aws-sdk-sagemaker 1.83.0 → 1.88.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +25 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +328 -95
- data/lib/aws-sdk-sagemaker/client_api.rb +116 -0
- data/lib/aws-sdk-sagemaker/types.rb +737 -219
- metadata +3 -4
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: '08aa015687aed885049b6d88001b8df5c20b6f94eacd16571db42fedafde4211'
|
4
|
+
data.tar.gz: e980e0c862d4e72783e764c0a57793bb9762a59e9522fa600b9705685769753d
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 3c69ef72d9f4b00633219e5cdaa853893377a929289bf9b911a2970a8ad45b70c2c62e9693070c6b6a946bf6b18a32303ed2234f38fb0caecf47f89d5b33fa00
|
7
|
+
data.tar.gz: e5896a529d93d0128d494905c3706948b7514ea1133abb567f0065b9269338cc1d8841be31fb34626d1452e81653172f3f44b86bd1332ce5d42762affc836a9f
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,31 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.88.0 (2021-06-07)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - AWS SageMaker - Releasing new APIs related to Callback steps in model building pipelines. Adds experiment integration to model building pipelines.
|
8
|
+
|
9
|
+
1.87.0 (2021-05-05)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Amazon SageMaker Autopilot now provides the ability to automatically deploy the best model to an endpoint
|
13
|
+
|
14
|
+
1.86.0 (2021-05-04)
|
15
|
+
------------------
|
16
|
+
|
17
|
+
* Feature - Enable retrying Training and Tuning Jobs that fail with InternalServerError by setting RetryStrategy.
|
18
|
+
|
19
|
+
1.85.0 (2021-03-30)
|
20
|
+
------------------
|
21
|
+
|
22
|
+
* Feature - Amazon SageMaker Autopilot now supports 1) feature importance reports for AutoML jobs and 2) PartialFailures for AutoML jobs
|
23
|
+
|
24
|
+
1.84.0 (2021-03-25)
|
25
|
+
------------------
|
26
|
+
|
27
|
+
* Feature - This feature allows customer to specify the environment variables in their CreateTrainingJob requests.
|
28
|
+
|
4
29
|
1.83.0 (2021-03-19)
|
5
30
|
------------------
|
6
31
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.88.0
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -419,6 +419,17 @@ module Aws::SageMaker
|
|
419
419
|
#
|
420
420
|
# </note>
|
421
421
|
#
|
422
|
+
# <note markdown="1"> Tags that you add to a SageMaker Studio Domain or User Profile by
|
423
|
+
# calling this API are also added to any Apps that the Domain or User
|
424
|
+
# Profile launches after you call this API, but not to Apps that the
|
425
|
+
# Domain or User Profile launched before you called this API. To make
|
426
|
+
# sure that the tags associated with a Domain or User Profile are also
|
427
|
+
# added to all Apps that the Domain or User Profile launches, add the
|
428
|
+
# tags when you first create the Domain or User Profile by specifying
|
429
|
+
# them in the `Tags` parameter of CreateDomain or CreateUserProfile.
|
430
|
+
#
|
431
|
+
# </note>
|
432
|
+
#
|
422
433
|
#
|
423
434
|
#
|
424
435
|
# [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
|
@@ -508,6 +519,13 @@ module Aws::SageMaker
|
|
508
519
|
# artifact. For more information, see [Amazon SageMaker ML Lineage
|
509
520
|
# Tracking][1].
|
510
521
|
#
|
522
|
+
# <note markdown="1"> `CreateAction` can only be invoked from within an SageMaker managed
|
523
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
524
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateAction` from
|
525
|
+
# outside one of these environments results in an error.
|
526
|
+
#
|
527
|
+
# </note>
|
528
|
+
#
|
511
529
|
#
|
512
530
|
#
|
513
531
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -827,11 +845,11 @@ module Aws::SageMaker
|
|
827
845
|
req.send_request(options)
|
828
846
|
end
|
829
847
|
|
830
|
-
# Creates a running
|
831
|
-
# are JupyterServer and KernelGateway
|
832
|
-
# invoked by Amazon SageMaker Studio upon access to the
|
833
|
-
# Domain, and when new kernel configurations are selected by
|
834
|
-
# user may have multiple Apps active simultaneously.
|
848
|
+
# Creates a running app for the specified UserProfile. Supported apps
|
849
|
+
# are `JupyterServer` and `KernelGateway`. This operation is
|
850
|
+
# automatically invoked by Amazon SageMaker Studio upon access to the
|
851
|
+
# associated Domain, and when new kernel configurations are selected by
|
852
|
+
# the user. A user may have multiple Apps active simultaneously.
|
835
853
|
#
|
836
854
|
# @option params [required, String] :domain_id
|
837
855
|
# The domain ID.
|
@@ -840,7 +858,8 @@ module Aws::SageMaker
|
|
840
858
|
# The user profile name.
|
841
859
|
#
|
842
860
|
# @option params [required, String] :app_type
|
843
|
-
# The type of app.
|
861
|
+
# The type of app. Supported apps are `JupyterServer` and
|
862
|
+
# `KernelGateway`. `TensorBoard` is not supported.
|
844
863
|
#
|
845
864
|
# @option params [required, String] :app_name
|
846
865
|
# The name of the app.
|
@@ -951,6 +970,13 @@ module Aws::SageMaker
|
|
951
970
|
# URI of a dataset and the ECR registry path of an image. For more
|
952
971
|
# information, see [Amazon SageMaker ML Lineage Tracking][1].
|
953
972
|
#
|
973
|
+
# <note markdown="1"> `CreateArtifact` can only be invoked from within an SageMaker managed
|
974
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
975
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateArtifact`
|
976
|
+
# from outside one of these environments results in an error.
|
977
|
+
#
|
978
|
+
# </note>
|
979
|
+
#
|
954
980
|
#
|
955
981
|
#
|
956
982
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -1025,55 +1051,65 @@ module Aws::SageMaker
