aws-sdk-sagemaker 1.83.0 → 1.88.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 82c63071b263ab1af77a26788462a4150eecf61a1e246bfe241db9e91de12c8d
4
- data.tar.gz: ee697c1a6b90d50ac256205d76e2840736b1a610e96bc7fafd031c5cfb73f921
3
+ metadata.gz: '08aa015687aed885049b6d88001b8df5c20b6f94eacd16571db42fedafde4211'
4
+ data.tar.gz: e980e0c862d4e72783e764c0a57793bb9762a59e9522fa600b9705685769753d
5
5
  SHA512:
6
- metadata.gz: 9793a987f537d915af61f1bfbe4fed70ea6bea046fca07c498a7cf6b6cd0e40fb67d1969b1665a8234e017c610a893b834218c0fe2bcafdd125a8a8cc6a9e452
7
- data.tar.gz: 0f5d841abeda0ceced421d24c5ca225c728754a85d5a37e6c3abe0aeeff3a0ff1df6de6e04b77fbb77b055ef5dd047f1acc7597c4b7c0b70811d5ba8712aa102
6
+ metadata.gz: 3c69ef72d9f4b00633219e5cdaa853893377a929289bf9b911a2970a8ad45b70c2c62e9693070c6b6a946bf6b18a32303ed2234f38fb0caecf47f89d5b33fa00
7
+ data.tar.gz: e5896a529d93d0128d494905c3706948b7514ea1133abb567f0065b9269338cc1d8841be31fb34626d1452e81653172f3f44b86bd1332ce5d42762affc836a9f
data/CHANGELOG.md CHANGED
@@ -1,6 +1,31 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.88.0 (2021-06-07)
5
+ ------------------
6
+
7
+ * Feature - AWS SageMaker - Releasing new APIs related to Callback steps in model building pipelines. Adds experiment integration to model building pipelines.
8
+
9
+ 1.87.0 (2021-05-05)
10
+ ------------------
11
+
12
+ * Feature - Amazon SageMaker Autopilot now provides the ability to automatically deploy the best model to an endpoint
13
+
14
+ 1.86.0 (2021-05-04)
15
+ ------------------
16
+
17
+ * Feature - Enable retrying Training and Tuning Jobs that fail with InternalServerError by setting RetryStrategy.
18
+
19
+ 1.85.0 (2021-03-30)
20
+ ------------------
21
+
22
+ * Feature - Amazon SageMaker Autopilot now supports 1) feature importance reports for AutoML jobs and 2) PartialFailures for AutoML jobs
23
+
24
+ 1.84.0 (2021-03-25)
25
+ ------------------
26
+
27
+ * Feature - This feature allows customer to specify the environment variables in their CreateTrainingJob requests.
28
+
4
29
  1.83.0 (2021-03-19)
5
30
  ------------------
6
31
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.83.0
1
+ 1.88.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.83.0'
52
+ GEM_VERSION = '1.88.0'
53
53
 
54
54
  end
@@ -419,6 +419,17 @@ module Aws::SageMaker
419
419
  #
420
420
  # </note>
421
421
  #
422
+ # <note markdown="1"> Tags that you add to a SageMaker Studio Domain or User Profile by
423
+ # calling this API are also added to any Apps that the Domain or User
424
+ # Profile launches after you call this API, but not to Apps that the
425
+ # Domain or User Profile launched before you called this API. To make
426
+ # sure that the tags associated with a Domain or User Profile are also
427
+ # added to all Apps that the Domain or User Profile launches, add the
428
+ # tags when you first create the Domain or User Profile by specifying
429
+ # them in the `Tags` parameter of CreateDomain or CreateUserProfile.
430
+ #
431
+ # </note>
432
+ #
422
433
  #
423
434
  #
424
435
  # [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
@@ -508,6 +519,13 @@ module Aws::SageMaker
508
519
  # artifact. For more information, see [Amazon SageMaker ML Lineage
509
520
  # Tracking][1].
510
521
  #
522
+ # <note markdown="1"> `CreateAction` can only be invoked from within an SageMaker managed
523
+ # environment. This includes SageMaker training jobs, processing jobs,
524
+ # transform jobs, and SageMaker notebooks. A call to `CreateAction` from
525
+ # outside one of these environments results in an error.
