|
8093
|
+
# The number of times to retry the job when the job fails due to an
|
8094
|
+
# `InternalServerError`.
|
8095
|
+
# @return [Types::RetryStrategy]
|
8096
|
+
#
|
7968
8097
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
|
7969
8098
|
#
|
7970
8099
|
class CreateTrainingJobRequest < Struct.new(
|
@@ -7987,7 +8116,9 @@ module Aws::SageMaker
|
|
7987
8116
|
:tensor_board_output_config,
|
7988
8117
|
:experiment_config,
|
7989
8118
|
:profiler_config,
|
7990
|
-
:profiler_rule_configurations
|
8119
|
+
:profiler_rule_configurations,
|
8120
|
+
:environment,
|
8121
|
+
:retry_strategy)
|
7991
8122
|
SENSITIVE = []
|
7992
8123
|
include Aws::Structure
|
7993
8124
|
end
|
@@ -8465,7 +8596,7 @@ module Aws::SageMaker
|
|
8465
8596
|
# @return [String]
|
8466
8597
|
#
|
8467
8598
|
# @!attribute [rw] user_profile_name
|
8468
|
-
# A name for the UserProfile.
|
8599
|
+
# A name for the UserProfile. This value is not case sensitive.
|
8469
8600
|
# @return [String]
|
8470
8601
|
#
|
8471
8602
|
# @!attribute [rw] single_sign_on_user_identifier
|
@@ -8487,6 +8618,9 @@ module Aws::SageMaker
|
|
8487
8618
|
# @!attribute [rw] tags
|
8488
8619
|
# Each tag consists of a key and an optional value. Tag keys must be
|
8489
8620
|
# unique per resource.
|
8621
|
+
#
|
8622
|
+
# Tags that you specify for the User Profile are also added to all
|
8623
|
+
# Apps that the User Profile launches.
|
8490
8624
|
# @return [Array<Types::Tag>]
|
8491
8625
|
#
|
8492
8626
|
# @!attribute [rw] user_settings
|
@@ -8931,7 +9065,9 @@ module Aws::SageMaker
|
|
8931
9065
|
# The valid values are `None` and `Input`. The default value is
|
8932
9066
|
# `None`, which specifies not to join the input with the transformed
|
8933
9067
|
# data. If you want the batch transform job to join the original input
|
8934
|
-
# data with the transformed data, set `JoinSource` to `Input`.
|
9068
|
+
# data with the transformed data, set `JoinSource` to `Input`. You can
|
9069
|
+
# specify `OutputFilter` as an additional filter to select a portion
|
9070
|
+
# of the joined dataset and store it in the output file.
|
8935
9071
|
#
|
8936
9072
|
# For JSON or JSONLines objects, such as a JSON array, Amazon
|
8937
9073
|
# SageMaker adds the transformed data to the input JSON object in an
|
@@ -8941,10 +9077,18 @@ module Aws::SageMaker
|
|
8941
9077
|
# file, and the input data is stored under the `SageMakerInput` key
|
8942
9078
|
# and the results are stored in `SageMakerOutput`.
|
8943
9079
|
#
|
8944
|
-
# For CSV
|
8945
|
-
# the
|
8946
|
-
#
|
8947
|
-
# the transformed data and the output
|
9080
|
+
# For CSV data, Amazon SageMaker takes each row as a JSON array and
|
9081
|
+
# joins the transformed data with the input by appending each
|
9082
|
+
# transformed row to the end of the input. The joined data has the
|
9083
|
+
# original input data followed by the transformed data and the output
|
9084
|
+
# is a CSV file.
|
9085
|
+
#
|
9086
|
+
# For information on how joining in applied, see [Workflow for
|
9087
|
+
# Associating Inferences with Input Records][1].
|
9088
|
+
#
|
9089
|
+
#
|
9090
|
+
#
|
9091
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow
|
8948
9092
|
# @return [String]
|
8949
9093
|
#
|
8950
9094
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
|
@@ -9975,8 +10119,11 @@ module Aws::SageMaker
|
|
9975
10119
|
# }
|
9976
10120
|
#
|
9977
10121
|
# @!attribute [rw] model_package_name
|
9978
|
-
# The name
|
9979
|
-
#
|
10122
|
+
# The name or Amazon Resource Name (ARN) of the model package to
|
10123
|
+
# delete.
|
10124
|
+
#
|
10125
|
+
# When you specify a name, the name must have 1 to 63 characters.
|
10126
|
+
# Valid characters are a-z, A-Z, 0-9, and - (hyphen).
|
9980
10127
|
# @return [String]
|
9981
10128
|
#
|
9982
10129
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteModelPackageInput AWS API Documentation
|
@@ -10811,7 +10958,7 @@ module Aws::SageMaker
|
|
10811
10958
|
# }
|
10812
10959
|
#
|
10813
10960
|
# @!attribute [rw] auto_ml_job_name
|
10814
|
-
#
|
10961
|
+
# Requests information about an AutoML job using its unique name.
|
10815
10962
|
# @return [String]
|
10816
10963
|
#
|
10817
10964
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobRequest AWS API Documentation