|
|
1025
1051
|
# Creates an Autopilot job.
|
1026
1052
|
#
|
1027
1053
|
# Find the best performing model after you run an Autopilot job by
|
1028
|
-
# calling .
|
1029
|
-
# 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
|
1054
|
+
# calling .
|
1030
1055
|
#
|
1031
|
-
# For information about how to use Autopilot, see [
|
1032
|
-
# Development with Amazon SageMaker Autopilot][
|
1056
|
+
# For information about how to use Autopilot, see [Automate Model
|
1057
|
+
# Development with Amazon SageMaker Autopilot][1].
|
1033
1058
|
#
|
1034
1059
|
#
|
1035
1060
|
#
|
1036
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/
|
1037
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1061
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1038
1062
|
#
|
1039
1063
|
# @option params [required, String] :auto_ml_job_name
|
1040
|
-
# Identifies an Autopilot job.
|
1041
|
-
# case-insensitive.
|
1064
|
+
# Identifies an Autopilot job. The name must be unique to your account
|
1065
|
+
# and is case-insensitive.
|
1042
1066
|
#
|
1043
1067
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
1044
|
-
#
|
1045
|
-
#
|
1068
|
+
# An array of channel objects that describes the input data and its
|
1069
|
+
# location. Each channel is a named input source. Similar to
|
1070
|
+
# `InputDataConfig` supported by . Format(s) supported: CSV. Minimum of
|
1071
|
+
# 500 rows.
|
1046
1072
|
#
|
1047
1073
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
1048
|
-
#
|
1074
|
+
# Provides information about encryption and the Amazon S3 output path
|
1075
|
+
# needed to store artifacts from an AutoML job. Format(s) supported:
|
1049
1076
|
# CSV.
|
1050
1077
|
#
|
1051
1078
|
# @option params [String] :problem_type
|
1052
|
-
# Defines the
|
1053
|
-
#
|
1054
|
-
#
|
1079
|
+
# Defines the type of supervised learning available for the candidates.
|
1080
|
+
# Options include: `BinaryClassification`, `MulticlassClassification`,
|
1081
|
+
# and `Regression`. For more information, see [ Amazon SageMaker
|
1082
|
+
# Autopilot problem types and algorithm support][1].
|
1083
|
+
#
|
1084
|
+
#
|
1085
|
+
#
|
1086
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
|
1055
1087
|
#
|
1056
1088
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1057
|
-
# Defines the objective
|
1058
|
-
#
|
1059
|
-
#
|
1060
|
-
# ObjectiveMetric for problem type is automaically selected.
|
1089
|
+
# Defines the objective metric used to measure the predictive quality of
|
1090
|
+
# an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
1091
|
+
# Autopilot infers whether to minimize or maximize it.
|
1061
1092
|
#
|
1062
1093
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1063
|
-
# Contains CompletionCriteria and SecurityConfig
|
1094
|
+
# Contains `CompletionCriteria` and `SecurityConfig` settings for the
|
1095
|
+
# AutoML job.
|
1064
1096
|
#
|
1065
1097
|
# @option params [required, String] :role_arn
|
1066
1098
|
# The ARN of the role that is used to access the data.
|
1067
1099
|
#
|
1068
1100
|
# @option params [Boolean] :generate_candidate_definitions_only
|
1069
|
-
# Generates possible candidates without training
|
1070
|
-
# a combination of data preprocessors, algorithms, and algorithm
|
1101
|
+
# Generates possible candidates without training the models. A candidate
|
1102
|
+
# is a combination of data preprocessors, algorithms, and algorithm
|
1071
1103
|
# parameter settings.
|
1072
1104
|
#
|
1073
1105
|
# @option params [Array<Types::Tag>] :tags
|
1074
1106
|
# Each tag consists of a key and an optional value. Tag keys must be
|
1075
1107
|
# unique per resource.
|
1076
1108
|
#
|
1109
|
+
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1110
|
+
# Specifies how to generate the endpoint name for an automatic one-click
|
1111
|
+
# Autopilot model deployment.
|
1112
|
+
#
|
1077
1113
|
# @return [Types::CreateAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1078
1114
|
#
|
1079
1115
|
# * {Types::CreateAutoMLJobResponse#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1125,6 +1161,10 @@ module Aws::SageMaker
|
|
1125
1161
|
# value: "TagValue", # required
|
1126
1162
|
# },
|
1127
1163
|
# ],
|
1164
|
+
# model_deploy_config: {
|
1165
|
+
# auto_generate_endpoint_name: false,
|
1166
|
+
# endpoint_name: "EndpointName",
|
1167
|
+
# },
|
1128
1168
|
# })
|
1129
1169
|
#
|
1130
1170
|
# @example Response structure
|
@@ -1343,6 +1383,13 @@ module Aws::SageMaker
|
|
1343
1383
|
# entities. Some examples are an endpoint and a model package. For more
|
1344
1384
|
# information, see [Amazon SageMaker ML Lineage Tracking][1].
|
1345
1385
|
#
|
1386
|
+
# <note markdown="1"> `CreateContext` can only be invoked from within an SageMaker managed
|
1387
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
1388
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateContext`
|
1389
|
+
# from outside one of these environments results in an error.
|
1390
|
+
#
|
1391
|
+
# </note>
|
1392
|
+
#
|
1346
1393
|
#
|
1347
1394
|
#
|
1348
1395
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -1651,7 +1698,14 @@ module Aws::SageMaker