526
+ #
527
+ # </note>
528
+ #
511
529
  #
512
530
  #
513
531
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -827,11 +845,11 @@ module Aws::SageMaker
827
845
  req.send_request(options)
828
846
  end
829
847
 
830
- # Creates a running App for the specified UserProfile. Supported Apps
831
- # are JupyterServer and KernelGateway. This operation is automatically
832
- # invoked by Amazon SageMaker Studio upon access to the associated
833
- # Domain, and when new kernel configurations are selected by the user. A
834
- # user may have multiple Apps active simultaneously.
848
+ # Creates a running app for the specified UserProfile. Supported apps
849
+ # are `JupyterServer` and `KernelGateway`. This operation is
850
+ # automatically invoked by Amazon SageMaker Studio upon access to the
851
+ # associated Domain, and when new kernel configurations are selected by
852
+ # the user. A user may have multiple Apps active simultaneously.
835
853
  #
836
854
  # @option params [required, String] :domain_id
837
855
  # The domain ID.
@@ -840,7 +858,8 @@ module Aws::SageMaker
840
858
  # The user profile name.
841
859
  #
842
860
  # @option params [required, String] :app_type
843
- # The type of app.
861
+ # The type of app. Supported apps are `JupyterServer` and
862
+ # `KernelGateway`. `TensorBoard` is not supported.
844
863
  #
845
864
  # @option params [required, String] :app_name
846
865
  # The name of the app.
@@ -951,6 +970,13 @@ module Aws::SageMaker
951
970
  # URI of a dataset and the ECR registry path of an image. For more
952
971
  # information, see [Amazon SageMaker ML Lineage Tracking][1].
953
972
  #
973
+ # <note markdown="1"> `CreateArtifact` can only be invoked from within an SageMaker managed
974
+ # environment. This includes SageMaker training jobs, processing jobs,
975
+ # transform jobs, and SageMaker notebooks. A call to `CreateArtifact`
976
+ # from outside one of these environments results in an error.
977
+ #
978
+ # </note>
979
+ #
954
980
  #
955
981
  #
956
982
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -1025,55 +1051,65 @@ module Aws::SageMaker
1025
1051
  # Creates an Autopilot job.
1026
1052
  #
1027
1053
  # Find the best performing model after you run an Autopilot job by
1028
- # calling . Deploy that model by following the steps described in [Step
1029
- # 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
1054
+ # calling .
1030
1055
  #
1031
- # For information about how to use Autopilot, see [ Automate Model
1032
- # Development with Amazon SageMaker Autopilot][2].
1056
+ # For information about how to use Autopilot, see [Automate Model
1057
+ # Development with Amazon SageMaker Autopilot][1].
1033
1058
  #
1034
1059
  #
1035
1060
  #
1036
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html
1037
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1061
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1038
1062
  #
1039
1063
  # @option params [required, String] :auto_ml_job_name
1040
- # Identifies an Autopilot job. Must be unique to your account and is
1041
- # case-insensitive.
1064
+ # Identifies an Autopilot job. The name must be unique to your account
1065
+ # and is case-insensitive.
1042
1066
  #
1043
1067
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1044
- # Similar to InputDataConfig supported by Tuning. Format(s) supported:
1045
- # CSV. Minimum of 500 rows.
1068
+ # An array of channel objects that describes the input data and its
1069
+ # location. Each channel is a named input source. Similar to
1070
+ # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum of
1071
+ # 500 rows.
1046
1072
  #
1047
1073
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1048
- # Similar to OutputDataConfig supported by Tuning. Format(s) supported:
1074
+ # Provides information about encryption and the Amazon S3 output path
1075
+ # needed to store artifacts from an AutoML job. Format(s) supported:
1049
1076
  # CSV.
1050
1077
  #
1051
1078
  # @option params [String] :problem_type
1052
- # Defines the kind of preprocessing and algorithms intended for the
1053
- # candidates. Options include: BinaryClassification,
1054
- # MulticlassClassification, and Regression.
1079
+ # Defines the type of supervised learning available for the candidates.
1080
+ # Options include: `BinaryClassification`, `MulticlassClassification`,
1081
+ # and `Regression`. For more information, see [ Amazon SageMaker
1082
+ # Autopilot problem types and algorithm support][1].
1083
+ #
1084
+ #
1085
+ #
1086
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
1055
1087
  #
1056
1088
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1057
- # Defines the objective of a an AutoML job. You provide a
1058
- # AutoMLJobObjective$MetricName and Autopilot infers whether to minimize
1059
- # or maximize it. If a metric is not specified, the most commonly used
1060
- # ObjectiveMetric for problem type is automaically selected.