|
@@ -10823,15 +10970,15 @@ module Aws::SageMaker
|
|
10823
10970
|
end
|
10824
10971
|
|
10825
10972
|
# @!attribute [rw] auto_ml_job_name
|
10826
|
-
# Returns the name of
|
10973
|
+
# Returns the name of the AutoML job.
|
10827
10974
|
# @return [String]
|
10828
10975
|
#
|
10829
10976
|
# @!attribute [rw] auto_ml_job_arn
|
10830
|
-
# Returns the job
|
10977
|
+
# Returns the ARN of the AutoML job.
|
10831
10978
|
# @return [String]
|
10832
10979
|
#
|
10833
10980
|
# @!attribute [rw] input_data_config
|
10834
|
-
# Returns the
|
10981
|
+
# Returns the input data configuration for the AutoML job..
|
10835
10982
|
# @return [Array<Types::AutoMLChannel>]
|
10836
10983
|
#
|
10837
10984
|
# @!attribute [rw] output_data_config
|
@@ -10854,15 +11001,15 @@ module Aws::SageMaker
|
|
10854
11001
|
# @return [String]
|
10855
11002
|
#
|
10856
11003
|
# @!attribute [rw] auto_ml_job_config
|
10857
|
-
# Returns the job
|
11004
|
+
# Returns the configuration for the AutoML job.
|
10858
11005
|
# @return [Types::AutoMLJobConfig]
|
10859
11006
|
#
|
10860
11007
|
# @!attribute [rw] creation_time
|
10861
|
-
# Returns the
|
11008
|
+
# Returns the creation time of the AutoML job.
|
10862
11009
|
# @return [Time]
|
10863
11010
|
#
|
10864
11011
|
# @!attribute [rw] end_time
|
10865
|
-
# Returns the
|
11012
|
+
# Returns the end time of the AutoML job.
|
10866
11013
|
# @return [Time]
|
10867
11014
|
#
|
10868
11015
|
# @!attribute [rw] last_modified_time
|
@@ -10870,37 +11017,51 @@ module Aws::SageMaker
|
|
10870
11017
|
# @return [Time]
|
10871
11018
|
#
|
10872
11019
|
# @!attribute [rw] failure_reason
|
10873
|
-
# Returns the job
|
11020
|
+
# Returns the failure reason for an AutoML job, when applicable.
|
10874
11021
|
# @return [String]
|
10875
11022
|
#
|
11023
|
+
# @!attribute [rw] partial_failure_reasons
|
11024
|
+
# Returns a list of reasons for partial failures within an AutoML job.
|
11025
|
+
# @return [Array<Types::AutoMLPartialFailureReason>]
|
11026
|
+
#
|
10876
11027
|
# @!attribute [rw] best_candidate
|
10877
|
-
# Returns the job's
|
11028
|
+
# Returns the job's best `AutoMLCandidate`.
|
10878
11029
|
# @return [Types::AutoMLCandidate]
|
10879
11030
|
#
|
10880
11031
|
# @!attribute [rw] auto_ml_job_status
|
10881
|
-
# Returns the job
|
11032
|
+
# Returns the status of the AutoML job.
|
10882
11033
|
# @return [String]
|
10883
11034
|
#
|
10884
11035
|
# @!attribute [rw] auto_ml_job_secondary_status
|
10885
|
-
# Returns the job
|
11036
|
+
# Returns the secondary status of the AutoML job.
|
10886
11037
|
# @return [String]
|
10887
11038
|
#
|
10888
11039
|
# @!attribute [rw] generate_candidate_definitions_only
|
10889
|
-
#
|
11040
|
+
# Indicates whether the output for an AutoML job generates candidate
|
11041
|
+
# definitions only.
|
10890
11042
|
# @return [Boolean]
|
10891
11043
|
#
|
10892
11044
|
# @!attribute [rw] auto_ml_job_artifacts
|
10893
11045
|
# Returns information on the job's artifacts found in
|
10894
|
-
# AutoMLJobArtifacts
|
11046
|
+
# `AutoMLJobArtifacts`.
|
10895
11047
|
# @return [Types::AutoMLJobArtifacts]
|
10896
11048
|
#
|
10897
11049
|
# @!attribute [rw] resolved_attributes
|
10898
|
-
# This contains ProblemType
|
10899
|
-
# CompletionCriteria
|
10900
|
-
#
|
10901
|
-
#
|
11050
|
+
# This contains `ProblemType`, `AutoMLJobObjective` and
|
11051
|
+
# `CompletionCriteria`. If you do not provide these values, they are
|
11052
|
+
# auto-inferred. If you do provide them, the values used are the ones
|
11053
|
+
# you provide.
|
10902
11054
|
# @return [Types::ResolvedAttributes]
|
10903
11055
|
#
|
11056
|
+
# @!attribute [rw] model_deploy_config
|
11057
|
+
# Indicates whether the model was deployed automatically to an
|
11058
|
+
# endpoint and the name of that endpoint if deployed automatically.
|
11059
|
+
# @return [Types::ModelDeployConfig]
|
11060
|
+
#
|
11061
|
+
# @!attribute [rw] model_deploy_result
|
11062
|
+
# Provides information about endpoint for the model deployment.
|
11063
|
+
# @return [Types::ModelDeployResult]
|
11064
|
+
#
|
10904
11065
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
|
10905
11066
|
#
|
10906
11067
|
class DescribeAutoMLJobResponse < Struct.new(
|
@@ -10916,12 +11077,15 @@ module Aws::SageMaker
|
|
10916
11077
|
:end_time,
|
10917
11078
|
:last_modified_time,
|
10918
11079
|
:failure_reason,
|
11080
|
+
:partial_failure_reasons,
|
10919
11081
|
:best_candidate,
|
10920
11082
|
:auto_ml_job_status,
|
10921
11083
|
:auto_ml_job_secondary_status,
|
10922
11084
|
:generate_candidate_definitions_only,
|
10923
11085
|
:auto_ml_job_artifacts,
|
10924
|
-
:resolved_attributes
|
11086
|
+
:resolved_attributes,
|
11087
|
+
:model_deploy_config,
|
11088
|
+
:model_deploy_result)
|
10925
11089
|
SENSITIVE = []
|
10926
11090
|
include Aws::Structure
|
10927
11091
|
end
|
@@ -11481,7 +11645,7 @@ module Aws::SageMaker
|
|
11481
11645
|
# @return [String]
|
11482
11646
|
#
|
11483
11647
|
# @!attribute [rw] default_user_settings
|
11484
|
-
# Settings which are applied to
|
11648
|
+
# Settings which are applied to UserProfiles in this domain if
|
11485
11649
|
# settings are not explicitly specified in a given UserProfile.
|
11486
11650
|
# @return [Types::UserSettings]
|
11487
11651
|
#
|
@@ -12899,7 +13063,11 @@ module Aws::SageMaker
|
|
12899
13063
|
# }
|
12900
13064
|
#
|
12901
13065
|
# @!attribute [rw] model_package_name
|
12902
|
-
# The name of the model package to
|
13066
|
+
# The name or Amazon Resource Name (ARN) of the model package to
|
13067
|
+
# describe.
|
13068
|
+
#
|
13069
|
+
# When you specify a name, the name must have 1 to 63 characters.
|
13070
|
+
# Valid characters are a-z, A-Z, 0-9, and - (hyphen).
|
12903
13071
|
# @return [String]
|
12904
13072
|
#
|
12905
13073
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageInput AWS API Documentation
|
@@ -13517,6 +13685,15 @@ module Aws::SageMaker
|
|
13517
13685
|
# The description of the pipeline execution.
|
13518
13686
|
# @return [String]
|
13519
13687
|
#
|
13688
|
+
# @!attribute [rw] pipeline_experiment_config
|
13689
|
+
# Specifies the names of the experiment and trial created by a
|
13690
|
+
# pipeline.
|
13691
|
+
# @return [Types::PipelineExperimentConfig]
|
13692
|
+
#
|
13693
|
+
# @!attribute [rw] failure_reason
|
13694
|
+
# If the execution failed, a message describing why.
|
13695
|
+
# @return [String]
|
13696
|
+
#
|
13520
13697
|
# @!attribute [rw] creation_time
|
13521
13698
|
# The time when the pipeline execution was created.
|
13522
13699
|
# @return [Time]
|
@@ -13543,6 +13720,8 @@ module Aws::SageMaker
|
|
13543
13720
|
:pipeline_execution_display_name,
|
13544
13721
|
:pipeline_execution_status,
|
13545
13722
|
:pipeline_execution_description,
|
13723
|
+
:pipeline_experiment_config,
|
13724
|
+
:failure_reason,
|
13546
13725
|
:creation_time,
|
13547
13726
|
:last_modified_time,
|
13548
13727
|
:created_by,
|
@@ -14009,7 +14188,7 @@ module Aws::SageMaker
|
|
14009
14188
|
#
|
14010
14189
|
# * `LaunchingMLInstances`
|
14011
14190
|
#
|
14012
|
-
# * `
|
14191
|
+
# * `PreparingTraining`
|
14013
14192
|
#
|
14014
14193
|
# * `DownloadingTrainingImage`
|
14015
14194
|
# @return [String]
|
@@ -14060,9 +14239,9 @@ module Aws::SageMaker
|
|
14060
14239
|
#
|
14061
14240
|
# @!attribute [rw] stopping_condition
|
14062
14241
|
# Specifies a limit to how long a model training job can run. It also
|
14063
|
-
# specifies
|
14064
|
-
# reaches the time limit, Amazon SageMaker ends the training
|
14065
|
-
# this API to cap model training costs.
|
14242
|
+
# specifies how long a managed Spot training job has to complete. When
|
14243
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
14244
|
+
# job. Use this API to cap model training costs.
|
14066
14245
|
#
|
14067
14246
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
14068
14247
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -14211,6 +14390,15 @@ module Aws::SageMaker