|
|
1651
1698
|
# The mode of authentication that members use to access the domain.
|
1652
1699
|
#
|
1653
1700
|
# @option params [required, Types::UserSettings] :default_user_settings
|
1654
|
-
# The default user
|
1701
|
+
# The default settings to use to create a user profile when
|
1702
|
+
# `UserSettings` isn't specified in the call to the `CreateUserProfile`
|
1703
|
+
# API.
|
1704
|
+
#
|
1705
|
+
# `SecurityGroups` is aggregated when specified in both calls. For all
|
1706
|
+
# other settings in `UserSettings`, the values specified in
|
1707
|
+
# `CreateUserProfile` take precedence over those specified in
|
1708
|
+
# `CreateDomain`.
|
1655
1709
|
#
|
1656
1710
|
# @option params [required, Array<String>] :subnet_ids
|
1657
1711
|
# The VPC subnets that Studio uses for communication.
|
@@ -1663,7 +1717,10 @@ module Aws::SageMaker
|
|
1663
1717
|
# @option params [Array<Types::Tag>] :tags
|
1664
1718
|
# Tags to associated with the Domain. Each tag consists of a key and an
|
1665
1719
|
# optional value. Tag keys must be unique per resource. Tags are
|
1666
|
-
# searchable using the Search API.
|
1720
|
+
# searchable using the `Search` API.
|
1721
|
+
#
|
1722
|
+
# Tags that you specify for the Domain are also added to all Apps that
|
1723
|
+
# the Domain launches.
|
1667
1724
|
#
|
1668
1725
|
# @option params [String] :app_network_access_type
|
1669
1726
|
# Specifies the VPC used for non-EFS traffic. The default value is
|
@@ -2141,10 +2198,10 @@ module Aws::SageMaker
|
|
2141
2198
|
# measuring the impact of a change to one or more inputs, while keeping
|
2142
2199
|
# the remaining inputs constant.
|
2143
2200
|
#
|
2144
|
-
# When you use
|
2145
|
-
#
|
2146
|
-
#
|
2147
|
-
#
|
2201
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
2202
|
+
# experiments, trials, and trial components are automatically tracked,
|
2203
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
2204
|
+
# must use the logging APIs provided by the SDK.
|
2148
2205
|
#
|
2149
2206
|
# You can add tags to experiments, trials, trial components and then use
|
2150
2207
|
# the Search API to search for the tags.
|
@@ -2722,6 +2779,9 @@ module Aws::SageMaker
|
|
2722
2779
|
# s3_uri: "S3Uri", # required
|
2723
2780
|
# local_path: "DirectoryPath",
|
2724
2781
|
# },
|
2782
|
+
# retry_strategy: {
|
2783
|
+
# maximum_retry_attempts: 1, # required
|
2784
|
+
# },
|
2725
2785
|
# },
|
2726
2786
|
# training_job_definitions: [
|
2727
2787
|
# {
|
@@ -2820,6 +2880,9 @@ module Aws::SageMaker
|
|
2820
2880
|
# s3_uri: "S3Uri", # required
|
2821
2881
|
# local_path: "DirectoryPath",
|
2822
2882
|
# },
|
2883
|
+
# retry_strategy: {
|
2884
|
+
# maximum_retry_attempts: 1, # required
|
2885
|
+
# },
|
2823
2886
|
# },
|
2824
2887
|
# ],
|
2825
2888
|
# warm_start_config: {
|
@@ -4342,10 +4405,10 @@ module Aws::SageMaker
|
|
4342
4405
|
#
|
4343
4406
|
# @option params [String] :direct_internet_access
|
4344
4407
|
# Sets whether Amazon SageMaker provides internet access to the notebook
|
4345
|
-
# instance. If you set this to `Disabled` this notebook instance
|
4346
|
-
#
|
4347
|
-
#
|
4348
|
-
#
|
4408
|
+
# instance. If you set this to `Disabled` this notebook instance is able
|
4409
|
+
# to access resources only in your VPC, and is not be able to connect to
|
4410
|
+
# Amazon SageMaker training and endpoint services unless you configure a
|
4411
|
+
# NAT Gateway in your VPC.
|
4349
4412
|
#
|
4350
4413
|
# For more information, see [Notebook Instances Are Internet-Enabled by
|
4351
4414
|
# Default][1]. You can set the value of this parameter to `Disabled`
|
@@ -4969,8 +5032,6 @@ module Aws::SageMaker
|
|
4969
5032
|
# * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
|
4970
5033
|
# Amazon SageMaker to save the results of model training.
|
4971
5034
|
#
|
4972
|
-
#
|
4973
|
-
#
|
4974
5035
|
# * `ResourceConfig` - Identifies the resources, ML compute instances,
|
4975
5036
|
# and ML storage volumes to deploy for model training. In distributed
|
4976
5037
|
# training, you specify more than one instance.
|
@@ -4986,8 +5047,14 @@ module Aws::SageMaker
|
|
4986
5047
|
#
|
4987
5048
|
# * `StoppingCondition` - To help cap training costs, use
|
4988
5049
|
# `MaxRuntimeInSeconds` to set a time limit for training. Use
|
4989
|
-
# `MaxWaitTimeInSeconds` to specify how long
|
4990
|
-
#
|
5050
|
+
# `MaxWaitTimeInSeconds` to specify how long a managed spot training
|
5051
|
+
# job has to complete.
|
5052
|
+
#
|
5053
|
+
# * `Environment` - The environment variables to set in the Docker
|
5054
|
+
# container.
|
5055
|
+
#
|
5056
|
+
# * `RetryStrategy` - The number of times to retry the job when the job
|
5057
|
+
# fails due to an `InternalServerError`.
|
4991
5058
|
#
|
4992
5059
|
# For more information about Amazon SageMaker, see [How It Works][3].
|
4993
5060
|
#
|
@@ -5092,9 +5159,10 @@ module Aws::SageMaker
|
|
5092
5159
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
|
5093
5160
|
#
|
5094
5161
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
5095
|
-
# Specifies a limit to how long a model training job can run.
|
5096
|
-
#
|
5097
|
-
#
|
5162
|
+
# Specifies a limit to how long a model training job can run. It also
|
5163
|
+
# specifies how long a managed Spot training job has to complete. When
|
5164
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
5165
|
+
# job. Use this API to cap model training costs.
|
5098
5166
|
#
|
5099
5167
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
5100
5168
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -5186,6 +5254,13 @@ module Aws::SageMaker
|
|
5186
5254
|
# Configuration information for Debugger rules for profiling system and
|
5187
5255
|
# framework metrics.
|
5188
5256
|
#
|
5257
|
+
# @option params [Hash<String,String>] :environment
|
5258
|
+
# The environment variables to set in the Docker container.
|
5259
|
+
#
|
5260
|
+
# @option params [Types::RetryStrategy] :retry_strategy
|
5261
|
+
# The number of times to retry the job when the job fails due to an
|
5262
|
+
# `InternalServerError`.
|
5263
|
+
#
|
5189
5264
|
# @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
5190
5265
|
#
|
5191
5266
|
# * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
|
@@ -5324,6 +5399,12 @@ module Aws::SageMaker
|
|
5324
5399
|
# },
|
5325
5400
|
# },
|
5326
5401
|
# ],
|
5402
|
+
# environment: {
|
5403
|
+
# "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
|
5404
|
+
# },
|
5405
|
+
# retry_strategy: {
|
5406
|
+
# maximum_retry_attempts: 1, # required
|
5407
|
+
# },
|
5327
5408
|
# })
|
5328
5409
|
#
|
5329
5410
|
# @example Response structure
|
@@ -5549,14 +5630,14 @@ module Aws::SageMaker
|
|
5549
5630
|
req.send_request(options)
