aws-sdk-sagemaker 1.83.0 → 1.88.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -87,6 +87,7 @@ module Aws::SageMaker
87
87
  AttributeName = Shapes::StringShape.new(name: 'AttributeName')
88
88
  AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
89
89
  AuthMode = Shapes::StringShape.new(name: 'AuthMode')
90
+ AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
90
91
  AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
91
92
  AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
92
93
  AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
@@ -111,6 +112,8 @@ module Aws::SageMaker
111
112
  AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
112
113
  AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
113
114
  AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
115
+ AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
116
+ AutoMLPartialFailureReasons = Shapes::ListShape.new(name: 'AutoMLPartialFailureReasons')
114
117
  AutoMLS3DataSource = Shapes::StructureShape.new(name: 'AutoMLS3DataSource')
115
118
  AutoMLS3DataType = Shapes::StringShape.new(name: 'AutoMLS3DataType')
116
119
  AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
@@ -127,8 +130,12 @@ module Aws::SageMaker
127
130
  BooleanOperator = Shapes::StringShape.new(name: 'BooleanOperator')
128
131
  Branch = Shapes::StringShape.new(name: 'Branch')
129
132
  CacheHitResult = Shapes::StructureShape.new(name: 'CacheHitResult')
133
+ CallbackStepMetadata = Shapes::StructureShape.new(name: 'CallbackStepMetadata')
134
+ CallbackToken = Shapes::StringShape.new(name: 'CallbackToken')
135
+ CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
130
136
  CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
131
137
  CandidateName = Shapes::StringShape.new(name: 'CandidateName')
138
+ CandidateProperties = Shapes::StructureShape.new(name: 'CandidateProperties')
132
139
  CandidateSortBy = Shapes::StringShape.new(name: 'CandidateSortBy')
133
140
  CandidateStatus = Shapes::StringShape.new(name: 'CandidateStatus')
134
141
  CandidateStepArn = Shapes::StringShape.new(name: 'CandidateStepArn')
@@ -554,6 +561,7 @@ module Aws::SageMaker
554
561
  ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
555
562
  ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
556
563
  Explainability = Shapes::StructureShape.new(name: 'Explainability')
564
+ ExplainabilityLocation = Shapes::StringShape.new(name: 'ExplainabilityLocation')
557
565
  FailureReason = Shapes::StringShape.new(name: 'FailureReason')
558
566
  FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
559
567
  FeatureDefinitions = Shapes::ListShape.new(name: 'FeatureDefinitions')
@@ -857,6 +865,7 @@ module Aws::SageMaker
857
865
  MaxRuntimePerTrainingJobInSeconds = Shapes::IntegerShape.new(name: 'MaxRuntimePerTrainingJobInSeconds')
858
866
  MaxWaitTimeInSeconds = Shapes::IntegerShape.new(name: 'MaxWaitTimeInSeconds')
859
867
  MaximumExecutionTimeoutInSeconds = Shapes::IntegerShape.new(name: 'MaximumExecutionTimeoutInSeconds')
868
+ MaximumRetryAttempts = Shapes::IntegerShape.new(name: 'MaximumRetryAttempts')
860
869
  MediaType = Shapes::StringShape.new(name: 'MediaType')
861
870
  MemberDefinition = Shapes::StructureShape.new(name: 'MemberDefinition')
862
871
  MemberDefinitions = Shapes::ListShape.new(name: 'MemberDefinitions')
@@ -878,6 +887,8 @@ module Aws::SageMaker
878
887
  ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
879
888
  ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
880
889
  ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
890
+ ModelDeployConfig = Shapes::StructureShape.new(name: 'ModelDeployConfig')
891
+ ModelDeployResult = Shapes::StructureShape.new(name: 'ModelDeployResult')
881
892
  ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
882
893
  ModelExplainabilityAppSpecification = Shapes::StructureShape.new(name: 'ModelExplainabilityAppSpecification')
883
894
  ModelExplainabilityBaselineConfig = Shapes::StructureShape.new(name: 'ModelExplainabilityBaselineConfig')
@@ -1007,6 +1018,8 @@ module Aws::SageMaker
1007
1018
  OrderKey = Shapes::StringShape.new(name: 'OrderKey')
1008
1019
  OutputConfig = Shapes::StructureShape.new(name: 'OutputConfig')
1009
1020
  OutputDataConfig = Shapes::StructureShape.new(name: 'OutputDataConfig')
1021
+ OutputParameter = Shapes::StructureShape.new(name: 'OutputParameter')
1022
+ OutputParameterList = Shapes::ListShape.new(name: 'OutputParameterList')
1010
1023
  PaginationToken = Shapes::StringShape.new(name: 'PaginationToken')
1011
1024
  Parameter = Shapes::StructureShape.new(name: 'Parameter')
1012
1025
  ParameterKey = Shapes::StringShape.new(name: 'ParameterKey')
@@ -1028,6 +1041,7 @@ module Aws::SageMaker
1028
1041
  PipelineExecution = Shapes::StructureShape.new(name: 'PipelineExecution')
1029
1042
  PipelineExecutionArn = Shapes::StringShape.new(name: 'PipelineExecutionArn')
1030
1043
  PipelineExecutionDescription = Shapes::StringShape.new(name: 'PipelineExecutionDescription')
1044
+ PipelineExecutionFailureReason = Shapes::StringShape.new(name: 'PipelineExecutionFailureReason')
1031
1045
  PipelineExecutionName = Shapes::StringShape.new(name: 'PipelineExecutionName')
1032
1046
  PipelineExecutionStatus = Shapes::StringShape.new(name: 'PipelineExecutionStatus')
1033
1047
  PipelineExecutionStep = Shapes::StructureShape.new(name: 'PipelineExecutionStep')
@@ -1035,6 +1049,7 @@ module Aws::SageMaker
1035
1049
  PipelineExecutionStepMetadata = Shapes::StructureShape.new(name: 'PipelineExecutionStepMetadata')
1036
1050
  PipelineExecutionSummary = Shapes::StructureShape.new(name: 'PipelineExecutionSummary')
1037
1051
  PipelineExecutionSummaryList = Shapes::ListShape.new(name: 'PipelineExecutionSummaryList')
1052
+ PipelineExperimentConfig = Shapes::StructureShape.new(name: 'PipelineExperimentConfig')
1038
1053
  PipelineName = Shapes::StringShape.new(name: 'PipelineName')
1039
1054
  PipelineParameterName = Shapes::StringShape.new(name: 'PipelineParameterName')
1040
1055
  PipelineStatus = Shapes::StringShape.new(name: 'PipelineStatus')
@@ -1147,6 +1162,7 @@ module Aws::SageMaker
1147
1162
  ResponseMIMETypes = Shapes::ListShape.new(name: 'ResponseMIMETypes')
1148
1163
  RetentionPolicy = Shapes::StructureShape.new(name: 'RetentionPolicy')
1149
1164
  RetentionType = Shapes::StringShape.new(name: 'RetentionType')
1165
+ RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
1150
1166
  RoleArn = Shapes::StringShape.new(name: 'RoleArn')
1151
1167
  RootAccess = Shapes::StringShape.new(name: 'RootAccess')
1152
1168
  RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
@@ -1176,6 +1192,10 @@ module Aws::SageMaker
1176
1192
  SecurityGroupId = Shapes::StringShape.new(name: 'SecurityGroupId')
1177
1193
  SecurityGroupIds = Shapes::ListShape.new(name: 'SecurityGroupIds')
1178
1194
  Seed = Shapes::IntegerShape.new(name: 'Seed')
1195
+ SendPipelineExecutionStepFailureRequest = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepFailureRequest')
1196
+ SendPipelineExecutionStepFailureResponse = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepFailureResponse')
1197
+ SendPipelineExecutionStepSuccessRequest = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepSuccessRequest')
1198
+ SendPipelineExecutionStepSuccessResponse = Shapes::StructureShape.new(name: 'SendPipelineExecutionStepSuccessResponse')
1179
1199
  ServiceCatalogEntityId = Shapes::StringShape.new(name: 'ServiceCatalogEntityId')
1180
1200
  ServiceCatalogProvisionedProductDetails = Shapes::StructureShape.new(name: 'ServiceCatalogProvisionedProductDetails')
1181
1201
  ServiceCatalogProvisioningDetails = Shapes::StructureShape.new(name: 'ServiceCatalogProvisioningDetails')
@@ -1268,6 +1288,9 @@ module Aws::SageMaker
1268
1288
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
1269
1289
  TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
1270
1290
  TrafficRoutingConfigType = Shapes::StringShape.new(name: 'TrafficRoutingConfigType')
1291
+ TrainingEnvironmentKey = Shapes::StringShape.new(name: 'TrainingEnvironmentKey')
1292
+ TrainingEnvironmentMap = Shapes::MapShape.new(name: 'TrainingEnvironmentMap')
1293
+ TrainingEnvironmentValue = Shapes::StringShape.new(name: 'TrainingEnvironmentValue')
1271
1294
  TrainingInputMode = Shapes::StringShape.new(name: 'TrainingInputMode')
1272
1295
  TrainingInstanceCount = Shapes::IntegerShape.new(name: 'TrainingInstanceCount')
1273
1296
  TrainingInstanceType = Shapes::StringShape.new(name: 'TrainingInstanceType')
@@ -1585,6 +1608,7 @@ module Aws::SageMaker
1585
1608
  AutoMLCandidate.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
1586
1609
  AutoMLCandidate.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
1587
1610
  AutoMLCandidate.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
1611
+ AutoMLCandidate.add_member(:candidate_properties, Shapes::ShapeRef.new(shape: CandidateProperties, location_name: "CandidateProperties"))
1588
1612
  AutoMLCandidate.struct_class = Types::AutoMLCandidate
1589
1613
 
1590
1614
  AutoMLCandidateStep.add_member(:candidate_step_type, Shapes::ShapeRef.new(shape: CandidateStepType, required: true, location_name: "CandidateStepType"))
@@ -1637,12 +1661,18 @@ module Aws::SageMaker
1637
1661
  AutoMLJobSummary.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
1638
1662
  AutoMLJobSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
1639
1663
  AutoMLJobSummary.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
1664
+ AutoMLJobSummary.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
1640
1665
  AutoMLJobSummary.struct_class = Types::AutoMLJobSummary
1641
1666
 
1642
1667
  AutoMLOutputDataConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
1643
1668
  AutoMLOutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
1644
1669
  AutoMLOutputDataConfig.struct_class = Types::AutoMLOutputDataConfig
1645
1670
 
1671
+ AutoMLPartialFailureReason.add_member(:partial_failure_message, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "PartialFailureMessage"))
1672
+ AutoMLPartialFailureReason.struct_class = Types::AutoMLPartialFailureReason
1673
+
1674
+ AutoMLPartialFailureReasons.member = Shapes::ShapeRef.new(shape: AutoMLPartialFailureReason)
1675
+
1646
1676
  AutoMLS3DataSource.add_member(:s3_data_type, Shapes::ShapeRef.new(shape: AutoMLS3DataType, required: true, location_name: "S3DataType"))
1647
1677
  AutoMLS3DataSource.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
1648
1678
  AutoMLS3DataSource.struct_class = Types::AutoMLS3DataSource
@@ -1666,6 +1696,17 @@ module Aws::SageMaker
1666
1696
  CacheHitResult.add_member(:source_pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "SourcePipelineExecutionArn"))
1667
1697
  CacheHitResult.struct_class = Types::CacheHitResult
1668
1698
 
1699
+ CallbackStepMetadata.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, location_name: "CallbackToken"))
1700
+ CallbackStepMetadata.add_member(:sqs_queue_url, Shapes::ShapeRef.new(shape: String256, location_name: "SqsQueueUrl"))
1701
+ CallbackStepMetadata.add_member(:output_parameters, Shapes::ShapeRef.new(shape: OutputParameterList, location_name: "OutputParameters"))
1702
+ CallbackStepMetadata.struct_class = Types::CallbackStepMetadata
1703
+
1704
+ CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
1705
+ CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
1706
+
1707
+ CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
1708
+ CandidateProperties.struct_class = Types::CandidateProperties
1709
+
1669
1710
  CandidateSteps.member = Shapes::ShapeRef.new(shape: AutoMLCandidateStep)
1670
1711
 
1671
1712
  CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
@@ -1876,6 +1917,7 @@ module Aws::SageMaker
1876
1917
  CreateAutoMLJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
1877
1918
  CreateAutoMLJobRequest.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
1878
1919
  CreateAutoMLJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1920
+ CreateAutoMLJobRequest.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
1879
1921
  CreateAutoMLJobRequest.struct_class = Types::CreateAutoMLJobRequest
1880
1922
 
1881
1923
  CreateAutoMLJobResponse.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
@@ -2255,6 +2297,8 @@ module Aws::SageMaker
2255
2297
  CreateTrainingJobRequest.add_member(:experiment_config, Shapes::ShapeRef.new(shape: ExperimentConfig, location_name: "ExperimentConfig"))
2256
2298
  CreateTrainingJobRequest.add_member(:profiler_config, Shapes::ShapeRef.new(shape: ProfilerConfig, location_name: "ProfilerConfig"))
2257
2299
  CreateTrainingJobRequest.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
2300
+ CreateTrainingJobRequest.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
2301
+ CreateTrainingJobRequest.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
2258
2302
  CreateTrainingJobRequest.struct_class = Types::CreateTrainingJobRequest
2259
2303
 