|
|
14211
14390
|
# Profiling status of a training job.
|
14212
14391
|
# @return [String]
|
14213
14392
|
#
|
14393
|
+
# @!attribute [rw] retry_strategy
|
14394
|
+
# The number of times to retry the job when the job fails due to an
|
14395
|
+
# `InternalServerError`.
|
14396
|
+
# @return [Types::RetryStrategy]
|
14397
|
+
#
|
14398
|
+
# @!attribute [rw] environment
|
14399
|
+
# The environment variables to set in the Docker container.
|
14400
|
+
# @return [Hash<String,String>]
|
14401
|
+
#
|
14214
14402
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
|
14215
14403
|
#
|
14216
14404
|
class DescribeTrainingJobResponse < Struct.new(
|
@@ -14251,7 +14439,9 @@ module Aws::SageMaker
|
|
14251
14439
|
:profiler_config,
|
14252
14440
|
:profiler_rule_configurations,
|
14253
14441
|
:profiler_rule_evaluation_statuses,
|
14254
|
-
:profiling_status
|
14442
|
+
:profiling_status,
|
14443
|
+
:retry_strategy,
|
14444
|
+
:environment)
|
14255
14445
|
SENSITIVE = []
|
14256
14446
|
include Aws::Structure
|
14257
14447
|
end
|
@@ -14633,7 +14823,7 @@ module Aws::SageMaker
|
|
14633
14823
|
# @return [String]
|
14634
14824
|
#
|
14635
14825
|
# @!attribute [rw] user_profile_name
|
14636
|
-
# The user profile name.
|
14826
|
+
# The user profile name. This value is not case sensitive.
|
14637
14827
|
# @return [String]
|
14638
14828
|
#
|
14639
14829
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfileRequest AWS API Documentation
|
@@ -15357,7 +15547,7 @@ module Aws::SageMaker
|
|
15357
15547
|
#
|
15358
15548
|
# @!attribute [rw] s3_data_distribution_type
|
15359
15549
|
# Whether input data distributed in Amazon S3 is fully replicated or
|
15360
|
-
# sharded by an S3 key.
|
15550
|
+
# sharded by an S3 key. Defaults to `FullyReplicated`
|
15361
15551
|
# @return [String]
|
15362
15552
|
#
|
15363
15553
|
# @!attribute [rw] features_attribute
|
@@ -17903,6 +18093,9 @@ module Aws::SageMaker
|
|
17903
18093
|
# s3_uri: "S3Uri", # required
|
17904
18094
|
# local_path: "DirectoryPath",
|
17905
18095
|
# },
|
18096
|
+
# retry_strategy: {
|
18097
|
+
# maximum_retry_attempts: 1, # required
|
18098
|
+
# },
|
17906
18099
|
# }
|
17907
18100
|
#
|
17908
18101
|
# @!attribute [rw] definition_name
|
@@ -17984,10 +18177,9 @@ module Aws::SageMaker
|
|
17984
18177
|
#
|
17985
18178
|
# @!attribute [rw] stopping_condition
|
17986
18179
|
# Specifies a limit to how long a model hyperparameter training job
|
17987
|
-
# can run. It also specifies how long
|
17988
|
-
#
|
17989
|
-
#
|
17990
|
-
# model training costs.
|
18180
|
+
# can run. It also specifies how long a managed spot training job has
|
18181
|
+
# to complete. When the job reaches the time limit, Amazon SageMaker
|
18182
|
+
# ends the training job. Use this API to cap model training costs.
|
17991
18183
|
# @return [Types::StoppingCondition]
|
17992
18184
|
#
|
17993
18185
|
# @!attribute [rw] enable_network_isolation
|
@@ -18019,6 +18211,11 @@ module Aws::SageMaker
|
|
18019
18211
|
# training checkpoint data.
|
18020
18212
|
# @return [Types::CheckpointConfig]
|
18021
18213
|
#
|
18214
|
+
# @!attribute [rw] retry_strategy
|
18215
|
+
# The number of times to retry the job when the job fails due to an
|
18216
|
+
# `InternalServerError`.
|
18217
|
+
# @return [Types::RetryStrategy]
|
18218
|
+
#
|
18022
18219
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
|
18023
18220
|
#
|
18024
18221
|
class HyperParameterTrainingJobDefinition < Struct.new(
|
@@ -18036,7 +18233,8 @@ module Aws::SageMaker
|
|
18036
18233
|
:enable_network_isolation,
|
18037
18234
|
:enable_inter_container_traffic_encryption,
|
18038
18235
|
:enable_managed_spot_training,
|
18039
|
-
:checkpoint_config
|
18236
|
+
:checkpoint_config,
|
18237
|
+
:retry_strategy)
|
18040
18238
|
SENSITIVE = []