|
5550
5631
|
end
|
5551
5632
|
|
5552
|
-
# Creates an
|
5553
|
-
#
|
5554
|
-
#
|
5633
|
+
# Creates an SageMaker *trial*. A trial is a set of steps called *trial
|
5634
|
+
# components* that produce a machine learning model. A trial is part of
|
5635
|
+
# a single SageMaker *experiment*.
|
5555
5636
|
#
|
5556
|
-
# When you use
|
5557
|
-
#
|
5558
|
-
#
|
5559
|
-
#
|
5637
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
5638
|
+
# experiments, trials, and trial components are automatically tracked,
|
5639
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
5640
|
+
# must use the logging APIs provided by the SDK.
|
5560
5641
|
#
|
5561
5642
|
# You can add tags to a trial and then use the Search API to search for
|
5562
5643
|
# the tags.
|
@@ -5627,19 +5708,19 @@ module Aws::SageMaker
|
|
5627
5708
|
# Trial components include pre-processing jobs, training jobs, and batch
|
5628
5709
|
# transform jobs.
|
5629
5710
|
#
|
5630
|
-
# When you use
|
5631
|
-
#
|
5632
|
-
#
|
5633
|
-
#
|
5711
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
5712
|
+
# experiments, trials, and trial components are automatically tracked,
|
5713
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
5714
|
+
# must use the logging APIs provided by the SDK.
|
5634
5715
|
#
|
5635
5716
|
# You can add tags to a trial component and then use the Search API to
|
5636
5717
|
# search for the tags.
|
5637
5718
|
#
|
5638
|
-
# <note markdown="1"> `CreateTrialComponent` can only be invoked from within an
|
5639
|
-
#
|
5640
|
-
# jobs,
|
5641
|
-
#
|
5642
|
-
#
|
5719
|
+
# <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
|
5720
|
+
# managed environment. This includes SageMaker training jobs, processing
|
5721
|
+
# jobs, transform jobs, and SageMaker notebooks. A call to
|
5722
|
+
# `CreateTrialComponent` from outside one of these environments results
|
5723
|
+
# in an error.
|
5643
5724
|
#
|
5644
5725
|
# </note>
|
5645
5726
|
#
|
@@ -5759,7 +5840,7 @@ module Aws::SageMaker
|
|
5759
5840
|
# The ID of the associated Domain.
|
5760
5841
|
#
|
5761
5842
|
# @option params [required, String] :user_profile_name
|
5762
|
-
# A name for the UserProfile.
|
5843
|
+
# A name for the UserProfile. This value is not case sensitive.
|
5763
5844
|
#
|
5764
5845
|
# @option params [String] :single_sign_on_user_identifier
|
5765
5846
|
# A specifier for the type of value specified in SingleSignOnUserValue.
|
@@ -5777,6 +5858,9 @@ module Aws::SageMaker
|
|
5777
5858
|
# Each tag consists of a key and an optional value. Tag keys must be
|
5778
5859
|
# unique per resource.
|
5779
5860
|
#
|
5861
|
+
# Tags that you specify for the User Profile are also added to all Apps
|
5862
|
+
# that the User Profile launches.
|
5863
|
+
#
|
5780
5864
|
# @option params [Types::UserSettings] :user_settings
|
5781
5865
|
# A collection of settings.
|
5782
5866
|
#
|
@@ -6427,7 +6511,7 @@ module Aws::SageMaker
|
|
6427
6511
|
req.send_request(options)
|
6428
6512
|
end
|
6429
6513
|
|
6430
|
-
# Deletes an
|
6514
|
+
# Deletes an SageMaker experiment. All trials associated with the
|
6431
6515
|
# experiment must be deleted first. Use the ListTrials API to get a list
|
6432
6516
|
# of the trials associated with the experiment.
|
6433
6517
|
#
|
@@ -6662,8 +6746,10 @@ module Aws::SageMaker
|
|
6662
6746
|
# Marketplace to create models in Amazon SageMaker.
|
6663
6747
|
#
|
6664
6748
|
# @option params [required, String] :model_package_name
|
6665
|
-
# The name
|
6666
|
-
#
|
6749
|
+
# The name or Amazon Resource Name (ARN) of the model package to delete.
|
6750
|
+
#
|
6751
|
+
# When you specify a name, the name must have 1 to 63 characters. Valid
|
6752
|
+
# characters are a-z, A-Z, 0-9, and - (hyphen).
|
6667
6753
|
#
|
6668
6754
|
# @return [Struct] Returns an empty {Seahorse::Client::Response response}.
|
6669
6755
|
#
|
@@ -6822,7 +6908,10 @@ module Aws::SageMaker
|
|
6822
6908
|
req.send_request(options)
|
6823
6909
|
end
|
6824
6910
|
|
6825
|
-
# Deletes a pipeline if there are no
|
6911
|
+
# Deletes a pipeline if there are no running instances of the pipeline.
|
6912
|
+
# To delete a pipeline, you must stop all running instances of the
|
6913
|
+
# pipeline using the `StopPipelineExecution` API. When you delete a
|
6914
|
+
# pipeline, all instances of the pipeline are deleted.
|
6826
6915
|
#
|
6827
6916
|
# @option params [required, String] :pipeline_name
|
6828
6917
|
# The name of the pipeline to delete.
|
@@ -6891,6 +6980,13 @@ module Aws::SageMaker
|
|
6891
6980
|
#
|
6892
6981
|
# </note>
|
6893
6982
|
#
|
6983
|
+
# <note markdown="1"> When you call this API to delete tags from a SageMaker Studio Domain
|
6984
|
+
# or User Profile, the deleted tags are not removed from Apps that the
|
6985
|
+
# SageMaker Studio Domain or User Profile launched before you called
|
6986
|
+
# this API.
|
6987
|
+
#
|
6988
|
+
# </note>
|
6989
|
+
#
|
6894
6990
|
# @option params [required, String] :resource_arn
|
6895
6991
|
# The Amazon Resource Name (ARN) of the resource whose tags you want to
|
6896
6992
|
# delete.
|
@@ -7459,10 +7555,10 @@ module Aws::SageMaker
|
|
7459
7555
|
req.send_request(options)