2260
2304
  CreateTrainingJobResponse.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
@@ -2690,12 +2734,15 @@ module Aws::SageMaker
2690
2734
  DescribeAutoMLJobResponse.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
2691
2735
  DescribeAutoMLJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
2692
2736
  DescribeAutoMLJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
2737
+ DescribeAutoMLJobResponse.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
2693
2738
  DescribeAutoMLJobResponse.add_member(:best_candidate, Shapes::ShapeRef.new(shape: AutoMLCandidate, location_name: "BestCandidate"))
2694
2739
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_status, Shapes::ShapeRef.new(shape: AutoMLJobStatus, required: true, location_name: "AutoMLJobStatus"))
2695
2740
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_secondary_status, Shapes::ShapeRef.new(shape: AutoMLJobSecondaryStatus, required: true, location_name: "AutoMLJobSecondaryStatus"))
2696
2741
  DescribeAutoMLJobResponse.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
2697
2742
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
2698
2743
  DescribeAutoMLJobResponse.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: ResolvedAttributes, location_name: "ResolvedAttributes"))
2744
+ DescribeAutoMLJobResponse.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
2745
+ DescribeAutoMLJobResponse.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
2699
2746
  DescribeAutoMLJobResponse.struct_class = Types::DescribeAutoMLJobResponse
2700
2747
 
2701
2748
  DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
@@ -3149,6 +3196,8 @@ module Aws::SageMaker
3149
3196
  DescribePipelineExecutionResponse.add_member(:pipeline_execution_display_name, Shapes::ShapeRef.new(shape: PipelineExecutionName, location_name: "PipelineExecutionDisplayName"))
3150
3197
  DescribePipelineExecutionResponse.add_member(:pipeline_execution_status, Shapes::ShapeRef.new(shape: PipelineExecutionStatus, location_name: "PipelineExecutionStatus"))
3151
3198
  DescribePipelineExecutionResponse.add_member(:pipeline_execution_description, Shapes::ShapeRef.new(shape: PipelineExecutionDescription, location_name: "PipelineExecutionDescription"))
3199
+ DescribePipelineExecutionResponse.add_member(:pipeline_experiment_config, Shapes::ShapeRef.new(shape: PipelineExperimentConfig, location_name: "PipelineExperimentConfig"))
3200
+ DescribePipelineExecutionResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: PipelineExecutionFailureReason, location_name: "FailureReason"))
3152
3201
  DescribePipelineExecutionResponse.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
3153
3202
  DescribePipelineExecutionResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
3154
3203
  DescribePipelineExecutionResponse.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
@@ -3259,6 +3308,8 @@ module Aws::SageMaker
3259
3308
  DescribeTrainingJobResponse.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
3260
3309
  DescribeTrainingJobResponse.add_member(:profiler_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: ProfilerRuleEvaluationStatuses, location_name: "ProfilerRuleEvaluationStatuses"))
3261
3310
  DescribeTrainingJobResponse.add_member(:profiling_status, Shapes::ShapeRef.new(shape: ProfilingStatus, location_name: "ProfilingStatus"))
3311
+ DescribeTrainingJobResponse.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
3312
+ DescribeTrainingJobResponse.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
3262
3313
  DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
3263
3314
 
3264
3315
  DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
@@ -3729,6 +3780,7 @@ module Aws::SageMaker
3729
3780
  HyperParameterTrainingJobDefinition.add_member(:enable_inter_container_traffic_encryption, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableInterContainerTrafficEncryption"))
3730
3781
  HyperParameterTrainingJobDefinition.add_member(:enable_managed_spot_training, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableManagedSpotTraining"))
3731
3782
  HyperParameterTrainingJobDefinition.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
3783
+ HyperParameterTrainingJobDefinition.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
3732
3784
  HyperParameterTrainingJobDefinition.struct_class = Types::HyperParameterTrainingJobDefinition
3733
3785
 
3734
3786
  HyperParameterTrainingJobDefinitions.member = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition)
@@ -4734,6 +4786,13 @@ module Aws::SageMaker
4734
4786
  ModelDataQuality.add_member(:constraints, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Constraints"))
4735
4787
  ModelDataQuality.struct_class = Types::ModelDataQuality
4736
4788
 
4789
+ ModelDeployConfig.add_member(:auto_generate_endpoint_name, Shapes::ShapeRef.new(shape: AutoGenerateEndpointName, location_name: "AutoGenerateEndpointName"))
4790
+ ModelDeployConfig.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4791
+ ModelDeployConfig.struct_class = Types::ModelDeployConfig
4792
+
4793
+ ModelDeployResult.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4794
+ ModelDeployResult.struct_class = Types::ModelDeployResult
4795
+
4737
4796
  ModelDigests.add_member(:artifact_digest, Shapes::ShapeRef.new(shape: ArtifactDigest, location_name: "ArtifactDigest"))
4738
4797
  ModelDigests.struct_class = Types::ModelDigests
4739
4798
 
@@ -5096,6 +5155,12 @@ module Aws::SageMaker
5096
5155
  OutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
5097
5156
  OutputDataConfig.struct_class = Types::OutputDataConfig
5098
5157
 
5158
+ OutputParameter.add_member(:name, Shapes::ShapeRef.new(shape: String256, required: true, location_name: "Name"))
5159
+ OutputParameter.add_member(:value, Shapes::ShapeRef.new(shape: String1024, required: true, location_name: "Value"))
5160
+ OutputParameter.struct_class = Types::OutputParameter
5161
+
5162
+ OutputParameterList.member = Shapes::ShapeRef.new(shape: OutputParameter)
5163
+
5099
5164
  Parameter.add_member(:name, Shapes::ShapeRef.new(shape: PipelineParameterName, required: true, location_name: "Name"))
5100
5165
  Parameter.add_member(:value, Shapes::ShapeRef.new(shape: String1024, required: true, location_name: "Value"))
5101
5166
  Parameter.struct_class = Types::Parameter
@@ -5144,6 +5209,8 @@ module Aws::SageMaker
5144
5209
  PipelineExecution.add_member(:pipeline_execution_display_name, Shapes::ShapeRef.new(shape: PipelineExecutionName, location_name: "PipelineExecutionDisplayName"))
5145
5210
  PipelineExecution.add_member(:pipeline_execution_status, Shapes::ShapeRef.new(shape: PipelineExecutionStatus, location_name: "PipelineExecutionStatus"))
5146
5211
  PipelineExecution.add_member(:pipeline_execution_description, Shapes::ShapeRef.new(shape: PipelineExecutionDescription, location_name: "PipelineExecutionDescription"))
5212
+ PipelineExecution.add_member(:pipeline_experiment_config, Shapes::ShapeRef.new(shape: PipelineExperimentConfig, location_name: "PipelineExperimentConfig"))
5213
+ PipelineExecution.add_member(:failure_reason, Shapes::ShapeRef.new(shape: PipelineExecutionFailureReason, location_name: "FailureReason"))
5147
5214
  PipelineExecution.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
5148
5215
  PipelineExecution.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModifiedTime"))
5149
5216
  PipelineExecution.add_member(:created_by, Shapes::ShapeRef.new(shape: UserContext, location_name: "CreatedBy"))
@@ -5168,6 +5235,7 @@ module Aws::SageMaker
5168
5235
  PipelineExecutionStepMetadata.add_member(:model, Shapes::ShapeRef.new(shape: ModelStepMetadata, location_name: "Model"))
5169
5236
  PipelineExecutionStepMetadata.add_member(:register_model, Shapes::ShapeRef.new(shape: RegisterModelStepMetadata, location_name: "RegisterModel"))
5170
5237
  PipelineExecutionStepMetadata.add_member(:condition, Shapes::ShapeRef.new(shape: ConditionStepMetadata, location_name: "Condition"))
5238
+ PipelineExecutionStepMetadata.add_member(:callback, Shapes::ShapeRef.new(shape: CallbackStepMetadata, location_name: "Callback"))
5171
5239
  PipelineExecutionStepMetadata.struct_class = Types::PipelineExecutionStepMetadata
5172
5240
 
5173
5241
  PipelineExecutionSummary.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
@@ -5179,6 +5247,10 @@ module Aws::SageMaker
5179
5247
 
5180
5248
  PipelineExecutionSummaryList.member = Shapes::ShapeRef.new(shape: PipelineExecutionSummary)
5181
5249
 
5250
+ PipelineExperimentConfig.add_member(:experiment_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "ExperimentName"))
5251
+ PipelineExperimentConfig.add_member(:trial_name, Shapes::ShapeRef.new(shape: ExperimentEntityName, location_name: "TrialName"))
5252
+ PipelineExperimentConfig.struct_class = Types::PipelineExperimentConfig
5253
+
5182
5254
  PipelineSummary.add_member(:pipeline_arn, Shapes::ShapeRef.new(shape: PipelineArn, location_name: "PipelineArn"))
5183
5255
  PipelineSummary.add_member(:pipeline_name, Shapes::ShapeRef.new(shape: PipelineName, location_name: "PipelineName"))
5184
5256
  PipelineSummary.add_member(:pipeline_display_name, Shapes::ShapeRef.new(shape: PipelineName, location_name: "PipelineDisplayName"))
@@ -5453,6 +5525,9 @@ module Aws::SageMaker
5453
5525
  RetentionPolicy.add_member(:home_efs_file_system, Shapes::ShapeRef.new(shape: RetentionType, location_name: "HomeEfsFileSystem"))
5454
5526
  RetentionPolicy.struct_class = Types::RetentionPolicy
5455
5527
 
5528
+ RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
5529
+ RetryStrategy.struct_class = Types::RetryStrategy
5530
+
5456
5531
  RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
5457
5532
  RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
5458
5533
 
@@ -5514,6 +5589,22 @@ module Aws::SageMaker
5514
5589
 
5515
5590
  SecurityGroupIds.member = Shapes::ShapeRef.new(shape: SecurityGroupId)
5516
5591
 
5592
+ SendPipelineExecutionStepFailureRequest.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, required: true, location_name: "CallbackToken"))
5593
+ SendPipelineExecutionStepFailureRequest.add_member(:failure_reason, Shapes::ShapeRef.new(shape: String256, location_name: "FailureReason"))
5594
+ SendPipelineExecutionStepFailureRequest.add_member(:client_request_token, Shapes::ShapeRef.new(shape: IdempotencyToken, location_name: "ClientRequestToken", metadata: {"idempotencyToken"=>true}))
5595
+ SendPipelineExecutionStepFailureRequest.struct_class = Types::SendPipelineExecutionStepFailureRequest
5596
+
5597
+ SendPipelineExecutionStepFailureResponse.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
5598
+ SendPipelineExecutionStepFailureResponse.struct_class = Types::SendPipelineExecutionStepFailureResponse
5599
+
5600
+ SendPipelineExecutionStepSuccessRequest.add_member(:callback_token, Shapes::ShapeRef.new(shape: CallbackToken, required: true, location_name: "CallbackToken"))
5601
+ SendPipelineExecutionStepSuccessRequest.add_member(:output_parameters, Shapes::ShapeRef.new(shape: OutputParameterList, location_name: "OutputParameters"))
5602
+ SendPipelineExecutionStepSuccessRequest.add_member(:client_request_token, Shapes::ShapeRef.new(shape: IdempotencyToken, location_name: "ClientRequestToken", metadata: {"idempotencyToken"=>true}))
5603
+ SendPipelineExecutionStepSuccessRequest.struct_class = Types::SendPipelineExecutionStepSuccessRequest
5604
+
5605
+ SendPipelineExecutionStepSuccessResponse.add_member(:pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "PipelineExecutionArn"))
5606
+ SendPipelineExecutionStepSuccessResponse.struct_class = Types::SendPipelineExecutionStepSuccessResponse
5607
+
5517
5608
  ServiceCatalogProvisionedProductDetails.add_member(:provisioned_product_id, Shapes::ShapeRef.new(shape: ServiceCatalogEntityId, location_name: "ProvisionedProductId"))
5518
5609
  ServiceCatalogProvisionedProductDetails.add_member(:provisioned_product_status_message, Shapes::ShapeRef.new(shape: ProvisionedProductStatusMessage, location_name: "ProvisionedProductStatusMessage"))
5519
5610
  ServiceCatalogProvisionedProductDetails.struct_class = Types::ServiceCatalogProvisionedProductDetails
@@ -5642,6 +5733,9 @@ module Aws::SageMaker
5642
5733
  TrafficRoutingConfig.add_member(:canary_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "CanarySize"))
5643
5734
  TrafficRoutingConfig.struct_class = Types::TrafficRoutingConfig
5644
5735
 
5736
+ TrainingEnvironmentMap.key = Shapes::ShapeRef.new(shape: TrainingEnvironmentKey)
5737
+ TrainingEnvironmentMap.value = Shapes::ShapeRef.new(shape: TrainingEnvironmentValue)
5738
+
5645
5739
  TrainingInstanceTypes.member = Shapes::ShapeRef.new(shape: TrainingInstanceType)
5646
5740
 
5647
5741
  TrainingJob.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, location_name: "TrainingJobName"))
@@ -5678,6 +5772,8 @@ module Aws::SageMaker
5678
5772
  TrainingJob.add_member(:debug_rule_configurations, Shapes::ShapeRef.new(shape: DebugRuleConfigurations, location_name: "DebugRuleConfigurations"))
5679
5773
  TrainingJob.add_member(:tensor_board_output_config, Shapes::ShapeRef.new(shape: TensorBoardOutputConfig, location_name: "TensorBoardOutputConfig"))
5680
5774
  TrainingJob.add_member(:debug_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: DebugRuleEvaluationStatuses, location_name: "DebugRuleEvaluationStatuses"))
5775
+ TrainingJob.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
5776
+ TrainingJob.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
5681
5777
  TrainingJob.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
5682
5778
  TrainingJob.struct_class = Types::TrainingJob
5683
5779
 
@@ -8250,6 +8346,26 @@ module Aws::SageMaker
8250
8346
  )
8251
8347
  end)
8252
8348
 