|
18041
18239
|
include Aws::Structure
|
18042
18240
|
end
|
@@ -19098,7 +19296,8 @@ module Aws::SageMaker
|
|
19098
19296
|
# }
|
19099
19297
|
#
|
19100
19298
|
# @!attribute [rw] name
|
19101
|
-
# The name of the kernel.
|
19299
|
+
# The name of the Jupyter kernel in the image. This value is case
|
19300
|
+
# sensitive.
|
19102
19301
|
# @return [String]
|
19103
19302
|
#
|
19104
19303
|
# @!attribute [rw] display_name
|
@@ -19287,7 +19486,12 @@ module Aws::SageMaker
|
|
19287
19486
|
# @return [Types::LabelingJobS3DataSource]
|
19288
19487
|
#
|
19289
19488
|
# @!attribute [rw] sns_data_source
|
19290
|
-
# An Amazon SNS data source used for streaming labeling jobs.
|
19489
|
+
# An Amazon SNS data source used for streaming labeling jobs. To learn
|
19490
|
+
# more, see [Send Data to a Streaming Labeling Job][1].
|
19491
|
+
#
|
19492
|
+
#
|
19493
|
+
#
|
19494
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-send-data
|
19291
19495
|
# @return [Types::LabelingJobSnsDataSource]
|
19292
19496
|
#
|
19293
19497
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
|
@@ -19311,6 +19515,7 @@ module Aws::SageMaker
|
|
19311
19515
|
# @return [String]
|
19312
19516
|
#
|
19313
19517
|
# @!attribute [rw] work_requester_account_id
|
19518
|
+
# The AWS account ID of the account used to start the labeling job.
|
19314
19519
|
# @return [String]
|
19315
19520
|
#
|
19316
19521
|
# @!attribute [rw] creation_time
|
@@ -19413,37 +19618,42 @@ module Aws::SageMaker
|
|
19413
19618
|
# The AWS Key Management Service ID of the key used to encrypt the
|
19414
19619
|
# output data, if any.
|
19415
19620
|
#
|
19416
|
-
# If you
|
19417
|
-
#
|
19418
|
-
#
|
19419
|
-
# uses the default KMS key for Amazon S3 for your role's account.
|
19420
|
-
# Amazon SageMaker uses server-side encryption with KMS-managed keys
|
19421
|
-
# for `LabelingJobOutputConfig`. If you use a bucket policy with an
|
19422
|
-
# `s3:PutObject` permission that only allows objects with server-side
|
19423
|
-
# encryption, set the condition key of
|
19424
|
-
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
19425
|
-
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
19426
|
-
# Simple Storage Service Developer Guide.*
|
19621
|
+
# If you provide your own KMS key ID, you must add the required
|
19622
|
+
# permissions to your KMS key described in [Encrypt Output Data and
|
19623
|
+
# Storage Volume with AWS KMS][1].
|
19427
19624
|
#
|
19428
|
-
#
|
19429
|
-
#
|
19430
|
-
#
|
19431
|
-
# Service Developer Guide*.
|
19625
|
+
# If you don't provide a KMS key ID, Amazon SageMaker uses the
|
19626
|
+
# default AWS KMS key for Amazon S3 for your role's account to
|
19627
|
+
# encrypt your output data.
|
19432
19628
|
#
|
19629
|
+
# If you use a bucket policy with an `s3:PutObject` permission that
|
19630
|
+
# only allows objects with server-side encryption, set the condition
|
19631
|
+
# key of `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
19632
|
+
# information, see [KMS-Managed Encryption Keys][2] in the *Amazon
|
19633
|
+
# Simple Storage Service Developer Guide.*
|
19433
19634
|
#
|
19434
19635
|
#
|
19435
|
-
#
|
19436
|
-
# [
|
19636
|
+
#
|
19637
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-kms-permissions
|
19638
|
+
# [2]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
|
19437
19639
|
# @return [String]
|
19438
19640
|
#
|
19439
19641
|
# @!attribute [rw] sns_topic_arn
|
19440
19642
|
# An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
|
19643
|
+
# Provide a `SnsTopicArn` if you want to do real time chaining to
|
19644
|
+
# another streaming job and receive an Amazon SNS notifications each
|
19645
|
+
# time a data object is submitted by a worker.
|
19646
|
+
#
|
19647
|
+
# If you provide an `SnsTopicArn` in `OutputConfig`, when workers
|
19648
|
+
# complete labeling tasks, Ground Truth will send labeling task output
|
19649
|
+
# data to the SNS output topic you specify here.
|
19650
|
+
#
|
19651
|
+
# To learn more, see [Receive Output Data from a Streaming Labeling
|
19652
|
+
# Job][1].
|
19441
19653
|
#
|
19442
|
-
# When workers complete labeling tasks, Ground Truth will send
|
19443
|
-
# labeling task output data to the SNS output topic you specify here.
|
19444
19654
|
#
|
19445
|
-
#
|
19446
|
-
#
|
19655
|
+
#
|
19656
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-output-data
|
19447
19657
|
# @return [String]
|
19448
19658
|
#
|
19449
19659
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
|
@@ -19456,7 +19666,9 @@ module Aws::SageMaker
|
|
19456
19666
|
include Aws::Structure
|
19457
19667
|
end
|
19458
19668
|
|
19459
|
-
#
|
19669
|
+
# Configure encryption on the storage volume attached to the ML compute
|
19670
|
+
# instance used to run automated data labeling model training and
|
19671
|
+
# inference.
|
19460
19672
|
#
|
19461
19673
|
# @note When making an API call, you may pass LabelingJobResourceConfig
|
19462
19674
|
# data as a hash:
|
@@ -19468,16 +19680,30 @@ module Aws::SageMaker
|
|
19468
19680
|
# @!attribute [rw] volume_kms_key_id
|
19469
19681
|
# The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
|
19470
19682
|
# uses to encrypt data on the storage volume attached to the ML
|
19471
|
-
# compute instance(s) that run the training
|
19472
|
-
#
|
19683
|
+
# compute instance(s) that run the training and inference jobs used
|
19684
|
+
# for automated data labeling.
|
19473
19685
|
#
|
19474
|
-
#
|
19686
|
+
# You can only specify a `VolumeKmsKeyId` when you create a labeling
|
19687
|
+
# job with automated data labeling enabled using the API operation
|
19688
|
+
# `CreateLabelingJob`. You cannot specify an AWS KMS customer managed
|
19689
|
+
# CMK to encrypt the storage volume used for automated data labeling
|
19690
|
+
# model training and inference when you create a labeling job using
|
19691
|
+
# the console. To learn more, see [Output Data and Storage Volume
|
19692
|
+
# Encryption][1].
|
19693
|
+
#
|
19694
|
+
# The `VolumeKmsKeyId` can be any of the following formats:
|
19695
|
+
#
|
19696
|
+
# * KMS Key ID
|
19475
19697
|
#
|
19476
19698
|
# `"1234abcd-12ab-34cd-56ef-1234567890ab"`
|
19477
19699
|
#
|
19478
|
-
# *
|
19700
|
+
# * Amazon Resource Name (ARN) of a KMS Key
|
19479
19701
|
#
|
19480
19702
|
# `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
|
19703
|
+
#
|
19704
|
+
#
|
19705
|
+
#
|
19706
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security.html
|
19481
19707
|
# @return [String]
|
19482
19708
|
#
|
19483
19709
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobResourceConfig AWS API Documentation