|
7460
7556
|
end
|
7461
7557
|
|
7462
|
-
# Returns information about an Amazon SageMaker job.
|
7558
|
+
# Returns information about an Amazon SageMaker AutoML job.
|
7463
7559
|
#
|
7464
7560
|
# @option params [required, String] :auto_ml_job_name
|
7465
|
-
#
|
7561
|
+
# Requests information about an AutoML job using its unique name.
|
7466
7562
|
#
|
7467
7563
|
# @return [Types::DescribeAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
7468
7564
|
#
|
@@ -7478,12 +7574,15 @@ module Aws::SageMaker
|
|
7478
7574
|
# * {Types::DescribeAutoMLJobResponse#end_time #end_time} => Time
|
7479
7575
|
# * {Types::DescribeAutoMLJobResponse#last_modified_time #last_modified_time} => Time
|
7480
7576
|
# * {Types::DescribeAutoMLJobResponse#failure_reason #failure_reason} => String
|
7577
|
+
# * {Types::DescribeAutoMLJobResponse#partial_failure_reasons #partial_failure_reasons} => Array<Types::AutoMLPartialFailureReason>
|
7481
7578
|
# * {Types::DescribeAutoMLJobResponse#best_candidate #best_candidate} => Types::AutoMLCandidate
|
7482
7579
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_status #auto_ml_job_status} => String
|
7483
7580
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_secondary_status #auto_ml_job_secondary_status} => String
|
7484
7581
|
# * {Types::DescribeAutoMLJobResponse#generate_candidate_definitions_only #generate_candidate_definitions_only} => Boolean
|
7485
7582
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
|
7486
7583
|
# * {Types::DescribeAutoMLJobResponse#resolved_attributes #resolved_attributes} => Types::ResolvedAttributes
|
7584
|
+
# * {Types::DescribeAutoMLJobResponse#model_deploy_config #model_deploy_config} => Types::ModelDeployConfig
|
7585
|
+
# * {Types::DescribeAutoMLJobResponse#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
|
7487
7586
|
#
|
7488
7587
|
# @example Request syntax with placeholder values
|
7489
7588
|
#
|
@@ -7518,6 +7617,8 @@ module Aws::SageMaker
|
|
7518
7617
|
# resp.end_time #=> Time
|
7519
7618
|
# resp.last_modified_time #=> Time
|
7520
7619
|
# resp.failure_reason #=> String
|
7620
|
+
# resp.partial_failure_reasons #=> Array
|
7621
|
+
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
7521
7622
|
# resp.best_candidate.candidate_name #=> String
|
7522
7623
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
7523
7624
|
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
@@ -7537,8 +7638,9 @@ module Aws::SageMaker
|
|
7537
7638
|
# resp.best_candidate.end_time #=> Time
|
7538
7639
|
# resp.best_candidate.last_modified_time #=> Time
|
7539
7640
|
# resp.best_candidate.failure_reason #=> String
|
7641
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
7540
7642
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
7541
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
|
7643
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
|
7542
7644
|
# resp.generate_candidate_definitions_only #=> Boolean
|
7543
7645
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
7544
7646
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
@@ -7547,6 +7649,9 @@ module Aws::SageMaker
|
|
7547
7649
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
7548
7650
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
7549
7651
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
7652
|
+
# resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
|
7653
|
+
# resp.model_deploy_config.endpoint_name #=> String
|
7654
|
+
# resp.model_deploy_result.endpoint_name #=> String
|
7550
7655
|
#
|
7551
7656
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJob AWS API Documentation
|
7552
7657
|
#
|
@@ -8488,6 +8593,7 @@ module Aws::SageMaker
|
|
8488
8593
|
# resp.training_job_definition.enable_managed_spot_training #=> Boolean
|
8489
8594
|
# resp.training_job_definition.checkpoint_config.s3_uri #=> String
|
8490
8595
|
# resp.training_job_definition.checkpoint_config.local_path #=> String
|
8596
|
+
# resp.training_job_definition.retry_strategy.maximum_retry_attempts #=> Integer
|
8491
8597
|
# resp.training_job_definitions #=> Array
|
8492
8598
|
# resp.training_job_definitions[0].definition_name #=> String
|
8493
8599
|
# resp.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
|
@@ -8548,6 +8654,7 @@ module Aws::SageMaker
|
|
8548
8654
|
# resp.training_job_definitions[0].enable_managed_spot_training #=> Boolean
|
8549
8655
|
# resp.training_job_definitions[0].checkpoint_config.s3_uri #=> String
|
8550
8656
|
# resp.training_job_definitions[0].checkpoint_config.local_path #=> String
|
8657
|
+
# resp.training_job_definitions[0].retry_strategy.maximum_retry_attempts #=> Integer
|
8551
8658
|
# resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
8552
8659
|
# resp.creation_time #=> Time
|
8553
8660
|
# resp.hyper_parameter_tuning_end_time #=> Time
|
@@ -9011,7 +9118,11 @@ module Aws::SageMaker
|
|
9011
9118
|
# packages listed on AWS Marketplace.
|
9012
9119
|
#
|
9013
9120
|
# @option params [required, String] :model_package_name
|
9014
|
-
# The name of the model package to
|
9121
|
+
# The name or Amazon Resource Name (ARN) of the model package to
|
9122
|
+
# describe.
|
9123
|
+
#
|
9124
|
+
# When you specify a name, the name must have 1 to 63 characters. Valid
|
9125
|
+
# characters are a-z, A-Z, 0-9, and - (hyphen).
|
9015
9126
|
#
|
9016
9127
|
# @return [Types::DescribeModelPackageOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
9017
9128
|
#
|
@@ -9574,6 +9685,8 @@ module Aws::SageMaker
|
|
9574
9685
|
# * {Types::DescribePipelineExecutionResponse#pipeline_execution_display_name #pipeline_execution_display_name} => String
|
9575
9686
|
# * {Types::DescribePipelineExecutionResponse#pipeline_execution_status #pipeline_execution_status} => String
|
9576
9687
|
# * {Types::DescribePipelineExecutionResponse#pipeline_execution_description #pipeline_execution_description} => String
|
9688
|
+
# * {Types::DescribePipelineExecutionResponse#pipeline_experiment_config #pipeline_experiment_config} => Types::PipelineExperimentConfig
|
9689
|
+
# * {Types::DescribePipelineExecutionResponse#failure_reason #failure_reason} => String
|
9577
9690
|
# * {Types::DescribePipelineExecutionResponse#creation_time #creation_time} => Time
|
9578
9691
|
# * {Types::DescribePipelineExecutionResponse#last_modified_time #last_modified_time} => Time
|
9579
9692
|
# * {Types::DescribePipelineExecutionResponse#created_by #created_by} => Types::UserContext
|
@@ -9592,6 +9705,9 @@ module Aws::SageMaker
|
|
9592
9705
|
# resp.pipeline_execution_display_name #=> String
|
9593
9706
|
# resp.pipeline_execution_status #=> String, one of "Executing", "Stopping", "Stopped", "Failed", "Succeeded"
|
9594
9707
|
# resp.pipeline_execution_description #=> String
|
9708
|
+
# resp.pipeline_experiment_config.experiment_name #=> String
|
9709
|
+
# resp.pipeline_experiment_config.trial_name #=> String
|
9710
|
+
# resp.failure_reason #=> String
|
9595
9711
|
# resp.creation_time #=> Time
|
9596
9712
|
# resp.last_modified_time #=> Time
|
9597
9713
|
# resp.created_by.user_profile_arn #=> String
|
@@ -9871,6 +9987,8 @@ module Aws::SageMaker
|
|
9871
9987
|
# * {Types::DescribeTrainingJobResponse#profiler_rule_configurations #profiler_rule_configurations} => Array<Types::ProfilerRuleConfiguration>
|
9872
9988
|
# * {Types::DescribeTrainingJobResponse#profiler_rule_evaluation_statuses #profiler_rule_evaluation_statuses} => Array<Types::ProfilerRuleEvaluationStatus>