8349
+ api.add_operation(:send_pipeline_execution_step_failure, Seahorse::Model::Operation.new.tap do |o|
8350
+ o.name = "SendPipelineExecutionStepFailure"
8351
+ o.http_method = "POST"
8352
+ o.http_request_uri = "/"
8353
+ o.input = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepFailureRequest)
8354
+ o.output = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepFailureResponse)
8355
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
8356
+ o.errors << Shapes::ShapeRef.new(shape: ResourceLimitExceeded)
8357
+ end)
8358
+
8359
+ api.add_operation(:send_pipeline_execution_step_success, Seahorse::Model::Operation.new.tap do |o|
8360
+ o.name = "SendPipelineExecutionStepSuccess"
8361
+ o.http_method = "POST"
8362
+ o.http_request_uri = "/"
8363
+ o.input = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepSuccessRequest)
8364
+ o.output = Shapes::ShapeRef.new(shape: SendPipelineExecutionStepSuccessResponse)
8365
+ o.errors << Shapes::ShapeRef.new(shape: ResourceNotFound)
8366
+ o.errors << Shapes::ShapeRef.new(shape: ResourceLimitExceeded)
8367
+ end)
8368
+
8253
8369
  api.add_operation(:start_monitoring_schedule, Seahorse::Model::Operation.new.tap do |o|
8254
8370
  o.name = "StartMonitoringSchedule"
8255
8371
  o.http_method = "POST"
@@ -1706,10 +1706,10 @@ module Aws::SageMaker
1706
1706
  end
1707
1707
 
1708
1708
  # An Autopilot job returns recommendations, or candidates. Each
1709
- # candidate has futher details about the steps involed, and the status.
1709
+ # candidate has futher details about the steps involved and the status.
1710
1710
  #
1711
1711
  # @!attribute [rw] candidate_name
1712
- # The candidate name.
1712
+ # The name of the candidate.
1713
1713
  # @return [String]
1714
1714
  #
1715
1715
  # @!attribute [rw] final_auto_ml_job_objective_metric
@@ -1717,11 +1717,11 @@ module Aws::SageMaker
1717
1717
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1718
1718
  #
1719
1719
  # @!attribute [rw] objective_status
1720
- # The objective status.
1720
+ # The objective's status.
1721
1721
  # @return [String]
1722
1722
  #
1723
1723
  # @!attribute [rw] candidate_steps
1724
- # The candidate's steps.
1724
+ # Information about the candidate's steps.
1725
1725
  # @return [Array<Types::AutoMLCandidateStep>]
1726
1726
  #
1727
1727
  # @!attribute [rw] candidate_status
@@ -1729,7 +1729,7 @@ module Aws::SageMaker
1729
1729
  # @return [String]
1730
1730
  #
1731
1731
  # @!attribute [rw] inference_containers
1732
- # The inference containers.
1732
+ # Information about the inference container definitions.
1733
1733
  # @return [Array<Types::AutoMLContainerDefinition>]
1734
1734
  #
1735
1735
  # @!attribute [rw] creation_time
@@ -1748,6 +1748,10 @@ module Aws::SageMaker
1748
1748
  # The failure reason.
1749
1749
  # @return [String]
1750
1750
  #
1751
+ # @!attribute [rw] candidate_properties
1752
+ # The AutoML candidate's properties.
1753
+ # @return [Types::CandidateProperties]
1754
+ #
1751
1755
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
1752
1756
  #
1753
1757
  class AutoMLCandidate < Struct.new(
@@ -1760,25 +1764,26 @@ module Aws::SageMaker
1760
1764
  :creation_time,
1761
1765
  :end_time,
1762
1766
  :last_modified_time,
1763
- :failure_reason)
1767
+ :failure_reason,
1768
+ :candidate_properties)
1764
1769
  SENSITIVE = []
1765
1770
  include Aws::Structure
1766
1771
  end
1767
1772
 
1768
- # Information about the steps for a Candidate, and what step it is
1773
+ # Information about the steps for a candidate and what step it is
1769
1774
  # working on.
1770
1775
  #
1771
1776
  # @!attribute [rw] candidate_step_type
1772
- # Whether the Candidate is at the transform, training, or processing
1777
+ # Whether the candidate is at the transform, training, or processing
1773
1778
  # step.
1774
1779
  # @return [String]
1775
1780
  #
1776
1781
  # @!attribute [rw] candidate_step_arn
1777
- # The ARN for the Candidate's step.
1782
+ # The ARN for the candidate's step.
1778
1783
  # @return [String]
1779
1784
  #
1780
1785
  # @!attribute [rw] candidate_step_name
1781
- # The name for the Candidate's step.
1786
+ # The name for the candidate's step.
1782
1787
  # @return [String]
1783
1788
  #
1784
1789
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateStep AWS API Documentation
@@ -1791,8 +1796,8 @@ module Aws::SageMaker
1791
1796
  include Aws::Structure
1792
1797
  end
1793
1798
 
1794
- # Similar to Channel. A channel is a named input source that training
1795
- # algorithms can consume. Refer to Channel for detailed descriptions.
1799
+ # A channel is a named input source that training algorithms can
1800
+ # consume. For more information, see .
1796
1801
  #
1797
1802
  # @note When making an API call, you may pass AutoMLChannel
1798
1803
  # data as a hash:
@@ -1809,16 +1814,16 @@ module Aws::SageMaker
1809
1814
  # }
1810
1815
  #
1811
1816
  # @!attribute [rw] data_source
1812
- # The data source.
1817
+ # The data source for an AutoML channel.
1813
1818
  # @return [Types::AutoMLDataSource]
1814
1819
  #
1815
1820
  # @!attribute [rw] compression_type
1816
- # You can use Gzip or None. The default value is None.
1821
+ # You can use `Gzip` or `None`. The default value is `None`.
1817
1822
  # @return [String]
1818
1823
  #
1819
1824
  # @!attribute [rw] target_attribute_name
1820
- # The name of the target variable in supervised learning, a.k.a.
1821
- # 'y'.
1825
+ # The name of the target variable in supervised learning, usually
1826
+ # represented by 'y'.
1822
1827
  # @return [String]
1823
1828
  #
1824
1829
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
@@ -1832,22 +1837,19 @@ module Aws::SageMaker
1832
1837
  end
1833
1838
 
1834
1839
  # A list of container definitions that describe the different containers
1835
- # that make up one AutoML candidate. Refer to ContainerDefinition for
1836
- # more details.
1840
+ # that make up an AutoML candidate. For more information, see .
1837
1841
  #
1838
1842
  # @!attribute [rw] image
1839
- # The ECR path of the container. Refer to ContainerDefinition for more
1840
- # details.
1843
+ # The ECR path of the container. For more information, see .
1841
1844
  # @return [String]
1842
1845
  #
1843
1846
  # @!attribute [rw] model_data_url
1844
- # The location of the model artifacts. Refer to ContainerDefinition
1845
- # for more details.
1847
+ # The location of the model artifacts. For more information, see .
1846
1848
  # @return [String]
1847
1849
  #
1848
1850
  # @!attribute [rw] environment
1849
- # Environment variables to set in the container. Refer to
1850
- # ContainerDefinition for more details.
1851
+ # The environment variables to set in the container. For more
1852
+ # information, see .
1851
1853
  # @return [Hash<String,String>]
1852
1854
  #
1853
1855
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -1888,14 +1890,14 @@ module Aws::SageMaker
1888
1890
  include Aws::Structure
1889
1891
  end
1890
1892
 
1891
- # Artifacts that are generation during a job.
1893
+ # The artifacts that are generated during an AutoML job.
1892
1894
  #
1893
1895
  # @!attribute [rw] candidate_definition_notebook_location
1894
- # The URL to the notebook location.
1896
+ # The URL of the notebook location.
1895
1897
  # @return [String]
1896
1898
  #
1897
1899
  # @!attribute [rw] data_exploration_notebook_location
1898
- # The URL to the notebook location.
1900
+ # The URL of the notebook location.
1899
1901
  # @return [String]
1900
1902
  #
1901
1903
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobArtifacts AWS API Documentation
@@ -1924,13 +1926,12 @@ module Aws::SageMaker
1924
1926
  # @return [Integer]
1925
1927
  #
1926
1928
  # @!attribute [rw] max_runtime_per_training_job_in_seconds
1927
- # The maximum time, in seconds, a job is allowed to run.
1929
+ # The maximum time, in seconds, a training job is allowed to run as
1930
+ # part of an AutoML job.
1928
1931
  # @return [Integer]
1929
1932
  #
1930
1933
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
1931
- # The maximum time, in seconds, an AutoML job is allowed to wait for a
1932
- # trial to complete. It must be equal to or greater than
1933
- # MaxRuntimePerTrainingJobInSeconds.
1934
+ # The maximum runtime, in seconds, an AutoML job has to complete.
1934
1935
  # @return [Integer]
1935
1936
  #
1936
1937
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
@@ -1943,7 +1944,7 @@ module Aws::SageMaker
1943
1944
  include Aws::Structure
1944
1945
  end
1945
1946
 
1946
- # A collection of settings used for a job.
1947
+ # A collection of settings used for an AutoML job.
1947
1948
  #
1948
1949
  # @note When making an API call, you may pass AutoMLJobConfig
1949
1950
  # data as a hash:
@@ -1965,12 +1966,12 @@ module Aws::SageMaker
1965
1966
  # }
1966
1967
  #
1967
1968
  # @!attribute [rw] completion_criteria
1968
- # How long a job is allowed to run, or how many candidates a job is
1969
- # allowed to generate.
1969
+ # How long an AutoML job is allowed to run, or how many candidates a
1970
+ # job is allowed to generate.
1970
1971
  # @return [Types::AutoMLJobCompletionCriteria]
1971
1972
  #
1972
1973
  # @!attribute [rw] security_config
1973
- # Security configuration for traffic encryption or Amazon VPC
1974
+ # The security configuration for traffic encryption or Amazon VPC
1974
1975
  # settings.
1975
1976
  # @return [Types::AutoMLSecurityConfig]
1976
1977
  #
@@ -2002,23 +2003,23 @@ module Aws::SageMaker
2002
2003
  #
2003
2004
  # * `MSE`\: The mean squared error (MSE) is the average of the squared
2004
2005
  # differences between the predicted and actual values. It is used
2005
- # for regression. MSE values are always positive, the better a model
2006
- # is at predicting the actual values the smaller the MSE value. When
2007
- # the data contains outliers, they tend to dominate the MSE which
2008
- # might cause subpar prediction performance.
2009
- #
2010
- # * `Accuracy`\: The ratio of the number correctly classified items to
2011
- # the total number (correctly and incorrectly) classified. It is
2012
- # used for binary and multiclass classification. Measures how close
2013
- # the predicted class values are to the actual values. Accuracy
2014
- # values vary between zero and one, one being perfect accuracy and
2015
- # zero perfect inaccuracy.
2006
+ # for regression. MSE values are always positive: the better a model
2007
+ # is at predicting the actual values, the smaller the MSE value.
2008
+ # When the data contains outliers, they tend to dominate the MSE,
2009
+ # which might cause subpar prediction performance.
2010
+ #
2011
+ # * `Accuracy`\: The ratio of the number of correctly classified items
2012
+ # to the total number of (correctly and incorrectly) classified
2013
+ # items. It is used for binary and multiclass classification. It
2014
+ # measures how close the predicted class values are to the actual
2015
+ # values. Accuracy values vary between zero and one: one indicates
2016
+ # perfect accuracy and zero indicates perfect inaccuracy.
2016
2017
  #
2017
2018
  # * `F1`\: The F1 score is the harmonic mean of the precision and
2018
2019
  # recall. It is used for binary classification into classes
2019
2020
  # traditionally referred to as positive and negative. Predictions
2020
- # are said to be true when they match their actual (correct) class;
2021
- # false when they do not. Precision is the ratio of the true
2021
+ # are said to be true when they match their actual (correct) class
2022
+ # and false when they do not. Precision is the ratio of the true
2022
2023
  # positive predictions to all positive predictions (including the
2023
2024
  # false positives) in a data set and measures the quality of the
2024
2025
  # prediction when it predicts the positive class. Recall (or
@@ -2027,7 +2028,7 @@ module Aws::SageMaker
2027
2028
  # predicts the actual class members in a data set. The standard F1
2028
2029
  # score weighs precision and recall equally. But which metric is
2029
2030
  # paramount typically depends on specific aspects of a problem. F1
2030
- # scores vary between zero and one, one being the best possible
2031
+ # scores vary between zero and one: one indicates the best possible
2031
2032
  # performance and zero the worst.
2032
2033
  #
2033
2034
  # * `AUC`\: The area under the curve (AUC) metric is used to compare
@@ -2045,20 +2046,21 @@ module Aws::SageMaker
2045
2046
  # The AUC score can also be interpreted as the probability that a
2046
2047
  # randomly selected positive data point is more likely to be
2047
2048
  # predicted positive than a randomly selected negative example. AUC
2048
- # scores vary between zero and one, one being perfect accuracy and
2049
- # one half not better than a random classifier. Values less that one
2050
- # half predict worse than a random predictor and such consistently
2051
- # bad predictors can be inverted to obtain better than random
2049
+ # scores vary between zero and one: a score of one indicates perfect
2050
+ # accuracy and a score of one half indicates that the prediction is
2051
+ # not better than a random classifier. Values under one half predict
2052
+ # less accurately than a random predictor. But such consistently bad
2053
+ # predictors can simply be inverted to obtain better than random
2052
2054
  # predictors.
2053
2055
  #
2054
2056
  # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
2055
2057
  # classification. In this context, you have multiple classes to
2056
2058
  # predict. You just calculate the precision and recall for each
2057
2059
  # class as you did for the positive class in binary classification.
2058
- # Then used these values to calculate the F1 score for each class
2060
+ # Then, use these values to calculate the F1 score for each class
2059
2061
  # and average them to obtain the F1macro score. F1macro scores vary
2060
- # between zero and one, one being the best possible performance and
2061
- # zero the worst.
2062
+ # between zero and one: one indicates the best possible performance
2063
+ # and zero the worst.
2062
2064
  #
2063
2065
  # If you do not specify a metric explicitly, the default behavior is
2064
2066
  # to automatically use:
@@ -2078,26 +2080,26 @@ module Aws::SageMaker
2078
2080
  include Aws::Structure
2079
2081
  end
2080
2082
 