|
@@ -19542,9 +19768,6 @@ module Aws::SageMaker
|
|
19542
19768
|
# The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
|
19543
19769
|
# ARN of the input topic you will use to send new data objects to a
|
19544
19770
|
# streaming labeling job.
|
19545
|
-
#
|
19546
|
-
# If you specify an input topic for `SnsTopicArn` in `InputConfig`,
|
19547
|
-
# you must specify a value for `SnsTopicArn` in `OutputConfig`.
|
19548
19771
|
# @return [String]
|
19549
19772
|
#
|
19550
19773
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
|
@@ -20227,12 +20450,11 @@ module Aws::SageMaker
|
|
20227
20450
|
# @return [String]
|
20228
20451
|
#
|
20229
20452
|
# @!attribute [rw] sort_order
|
20230
|
-
# The sort order for the results. The default is Descending
|
20453
|
+
# The sort order for the results. The default is `Descending`.
|
20231
20454
|
# @return [String]
|
20232
20455
|
#
|
20233
20456
|
# @!attribute [rw] sort_by
|
20234
|
-
# The parameter by which to sort the results. The default is
|
20235
|
-
# AutoMLJobName.
|
20457
|
+
# The parameter by which to sort the results. The default is `Name`.
|
20236
20458
|
# @return [String]
|
20237
20459
|
#
|
20238
20460
|
# @!attribute [rw] max_results
|
@@ -20293,29 +20515,29 @@ module Aws::SageMaker
|
|
20293
20515
|
# }
|
20294
20516
|
#
|
20295
20517
|
# @!attribute [rw] auto_ml_job_name
|
20296
|
-
# List the
|
20518
|
+
# List the candidates created for the job by providing the job's
|
20297
20519
|
# name.
|
20298
20520
|
# @return [String]
|
20299
20521
|
#
|
20300
20522
|
# @!attribute [rw] status_equals
|
20301
|
-
# List the
|
20523
|
+
# List the candidates for the job and filter by status.
|
20302
20524
|
# @return [String]
|
20303
20525
|
#
|
20304
20526
|
# @!attribute [rw] candidate_name_equals
|
20305
|
-
# List the
|
20527
|
+
# List the candidates for the job and filter by candidate name.
|
20306
20528
|
# @return [String]
|
20307
20529
|
#
|
20308
20530
|
# @!attribute [rw] sort_order
|
20309
|
-
# The sort order for the results. The default is Ascending
|
20531
|
+
# The sort order for the results. The default is `Ascending`.
|
20310
20532
|
# @return [String]
|
20311
20533
|
#
|
20312
20534
|
# @!attribute [rw] sort_by
|
20313
20535
|
# The parameter by which to sort the results. The default is
|
20314
|
-
# Descending
|
20536
|
+
# `Descending`.
|
20315
20537
|
# @return [String]
|
20316
20538
|
#
|
20317
20539
|
# @!attribute [rw] max_results
|
20318
|
-
# List the job's
|
20540
|
+
# List the job's candidates up to a specified limit.
|
20319
20541
|
# @return [Integer]
|
20320
20542
|
#
|
20321
20543
|
# @!attribute [rw] next_token
|
@@ -20338,7 +20560,7 @@ module Aws::SageMaker
|
|
20338
20560
|
end
|
20339
20561
|
|
20340
20562
|
# @!attribute [rw] candidates
|
20341
|
-
# Summaries about the
|
20563
|
+
# Summaries about the `AutoMLCandidates`.
|
20342
20564
|
# @return [Array<Types::AutoMLCandidate>]
|
20343
20565
|
#
|
20344
20566
|
# @!attribute [rw] next_token
|
@@ -21139,7 +21361,8 @@ module Aws::SageMaker
|
|
21139
21361
|
# @return [String]
|
21140
21362
|
#
|
21141
21363
|
# @!attribute [rw] max_results
|
21142
|
-
# The maximum number of endpoints to return in the response.
|
21364
|
+
# The maximum number of endpoints to return in the response. This
|
21365
|
+
# value defaults to 10.
|
21143
21366
|
# @return [Integer]
|
21144
21367
|
#
|
21145
21368
|
# @!attribute [rw] name_contains
|
@@ -24374,7 +24597,7 @@ module Aws::SageMaker
|
|
24374
24597
|
#
|
24375
24598
|
# Model artifacts are the output that results from training a model, and
|
24376
24599
|
# typically consist of trained parameters, a model defintion that
|
24377
|
-
#
|
24600
|
+
# describes how to compute inferences, and other metadata.
|
24378
24601
|
#
|
24379
24602
|
# @!attribute [rw] s3_model_artifacts
|
24380
24603
|
# The path of the S3 object that contains the model artifacts. For
|
@@ -24562,6 +24785,66 @@ module Aws::SageMaker
|
|
24562
24785
|
include Aws::Structure
|
24563
24786
|
end
|
24564
24787
|
|
24788
|
+
# Specifies how to generate the endpoint name for an automatic one-click
|
24789
|
+
# Autopilot model deployment.
|
24790
|
+
#
|
24791
|
+
# @note When making an API call, you may pass ModelDeployConfig
|
24792
|
+
# data as a hash:
|
24793
|
+
#
|
24794
|
+
# {
|
24795
|
+
# auto_generate_endpoint_name: false,
|
24796
|
+
# endpoint_name: "EndpointName",
|
24797
|
+
# }
|
24798
|
+
#
|
24799
|
+
# @!attribute [rw] auto_generate_endpoint_name
|
24800
|
+
# Set to `True` to automatically generate an endpoint name for a
|
24801
|
+
# one-click Autopilot model deployment; set to `False` otherwise. The
|
24802
|
+
# default value is `False`.
|
24803
|
+
#
|
24804
|
+
# <note markdown="1"> If you set `AutoGenerateEndpointName` to `True`, do not specify the
|
24805
|
+
# `EndpointName`; otherwise a 400 error is thrown.
|
24806
|
+
#
|
24807
|
+
# </note>
|
24808
|
+
# @return [Boolean]
|
24809
|
+
#
|
24810
|
+
# @!attribute [rw] endpoint_name
|
24811
|
+
# Specifies the endpoint name to use for a one-click Autopilot model
|
24812
|
+
# deployment if the endpoint name is not generated automatically.
|
24813
|
+
#
|
24814
|
+
# <note markdown="1"> Specify the `EndpointName` if and only if you set
|
24815
|
+
# `AutoGenerateEndpointName` to `False`; otherwise a 400 error is
|
24816
|
+
# thrown.
|
24817
|
+
#
|
24818
|
+
# </note>
|
24819
|
+
# @return [String]
|
24820
|
+
#
|
24821
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployConfig AWS API Documentation
|
24822
|
+
#
|
24823
|
+
class ModelDeployConfig < Struct.new(
|
24824
|
+
:auto_generate_endpoint_name,
|
24825
|
+
:endpoint_name)
|
24826
|
+
SENSITIVE = []
|
24827
|
+
include Aws::Structure
|
24828
|
+
end
|
24829
|
+
|
24830
|
+
# Provides information about the endpoint of the model deployment.
|
24831
|
+
#
|
24832
|
+
# @!attribute [rw] endpoint_name
|
24833
|
+
# The name of the endpoint to which the model has been deployed.
|
24834
|
+
#
|
24835
|
+
# <note markdown="1"> If model deployment fails, this field is omitted from the response.
|
24836
|
+
#
|
24837
|
+
# </note>
|
24838
|
+
# @return [String]
|
24839
|
+
#
|
24840
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployResult AWS API Documentation
|
24841
|
+
#
|
24842
|
+
class ModelDeployResult < Struct.new(
|
24843
|
+
:endpoint_name)
|
24844
|
+
SENSITIVE = []
|
24845
|
+
include Aws::Structure
|
24846
|
+
end
|
24847
|
+
|
24565
24848
|
# Provides information to verify the integrity of stored model
|
24566
24849
|
# artifacts.
|
24567
24850
|
#
|
@@ -26397,6 +26680,13 @@ module Aws::SageMaker
|
|
26397
26680
|
#
|
26398
26681
|
# @!attribute [rw] max_runtime_in_seconds
|
26399
26682
|
# The maximum runtime allowed in seconds.
|
26683
|
+
#
|
26684
|
+
# <note markdown="1"> The `MaxRuntimeInSeconds` cannot exceed the frequency of the job.
|
26685
|
+
# For data quality and model explainability, this can be up to 3600
|
26686
|
+
# seconds for an hourly schedule. For model bias and model quality
|
26687
|
+
# hourly schedules, this can be up to 1800 seconds.
|
26688
|
+
#
|
26689
|
+
# </note>
|
26400
26690
|
# @return [Integer]
|
26401
26691
|
#
|
26402
26692
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MonitoringStoppingCondition AWS API Documentation
|
@@ -27334,7 +27624,7 @@ module Aws::SageMaker
|
|
27334
27624
|
#
|
27335
27625
|
#
|
27336
27626
|
#
|
27337
|
-
# [1]: https://docs.aws.amazon.com/
|
27627
|
+
# [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
|
27338
27628
|
# [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
|
27339
27629
|
# @return [String]
|
27340
27630
|
#
|
@@ -27352,6 +27642,33 @@ module Aws::SageMaker
|
|
27352
27642
|
include Aws::Structure
|
27353
27643
|
end
|
27354
27644
|
|
27645
|
+
# An output parameter of a pipeline step.
|
27646
|
+
#
|
27647
|
+
# @note When making an API call, you may pass OutputParameter
|
27648
|
+
# data as a hash:
|
27649
|
+
#
|
27650
|
+
# {
|
27651
|
+
# name: "String256", # required
|
27652
|
+
# value: "String1024", # required
|
27653
|
+
# }
|
27654
|
+
#
|
27655
|
+
# @!attribute [rw] name
|
27656
|
+
# The name of the output parameter.
|
27657
|
+
# @return [String]
|
27658
|
+
#
|
27659
|
+
# @!attribute [rw] value
|
27660
|
+
# The value of the output parameter.
|
27661
|
+
# @return [String]
|
27662
|
+
#
|
27663
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputParameter AWS API Documentation
|
27664
|
+
#
|
27665
|
+
class OutputParameter < Struct.new(
|
27666
|
+
:name,
|
27667
|
+
:value)
|
27668
|
+
SENSITIVE = []