1089
+ # Defines the objective metric used to measure the predictive quality of
1090
+ # an AutoML job. You provide an AutoMLJobObjective$MetricName and
1091
+ # Autopilot infers whether to minimize or maximize it.
1061
1092
  #
1062
1093
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1063
- # Contains CompletionCriteria and SecurityConfig.
1094
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
1095
+ # AutoML job.
1064
1096
  #
1065
1097
  # @option params [required, String] :role_arn
1066
1098
  # The ARN of the role that is used to access the data.
1067
1099
  #
1068
1100
  # @option params [Boolean] :generate_candidate_definitions_only
1069
- # Generates possible candidates without training a model. A candidate is
1070
- # a combination of data preprocessors, algorithms, and algorithm
1101
+ # Generates possible candidates without training the models. A candidate
1102
+ # is a combination of data preprocessors, algorithms, and algorithm
1071
1103
  # parameter settings.
1072
1104
  #
1073
1105
  # @option params [Array<Types::Tag>] :tags
1074
1106
  # Each tag consists of a key and an optional value. Tag keys must be
1075
1107
  # unique per resource.
1076
1108
  #
1109
+ # @option params [Types::ModelDeployConfig] :model_deploy_config
1110
+ # Specifies how to generate the endpoint name for an automatic one-click
1111
+ # Autopilot model deployment.
1112
+ #
1077
1113
  # @return [Types::CreateAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1078
1114
  #
1079
1115
  # * {Types::CreateAutoMLJobResponse#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1125,6 +1161,10 @@ module Aws::SageMaker
1125
1161
  # value: "TagValue", # required
1126
1162
  # },
1127
1163
  # ],
1164
+ # model_deploy_config: {
1165
+ # auto_generate_endpoint_name: false,
1166
+ # endpoint_name: "EndpointName",
1167
+ # },
1128
1168
  # })
1129
1169
  #
1130
1170
  # @example Response structure
@@ -1343,6 +1383,13 @@ module Aws::SageMaker
1343
1383
  # entities. Some examples are an endpoint and a model package. For more
1344
1384
  # information, see [Amazon SageMaker ML Lineage Tracking][1].
1345
1385
  #
1386
+ # <note markdown="1"> `CreateContext` can only be invoked from within an SageMaker managed
1387
+ # environment. This includes SageMaker training jobs, processing jobs,
1388
+ # transform jobs, and SageMaker notebooks. A call to `CreateContext`
1389
+ # from outside one of these environments results in an error.
1390
+ #
1391
+ # </note>
1392
+ #
1346
1393
  #
1347
1394
  #
1348
1395
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -1651,7 +1698,14 @@ module Aws::SageMaker
1651
1698
  # The mode of authentication that members use to access the domain.
1652
1699
  #
1653
1700
  # @option params [required, Types::UserSettings] :default_user_settings
1654
- # The default user settings.
1701
+ # The default settings to use to create a user profile when
1702
+ # `UserSettings` isn't specified in the call to the `CreateUserProfile`
1703
+ # API.
1704
+ #
1705
+ # `SecurityGroups` is aggregated when specified in both calls. For all
1706
+ # other settings in `UserSettings`, the values specified in
1707
+ # `CreateUserProfile` take precedence over those specified in
1708
+ # `CreateDomain`.
1655
1709
  #
1656
1710
  # @option params [required, Array<String>] :subnet_ids
1657
1711
  # The VPC subnets that Studio uses for communication.
@@ -1663,7 +1717,10 @@ module Aws::SageMaker
1663
1717
  # @option params [Array<Types::Tag>] :tags
1664
1718
  # Tags to associated with the Domain. Each tag consists of a key and an
1665
1719
  # optional value. Tag keys must be unique per resource. Tags are
1666
- # searchable using the Search API.
1720
+ # searchable using the `Search` API.
1721
+ #
1722
+ # Tags that you specify for the Domain are also added to all Apps that
1723
+ # the Domain launches.