2081
- # Provides a summary about a job.
2083
+ # Provides a summary about an AutoML job.
2082
2084
  #
2083
2085
  # @!attribute [rw] auto_ml_job_name
2084
- # The name of the object you are requesting.
2086
+ # The name of the AutoML you are requesting.
2085
2087
  # @return [String]
2086
2088
  #
2087
2089
  # @!attribute [rw] auto_ml_job_arn
2088
- # The ARN of the job.
2090
+ # The ARN of the AutoML job.
2089
2091
  # @return [String]
2090
2092
  #
2091
2093
  # @!attribute [rw] auto_ml_job_status
2092
- # The job's status.
2094
+ # The status of the AutoML job.
2093
2095
  # @return [String]
2094
2096
  #
2095
2097
  # @!attribute [rw] auto_ml_job_secondary_status
2096
- # The job's secondary status.
2098
+ # The secondary status of the AutoML job.
2097
2099
  # @return [String]
2098
2100
  #
2099
2101
  # @!attribute [rw] creation_time
2100
- # When the job was created.
2102
+ # When the AutoML job was created.
2101
2103
  # @return [Time]
2102
2104
  #
2103
2105
  # @!attribute [rw] end_time
@@ -2105,13 +2107,17 @@ module Aws::SageMaker
2105
2107
  # @return [Time]
2106
2108
  #
2107
2109
  # @!attribute [rw] last_modified_time
2108
- # When the job was last modified.
2110
+ # When the AutoML job was last modified.
2109
2111
  # @return [Time]
2110
2112
  #
2111
2113
  # @!attribute [rw] failure_reason
2112
- # The failure reason of a job.
2114
+ # The failure reason of an AutoML job.
2113
2115
  # @return [String]
2114
2116
  #
2117
+ # @!attribute [rw] partial_failure_reasons
2118
+ # The list of reasons for partial failures within an AutoML job.
2119
+ # @return [Array<Types::AutoMLPartialFailureReason>]
2120
+ #
2115
2121
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
2116
2122
  #
2117
2123
  class AutoMLJobSummary < Struct.new(
@@ -2122,7 +2128,8 @@ module Aws::SageMaker
2122
2128
  :creation_time,
2123
2129
  :end_time,
2124
2130
  :last_modified_time,
2125
- :failure_reason)
2131
+ :failure_reason,
2132
+ :partial_failure_reasons)
2126
2133
  SENSITIVE = []
2127
2134
  include Aws::Structure
2128
2135
  end
@@ -2154,6 +2161,21 @@ module Aws::SageMaker
2154
2161
  include Aws::Structure
2155
2162
  end
2156
2163
 
2164
+ # The reason for a partial failure of an AutoML job.
2165
+ #
2166
+ # @!attribute [rw] partial_failure_message
2167
+ # The message containing the reason for a partial failure of an AutoML
2168
+ # job.
2169
+ # @return [String]
2170
+ #
2171
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLPartialFailureReason AWS API Documentation
2172
+ #
2173
+ class AutoMLPartialFailureReason < Struct.new(
2174
+ :partial_failure_message)
2175
+ SENSITIVE = []
2176
+ include Aws::Structure
2177
+ end
2178
+
2157
2179
  # The Amazon S3 data source.
2158
2180
  #
2159
2181
  # @note When making an API call, you may pass AutoMLS3DataSource
@@ -2204,7 +2226,7 @@ module Aws::SageMaker
2204
2226
  # @return [Boolean]
2205
2227
  #
2206
2228
  # @!attribute [rw] vpc_config
2207
- # VPC configuration.
2229
+ # The VPC configuration.
2208
2230
  # @return [Types::VpcConfig]
2209
2231
  #
2210
2232
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLSecurityConfig AWS API Documentation
@@ -2317,6 +2339,61 @@ module Aws::SageMaker
2317
2339
  include Aws::Structure
2318
2340
  end
2319
2341
 
2342
+ # Metadata about a callback step.
2343
+ #
2344
+ # @!attribute [rw] callback_token
2345
+ # The pipeline generated token from the Amazon SQS queue.
2346
+ # @return [String]
2347
+ #
2348
+ # @!attribute [rw] sqs_queue_url
2349
+ # The URL of the Amazon Simple Queue Service (Amazon SQS) queue used
2350
+ # by the callback step.
2351
+ # @return [String]
2352
+ #
2353
+ # @!attribute [rw] output_parameters
2354
+ # A list of the output parameters of the callback step.
2355
+ # @return [Array<Types::OutputParameter>]
2356
+ #
2357
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CallbackStepMetadata AWS API Documentation
2358
+ #
2359
+ class CallbackStepMetadata < Struct.new(
2360
+ :callback_token,
2361
+ :sqs_queue_url,
2362
+ :output_parameters)
2363
+ SENSITIVE = []
2364
+ include Aws::Structure
2365
+ end
2366
+
2367
+ # The location of artifacts for an AutoML candidate job.
2368
+ #
2369
+ # @!attribute [rw] explainability
2370
+ # The Amazon S3 prefix to the explainability artifacts generated for
2371
+ # the AutoML candidate.
2372
+ # @return [String]
2373
+ #
2374
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
2375
+ #
2376
+ class CandidateArtifactLocations < Struct.new(
2377
+ :explainability)
2378
+ SENSITIVE = []
2379
+ include Aws::Structure
2380
+ end
2381
+
2382
+ # The properties of an AutoML candidate job.
2383
+ #
2384
+ # @!attribute [rw] candidate_artifact_locations
2385
+ # The Amazon S3 prefix to the artifacts generated for an AutoML
2386
+ # candidate.
2387
+ # @return [Types::CandidateArtifactLocations]
2388
+ #
2389
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
2390
+ #
2391
+ class CandidateProperties < Struct.new(
2392
+ :candidate_artifact_locations)
2393
+ SENSITIVE = []
2394
+ include Aws::Structure
2395
+ end
2396
+
2320
2397
  # Currently, the `CapacitySize` API is not supported.
2321
2398
  #
2322
2399
  # @note When making an API call, you may pass CapacitySize
@@ -2861,8 +2938,8 @@ module Aws::SageMaker
2861
2938
  include Aws::Structure
2862
2939
  end
2863
2940
 
2864
- # There was a conflict when you attempted to modify an experiment,
2865
- # trial, or trial component.
2941
+ # There was a conflict when you attempted to modify a SageMaker entity
2942
+ # such as an `Experiment` or `Artifact`.
2866
2943
  #
2867
2944
  # @!attribute [rw] message
2868
2945
  # @return [String]
@@ -3628,7 +3705,8 @@ module Aws::SageMaker
3628
3705
  # @return [String]
3629
3706
  #
3630
3707
  # @!attribute [rw] app_type
3631
- # The type of app.
3708
+ # The type of app. Supported apps are `JupyterServer` and
3709
+ # `KernelGateway`. `TensorBoard` is not supported.
3632
3710
  # @return [String]
3633
3711
  #
3634
3712
  # @!attribute [rw] app_name
@@ -3801,39 +3879,51 @@ module Aws::SageMaker
3801
3879
  # value: "TagValue", # required
3802
3880
  # },
3803
3881
  # ],
3882
+ # model_deploy_config: {
3883
+ # auto_generate_endpoint_name: false,
3884
+ # endpoint_name: "EndpointName",
3885
+ # },
3804
3886
  # }
3805
3887
  #
3806
3888
  # @!attribute [rw] auto_ml_job_name
3807
- # Identifies an Autopilot job. Must be unique to your account and is
3808
- # case-insensitive.
3889
+ # Identifies an Autopilot job. The name must be unique to your account
3890
+ # and is case-insensitive.
3809
3891
  # @return [String]
3810
3892
  #
3811
3893
  # @!attribute [rw] input_data_config
3812
- # Similar to InputDataConfig supported by Tuning. Format(s) supported:
3813
- # CSV. Minimum of 500 rows.
3894
+ # An array of channel objects that describes the input data and its
3895
+ # location. Each channel is a named input source. Similar to
3896
+ # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum
3897
+ # of 500 rows.
3814
3898
  # @return [Array<Types::AutoMLChannel>]
3815
3899
  #
3816
3900
  # @!attribute [rw] output_data_config
3817
- # Similar to OutputDataConfig supported by Tuning. Format(s)
3818
- # supported: CSV.
3901
+ # Provides information about encryption and the Amazon S3 output path
3902
+ # needed to store artifacts from an AutoML job. Format(s) supported:
3903
+ # CSV.
3819
3904
  # @return [Types::AutoMLOutputDataConfig]
3820
3905
  #
3821
3906
  # @!attribute [rw] problem_type
3822
- # Defines the kind of preprocessing and algorithms intended for the
3823
- # candidates. Options include: BinaryClassification,
3824
- # MulticlassClassification, and Regression.
3907
+ # Defines the type of supervised learning available for the
3908
+ # candidates. Options include: `BinaryClassification`,
3909
+ # `MulticlassClassification`, and `Regression`. For more information,
3910
+ # see [ Amazon SageMaker Autopilot problem types and algorithm
3911
+ # support][1].
3912
+ #
3913
+ #
3914
+ #
3915
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
3825
3916
  # @return [String]
3826
3917
  #
3827
3918
  # @!attribute [rw] auto_ml_job_objective
3828
- # Defines the objective of a an AutoML job. You provide a
3829
- # AutoMLJobObjective$MetricName and Autopilot infers whether to
3830
- # minimize or maximize it. If a metric is not specified, the most
3831
- # commonly used ObjectiveMetric for problem type is automaically
3832
- # selected.
3919
+ # Defines the objective metric used to measure the predictive quality
3920
+ # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
3921
+ # Autopilot infers whether to minimize or maximize it.
3833
3922
  # @return [Types::AutoMLJobObjective]
3834
3923
  #
3835
3924
  # @!attribute [rw] auto_ml_job_config
3836
- # Contains CompletionCriteria and SecurityConfig.
3925
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
3926
+ # AutoML job.
3837
3927
  # @return [Types::AutoMLJobConfig]
3838
3928
  #
3839
3929
  # @!attribute [rw] role_arn
@@ -3841,9 +3931,9 @@ module Aws::SageMaker
3841
3931
  # @return [String]
3842
3932
  #
3843
3933
  # @!attribute [rw] generate_candidate_definitions_only
3844
- # Generates possible candidates without training a model. A candidate
3845
- # is a combination of data preprocessors, algorithms, and algorithm
3846
- # parameter settings.
3934
+ # Generates possible candidates without training the models. A
3935
+ # candidate is a combination of data preprocessors, algorithms, and
3936
+ # algorithm parameter settings.
3847
3937
  # @return [Boolean]
3848
3938
  #
3849
3939
  # @!attribute [rw] tags
@@ -3851,6 +3941,11 @@ module Aws::SageMaker
3851
3941
  # unique per resource.
3852
3942
  # @return [Array<Types::Tag>]
3853
3943
  #
3944
+ # @!attribute [rw] model_deploy_config
3945
+ # Specifies how to generate the endpoint name for an automatic
3946
+ # one-click Autopilot model deployment.
3947
+ # @return [Types::ModelDeployConfig]
3948
+ #
3854
3949
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobRequest AWS API Documentation
3855
3950
  #
3856
3951
  class CreateAutoMLJobRequest < Struct.new(
@@ -3862,13 +3957,15 @@ module Aws::SageMaker
3862
3957
  :auto_ml_job_config,
3863
3958
  :role_arn,
3864
3959
  :generate_candidate_definitions_only,
3865
- :tags)
3960
+ :tags,
3961
+ :model_deploy_config)
3866
3962
  SENSITIVE = []
3867
3963
  include Aws::Structure
3868
3964
  end
3869
3965
 