|
27669
|
+
include Aws::Structure
|
27670
|
+
end
|
27671
|
+
|
27355
27672
|
# Assigns a value to a named Pipeline parameter.
|
27356
27673
|
#
|
27357
27674
|
# @note When making an API call, you may pass Parameter
|
@@ -27631,6 +27948,15 @@ module Aws::SageMaker
|
|
27631
27948
|
# The description of the pipeline execution.
|
27632
27949
|
# @return [String]
|
27633
27950
|
#
|
27951
|
+
# @!attribute [rw] pipeline_experiment_config
|
27952
|
+
# Specifies the names of the experiment and trial created by a
|
27953
|
+
# pipeline.
|
27954
|
+
# @return [Types::PipelineExperimentConfig]
|
27955
|
+
#
|
27956
|
+
# @!attribute [rw] failure_reason
|
27957
|
+
# If the execution failed, a message describing why.
|
27958
|
+
# @return [String]
|
27959
|
+
#
|
27634
27960
|
# @!attribute [rw] creation_time
|
27635
27961
|
# The creation time of the pipeline execution.
|
27636
27962
|
# @return [Time]
|
@@ -27661,6 +27987,8 @@ module Aws::SageMaker
|
|
27661
27987
|
:pipeline_execution_display_name,
|
27662
27988
|
:pipeline_execution_status,
|
27663
27989
|
:pipeline_execution_description,
|
27990
|
+
:pipeline_experiment_config,
|
27991
|
+
:failure_reason,
|
27664
27992
|
:creation_time,
|
27665
27993
|
:last_modified_time,
|
27666
27994
|
:created_by,
|
@@ -27699,7 +28027,7 @@ module Aws::SageMaker
|
|
27699
28027
|
# @return [String]
|
27700
28028
|
#
|
27701
28029
|
# @!attribute [rw] metadata
|
27702
|
-
#
|
28030
|
+
# Metadata for the step execution.
|
27703
28031
|
# @return [Types::PipelineExecutionStepMetadata]
|
27704
28032
|
#
|
27705
28033
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExecutionStep AWS API Documentation
|
@@ -27746,6 +28074,10 @@ module Aws::SageMaker
|
|
27746
28074
|
# condition.
|
27747
28075
|
# @return [Types::ConditionStepMetadata]
|
27748
28076
|
#
|
28077
|
+
# @!attribute [rw] callback
|
28078
|
+
# Metadata about a callback step.
|
28079
|
+
# @return [Types::CallbackStepMetadata]
|
28080
|
+
#
|
27749
28081
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExecutionStepMetadata AWS API Documentation
|
27750
28082
|
#
|
27751
28083
|
class PipelineExecutionStepMetadata < Struct.new(
|
@@ -27754,7 +28086,8 @@ module Aws::SageMaker
|
|
27754
28086
|
:transform_job,
|
27755
28087
|
:model,
|
27756
28088
|
:register_model,
|
27757
|
-
:condition
|
28089
|
+
:condition,
|
28090
|
+
:callback)
|
27758
28091
|
SENSITIVE = []
|
27759
28092
|
include Aws::Structure
|
27760
28093
|
end
|
@@ -27793,6 +28126,25 @@ module Aws::SageMaker
|
|
27793
28126
|
include Aws::Structure
|
27794
28127
|
end
|
27795
28128
|
|
28129
|
+
# Specifies the names of the experiment and trial created by a pipeline.
|
28130
|
+
#
|
28131
|
+
# @!attribute [rw] experiment_name
|
28132
|
+
# The name of the experiment.
|
28133
|
+
# @return [String]
|
28134
|
+
#
|
28135
|
+
# @!attribute [rw] trial_name
|
28136
|
+
# The name of the trial.
|
28137
|
+
# @return [String]
|
28138
|
+
#
|
28139
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExperimentConfig AWS API Documentation
|
28140
|
+
#
|
28141
|
+
class PipelineExperimentConfig < Struct.new(
|
28142
|
+
:experiment_name,
|
28143
|
+
:trial_name)
|
28144
|
+
SENSITIVE = []
|
28145
|
+
include Aws::Structure
|
28146
|
+
end
|
28147
|
+
|
27796
28148
|
# A summary of a pipeline.
|
27797
28149
|
#
|
27798
28150
|
# @!attribute [rw] pipeline_arn
|
@@ -28462,10 +28814,10 @@ module Aws::SageMaker
|
|
28462
28814
|
include Aws::Structure
|
28463
28815
|
end
|
28464
28816
|
|
28465
|
-
# Identifies a model that you want to host and the resources to
|
28466
|
-
# for hosting it. If you are deploying multiple models, tell
|
28467
|
-
# SageMaker how to distribute traffic among the models by
|
28468
|
-
# variant weights.
|
28817
|
+
# Identifies a model that you want to host and the resources chosen to
|
28818
|
+
# deploy for hosting it. If you are deploying multiple models, tell
|
28819
|
+
# Amazon SageMaker how to distribute traffic among the models by
|
28820
|
+
# specifying variant weights.
|
28469
28821
|
#
|
28470
28822
|
# @note When making an API call, you may pass ProductionVariant
|
28471
28823
|
# data as a hash:
|
@@ -29764,6 +30116,32 @@ module Aws::SageMaker
|
|
29764
30116
|
include Aws::Structure
|
29765
30117
|
end
|
29766
30118
|
|
30119
|
+
# The retry strategy to use when a training job fails due to an
|
30120
|
+
# `InternalServerError`. `RetryStrategy` is specified as part of the
|
30121
|
+
# `CreateTrainingJob` and `CreateHyperParameterTuningJob` requests. You
|
30122
|
+
# can add the `StoppingCondition` parameter to the request to limit the
|
30123
|
+
# training time for the complete job.
|
30124
|
+
#
|
30125
|
+
# @note When making an API call, you may pass RetryStrategy
|
30126
|
+
# data as a hash:
|
30127
|
+
#
|
30128
|
+
# {
|
30129
|
+
# maximum_retry_attempts: 1, # required
|
30130
|
+
# }
|
30131
|
+
#
|
30132
|
+
# @!attribute [rw] maximum_retry_attempts
|
30133
|
+
# The number of times to retry the job. When the job is retried, it's
|
30134
|
+
# `SecondaryStatus` is changed to `STARTING`.
|
30135
|
+
# @return [Integer]
|
30136
|
+
#
|
30137
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RetryStrategy AWS API Documentation
|
30138
|
+
#
|
30139
|
+
class RetryStrategy < Struct.new(
|
30140
|
+
:maximum_retry_attempts)
|
30141
|
+
SENSITIVE = []