|
9873
9989
|
# * {Types::DescribeTrainingJobResponse#profiling_status #profiling_status} => String
|
9990
|
+
# * {Types::DescribeTrainingJobResponse#retry_strategy #retry_strategy} => Types::RetryStrategy
|
9991
|
+
# * {Types::DescribeTrainingJobResponse#environment #environment} => Hash<String,String>
|
9874
9992
|
#
|
9875
9993
|
# @example Request syntax with placeholder values
|
9876
9994
|
#
|
@@ -9887,7 +10005,7 @@ module Aws::SageMaker
|
|
9887
10005
|
# resp.auto_ml_job_arn #=> String
|
9888
10006
|
# resp.model_artifacts.s3_model_artifacts #=> String
|
9889
10007
|
# resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
9890
|
-
# resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
10008
|
+
# resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
9891
10009
|
# resp.failure_reason #=> String
|
9892
10010
|
# resp.hyper_parameters #=> Hash
|
9893
10011
|
# resp.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -9932,7 +10050,7 @@ module Aws::SageMaker
|
|
9932
10050
|
# resp.training_end_time #=> Time
|
9933
10051
|
# resp.last_modified_time #=> Time
|
9934
10052
|
# resp.secondary_status_transitions #=> Array
|
9935
|
-
# resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
10053
|
+
# resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
9936
10054
|
# resp.secondary_status_transitions[0].start_time #=> Time
|
9937
10055
|
# resp.secondary_status_transitions[0].end_time #=> Time
|
9938
10056
|
# resp.secondary_status_transitions[0].status_message #=> String
|
@@ -9995,6 +10113,9 @@ module Aws::SageMaker
|
|
9995
10113
|
# resp.profiler_rule_evaluation_statuses[0].status_details #=> String
|
9996
10114
|
# resp.profiler_rule_evaluation_statuses[0].last_modified_time #=> Time
|
9997
10115
|
# resp.profiling_status #=> String, one of "Enabled", "Disabled"
|
10116
|
+
# resp.retry_strategy.maximum_retry_attempts #=> Integer
|
10117
|
+
# resp.environment #=> Hash
|
10118
|
+
# resp.environment["TrainingEnvironmentKey"] #=> String
|
9998
10119
|
#
|
9999
10120
|
#
|
10000
10121
|
# The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
|
@@ -10239,7 +10360,7 @@ module Aws::SageMaker
|
|
10239
10360
|
# The domain ID.
|
10240
10361
|
#
|
10241
10362
|
# @option params [required, String] :user_profile_name
|
10242
|
-
# The user profile name.
|
10363
|
+
# The user profile name. This value is not case sensitive.
|
10243
10364
|
#
|
10244
10365
|
# @return [Types::DescribeUserProfileResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10245
10366
|
#
|
@@ -11094,11 +11215,10 @@ module Aws::SageMaker
|
|
11094
11215
|
# Request a list of jobs, using a filter for status.
|
11095
11216
|
#
|
11096
11217
|
# @option params [String] :sort_order
|
11097
|
-
# The sort order for the results. The default is Descending
|
11218
|
+
# The sort order for the results. The default is `Descending`.
|
11098
11219
|
#
|
11099
11220
|
# @option params [String] :sort_by
|
11100
|
-
# The parameter by which to sort the results. The default is
|
11101
|
-
# AutoMLJobName.
|
11221
|
+
# The parameter by which to sort the results. The default is `Name`.
|
11102
11222
|
#
|
11103
11223
|
# @option params [Integer] :max_results
|
11104
11224
|
# Request a list of jobs up to a specified limit.
|
@@ -11135,11 +11255,13 @@ module Aws::SageMaker
|
|
11135
11255
|
# resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
|
11136
11256
|
# resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
|
11137
11257
|
# resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
11138
|
-
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
|
11258
|
+
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
|
11139
11259
|
# resp.auto_ml_job_summaries[0].creation_time #=> Time
|
11140
11260
|
# resp.auto_ml_job_summaries[0].end_time #=> Time
|
11141
11261
|
# resp.auto_ml_job_summaries[0].last_modified_time #=> Time
|
11142
11262
|
# resp.auto_ml_job_summaries[0].failure_reason #=> String
|
11263
|
+
# resp.auto_ml_job_summaries[0].partial_failure_reasons #=> Array
|
11264
|
+
# resp.auto_ml_job_summaries[0].partial_failure_reasons[0].partial_failure_message #=> String
|
11143
11265
|
# resp.next_token #=> String
|
11144
11266
|
#
|
11145
11267
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobs AWS API Documentation
|
@@ -11151,25 +11273,26 @@ module Aws::SageMaker
|
|
11151
11273
|
req.send_request(options)