3870
3966
  # @!attribute [rw] auto_ml_job_arn
3871
- # When a job is created, it is assigned a unique ARN.
3967
+ # The unique ARN that is assigned to the AutoML job when it is
3968
+ # created.
3872
3969
  # @return [String]
3873
3970
  #
3874
3971
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobResponse AWS API Documentation
@@ -4410,7 +4507,14 @@ module Aws::SageMaker
4410
4507
  # @return [String]
4411
4508
  #
4412
4509
  # @!attribute [rw] default_user_settings
4413
- # The default user settings.
4510
+ # The default settings to use to create a user profile when
4511
+ # `UserSettings` isn't specified in the call to the
4512
+ # `CreateUserProfile` API.
4513
+ #
4514
+ # `SecurityGroups` is aggregated when specified in both calls. For all
4515
+ # other settings in `UserSettings`, the values specified in
4516
+ # `CreateUserProfile` take precedence over those specified in
4517
+ # `CreateDomain`.
4414
4518
  # @return [Types::UserSettings]
4415
4519
  #
4416
4520
  # @!attribute [rw] subnet_ids
@@ -4425,7 +4529,10 @@ module Aws::SageMaker
4425
4529
  # @!attribute [rw] tags
4426
4530
  # Tags to associated with the Domain. Each tag consists of a key and
4427
4531
  # an optional value. Tag keys must be unique per resource. Tags are
4428
- # searchable using the Search API.
4532
+ # searchable using the `Search` API.
4533
+ #
4534
+ # Tags that you specify for the Domain are also added to all Apps that
4535
+ # the Domain launches.
4429
4536
  # @return [Array<Types::Tag>]
4430
4537
  #
4431
4538
  # @!attribute [rw] app_network_access_type
@@ -5280,6 +5387,9 @@ module Aws::SageMaker
5280
5387
  # s3_uri: "S3Uri", # required
5281
5388
  # local_path: "DirectoryPath",
5282
5389
  # },
5390
+ # retry_strategy: {
5391
+ # maximum_retry_attempts: 1, # required
5392
+ # },
5283
5393
  # },
5284
5394
  # training_job_definitions: [
5285
5395
  # {
@@ -5378,6 +5488,9 @@ module Aws::SageMaker
5378
5488
  # s3_uri: "S3Uri", # required
5379
5489
  # local_path: "DirectoryPath",
5380
5490
  # },
5491
+ # retry_strategy: {
5492
+ # maximum_retry_attempts: 1, # required
5493
+ # },
5381
5494
  # },
5382
5495
  # ],
5383
5496
  # warm_start_config: {
@@ -7013,9 +7126,9 @@ module Aws::SageMaker
7013
7126
  # @!attribute [rw] direct_internet_access
7014
7127
  # Sets whether Amazon SageMaker provides internet access to the
7015
7128
  # notebook instance. If you set this to `Disabled` this notebook
7016
- # instance will be able to access resources only in your VPC, and will
7017
- # not be able to connect to Amazon SageMaker training and endpoint
7018
- # services unless your configure a NAT Gateway in your VPC.
7129
+ # instance is able to access resources only in your VPC, and is not be
7130
+ # able to connect to Amazon SageMaker training and endpoint services
7131
+ # unless you configure a NAT Gateway in your VPC.
7019
7132
  #
7020
7133
  # For more information, see [Notebook Instances Are Internet-Enabled
7021
7134
  # by Default][1]. You can set the value of this parameter to
@@ -7752,6 +7865,12 @@ module Aws::SageMaker
7752
7865
  # },
7753
7866
  # },
7754
7867
  # ],
7868
+ # environment: {
7869
+ # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
7870
+ # },
7871
+ # retry_strategy: {
7872
+ # maximum_retry_attempts: 1, # required
7873
+ # },
7755
7874
  # }
7756
7875
  #
7757
7876
  # @!attribute [rw] training_job_name
@@ -7858,9 +7977,10 @@ module Aws::SageMaker
7858
7977
  # @return [Types::VpcConfig]
7859
7978
  #
7860
7979
  # @!attribute [rw] stopping_condition
7861
- # Specifies a limit to how long a model training job can run. When the
7862
- # job reaches the time limit, Amazon SageMaker ends the training job.
7863
- # Use this API to cap model training costs.
7980
+ # Specifies a limit to how long a model training job can run. It also
7981
+ # specifies how long a managed Spot training job has to complete. When
7982
+ # the job reaches the time limit, Amazon SageMaker ends the training
7983
+ # job. Use this API to cap model training costs.
7864
7984
  #
7865
7985
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
7866
7986
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -7965,6 +8085,15 @@ module Aws::SageMaker
7965
8085
  # and framework metrics.
7966
8086
  # @return [Array<Types::ProfilerRuleConfiguration>]
7967
8087
  #
8088
+ # @!attribute [rw] environment
8089
+ # The environment variables to set in the Docker container.
8090
+ # @return [Hash<String,String>]
8091
+ #
8092
+ # @!attribute [rw] retry_strategy
8093
+ # The number of times to retry the job when the job fails due to an
8094
+ # `InternalServerError`.
8095
+ # @return [Types::RetryStrategy]
8096
+ #
7968
8097
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
7969
8098
  #
7970
8099
  class CreateTrainingJobRequest < Struct.new(
@@ -7987,7 +8116,9 @@ module Aws::SageMaker
7987
8116
  :tensor_board_output_config,
7988
8117
  :experiment_config,
7989
8118
  :profiler_config,
7990
- :profiler_rule_configurations)
8119
+ :profiler_rule_configurations,
8120
+ :environment,
8121
+ :retry_strategy)
7991
8122
  SENSITIVE = []
7992
8123
  include Aws::Structure
7993
8124
  end
@@ -8465,7 +8596,7 @@ module Aws::SageMaker
8465
8596
  # @return [String]
8466
8597
  #
8467
8598
  # @!attribute [rw] user_profile_name
8468
- # A name for the UserProfile.
8599
+ # A name for the UserProfile. This value is not case sensitive.
8469
8600
  # @return [String]
8470
8601
  #
8471
8602
  # @!attribute [rw] single_sign_on_user_identifier
@@ -8487,6 +8618,9 @@ module Aws::SageMaker
8487
8618
  # @!attribute [rw] tags
8488
8619
  # Each tag consists of a key and an optional value. Tag keys must be
8489
8620
  # unique per resource.
8621
+ #
8622
+ # Tags that you specify for the User Profile are also added to all
8623
+ # Apps that the User Profile launches.
8490
8624
  # @return [Array<Types::Tag>]
8491
8625
  #
8492
8626
  # @!attribute [rw] user_settings
@@ -8931,7 +9065,9 @@ module Aws::SageMaker
8931
9065
  # The valid values are `None` and `Input`. The default value is
8932
9066
  # `None`, which specifies not to join the input with the transformed
8933
9067
  # data. If you want the batch transform job to join the original input
8934
- # data with the transformed data, set `JoinSource` to `Input`.
9068
+ # data with the transformed data, set `JoinSource` to `Input`. You can
9069
+ # specify `OutputFilter` as an additional filter to select a portion
9070
+ # of the joined dataset and store it in the output file.
8935
9071
  #
8936
9072
  # For JSON or JSONLines objects, such as a JSON array, Amazon
8937
9073
  # SageMaker adds the transformed data to the input JSON object in an
@@ -8941,10 +9077,18 @@ module Aws::SageMaker
8941
9077
  # file, and the input data is stored under the `SageMakerInput` key
8942
9078
  # and the results are stored in `SageMakerOutput`.
8943
9079
  #
8944
- # For CSV files, Amazon SageMaker combines the transformed data with
8945
- # the input data at the end of the input data and stores it in the
8946
- # output file. The joined data has the joined input data followed by
8947
- # the transformed data and the output is a CSV file.
9080
+ # For CSV data, Amazon SageMaker takes each row as a JSON array and
9081
+ # joins the transformed data with the input by appending each
9082
+ # transformed row to the end of the input. The joined data has the
9083
+ # original input data followed by the transformed data and the output
9084
+ # is a CSV file.
9085
+ #
9086
+ # For information on how joining in applied, see [Workflow for
9087
+ # Associating Inferences with Input Records][1].
9088
+ #
9089
+ #
9090
+ #
9091
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow
8948
9092
  # @return [String]
8949
9093
  #
8950
9094
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
@@ -9975,8 +10119,11 @@ module Aws::SageMaker
9975
10119
  # }
9976
10120
  #
9977
10121
  # @!attribute [rw] model_package_name
9978
- # The name of the model package. The name must have 1 to 63
9979
- # characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
10122
+ # The name or Amazon Resource Name (ARN) of the model package to
10123
+ # delete.
10124
+ #
10125
+ # When you specify a name, the name must have 1 to 63 characters.
10126
+ # Valid characters are a-z, A-Z, 0-9, and - (hyphen).
9980
10127
  # @return [String]
9981
10128
  #
9982
10129
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DeleteModelPackageInput AWS API Documentation
@@ -10811,7 +10958,7 @@ module Aws::SageMaker
10811
10958
  # }
10812
10959
  #
10813
10960
  # @!attribute [rw] auto_ml_job_name
10814
- # Request information about a job using that job's unique name.
10961
+ # Requests information about an AutoML job using its unique name.
10815
10962
  # @return [String]
10816
10963
  #
10817
10964
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobRequest AWS API Documentation
@@ -10823,15 +10970,15 @@ module Aws::SageMaker
10823
10970
  end
10824
10971
 