|
30142
|
+
include Aws::Structure
|
30143
|
+
end
|
30144
|
+
|
29767
30145
|
# Describes the S3 data source.
|
29768
30146
|
#
|
29769
30147
|
# @note When making an API call, you may pass S3DataSource
|
@@ -30378,6 +30756,107 @@ module Aws::SageMaker
|
|
30378
30756
|
include Aws::Structure
|
30379
30757
|
end
|
30380
30758
|
|
30759
|
+
# @note When making an API call, you may pass SendPipelineExecutionStepFailureRequest
|
30760
|
+
# data as a hash:
|
30761
|
+
#
|
30762
|
+
# {
|
30763
|
+
# callback_token: "CallbackToken", # required
|
30764
|
+
# failure_reason: "String256",
|
30765
|
+
# client_request_token: "IdempotencyToken",
|
30766
|
+
# }
|
30767
|
+
#
|
30768
|
+
# @!attribute [rw] callback_token
|
30769
|
+
# The pipeline generated token from the Amazon SQS queue.
|
30770
|
+
# @return [String]
|
30771
|
+
#
|
30772
|
+
# @!attribute [rw] failure_reason
|
30773
|
+
# A message describing why the step failed.
|
30774
|
+
# @return [String]
|
30775
|
+
#
|
30776
|
+
# @!attribute [rw] client_request_token
|
30777
|
+
# A unique, case-sensitive identifier that you provide to ensure the
|
30778
|
+
# idempotency of the operation. An idempotent operation completes no
|
30779
|
+
# more than one time.
|
30780
|
+
#
|
30781
|
+
# **A suitable default value is auto-generated.** You should normally
|
30782
|
+
# not need to pass this option.
|
30783
|
+
# @return [String]
|
30784
|
+
#
|
30785
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailureRequest AWS API Documentation
|
30786
|
+
#
|
30787
|
+
class SendPipelineExecutionStepFailureRequest < Struct.new(
|
30788
|
+
:callback_token,
|
30789
|
+
:failure_reason,
|
30790
|
+
:client_request_token)
|
30791
|
+
SENSITIVE = []
|
30792
|
+
include Aws::Structure
|
30793
|
+
end
|
30794
|
+
|
30795
|
+
# @!attribute [rw] pipeline_execution_arn
|
30796
|
+
# The Amazon Resource Name (ARN) of the pipeline execution.
|
30797
|
+
# @return [String]
|
30798
|
+
#
|
30799
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailureResponse AWS API Documentation
|
30800
|
+
#
|
30801
|
+
class SendPipelineExecutionStepFailureResponse < Struct.new(
|
30802
|
+
:pipeline_execution_arn)
|
30803
|
+
SENSITIVE = []
|
30804
|
+
include Aws::Structure
|
30805
|
+
end
|
30806
|
+
|
30807
|
+
# @note When making an API call, you may pass SendPipelineExecutionStepSuccessRequest
|
30808
|
+
# data as a hash:
|
30809
|
+
#
|
30810
|
+
# {
|
30811
|
+
# callback_token: "CallbackToken", # required
|
30812
|
+
# output_parameters: [
|
30813
|
+
# {
|
30814
|
+
# name: "String256", # required
|
30815
|
+
# value: "String1024", # required
|
30816
|
+
# },
|
30817
|
+
# ],
|
30818
|
+
# client_request_token: "IdempotencyToken",
|
30819
|
+
# }
|
30820
|
+
#
|
30821
|
+
# @!attribute [rw] callback_token
|
30822
|
+
# The pipeline generated token from the Amazon SQS queue.
|
30823
|
+
# @return [String]
|
30824
|
+
#
|
30825
|
+
# @!attribute [rw] output_parameters
|
30826
|
+
# A list of the output parameters of the callback step.
|
30827
|
+
# @return [Array<Types::OutputParameter>]
|
30828
|
+
#
|
30829
|
+
# @!attribute [rw] client_request_token
|
30830
|
+
# A unique, case-sensitive identifier that you provide to ensure the
|
30831
|
+
# idempotency of the operation. An idempotent operation completes no
|
30832
|
+
# more than one time.
|
30833
|
+
#
|
30834
|
+
# **A suitable default value is auto-generated.** You should normally
|
30835
|
+
# not need to pass this option.
|
30836
|
+
# @return [String]
|
30837
|
+
#
|
30838
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccessRequest AWS API Documentation
|
30839
|
+
#
|
30840
|
+
class SendPipelineExecutionStepSuccessRequest < Struct.new(
|
30841
|
+
:callback_token,
|
30842
|
+
:output_parameters,
|
30843
|
+
:client_request_token)
|
30844
|
+
SENSITIVE = []
|
30845
|
+
include Aws::Structure
|
30846
|
+
end
|
30847
|
+
|
30848
|
+
# @!attribute [rw] pipeline_execution_arn
|
30849
|
+
# The Amazon Resource Name (ARN) of the pipeline execution.
|
30850
|
+
# @return [String]
|
30851
|
+
#
|
30852
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccessResponse AWS API Documentation
|
30853
|
+
#
|
30854
|
+
class SendPipelineExecutionStepSuccessResponse < Struct.new(
|
30855
|
+
:pipeline_execution_arn)
|
30856
|
+
SENSITIVE = []
|
30857
|
+
include Aws::Structure
|
30858
|
+
end
|
30859
|
+
|
30381
30860
|
# Details of a provisioned service catalog product. For information
|
30382
30861
|
# about service catalog, see [What is AWS Service Catalog][1].
|
30383
30862
|
#
|
@@ -30478,10 +30957,11 @@ module Aws::SageMaker
|
|
30478
30957
|
include Aws::Structure
|
30479
30958
|
end
|
30480
30959
|
|
30481
|
-
# Specifies options
|
30482
|
-
#
|
30483
|
-
# CreateDomain API is called, and as part of `UserSettings` when the
|
30484
|
-
# CreateUserProfile API is called.
|
30960
|
+
# Specifies options for sharing SageMaker Studio notebooks. These
|
30961
|
+
# settings are specified as part of `DefaultUserSettings` when the
|
30962
|
+
# `CreateDomain` API is called, and as part of `UserSettings` when the
|
30963
|
+
# `CreateUserProfile` API is called. When `SharingSettings` is not
|
30964
|
+
# specified, notebook sharing isn't allowed.
|
30485
30965
|
#
|
30486
30966
|
# @note When making an API call, you may pass SharingSettings
|
30487
30967
|
# data as a hash:
|
@@ -30995,11 +31475,11 @@ module Aws::SageMaker
|
|
30995
31475
|
include Aws::Structure
|
30996
31476
|
end
|
30997
31477
|
|
30998
|
-
# Specifies a limit to how long a model training
|
30999
|
-
# run. It also specifies how long
|
31000
|
-
#
|
31001
|
-
# Amazon SageMaker ends the training or compilation job. Use
|
31002
|
-
# cap model training costs.
|
31478
|
+
# Specifies a limit to how long a model training job, model compilation
|
31479
|
+
# job, or hyperparameter tuning job can run. It also specifies how long
|
31480
|
+
# a managed Spot training job has to complete. When the job reaches the
|
31481
|
+
# time limit, Amazon SageMaker ends the training or compilation job. Use
|
31482
|
+
# this API to cap model training costs.
|
31003
31483
|
#
|
31004
31484
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
31005
31485
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -31029,18 +31509,27 @@ module Aws::SageMaker