|
11152
11274
|
end
|
11153
11275
|
|
11154
|
-
# List the
|
11276
|
+
# List the candidates created for the job.
|
11155
11277
|
#
|
11156
11278
|
# @option params [required, String] :auto_ml_job_name
|
11157
|
-
# List the
|
11279
|
+
# List the candidates created for the job by providing the job's name.
|
11158
11280
|
#
|
11159
11281
|
# @option params [String] :status_equals
|
11160
|
-
# List the
|
11282
|
+
# List the candidates for the job and filter by status.
|
11161
11283
|
#
|
11162
11284
|
# @option params [String] :candidate_name_equals
|
11163
|
-
# List the
|
11285
|
+
# List the candidates for the job and filter by candidate name.
|
11164
11286
|
#
|
11165
11287
|
# @option params [String] :sort_order
|
11166
|
-
# The sort order for the results. The default is Ascending
|
11288
|
+
# The sort order for the results. The default is `Ascending`.
|
11167
11289
|
#
|
11168
11290
|
# @option params [String] :sort_by
|
11169
|
-
# The parameter by which to sort the results. The default is
|
11291
|
+
# The parameter by which to sort the results. The default is
|
11292
|
+
# `Descending`.
|
11170
11293
|
#
|
11171
11294
|
# @option params [Integer] :max_results
|
11172
|
-
# List the job's
|
11295
|
+
# List the job's candidates up to a specified limit.
|
11173
11296
|
#
|
11174
11297
|
# @option params [String] :next_token
|
11175
11298
|
# If the previous response was truncated, you receive this token. Use it
|
@@ -11216,6 +11339,7 @@ module Aws::SageMaker
|
|
11216
11339
|
# resp.candidates[0].end_time #=> Time
|
11217
11340
|
# resp.candidates[0].last_modified_time #=> Time
|
11218
11341
|
# resp.candidates[0].failure_reason #=> String
|
11342
|
+
# resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
|
11219
11343
|
# resp.next_token #=> String
|
11220
11344
|
#
|
11221
11345
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
|
@@ -11876,7 +12000,8 @@ module Aws::SageMaker
|
|
11876
12000
|
# token in the next request.
|
11877
12001
|
#
|
11878
12002
|
# @option params [Integer] :max_results
|
11879
|
-
# The maximum number of endpoints to return in the response.
|
12003
|
+
# The maximum number of endpoints to return in the response. This value
|
12004
|
+
# defaults to 10.
|
11880
12005
|
#
|
11881
12006
|
# @option params [String] :name_contains
|
11882
12007
|
# A string in endpoint names. This filter returns only endpoints whose
|
@@ -13505,6 +13630,11 @@ module Aws::SageMaker
|
|
13505
13630
|
# resp.pipeline_execution_steps[0].metadata.model.arn #=> String
|
13506
13631
|
# resp.pipeline_execution_steps[0].metadata.register_model.arn #=> String
|
13507
13632
|
# resp.pipeline_execution_steps[0].metadata.condition.outcome #=> String, one of "True", "False"
|
13633
|
+
# resp.pipeline_execution_steps[0].metadata.callback.callback_token #=> String
|
13634
|
+
# resp.pipeline_execution_steps[0].metadata.callback.sqs_queue_url #=> String
|
13635
|
+
# resp.pipeline_execution_steps[0].metadata.callback.output_parameters #=> Array
|
13636
|
+
# resp.pipeline_execution_steps[0].metadata.callback.output_parameters[0].name #=> String
|
13637
|
+
# resp.pipeline_execution_steps[0].metadata.callback.output_parameters[0].value #=> String
|
13508
13638
|
# resp.next_token #=> String
|
13509
13639
|
#
|
13510
13640
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListPipelineExecutionSteps AWS API Documentation
|
@@ -13945,16 +14075,17 @@ module Aws::SageMaker
|
|
13945
14075
|
# <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
|
13946
14076
|
# `MaxResults` number of training jobs are first retrieved ignoring the
|
13947
14077
|
# `StatusEquals` parameter and then they are filtered by the
|
13948
|
-
# `StatusEquals` parameter, which is returned as a response.
|
13949
|
-
#
|
14078
|
+
# `StatusEquals` parameter, which is returned as a response.
|
14079
|
+
#
|
14080
|
+
# For example, if `ListTrainingJobs` is invoked with the following
|
13950
14081
|
# parameters:
|
13951
14082
|
#
|
13952
14083
|
# `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
|
13953
14084
|
#
|
13954
|
-
#
|
13955
|
-
# `InProgress
|
13956
|
-
# from the
|
13957
|
-
# returned.
|
14085
|
+
# First, 100 trainings jobs with any status, including those other than
|
14086
|
+
# `InProgress`, are selected (sorted according to the creation time,
|
14087
|
+
# from the most current to the oldest). Next, those with a status of
|
14088
|
+
# `InProgress` are returned.
|
13958
14089
|
#
|
13959
14090
|
# You can quickly test the API using the following AWS CLI code.
|
13960
14091
|
#
|
@@ -14798,7 +14929,7 @@ module Aws::SageMaker
|
|
14798
14929
|
# resp.results[0].training_job.auto_ml_job_arn #=> String
|
14799
14930
|
# resp.results[0].training_job.model_artifacts.s3_model_artifacts #=> String
|
14800
14931
|
# resp.results[0].training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
14801
|
-
# resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
14932
|
+
# resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14802
14933
|
# resp.results[0].training_job.failure_reason #=> String
|
14803
14934
|
# resp.results[0].training_job.hyper_parameters #=> Hash
|
14804
14935
|
# resp.results[0].training_job.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -14843,7 +14974,7 @@ module Aws::SageMaker
|
|
14843
14974
|
# resp.results[0].training_job.training_end_time #=> Time
|
14844
14975
|
# resp.results[0].training_job.last_modified_time #=> Time
|
14845
14976
|
# resp.results[0].training_job.secondary_status_transitions #=> Array
|
14846
|
-
# resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
14977
|
+
# resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14847
14978
|
# resp.results[0].training_job.secondary_status_transitions[0].start_time #=> Time
|
14848
14979
|
# resp.results[0].training_job.secondary_status_transitions[0].end_time #=> Time
|
14849
14980
|
# resp.results[0].training_job.secondary_status_transitions[0].status_message #=> String
|
@@ -14886,6 +15017,9 @@ module Aws::SageMaker
|
|
14886
15017
|
# resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
|
14887
15018
|
# resp.results[0].training_job.debug_rule_evaluation_statuses[0].status_details #=> String
|
14888
15019
|
# resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
|
15020
|
+
# resp.results[0].training_job.environment #=> Hash
|
15021
|
+
# resp.results[0].training_job.environment["TrainingEnvironmentKey"] #=> String
|
15022
|
+
# resp.results[0].training_job.retry_strategy.maximum_retry_attempts #=> Integer
|
14889
15023
|
# resp.results[0].training_job.tags #=> Array
|
14890
15024
|
# resp.results[0].training_job.tags[0].key #=> String
|
14891
15025
|
# resp.results[0].training_job.tags[0].value #=> String
|
@@ -14984,7 +15118,7 @@ module Aws::SageMaker
|
|
14984
15118
|
# resp.results[0].trial_component.source_detail.training_job.auto_ml_job_arn #=> String
|
14985
15119
|
# resp.results[0].trial_component.source_detail.training_job.model_artifacts.s3_model_artifacts #=> String
|
14986
15120
|
# resp.results[0].trial_component.source_detail.training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
14987
|
-
# resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
15121
|
+
# resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14988
15122
|
# resp.results[0].trial_component.source_detail.training_job.failure_reason #=> String
|
14989
15123
|
# resp.results[0].trial_component.source_detail.training_job.hyper_parameters #=> Hash
|
14990
15124
|
# resp.results[0].trial_component.source_detail.training_job.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -15029,7 +15163,7 @@ module Aws::SageMaker
|
|
15029
15163
|
# resp.results[0].trial_component.source_detail.training_job.training_end_time #=> Time
|
15030
15164
|
# resp.results[0].trial_component.source_detail.training_job.last_modified_time #=> Time
|
15031
15165
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions #=> Array
|
15032
|
-
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
15166
|
+
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
15033
15167
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].start_time #=> Time
|
15034
15168
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].end_time #=> Time
|
15035
15169
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status_message #=> String
|
@@ -15072,6 +15206,9 @@ module Aws::SageMaker
|
|
15072
15206
|
# resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
|
15073
15207
|
# resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].status_details #=> String
|
15074
15208
|
# resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
|
15209
|
+
# resp.results[0].trial_component.source_detail.training_job.environment #=> Hash
|
15210
|
+
# resp.results[0].trial_component.source_detail.training_job.environment["TrainingEnvironmentKey"] #=> String
|
15211
|
+
# resp.results[0].trial_component.source_detail.training_job.retry_strategy.maximum_retry_attempts #=> Integer
|
15075
15212
|
# resp.results[0].trial_component.source_detail.training_job.tags #=> Array
|
15076
15213
|
# resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
|
15077
15214
|
# resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
|
@@ -15404,6 +15541,9 @@ module Aws::SageMaker
|
|
15404
15541
|
# resp.results[0].pipeline_execution.pipeline_execution_display_name #=> String
|
15405
15542
|
# resp.results[0].pipeline_execution.pipeline_execution_status #=> String, one of "Executing", "Stopping", "Stopped", "Failed", "Succeeded"
|
15406
15543
|
# resp.results[0].pipeline_execution.pipeline_execution_description #=> String
|
15544
|
+
# resp.results[0].pipeline_execution.pipeline_experiment_config.experiment_name #=> String
|
15545
|
+
# resp.results[0].pipeline_execution.pipeline_experiment_config.trial_name #=> String
|
15546
|
+
# resp.results[0].pipeline_execution.failure_reason #=> String
|
15407
15547
|
# resp.results[0].pipeline_execution.creation_time #=> Time
|
15408
15548
|
# resp.results[0].pipeline_execution.last_modified_time #=> Time
|
15409
15549
|
# resp.results[0].pipeline_execution.created_by.user_profile_arn #=> String
|
@@ -15452,6 +15592,99 @@ module Aws::SageMaker
|
|
15452
15592
|
req.send_request(options)