10825
10972
  # @!attribute [rw] auto_ml_job_name
10826
- # Returns the name of a job.
10973
+ # Returns the name of the AutoML job.
10827
10974
  # @return [String]
10828
10975
  #
10829
10976
  # @!attribute [rw] auto_ml_job_arn
10830
- # Returns the job's ARN.
10977
+ # Returns the ARN of the AutoML job.
10831
10978
  # @return [String]
10832
10979
  #
10833
10980
  # @!attribute [rw] input_data_config
10834
- # Returns the job's input data config.
10981
+ # Returns the input data configuration for the AutoML job..
10835
10982
  # @return [Array<Types::AutoMLChannel>]
10836
10983
  #
10837
10984
  # @!attribute [rw] output_data_config
@@ -10854,15 +11001,15 @@ module Aws::SageMaker
10854
11001
  # @return [String]
10855
11002
  #
10856
11003
  # @!attribute [rw] auto_ml_job_config
10857
- # Returns the job's config.
11004
+ # Returns the configuration for the AutoML job.
10858
11005
  # @return [Types::AutoMLJobConfig]
10859
11006
  #
10860
11007
  # @!attribute [rw] creation_time
10861
- # Returns the job's creation time.
11008
+ # Returns the creation time of the AutoML job.
10862
11009
  # @return [Time]
10863
11010
  #
10864
11011
  # @!attribute [rw] end_time
10865
- # Returns the job's end time.
11012
+ # Returns the end time of the AutoML job.
10866
11013
  # @return [Time]
10867
11014
  #
10868
11015
  # @!attribute [rw] last_modified_time
@@ -10870,37 +11017,51 @@ module Aws::SageMaker
10870
11017
  # @return [Time]
10871
11018
  #
10872
11019
  # @!attribute [rw] failure_reason
10873
- # Returns the job's FailureReason.
11020
+ # Returns the failure reason for an AutoML job, when applicable.
10874
11021
  # @return [String]
10875
11022
  #
11023
+ # @!attribute [rw] partial_failure_reasons
11024
+ # Returns a list of reasons for partial failures within an AutoML job.
11025
+ # @return [Array<Types::AutoMLPartialFailureReason>]
11026
+ #
10876
11027
  # @!attribute [rw] best_candidate
10877
- # Returns the job's BestCandidate.
11028
+ # Returns the job's best `AutoMLCandidate`.
10878
11029
  # @return [Types::AutoMLCandidate]
10879
11030
  #
10880
11031
  # @!attribute [rw] auto_ml_job_status
10881
- # Returns the job's AutoMLJobStatus.
11032
+ # Returns the status of the AutoML job.
10882
11033
  # @return [String]
10883
11034
  #
10884
11035
  # @!attribute [rw] auto_ml_job_secondary_status
10885
- # Returns the job's AutoMLJobSecondaryStatus.
11036
+ # Returns the secondary status of the AutoML job.
10886
11037
  # @return [String]
10887
11038
  #
10888
11039
  # @!attribute [rw] generate_candidate_definitions_only
10889
- # Returns the job's output from GenerateCandidateDefinitionsOnly.
11040
+ # Indicates whether the output for an AutoML job generates candidate
11041
+ # definitions only.
10890
11042
  # @return [Boolean]
10891
11043
  #
10892
11044
  # @!attribute [rw] auto_ml_job_artifacts
10893
11045
  # Returns information on the job's artifacts found in
10894
- # AutoMLJobArtifacts.
11046
+ # `AutoMLJobArtifacts`.
10895
11047
  # @return [Types::AutoMLJobArtifacts]
10896
11048
  #
10897
11049
  # @!attribute [rw] resolved_attributes
10898
- # This contains ProblemType, AutoMLJobObjective and
10899
- # CompletionCriteria. They're auto-inferred values, if not provided
10900
- # by you. If you do provide them, then they'll be the same as
10901
- # provided.
11050
+ # This contains `ProblemType`, `AutoMLJobObjective` and
11051
+ # `CompletionCriteria`. If you do not provide these values, they are
11052
+ # auto-inferred. If you do provide them, the values used are the ones
11053
+ # you provide.
10902
11054
  # @return [Types::ResolvedAttributes]
10903
11055
  #
11056
+ # @!attribute [rw] model_deploy_config
11057
+ # Indicates whether the model was deployed automatically to an
11058
+ # endpoint and the name of that endpoint if deployed automatically.
11059
+ # @return [Types::ModelDeployConfig]
11060
+ #
11061
+ # @!attribute [rw] model_deploy_result
11062
+ # Provides information about endpoint for the model deployment.
11063
+ # @return [Types::ModelDeployResult]
11064
+ #
10904
11065
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
10905
11066
  #
10906
11067
  class DescribeAutoMLJobResponse < Struct.new(
@@ -10916,12 +11077,15 @@ module Aws::SageMaker
10916
11077
  :end_time,
10917
11078
  :last_modified_time,
10918
11079
  :failure_reason,
11080
+ :partial_failure_reasons,
10919
11081
  :best_candidate,
10920
11082
  :auto_ml_job_status,
10921
11083
  :auto_ml_job_secondary_status,
10922
11084
  :generate_candidate_definitions_only,
10923
11085
  :auto_ml_job_artifacts,
10924
- :resolved_attributes)
11086
+ :resolved_attributes,
11087
+ :model_deploy_config,
11088
+ :model_deploy_result)
10925
11089
  SENSITIVE = []
10926
11090
  include Aws::Structure
10927
11091
  end
@@ -11481,7 +11645,7 @@ module Aws::SageMaker
11481
11645
  # @return [String]
11482
11646
  #
11483
11647
  # @!attribute [rw] default_user_settings
11484
- # Settings which are applied to all UserProfiles in this domain, if
11648
+ # Settings which are applied to UserProfiles in this domain if
11485
11649
  # settings are not explicitly specified in a given UserProfile.
11486
11650
  # @return [Types::UserSettings]
11487
11651
  #
@@ -12899,7 +13063,11 @@ module Aws::SageMaker
12899
13063
  # }
12900
13064
  #
12901
13065
  # @!attribute [rw] model_package_name
12902
- # The name of the model package to describe.
13066
+ # The name or Amazon Resource Name (ARN) of the model package to
13067
+ # describe.
13068
+ #
13069
+ # When you specify a name, the name must have 1 to 63 characters.
13070
+ # Valid characters are a-z, A-Z, 0-9, and - (hyphen).
12903
13071
  # @return [String]
12904
13072
  #
12905
13073
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeModelPackageInput AWS API Documentation
@@ -13517,6 +13685,15 @@ module Aws::SageMaker
13517
13685
  # The description of the pipeline execution.
13518
13686
  # @return [String]
13519
13687
  #
13688
+ # @!attribute [rw] pipeline_experiment_config
13689
+ # Specifies the names of the experiment and trial created by a
13690
+ # pipeline.
13691
+ # @return [Types::PipelineExperimentConfig]
13692
+ #
13693
+ # @!attribute [rw] failure_reason
13694
+ # If the execution failed, a message describing why.
13695
+ # @return [String]
13696
+ #
13520
13697
  # @!attribute [rw] creation_time
13521
13698
  # The time when the pipeline execution was created.
13522
13699
  # @return [Time]
@@ -13543,6 +13720,8 @@ module Aws::SageMaker
13543
13720
  :pipeline_execution_display_name,
13544
13721
  :pipeline_execution_status,
13545
13722
  :pipeline_execution_description,
13723
+ :pipeline_experiment_config,
13724
+ :failure_reason,
13546
13725
  :creation_time,
13547
13726
  :last_modified_time,
13548
13727
  :created_by,
@@ -14009,7 +14188,7 @@ module Aws::SageMaker
14009
14188
  #
14010
14189
  # * `LaunchingMLInstances`
14011
14190
  #
14012
- # * `PreparingTrainingStack`
14191
+ # * `PreparingTraining`
14013
14192
  #
14014
14193
  # * `DownloadingTrainingImage`
14015
14194
  # @return [String]
@@ -14060,9 +14239,9 @@ module Aws::SageMaker
14060
14239
  #
14061
14240
  # @!attribute [rw] stopping_condition
14062
14241
  # Specifies a limit to how long a model training job can run. It also
14063
- # specifies the maximum time to wait for a spot instance. When the job
14064
- # reaches the time limit, Amazon SageMaker ends the training job. Use
14065
- # this API to cap model training costs.
14242
+ # specifies how long a managed Spot training job has to complete. When
14243
+ # the job reaches the time limit, Amazon SageMaker ends the training
14244
+ # job. Use this API to cap model training costs.
14066
14245
  #
14067
14246
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
14068
14247
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -14211,6 +14390,15 @@ module Aws::SageMaker
14211
14390
  # Profiling status of a training job.
14212
14391
  # @return [String]
14213
14392
  #
14393
+ # @!attribute [rw] retry_strategy
14394
+ # The number of times to retry the job when the job fails due to an
14395
+ # `InternalServerError`.
14396
+ # @return [Types::RetryStrategy]
14397
+ #
14398
+ # @!attribute [rw] environment
14399
+ # The environment variables to set in the Docker container.
14400
+ # @return [Hash<String,String>]
14401
+ #
14214
14402
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
14215
14403
  #
14216
14404
  class DescribeTrainingJobResponse < Struct.new(
@@ -14251,7 +14439,9 @@ module Aws::SageMaker
14251
14439
  :profiler_config,
14252
14440
  :profiler_rule_configurations,
14253
14441
  :profiler_rule_evaluation_statuses,
14254
- :profiling_status)
14442
+ :profiling_status,
14443
+ :retry_strategy,
14444
+ :environment)
14255
14445
  SENSITIVE = []
14256
14446
  include Aws::Structure
14257
14447
  end
@@ -14633,7 +14823,7 @@ module Aws::SageMaker
14633
14823
  # @return [String]
14634
14824
  #
14635
14825
  # @!attribute [rw] user_profile_name
14636
- # The user profile name.
14826
+ # The user profile name. This value is not case sensitive.
14637
14827
  # @return [String]
14638
14828
  #
14639
14829
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfileRequest AWS API Documentation
@@ -15357,7 +15547,7 @@ module Aws::SageMaker
15357
15547
  #
15358
15548
  # @!attribute [rw] s3_data_distribution_type
15359
15549
  # Whether input data distributed in Amazon S3 is fully replicated or
15360
- # sharded by an S3 key. Defauts to `FullyReplicated`
15550
+ # sharded by an S3 key. Defaults to `FullyReplicated`
15361
15551
  # @return [String]
15362
15552
  #
15363
15553
  # @!attribute [rw] features_attribute
@@ -17903,6 +18093,9 @@ module Aws::SageMaker
17903
18093
  # s3_uri: "S3Uri", # required
17904
18094
  # local_path: "DirectoryPath",
17905
18095
  # },
18096
+ # retry_strategy: {
18097
+ # maximum_retry_attempts: 1, # required
18098
+ # },
17906
18099
  # }
17907
18100
  #
17908
18101
  # @!attribute [rw] definition_name
@@ -17984,10 +18177,9 @@ module Aws::SageMaker
17984
18177
  #
17985
18178
  # @!attribute [rw] stopping_condition
17986
18179
  # Specifies a limit to how long a model hyperparameter training job
17987
- # can run. It also specifies how long you are willing to wait for a
17988
- # managed spot training job to complete. When the job reaches the a
17989
- # limit, Amazon SageMaker ends the training job. Use this API to cap
17990
- # model training costs.
18180
+ # can run. It also specifies how long a managed spot training job has
18181
+ # to complete. When the job reaches the time limit, Amazon SageMaker
18182
+ # ends the training job. Use this API to cap model training costs.
17991
18183
  # @return [Types::StoppingCondition]
17992
18184
  #
17993
18185
  # @!attribute [rw] enable_network_isolation
@@ -18019,6 +18211,11 @@ module Aws::SageMaker
18019
18211
  # training checkpoint data.
18020
18212
  # @return [Types::CheckpointConfig]
18021
18213
  #
18214
+ # @!attribute [rw] retry_strategy
18215
+ # The number of times to retry the job when the job fails due to an
18216
+ # `InternalServerError`.
18217
+ # @return [Types::RetryStrategy]
18218
+ #
18022
18219
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
18023
18220
  #
18024
18221
  class HyperParameterTrainingJobDefinition < Struct.new(
@@ -18036,7 +18233,8 @@ module Aws::SageMaker
18036
18233
  :enable_network_isolation,
18037
18234
  :enable_inter_container_traffic_encryption,
18038
18235
  :enable_managed_spot_training,
18039
- :checkpoint_config)
18236
+ :checkpoint_config,
18237
+ :retry_strategy)
18040
18238
  SENSITIVE = []
18041
18239
  include Aws::Structure
18042
18240
  end
@@ -19098,7 +19296,8 @@ module Aws::SageMaker
19098
19296
  # }
19099
19297
  #
19100
19298
  # @!attribute [rw] name
19101
- # The name of the kernel.
19299
+ # The name of the Jupyter kernel in the image. This value is case
19300
+ # sensitive.
19102
19301
  # @return [String]
19103
19302
  #
19104
19303
  # @!attribute [rw] display_name
@@ -19287,7 +19486,12 @@ module Aws::SageMaker
19287
19486
  # @return [Types::LabelingJobS3DataSource]
19288
19487
  #
19289
19488
  # @!attribute [rw] sns_data_source
19290
- # An Amazon SNS data source used for streaming labeling jobs.
19489
+ # An Amazon SNS data source used for streaming labeling jobs. To learn
19490
+ # more, see [Send Data to a Streaming Labeling Job][1].
19491
+ #
19492
+ #
19493
+ #
19494
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-send-data
19291
19495
  # @return [Types::LabelingJobSnsDataSource]
19292
19496
  #
19293
19497
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
@@ -19311,6 +19515,7 @@ module Aws::SageMaker
19311
19515
  # @return [String]
19312
19516
  #
19313
19517
  # @!attribute [rw] work_requester_account_id
19518
+ # The AWS account ID of the account used to start the labeling job.
19314
19519
  # @return [String]
19315
19520
  #
19316
19521
  # @!attribute [rw] creation_time
@@ -19413,37 +19618,42 @@ module Aws::SageMaker
19413
19618
  # The AWS Key Management Service ID of the key used to encrypt the
19414
19619
  # output data, if any.
19415
19620
  #
19416
- # If you use a KMS key ID or an alias of your master key, the Amazon
19417
- # SageMaker execution role must include permissions to call
19418
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
19419
- # uses the default KMS key for Amazon S3 for your role's account.
19420
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
19421
- # for `LabelingJobOutputConfig`. If you use a bucket policy with an
19422
- # `s3:PutObject` permission that only allows objects with server-side
19423
- # encryption, set the condition key of
19424
- # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
19425
- # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
19426
- # Simple Storage Service Developer Guide.*
19621
+ # If you provide your own KMS key ID, you must add the required
19622
+ # permissions to your KMS key described in [Encrypt Output Data and
19623
+ # Storage Volume with AWS KMS][1].
19427
19624
  #
19428
- # The KMS key policy must grant permission to the IAM role that you
19429
- # specify in your `CreateLabelingJob` request. For more information,
19430
- # see [Using Key Policies in AWS KMS][2] in the *AWS Key Management
19431
- # Service Developer Guide*.
19625
+ # If you don't provide a KMS key ID, Amazon SageMaker uses the
19626
+ # default AWS KMS key for Amazon S3 for your role's account to
19627
+ # encrypt your output data.
19432
19628
  #
19629
+ # If you use a bucket policy with an `s3:PutObject` permission that
19630
+ # only allows objects with server-side encryption, set the condition
19631
+ # key of `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
19632
+ # information, see [KMS-Managed Encryption Keys][2] in the *Amazon
19633
+ # Simple Storage Service Developer Guide.*
19433
19634
  #
19434
19635
  #
19435
- # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
19436
- # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
19636
+ #
19637
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-kms-permissions
19638
+ # [2]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
19437
19639
  # @return [String]
19438
19640
  #
19439
19641
  # @!attribute [rw] sns_topic_arn
19440
19642
  # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
19643
+ # Provide a `SnsTopicArn` if you want to do real time chaining to
19644
+ # another streaming job and receive an Amazon SNS notifications each
19645
+ # time a data object is submitted by a worker.
19646
+ #
19647
+ # If you provide an `SnsTopicArn` in `OutputConfig`, when workers
19648
+ # complete labeling tasks, Ground Truth will send labeling task output
19649
+ # data to the SNS output topic you specify here.
19650
+ #
19651
+ # To learn more, see [Receive Output Data from a Streaming Labeling
19652
+ # Job][1].
19441
19653
  #
19442
- # When workers complete labeling tasks, Ground Truth will send
19443
- # labeling task output data to the SNS output topic you specify here.
19444
19654
  #
19445
- # You must provide a value for this parameter if you provide an Amazon
19446
- # SNS input topic in `SnsDataSource` in `InputConfig`.
19655
+ #
19656
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-output-data
19447
19657
  # @return [String]
19448
19658
  #
19449
19659
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
@@ -19456,7 +19666,9 @@ module Aws::SageMaker
19456
19666
  include Aws::Structure
19457
19667
  end
19458
19668
 
19459
- # Provides configuration information for labeling jobs.
19669
+ # Configure encryption on the storage volume attached to the ML compute
19670
+ # instance used to run automated data labeling model training and
19671
+ # inference.
19460
19672
  #
19461
19673
  # @note When making an API call, you may pass LabelingJobResourceConfig
19462
19674
  # data as a hash:
@@ -19468,16 +19680,30 @@ module Aws::SageMaker
19468
19680
  # @!attribute [rw] volume_kms_key_id
19469
19681
  # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
19470
19682
  # uses to encrypt data on the storage volume attached to the ML
19471
- # compute instance(s) that run the training job. The `VolumeKmsKeyId`
19472
- # can be any of the following formats:
19683
+ # compute instance(s) that run the training and inference jobs used
19684
+ # for automated data labeling.
19473
19685
  #
19474
- # * // KMS Key ID
19686
+ # You can only specify a `VolumeKmsKeyId` when you create a labeling
19687
+ # job with automated data labeling enabled using the API operation
19688
+ # `CreateLabelingJob`. You cannot specify an AWS KMS customer managed
19689
+ # CMK to encrypt the storage volume used for automated data labeling
19690
+ # model training and inference when you create a labeling job using
19691
+ # the console. To learn more, see [Output Data and Storage Volume
19692
+ # Encryption][1].
19693
+ #
19694
+ # The `VolumeKmsKeyId` can be any of the following formats:
19695
+ #
19696
+ # * KMS Key ID
19475
19697
  #
19476
19698
  # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
19477
19699
  #
19478
- # * // Amazon Resource Name (ARN) of a KMS Key
19700
+ # * Amazon Resource Name (ARN) of a KMS Key
19479
19701
  #
19480
19702
  # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
19703
+ #
19704
+ #
19705
+ #
19706
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security.html
19481
19707
  # @return [String]
19482
19708
  #
19483
19709
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobResourceConfig AWS API Documentation
@@ -19542,9 +19768,6 @@ module Aws::SageMaker
19542
19768
  # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
19543
19769
  # ARN of the input topic you will use to send new data objects to a
19544
19770
  # streaming labeling job.
19545
- #
19546
- # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
19547
- # you must specify a value for `SnsTopicArn` in `OutputConfig`.
19548
19771
  # @return [String]
19549
19772
  #
19550
19773
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
@@ -20227,12 +20450,11 @@ module Aws::SageMaker
20227
20450
  # @return [String]
20228
20451
  #
20229
20452
  # @!attribute [rw] sort_order
20230
- # The sort order for the results. The default is Descending.
20453
+ # The sort order for the results. The default is `Descending`.
20231
20454
  # @return [String]
20232
20455
  #
20233
20456
  # @!attribute [rw] sort_by
20234
- # The parameter by which to sort the results. The default is
20235
- # AutoMLJobName.
20457
+ # The parameter by which to sort the results. The default is `Name`.
20236
20458
  # @return [String]
20237
20459
  #
20238
20460
  # @!attribute [rw] max_results
@@ -20293,29 +20515,29 @@ module Aws::SageMaker
20293
20515
  # }
20294
20516
  #
20295
20517
  # @!attribute [rw] auto_ml_job_name
20296
- # List the Candidates created for the job by providing the job's
20518
+ # List the candidates created for the job by providing the job's
20297
20519
  # name.
20298
20520
  # @return [String]
20299
20521
  #
20300
20522
  # @!attribute [rw] status_equals
20301
- # List the Candidates for the job and filter by status.
20523
+ # List the candidates for the job and filter by status.
20302
20524
  # @return [String]
20303
20525
  #
20304
20526
  # @!attribute [rw] candidate_name_equals
20305
- # List the Candidates for the job and filter by candidate name.
20527
+ # List the candidates for the job and filter by candidate name.
20306
20528
  # @return [String]
20307
20529
  #
20308
20530
  # @!attribute [rw] sort_order
20309
- # The sort order for the results. The default is Ascending.
20531
+ # The sort order for the results. The default is `Ascending`.
20310
20532
  # @return [String]
20311
20533
  #
20312
20534
  # @!attribute [rw] sort_by
20313
20535
  # The parameter by which to sort the results. The default is
20314
- # Descending.
20536
+ # `Descending`.
20315
20537
  # @return [String]
20316
20538
  #
20317
20539
  # @!attribute [rw] max_results
20318
- # List the job's Candidates up to a specified limit.
20540
+ # List the job's candidates up to a specified limit.
20319
20541
  # @return [Integer]
20320
20542
  #
20321
20543
  # @!attribute [rw] next_token
@@ -20338,7 +20560,7 @@ module Aws::SageMaker
20338
20560
  end
20339
20561
 