1667
1724
  #
1668
1725
  # @option params [String] :app_network_access_type
1669
1726
  # Specifies the VPC used for non-EFS traffic. The default value is
@@ -2141,10 +2198,10 @@ module Aws::SageMaker
2141
2198
  # measuring the impact of a change to one or more inputs, while keeping
2142
2199
  # the remaining inputs constant.
2143
2200
  #
2144
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
2145
- # SDK, all experiments, trials, and trial components are automatically
2146
- # tracked, logged, and indexed. When you use the AWS SDK for Python
2147
- # (Boto), you must use the logging APIs provided by the SDK.
2201
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
2202
+ # experiments, trials, and trial components are automatically tracked,
2203
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
2204
+ # must use the logging APIs provided by the SDK.
2148
2205
  #
2149
2206
  # You can add tags to experiments, trials, trial components and then use
2150
2207
  # the Search API to search for the tags.
@@ -2722,6 +2779,9 @@ module Aws::SageMaker
2722
2779
  # s3_uri: "S3Uri", # required
2723
2780
  # local_path: "DirectoryPath",
2724
2781
  # },
2782
+ # retry_strategy: {
2783
+ # maximum_retry_attempts: 1, # required
2784
+ # },
2725
2785
  # },
2726
2786
  # training_job_definitions: [
2727
2787
  # {
@@ -2820,6 +2880,9 @@ module Aws::SageMaker
2820
2880
  # s3_uri: "S3Uri", # required
2821
2881
  # local_path: "DirectoryPath",
2822
2882
  # },
2883
+ # retry_strategy: {
2884
+ # maximum_retry_attempts: 1, # required
2885
+ # },
2823
2886
  # },
2824
2887
  # ],
2825
2888
  # warm_start_config: {
@@ -4342,10 +4405,10 @@ module Aws::SageMaker
4342
4405
  #
4343
4406
  # @option params [String] :direct_internet_access
4344
4407
  # Sets whether Amazon SageMaker provides internet access to the notebook
4345
- # instance. If you set this to `Disabled` this notebook instance will be
4346
- # able to access resources only in your VPC, and will not be able to
4347
- # connect to Amazon SageMaker training and endpoint services unless your
4348
- # configure a NAT Gateway in your VPC.
4408
+ # instance. If you set this to `Disabled` this notebook instance is able
4409
+ # to access resources only in your VPC, and is not be able to connect to
4410
+ # Amazon SageMaker training and endpoint services unless you configure a
4411
+ # NAT Gateway in your VPC.
4349
4412
  #
4350
4413
  # For more information, see [Notebook Instances Are Internet-Enabled by
4351
4414
  # Default][1]. You can set the value of this parameter to `Disabled`
@@ -4969,8 +5032,6 @@ module Aws::SageMaker
4969
5032
  # * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
4970
5033
  # Amazon SageMaker to save the results of model training.
4971
5034
  #
4972
- #
4973
- #
4974
5035
  # * `ResourceConfig` - Identifies the resources, ML compute instances,
4975
5036
  # and ML storage volumes to deploy for model training. In distributed
4976
5037
  # training, you specify more than one instance.
@@ -4986,8 +5047,14 @@ module Aws::SageMaker
4986
5047
  #
4987
5048
  # * `StoppingCondition` - To help cap training costs, use
4988
5049
  # `MaxRuntimeInSeconds` to set a time limit for training. Use
4989
- # `MaxWaitTimeInSeconds` to specify how long you are willing to wait
4990
- # for a managed spot training job to complete.
5050
+ # `MaxWaitTimeInSeconds` to specify how long a managed spot training
5051
+ # job has to complete.
5052
+ #
5053
+ # * `Environment` - The environment variables to set in the Docker
5054
+ # container.
5055
+ #
5056
+ # * `RetryStrategy` - The number of times to retry the job when the job
5057
+ # fails due to an `InternalServerError`.
4991
5058
  #
4992
5059
  # For more information about Amazon SageMaker, see [How It Works][3].
4993
5060
  #
@@ -5092,9 +5159,10 @@ module Aws::SageMaker
5092
5159
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
5093
5160
  #
5094
5161
  # @option params [required, Types::StoppingCondition] :stopping_condition
5095
- # Specifies a limit to how long a model training job can run. When the
5096
- # job reaches the time limit, Amazon SageMaker ends the training job.
5097
- # Use this API to cap model training costs.
5162
+ # Specifies a limit to how long a model training job can run. It also
5163
+ # specifies how long a managed Spot training job has to complete. When
5164
+ # the job reaches the time limit, Amazon SageMaker ends the training
5165
+ # job. Use this API to cap model training costs.