|
|
31029
31509
|
# }
|
31030
31510
|
#
|
31031
31511
|
# @!attribute [rw] max_runtime_in_seconds
|
31032
|
-
# The maximum length of time, in seconds, that
|
31033
|
-
# compilation job can run. If job does not complete during this
|
31034
|
-
# Amazon SageMaker ends the job.
|
31035
|
-
#
|
31512
|
+
# The maximum length of time, in seconds, that a training or
|
31513
|
+
# compilation job can run. If the job does not complete during this
|
31514
|
+
# time, Amazon SageMaker ends the job.
|
31515
|
+
#
|
31516
|
+
# When `RetryStrategy` is specified in the job request,
|
31517
|
+
# `MaxRuntimeInSeconds` specifies the maximum time for all of the
|
31518
|
+
# attempts in total, not each individual attempt.
|
31519
|
+
#
|
31520
|
+
# The default value is 1 day. The maximum value is 28 days.
|
31036
31521
|
# @return [Integer]
|
31037
31522
|
#
|
31038
31523
|
# @!attribute [rw] max_wait_time_in_seconds
|
31039
|
-
# The maximum length of time, in seconds,
|
31040
|
-
#
|
31041
|
-
#
|
31042
|
-
#
|
31043
|
-
#
|
31524
|
+
# The maximum length of time, in seconds, that a managed Spot training
|
31525
|
+
# job has to complete. It is the amount of time spent waiting for Spot
|
31526
|
+
# capacity plus the amount of time the job can run. It must be equal
|
31527
|
+
# to or greater than `MaxRuntimeInSeconds`. If the job does not
|
31528
|
+
# complete during this time, Amazon SageMaker ends the job.
|
31529
|
+
#
|
31530
|
+
# When `RetryStrategy` is specified in the job request,
|
31531
|
+
# `MaxWaitTimeInSeconds` specifies the maximum time for all of the
|
31532
|
+
# attempts in total, not each individual attempt.
|
31044
31533
|
# @return [Integer]
|
31045
31534
|
#
|
31046
31535
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
|
@@ -31113,7 +31602,23 @@ module Aws::SageMaker
|
|
31113
31602
|
include Aws::Structure
|
31114
31603
|
end
|
31115
31604
|
|
31116
|
-
#
|
31605
|
+
# A tag object that consists of a key and an optional value, used to
|
31606
|
+
# manage metadata for Amazon SageMaker AWS resources.
|
31607
|
+
#
|
31608
|
+
# You can add tags to notebook instances, training jobs, hyperparameter
|
31609
|
+
# tuning jobs, batch transform jobs, models, labeling jobs, work teams,
|
31610
|
+
# endpoint configurations, and endpoints. For more information on adding
|
31611
|
+
# tags to Amazon SageMaker resources, see AddTags.
|
31612
|
+
#
|
31613
|
+
# For more information on adding metadata to your AWS resources with
|
31614
|
+
# tagging, see [Tagging AWS resources][1]. For advice on best practices
|
31615
|
+
# for managing AWS resources with tagging, see [Tagging Best Practices:
|
31616
|
+
# Implement an Effective AWS Resource Tagging Strategy][2].
|
31617
|
+
#
|
31618
|
+
#
|
31619
|
+
#
|
31620
|
+
# [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
|
31621
|
+
# [2]: https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf
|
31117
31622
|
#
|
31118
31623
|
# @note When making an API call, you may pass Tag
|
31119
31624
|
# data as a hash:
|
@@ -31124,7 +31629,7 @@ module Aws::SageMaker
|
|
31124
31629
|
# }
|
31125
31630
|
#
|
31126
31631
|
# @!attribute [rw] key
|
31127
|
-
# The tag key.
|
31632
|
+
# The tag key. Tag keys must be unique per resource.
|
31128
31633
|
# @return [String]
|
31129
31634
|
#
|
31130
31635
|
# @!attribute [rw] value
|
@@ -31435,9 +31940,10 @@ module Aws::SageMaker
|
|
31435
31940
|
# @return [Types::VpcConfig]
|
31436
31941
|
#
|
31437
31942
|
# @!attribute [rw] stopping_condition
|
31438
|
-
# Specifies a limit to how long a model training job can run.
|
31439
|
-
#
|
31440
|
-
#
|
31943
|
+
# Specifies a limit to how long a model training job can run. It also
|
31944
|
+
# specifies how long a managed Spot training job has to complete. When
|
31945
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
31946
|
+
# job. Use this API to cap model training costs.
|
31441
31947
|
#
|
31442
31948
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
31443
31949
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -31558,6 +32064,15 @@ module Aws::SageMaker
|
|
31558
32064
|
# training job.
|
31559
32065
|
# @return [Array<Types::DebugRuleEvaluationStatus>]
|
31560
32066
|
#
|
32067
|
+
# @!attribute [rw] environment
|
32068
|
+
# The environment variables to set in the Docker container.
|
32069
|
+
# @return [Hash<String,String>]
|
32070
|
+
#
|
32071
|
+
# @!attribute [rw] retry_strategy
|
32072
|
+
# The number of times to retry the job when the job fails due to an
|
32073
|
+
# `InternalServerError`.
|
32074
|
+
# @return [Types::RetryStrategy]
|
32075
|
+
#
|
31561
32076
|
# @!attribute [rw] tags
|
31562
32077
|
# An array of key-value pairs. You can use tags to categorize your AWS
|
31563
32078
|
# resources in different ways, for example, by purpose, owner, or
|
@@ -31605,6 +32120,8 @@ module Aws::SageMaker
|
|
31605
32120
|
:debug_rule_configurations,
|
31606
32121
|
:tensor_board_output_config,
|
31607
32122
|
:debug_rule_evaluation_statuses,
|
32123
|
+
:environment,
|
32124
|
+
:retry_strategy,
|
31608
32125
|
:tags)
|
31609
32126
|
SENSITIVE = []
|
31610
32127
|
include Aws::Structure
|
@@ -31698,9 +32215,10 @@ module Aws::SageMaker
|
|
31698
32215
|
# @return [Types::ResourceConfig]
|
31699
32216
|
#
|
31700
32217
|
# @!attribute [rw] stopping_condition
|
31701
|
-
# Specifies a limit to how long a model training job can run.
|
31702
|
-
#
|
31703
|
-
#
|
32218
|
+
# Specifies a limit to how long a model training job can run. It also
|
32219
|
+
# specifies how long a managed Spot training job has to complete. When
|
32220
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
32221
|
+
# job. Use this API to cap model training costs.
|
31704
32222
|
#
|
31705
32223
|
# To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
|
31706
32224
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -32033,7 +32551,7 @@ module Aws::SageMaker
|
|
32033
32551
|
#
|
32034
32552
|
#
|
32035
32553
|
# [1]: https://mxnet.apache.org/api/faq/recordio
|
32036
|
-
# [2]: https://www.tensorflow.org/guide/
|
32554
|
+
# [2]: https://www.tensorflow.org/guide/data#consuming_tfrecord_data
|
32037
32555
|
# @return [String]
|
32038
32556
|
#
|
32039
32557
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformInput AWS API Documentation
|
@@ -33178,7 +33696,7 @@ module Aws::SageMaker
|
|
33178
33696
|
include Aws::Structure
|
33179
33697
|
end
|
33180
33698
|
|
33181
|
-
# Represents an amount of money in United States dollars
|
33699
|
+
# Represents an amount of money in United States dollars.
|
33182
33700
|
#
|
33183
33701
|
# @note When making an API call, you may pass USD
|
33184
33702
|
# data as a hash:
|
@@ -34957,8 +35475,8 @@ module Aws::SageMaker
|
|
34957
35475
|
end
|
34958
35476
|
|
34959
35477
|
# A collection of settings that apply to users of Amazon SageMaker
|
34960
|
-
# Studio. These settings are specified when the CreateUserProfile API
|
34961
|
-
# called, and as `DefaultUserSettings` when the CreateDomain API is
|
35478
|
+
# Studio. These settings are specified when the `CreateUserProfile` API
|
35479
|
+
# is called, and as `DefaultUserSettings` when the `CreateDomain` API is
|
34962
35480
|
# called.
|
34963
35481
|
#
|
34964
35482
|
# `SecurityGroups` is aggregated when specified in both calls. For all
|
@@ -35027,7 +35545,7 @@ module Aws::SageMaker
|
|
35027
35545
|
# @return [Array<String>]
|
35028
35546
|
#
|
35029
35547
|
# @!attribute [rw] sharing_settings
|
35030
|
-
#
|
35548
|
+
# Specifies options for sharing SageMaker Studio notebooks.
|
35031
35549
|
# @return [Types::SharingSettings]
|
35032
35550
|
#
|
35033
35551
|
# @!attribute [rw] jupyter_server_app_settings
|