20340
20562
  # @!attribute [rw] candidates
20341
- # Summaries about the Candidates.
20563
+ # Summaries about the `AutoMLCandidates`.
20342
20564
  # @return [Array<Types::AutoMLCandidate>]
20343
20565
  #
20344
20566
  # @!attribute [rw] next_token
@@ -21139,7 +21361,8 @@ module Aws::SageMaker
21139
21361
  # @return [String]
21140
21362
  #
21141
21363
  # @!attribute [rw] max_results
21142
- # The maximum number of endpoints to return in the response.
21364
+ # The maximum number of endpoints to return in the response. This
21365
+ # value defaults to 10.
21143
21366
  # @return [Integer]
21144
21367
  #
21145
21368
  # @!attribute [rw] name_contains
@@ -24374,7 +24597,7 @@ module Aws::SageMaker
24374
24597
  #
24375
24598
  # Model artifacts are the output that results from training a model, and
24376
24599
  # typically consist of trained parameters, a model defintion that
24377
- # desribes how to compute inferences, and other metadata.
24600
+ # describes how to compute inferences, and other metadata.
24378
24601
  #
24379
24602
  # @!attribute [rw] s3_model_artifacts
24380
24603
  # The path of the S3 object that contains the model artifacts. For
@@ -24562,6 +24785,66 @@ module Aws::SageMaker
24562
24785
  include Aws::Structure
24563
24786
  end
24564
24787
 
24788
+ # Specifies how to generate the endpoint name for an automatic one-click
24789
+ # Autopilot model deployment.
24790
+ #
24791
+ # @note When making an API call, you may pass ModelDeployConfig
24792
+ # data as a hash:
24793
+ #
24794
+ # {
24795
+ # auto_generate_endpoint_name: false,
24796
+ # endpoint_name: "EndpointName",
24797
+ # }
24798
+ #
24799
+ # @!attribute [rw] auto_generate_endpoint_name
24800
+ # Set to `True` to automatically generate an endpoint name for a
24801
+ # one-click Autopilot model deployment; set to `False` otherwise. The
24802
+ # default value is `False`.
24803
+ #
24804
+ # <note markdown="1"> If you set `AutoGenerateEndpointName` to `True`, do not specify the
24805
+ # `EndpointName`; otherwise a 400 error is thrown.
24806
+ #
24807
+ # </note>
24808
+ # @return [Boolean]
24809
+ #
24810
+ # @!attribute [rw] endpoint_name
24811
+ # Specifies the endpoint name to use for a one-click Autopilot model
24812
+ # deployment if the endpoint name is not generated automatically.
24813
+ #
24814
+ # <note markdown="1"> Specify the `EndpointName` if and only if you set
24815
+ # `AutoGenerateEndpointName` to `False`; otherwise a 400 error is
24816
+ # thrown.
24817
+ #
24818
+ # </note>
24819
+ # @return [String]
24820
+ #
24821
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployConfig AWS API Documentation
24822
+ #
24823
+ class ModelDeployConfig < Struct.new(
24824
+ :auto_generate_endpoint_name,
24825
+ :endpoint_name)
24826
+ SENSITIVE = []
24827
+ include Aws::Structure
24828
+ end
24829
+
24830
+ # Provides information about the endpoint of the model deployment.
24831
+ #
24832
+ # @!attribute [rw] endpoint_name
24833
+ # The name of the endpoint to which the model has been deployed.
24834
+ #
24835
+ # <note markdown="1"> If model deployment fails, this field is omitted from the response.
24836
+ #
24837
+ # </note>
24838
+ # @return [String]
24839
+ #
24840
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployResult AWS API Documentation
24841
+ #
24842
+ class ModelDeployResult < Struct.new(
24843
+ :endpoint_name)
24844
+ SENSITIVE = []
24845
+ include Aws::Structure
24846
+ end
24847
+
24565
24848
  # Provides information to verify the integrity of stored model
24566
24849
  # artifacts.
24567
24850
  #
@@ -26397,6 +26680,13 @@ module Aws::SageMaker
26397
26680
  #
26398
26681
  # @!attribute [rw] max_runtime_in_seconds
26399
26682
  # The maximum runtime allowed in seconds.
26683
+ #
26684
+ # <note markdown="1"> The `MaxRuntimeInSeconds` cannot exceed the frequency of the job.
26685
+ # For data quality and model explainability, this can be up to 3600
26686
+ # seconds for an hourly schedule. For model bias and model quality
26687
+ # hourly schedules, this can be up to 1800 seconds.
26688
+ #
26689
+ # </note>
26400
26690
  # @return [Integer]
26401
26691
  #
26402
26692
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MonitoringStoppingCondition AWS API Documentation
@@ -27334,7 +27624,7 @@ module Aws::SageMaker
27334
27624
  #
27335
27625
  #
27336
27626
  #
27337
- # [1]: https://docs.aws.amazon.com/mazonS3/latest/dev/UsingKMSEncryption.html
27627
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
27338
27628
  # [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
27339
27629
  # @return [String]
27340
27630
  #
@@ -27352,6 +27642,33 @@ module Aws::SageMaker
27352
27642
  include Aws::Structure
27353
27643
  end
27354
27644
 
27645
+ # An output parameter of a pipeline step.
27646
+ #
27647
+ # @note When making an API call, you may pass OutputParameter
27648
+ # data as a hash:
27649
+ #
27650
+ # {
27651
+ # name: "String256", # required
27652
+ # value: "String1024", # required
27653
+ # }
27654
+ #
27655
+ # @!attribute [rw] name
27656
+ # The name of the output parameter.
27657
+ # @return [String]
27658
+ #
27659
+ # @!attribute [rw] value
27660
+ # The value of the output parameter.
27661
+ # @return [String]
27662
+ #
27663
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OutputParameter AWS API Documentation
27664
+ #
27665
+ class OutputParameter < Struct.new(
27666
+ :name,
27667
+ :value)
27668
+ SENSITIVE = []
27669
+ include Aws::Structure
27670
+ end
27671
+
27355
27672
  # Assigns a value to a named Pipeline parameter.
27356
27673
  #
27357
27674
  # @note When making an API call, you may pass Parameter
@@ -27631,6 +27948,15 @@ module Aws::SageMaker
27631
27948
  # The description of the pipeline execution.
27632
27949
  # @return [String]
27633
27950
  #
27951
+ # @!attribute [rw] pipeline_experiment_config
27952
+ # Specifies the names of the experiment and trial created by a
27953
+ # pipeline.
27954
+ # @return [Types::PipelineExperimentConfig]
27955
+ #
27956
+ # @!attribute [rw] failure_reason
27957
+ # If the execution failed, a message describing why.
27958
+ # @return [String]
27959
+ #
27634
27960
  # @!attribute [rw] creation_time
27635
27961
  # The creation time of the pipeline execution.
27636
27962
  # @return [Time]
@@ -27661,6 +27987,8 @@ module Aws::SageMaker
27661
27987
  :pipeline_execution_display_name,
27662
27988
  :pipeline_execution_status,
27663
27989
  :pipeline_execution_description,
27990
+ :pipeline_experiment_config,
27991
+ :failure_reason,
27664
27992
  :creation_time,
27665
27993
  :last_modified_time,
27666
27994
  :created_by,
@@ -27699,7 +28027,7 @@ module Aws::SageMaker
27699
28027
  # @return [String]
27700
28028
  #
27701
28029
  # @!attribute [rw] metadata
27702
- # The metadata for the step execution.
28030
+ # Metadata for the step execution.
27703
28031
  # @return [Types::PipelineExecutionStepMetadata]
27704
28032
  #
27705
28033
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExecutionStep AWS API Documentation
@@ -27746,6 +28074,10 @@ module Aws::SageMaker
27746
28074
  # condition.
27747
28075
  # @return [Types::ConditionStepMetadata]
27748
28076
  #
28077
+ # @!attribute [rw] callback
28078
+ # Metadata about a callback step.
28079
+ # @return [Types::CallbackStepMetadata]
28080
+ #
27749
28081
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExecutionStepMetadata AWS API Documentation
27750
28082
  #
27751
28083
  class PipelineExecutionStepMetadata < Struct.new(
@@ -27754,7 +28086,8 @@ module Aws::SageMaker
27754
28086
  :transform_job,
27755
28087
  :model,
27756
28088
  :register_model,
27757
- :condition)
28089
+ :condition,
28090
+ :callback)
27758
28091
  SENSITIVE = []
27759
28092
  include Aws::Structure
27760
28093
  end
@@ -27793,6 +28126,25 @@ module Aws::SageMaker
27793
28126
  include Aws::Structure
27794
28127
  end
27795
28128
 
28129
+ # Specifies the names of the experiment and trial created by a pipeline.
28130
+ #
28131
+ # @!attribute [rw] experiment_name
28132
+ # The name of the experiment.
28133
+ # @return [String]
28134
+ #
28135
+ # @!attribute [rw] trial_name
28136
+ # The name of the trial.
28137
+ # @return [String]
28138
+ #
28139
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PipelineExperimentConfig AWS API Documentation
28140
+ #
28141
+ class PipelineExperimentConfig < Struct.new(
28142
+ :experiment_name,
28143
+ :trial_name)
28144
+ SENSITIVE = []
28145
+ include Aws::Structure
28146
+ end
28147
+
27796
28148
  # A summary of a pipeline.
27797
28149
  #
27798
28150
  # @!attribute [rw] pipeline_arn
@@ -28462,10 +28814,10 @@ module Aws::SageMaker
28462
28814
  include Aws::Structure
28463
28815
  end
28464
28816
 
28465
- # Identifies a model that you want to host and the resources to deploy
28466
- # for hosting it. If you are deploying multiple models, tell Amazon
28467
- # SageMaker how to distribute traffic among the models by specifying
28468
- # variant weights.
28817
+ # Identifies a model that you want to host and the resources chosen to
28818
+ # deploy for hosting it. If you are deploying multiple models, tell
28819
+ # Amazon SageMaker how to distribute traffic among the models by
28820
+ # specifying variant weights.
28469
28821
  #
28470
28822
  # @note When making an API call, you may pass ProductionVariant
28471
28823
  # data as a hash:
@@ -29764,6 +30116,32 @@ module Aws::SageMaker
29764
30116
  include Aws::Structure
29765
30117
  end
29766
30118
 
30119
+ # The retry strategy to use when a training job fails due to an
30120
+ # `InternalServerError`. `RetryStrategy` is specified as part of the
30121
+ # `CreateTrainingJob` and `CreateHyperParameterTuningJob` requests. You
30122
+ # can add the `StoppingCondition` parameter to the request to limit the
30123
+ # training time for the complete job.
30124
+ #
30125
+ # @note When making an API call, you may pass RetryStrategy
30126
+ # data as a hash:
30127
+ #
30128
+ # {
30129
+ # maximum_retry_attempts: 1, # required
30130
+ # }
30131
+ #
30132
+ # @!attribute [rw] maximum_retry_attempts
30133
+ # The number of times to retry the job. When the job is retried, it's
30134
+ # `SecondaryStatus` is changed to `STARTING`.
30135
+ # @return [Integer]
30136
+ #
30137
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RetryStrategy AWS API Documentation
30138
+ #
30139
+ class RetryStrategy < Struct.new(
30140
+ :maximum_retry_attempts)
30141
+ SENSITIVE = []
30142
+ include Aws::Structure
30143
+ end
30144
+
29767
30145
  # Describes the S3 data source.
29768
30146
  #
29769
30147
  # @note When making an API call, you may pass S3DataSource
@@ -30378,6 +30756,107 @@ module Aws::SageMaker
30378
30756
  include Aws::Structure
30379
30757
  end
30380
30758
 