|
15453
15593
|
end
|
15454
15594
|
|
15595
|
+
# Notifies the pipeline that the execution of a callback step failed,
|
15596
|
+
# along with a message describing why. When a callback step is run, the
|
15597
|
+
# pipeline generates a callback token and includes the token in a
|
15598
|
+
# message sent to Amazon Simple Queue Service (Amazon SQS).
|
15599
|
+
#
|
15600
|
+
# @option params [required, String] :callback_token
|
15601
|
+
# The pipeline generated token from the Amazon SQS queue.
|
15602
|
+
#
|
15603
|
+
# @option params [String] :failure_reason
|
15604
|
+
# A message describing why the step failed.
|
15605
|
+
#
|
15606
|
+
# @option params [String] :client_request_token
|
15607
|
+
# A unique, case-sensitive identifier that you provide to ensure the
|
15608
|
+
# idempotency of the operation. An idempotent operation completes no
|
15609
|
+
# more than one time.
|
15610
|
+
#
|
15611
|
+
# **A suitable default value is auto-generated.** You should normally
|
15612
|
+
# not need to pass this option.**
|
15613
|
+
#
|
15614
|
+
# @return [Types::SendPipelineExecutionStepFailureResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
15615
|
+
#
|
15616
|
+
# * {Types::SendPipelineExecutionStepFailureResponse#pipeline_execution_arn #pipeline_execution_arn} => String
|
15617
|
+
#
|
15618
|
+
# @example Request syntax with placeholder values
|
15619
|
+
#
|
15620
|
+
# resp = client.send_pipeline_execution_step_failure({
|
15621
|
+
# callback_token: "CallbackToken", # required
|
15622
|
+
# failure_reason: "String256",
|
15623
|
+
# client_request_token: "IdempotencyToken",
|
15624
|
+
# })
|
15625
|
+
#
|
15626
|
+
# @example Response structure
|
15627
|
+
#
|
15628
|
+
# resp.pipeline_execution_arn #=> String
|
15629
|
+
#
|
15630
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailure AWS API Documentation
|
15631
|
+
#
|
15632
|
+
# @overload send_pipeline_execution_step_failure(params = {})
|
15633
|
+
# @param [Hash] params ({})
|
15634
|
+
def send_pipeline_execution_step_failure(params = {}, options = {})
|
15635
|
+
req = build_request(:send_pipeline_execution_step_failure, params)
|
15636
|
+
req.send_request(options)
|
15637
|
+
end
|
15638
|
+
|
15639
|
+
# Notifies the pipeline that the execution of a callback step succeeded
|
15640
|
+
# and provides a list of the step's output parameters. When a callback
|
15641
|
+
# step is run, the pipeline generates a callback token and includes the
|
15642
|
+
# token in a message sent to Amazon Simple Queue Service (Amazon SQS).
|
15643
|
+
#
|
15644
|
+
# @option params [required, String] :callback_token
|
15645
|
+
# The pipeline generated token from the Amazon SQS queue.
|
15646
|
+
#
|
15647
|
+
# @option params [Array<Types::OutputParameter>] :output_parameters
|
15648
|
+
# A list of the output parameters of the callback step.
|
15649
|
+
#
|
15650
|
+
# @option params [String] :client_request_token
|
15651
|
+
# A unique, case-sensitive identifier that you provide to ensure the
|
15652
|
+
# idempotency of the operation. An idempotent operation completes no
|
15653
|
+
# more than one time.
|
15654
|
+
#
|
15655
|
+
# **A suitable default value is auto-generated.** You should normally
|
15656
|
+
# not need to pass this option.**
|
15657
|
+
#
|
15658
|
+
# @return [Types::SendPipelineExecutionStepSuccessResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
15659
|
+
#
|
15660
|
+
# * {Types::SendPipelineExecutionStepSuccessResponse#pipeline_execution_arn #pipeline_execution_arn} => String
|
15661
|
+
#
|
15662
|
+
# @example Request syntax with placeholder values
|
15663
|
+
#
|
15664
|
+
# resp = client.send_pipeline_execution_step_success({
|
15665
|
+
# callback_token: "CallbackToken", # required
|
15666
|
+
# output_parameters: [
|
15667
|
+
# {
|
15668
|
+
# name: "String256", # required
|
15669
|
+
# value: "String1024", # required
|
15670
|
+
# },
|
15671
|
+
# ],
|
15672
|
+
# client_request_token: "IdempotencyToken",
|
15673
|
+
# })
|
15674
|
+
#
|
15675
|
+
# @example Response structure
|
15676
|
+
#
|
15677
|
+
# resp.pipeline_execution_arn #=> String
|
15678
|
+
#
|
15679
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccess AWS API Documentation
|
15680
|
+
#
|
15681
|
+
# @overload send_pipeline_execution_step_success(params = {})
|
15682
|
+
# @param [Hash] params ({})
|
15683
|
+
def send_pipeline_execution_step_success(params = {}, options = {})
|
15684
|
+
req = build_request(:send_pipeline_execution_step_success, params)
|
15685
|
+
req.send_request(options)
|
15686
|
+
end
|
15687
|
+
|
15455
15688
|
# Starts a previously stopped monitoring schedule.
|
15456
15689
|
#
|
15457
15690
|
# <note markdown="1"> By default, when you successfully create a new schedule, the status of
|
@@ -17317,7 +17550,7 @@ module Aws::SageMaker
|
|
17317
17550
|
params: params,
|
17318
17551
|
config: config)
|
17319
17552
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
17320
|
-
context[:gem_version] = '1.
|
17553
|
+
context[:gem_version] = '1.88.0'
|
17321
17554
|
Seahorse::Client::Request.new(handlers, context)
|
17322
17555
|
end
|
17323
17556
|
|