30759
+ # @note When making an API call, you may pass SendPipelineExecutionStepFailureRequest
30760
+ # data as a hash:
30761
+ #
30762
+ # {
30763
+ # callback_token: "CallbackToken", # required
30764
+ # failure_reason: "String256",
30765
+ # client_request_token: "IdempotencyToken",
30766
+ # }
30767
+ #
30768
+ # @!attribute [rw] callback_token
30769
+ # The pipeline generated token from the Amazon SQS queue.
30770
+ # @return [String]
30771
+ #
30772
+ # @!attribute [rw] failure_reason
30773
+ # A message describing why the step failed.
30774
+ # @return [String]
30775
+ #
30776
+ # @!attribute [rw] client_request_token
30777
+ # A unique, case-sensitive identifier that you provide to ensure the
30778
+ # idempotency of the operation. An idempotent operation completes no
30779
+ # more than one time.
30780
+ #
30781
+ # **A suitable default value is auto-generated.** You should normally
30782
+ # not need to pass this option.
30783
+ # @return [String]
30784
+ #
30785
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailureRequest AWS API Documentation
30786
+ #
30787
+ class SendPipelineExecutionStepFailureRequest < Struct.new(
30788
+ :callback_token,
30789
+ :failure_reason,
30790
+ :client_request_token)
30791
+ SENSITIVE = []
30792
+ include Aws::Structure
30793
+ end
30794
+
30795
+ # @!attribute [rw] pipeline_execution_arn
30796
+ # The Amazon Resource Name (ARN) of the pipeline execution.
30797
+ # @return [String]
30798
+ #
30799
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailureResponse AWS API Documentation
30800
+ #
30801
+ class SendPipelineExecutionStepFailureResponse < Struct.new(
30802
+ :pipeline_execution_arn)
30803
+ SENSITIVE = []
30804
+ include Aws::Structure
30805
+ end
30806
+
30807
+ # @note When making an API call, you may pass SendPipelineExecutionStepSuccessRequest
30808
+ # data as a hash:
30809
+ #
30810
+ # {
30811
+ # callback_token: "CallbackToken", # required
30812
+ # output_parameters: [
30813
+ # {
30814
+ # name: "String256", # required
30815
+ # value: "String1024", # required
30816
+ # },
30817
+ # ],
30818
+ # client_request_token: "IdempotencyToken",
30819
+ # }
30820
+ #
30821
+ # @!attribute [rw] callback_token
30822
+ # The pipeline generated token from the Amazon SQS queue.
30823
+ # @return [String]
30824
+ #
30825
+ # @!attribute [rw] output_parameters
30826
+ # A list of the output parameters of the callback step.
30827
+ # @return [Array<Types::OutputParameter>]
30828
+ #
30829
+ # @!attribute [rw] client_request_token
30830
+ # A unique, case-sensitive identifier that you provide to ensure the
30831
+ # idempotency of the operation. An idempotent operation completes no
30832
+ # more than one time.
30833
+ #
30834
+ # **A suitable default value is auto-generated.** You should normally
30835
+ # not need to pass this option.
30836
+ # @return [String]
30837
+ #
30838
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccessRequest AWS API Documentation
30839
+ #
30840
+ class SendPipelineExecutionStepSuccessRequest < Struct.new(
30841
+ :callback_token,
30842
+ :output_parameters,
30843
+ :client_request_token)
30844
+ SENSITIVE = []
30845
+ include Aws::Structure
30846
+ end
30847
+
30848
+ # @!attribute [rw] pipeline_execution_arn
30849
+ # The Amazon Resource Name (ARN) of the pipeline execution.
30850
+ # @return [String]
30851
+ #
30852
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccessResponse AWS API Documentation
30853
+ #
30854
+ class SendPipelineExecutionStepSuccessResponse < Struct.new(
30855
+ :pipeline_execution_arn)
30856
+ SENSITIVE = []
30857
+ include Aws::Structure
30858
+ end
30859
+
30381
30860
  # Details of a provisioned service catalog product. For information
30382
30861
  # about service catalog, see [What is AWS Service Catalog][1].
30383
30862
  #
@@ -30478,10 +30957,11 @@ module Aws::SageMaker
30478
30957
  include Aws::Structure
30479
30958
  end
30480
30959
 
30481
- # Specifies options when sharing an Amazon SageMaker Studio notebook.
30482
- # These settings are specified as part of `DefaultUserSettings` when the
30483
- # CreateDomain API is called, and as part of `UserSettings` when the
30484
- # CreateUserProfile API is called.
30960
+ # Specifies options for sharing SageMaker Studio notebooks. These
30961
+ # settings are specified as part of `DefaultUserSettings` when the
30962
+ # `CreateDomain` API is called, and as part of `UserSettings` when the
30963
+ # `CreateUserProfile` API is called. When `SharingSettings` is not
30964
+ # specified, notebook sharing isn't allowed.
30485
30965
  #
30486
30966
  # @note When making an API call, you may pass SharingSettings
30487
30967
  # data as a hash:
@@ -30995,11 +31475,11 @@ module Aws::SageMaker
30995
31475
  include Aws::Structure
30996
31476
  end
30997
31477
 
30998
- # Specifies a limit to how long a model training or compilation job can
30999
- # run. It also specifies how long you are willing to wait for a managed
31000
- # spot training job to complete. When the job reaches the time limit,
31001
- # Amazon SageMaker ends the training or compilation job. Use this API to
31002
- # cap model training costs.
31478
+ # Specifies a limit to how long a model training job, model compilation
31479
+ # job, or hyperparameter tuning job can run. It also specifies how long
31480
+ # a managed Spot training job has to complete. When the job reaches the
31481
+ # time limit, Amazon SageMaker ends the training or compilation job. Use
31482
+ # this API to cap model training costs.
31003
31483
  #
31004
31484
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
31005
31485
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -31029,18 +31509,27 @@ module Aws::SageMaker
31029
31509
  # }
31030
31510
  #
31031
31511
  # @!attribute [rw] max_runtime_in_seconds
31032
- # The maximum length of time, in seconds, that the training or
31033
- # compilation job can run. If job does not complete during this time,
31034
- # Amazon SageMaker ends the job. If value is not specified, default
31035
- # value is 1 day. The maximum value is 28 days.
31512
+ # The maximum length of time, in seconds, that a training or
31513
+ # compilation job can run. If the job does not complete during this
31514
+ # time, Amazon SageMaker ends the job.
31515
+ #
31516
+ # When `RetryStrategy` is specified in the job request,
31517
+ # `MaxRuntimeInSeconds` specifies the maximum time for all of the
31518
+ # attempts in total, not each individual attempt.
31519
+ #
31520
+ # The default value is 1 day. The maximum value is 28 days.
31036
31521
  # @return [Integer]
31037
31522
  #
31038
31523
  # @!attribute [rw] max_wait_time_in_seconds
31039
- # The maximum length of time, in seconds, how long you are willing to
31040
- # wait for a managed spot training job to complete. It is the amount
31041
- # of time spent waiting for Spot capacity plus the amount of time the
31042
- # training job runs. It must be equal to or greater than
31043
- # `MaxRuntimeInSeconds`.
31524
+ # The maximum length of time, in seconds, that a managed Spot training
31525
+ # job has to complete. It is the amount of time spent waiting for Spot
31526
+ # capacity plus the amount of time the job can run. It must be equal
31527
+ # to or greater than `MaxRuntimeInSeconds`. If the job does not
31528
+ # complete during this time, Amazon SageMaker ends the job.
31529
+ #
31530
+ # When `RetryStrategy` is specified in the job request,
31531
+ # `MaxWaitTimeInSeconds` specifies the maximum time for all of the
31532
+ # attempts in total, not each individual attempt.
31044
31533
  # @return [Integer]
31045
31534
  #
31046
31535
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
@@ -31113,7 +31602,23 @@ module Aws::SageMaker
31113
31602
  include Aws::Structure
31114
31603
  end
31115
31604
 
31116
- # Describes a tag.
31605
+ # A tag object that consists of a key and an optional value, used to
31606
+ # manage metadata for Amazon SageMaker AWS resources.
31607
+ #
31608
+ # You can add tags to notebook instances, training jobs, hyperparameter
31609
+ # tuning jobs, batch transform jobs, models, labeling jobs, work teams,
31610
+ # endpoint configurations, and endpoints. For more information on adding
31611
+ # tags to Amazon SageMaker resources, see AddTags.
31612
+ #
31613
+ # For more information on adding metadata to your AWS resources with
31614
+ # tagging, see [Tagging AWS resources][1]. For advice on best practices
31615
+ # for managing AWS resources with tagging, see [Tagging Best Practices:
31616
+ # Implement an Effective AWS Resource Tagging Strategy][2].
31617
+ #
31618
+ #
31619
+ #
31620
+ # [1]: https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
31621
+ # [2]: https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf
31117
31622
  #
31118
31623
  # @note When making an API call, you may pass Tag
31119
31624
  # data as a hash:
@@ -31124,7 +31629,7 @@ module Aws::SageMaker
31124
31629
  # }
31125
31630
  #
31126
31631
  # @!attribute [rw] key
31127
- # The tag key.
31632
+ # The tag key. Tag keys must be unique per resource.
31128
31633
  # @return [String]
31129
31634
  #
31130
31635
  # @!attribute [rw] value
@@ -31435,9 +31940,10 @@ module Aws::SageMaker
31435
31940
  # @return [Types::VpcConfig]
31436
31941
  #
31437
31942
  # @!attribute [rw] stopping_condition
31438
- # Specifies a limit to how long a model training job can run. When the
31439
- # job reaches the time limit, Amazon SageMaker ends the training job.
31440
- # Use this API to cap model training costs.
31943
+ # Specifies a limit to how long a model training job can run. It also
31944
+ # specifies how long a managed Spot training job has to complete. When
31945
+ # the job reaches the time limit, Amazon SageMaker ends the training
31946
+ # job. Use this API to cap model training costs.
31441
31947
  #
31442
31948
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
31443
31949
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -31558,6 +32064,15 @@ module Aws::SageMaker
31558
32064
  # training job.
31559
32065
  # @return [Array<Types::DebugRuleEvaluationStatus>]
31560
32066
  #
32067
+ # @!attribute [rw] environment
32068
+ # The environment variables to set in the Docker container.
32069
+ # @return [Hash<String,String>]
32070
+ #
32071
+ # @!attribute [rw] retry_strategy
32072
+ # The number of times to retry the job when the job fails due to an
32073
+ # `InternalServerError`.
32074
+ # @return [Types::RetryStrategy]
32075
+ #
31561
32076
  # @!attribute [rw] tags
31562
32077
  # An array of key-value pairs. You can use tags to categorize your AWS
31563
32078
  # resources in different ways, for example, by purpose, owner, or
@@ -31605,6 +32120,8 @@ module Aws::SageMaker
31605
32120
  :debug_rule_configurations,
31606
32121
  :tensor_board_output_config,
31607
32122
  :debug_rule_evaluation_statuses,
32123
+ :environment,
32124
+ :retry_strategy,
31608
32125
  :tags)
31609
32126
  SENSITIVE = []
31610
32127
  include Aws::Structure
@@ -31698,9 +32215,10 @@ module Aws::SageMaker
31698
32215
  # @return [Types::ResourceConfig]
31699
32216
  #
31700
32217
  # @!attribute [rw] stopping_condition
31701
- # Specifies a limit to how long a model training job can run. When the
31702
- # job reaches the time limit, Amazon SageMaker ends the training job.
31703
- # Use this API to cap model training costs.
32218
+ # Specifies a limit to how long a model training job can run. It also
32219
+ # specifies how long a managed Spot training job has to complete. When
32220
+ # the job reaches the time limit, Amazon SageMaker ends the training
32221
+ # job. Use this API to cap model training costs.
31704
32222
  #
31705
32223
  # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
31706
32224
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -32033,7 +32551,7 @@ module Aws::SageMaker
32033
32551
  #
32034
32552
  #
32035
32553
  # [1]: https://mxnet.apache.org/api/faq/recordio
32036
- # [2]: https://www.tensorflow.org/guide/datasets#consuming_tfrecord_data
32554
+ # [2]: https://www.tensorflow.org/guide/data#consuming_tfrecord_data
32037
32555
  # @return [String]
32038
32556
  #
32039
32557
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformInput AWS API Documentation
@@ -33178,7 +33696,7 @@ module Aws::SageMaker
33178
33696
  include Aws::Structure
33179
33697
  end
33180
33698
 
33181
- # Represents an amount of money in United States dollars/
33699
+ # Represents an amount of money in United States dollars.
33182
33700
  #
33183
33701
  # @note When making an API call, you may pass USD
33184
33702
  # data as a hash:
@@ -34957,8 +35475,8 @@ module Aws::SageMaker
34957
35475
  end
34958
35476
 
34959
35477
  # A collection of settings that apply to users of Amazon SageMaker
34960
- # Studio. These settings are specified when the CreateUserProfile API is
34961
- # called, and as `DefaultUserSettings` when the CreateDomain API is
35478
+ # Studio. These settings are specified when the `CreateUserProfile` API
35479
+ # is called, and as `DefaultUserSettings` when the `CreateDomain` API is
34962
35480
  # called.
34963
35481
  #
34964
35482
  # `SecurityGroups` is aggregated when specified in both calls. For all
@@ -35027,7 +35545,7 @@ module Aws::SageMaker
35027
35545
  # @return [Array<String>]
35028
35546
  #
35029
35547
  # @!attribute [rw] sharing_settings
35030
- # The sharing settings.
35548
+ # Specifies options for sharing SageMaker Studio notebooks.
35031
35549
  # @return [Types::SharingSettings]
35032
35550
  #
35033
35551
  # @!attribute [rw] jupyter_server_app_settings