5098
5166
  #
5099
5167
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
5100
5168
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -5186,6 +5254,13 @@ module Aws::SageMaker
5186
5254
  # Configuration information for Debugger rules for profiling system and
5187
5255
  # framework metrics.
5188
5256
  #
5257
+ # @option params [Hash<String,String>] :environment
5258
+ # The environment variables to set in the Docker container.
5259
+ #
5260
+ # @option params [Types::RetryStrategy] :retry_strategy
5261
+ # The number of times to retry the job when the job fails due to an
5262
+ # `InternalServerError`.
5263
+ #
5189
5264
  # @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5190
5265
  #
5191
5266
  # * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
@@ -5324,6 +5399,12 @@ module Aws::SageMaker
5324
5399
  # },
5325
5400
  # },
5326
5401
  # ],
5402
+ # environment: {
5403
+ # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
5404
+ # },
5405
+ # retry_strategy: {
5406
+ # maximum_retry_attempts: 1, # required
5407
+ # },
5327
5408
  # })
5328
5409
  #
5329
5410
  # @example Response structure
@@ -5549,14 +5630,14 @@ module Aws::SageMaker
5549
5630
  req.send_request(options)
5550
5631
  end
5551
5632
 
5552
- # Creates an Amazon SageMaker *trial*. A trial is a set of steps called
5553
- # *trial components* that produce a machine learning model. A trial is
5554
- # part of a single Amazon SageMaker *experiment*.
5633
+ # Creates an SageMaker *trial*. A trial is a set of steps called *trial
5634
+ # components* that produce a machine learning model. A trial is part of
5635
+ # a single SageMaker *experiment*.
5555
5636
  #
5556
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
5557
- # SDK, all experiments, trials, and trial components are automatically
5558
- # tracked, logged, and indexed. When you use the AWS SDK for Python
5559
- # (Boto), you must use the logging APIs provided by the SDK.
5637
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
5638
+ # experiments, trials, and trial components are automatically tracked,
5639
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5640
+ # must use the logging APIs provided by the SDK.
5560
5641
  #
5561
5642
  # You can add tags to a trial and then use the Search API to search for
5562
5643
  # the tags.
@@ -5627,19 +5708,19 @@ module Aws::SageMaker
5627
5708
  # Trial components include pre-processing jobs, training jobs, and batch
5628
5709
  # transform jobs.
5629
5710
  #
5630
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
5631
- # SDK, all experiments, trials, and trial components are automatically
5632
- # tracked, logged, and indexed. When you use the AWS SDK for Python
5633
- # (Boto), you must use the logging APIs provided by the SDK.
5711
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
5712
+ # experiments, trials, and trial components are automatically tracked,
5713
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5714
+ # must use the logging APIs provided by the SDK.
5634
5715
  #
5635
5716
  # You can add tags to a trial component and then use the Search API to
5636
5717
  # search for the tags.
5637
5718
  #
5638
- # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an Amazon
5639
- # SageMaker managed environment. This includes Amazon SageMaker training
5640
- # jobs, processing jobs, transform jobs, and Amazon SageMaker notebooks.
5641
- # A call to `CreateTrialComponent` from outside one of these
5642
- # environments results in an error.
5719
+ # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
5720
+ # managed environment. This includes SageMaker training jobs, processing
5721
+ # jobs, transform jobs, and SageMaker notebooks. A call to
5722
+ # `CreateTrialComponent` from outside one of these environments results
5723
+ # in an error.
5643
5724
  #
5644
5725
  # </note>
5645
5726
  #
@@ -5759,7 +5840,7 @@ module Aws::SageMaker
5759
5840
  # The ID of the associated Domain.
5760
5841
  #
5761
5842
  # @option params [required, String] :user_profile_name
5762
- # A name for the UserProfile.
5843
+ # A name for the UserProfile. This value is not case sensitive.
5763
5844
  #
5764
5845
  # @option params [String] :single_sign_on_user_identifier
5765
5846
  # A specifier for the type of value specified in SingleSignOnUserValue.
@@ -5777,6 +5858,9 @@ module Aws::SageMaker
5777
5858
  # Each tag consists of a key and an optional value. Tag keys must be
5778
5859
  # unique per resource.
5779
5860
  #
5861
+ # Tags that you specify for the User Profile are also added to all Apps
5862
+ # that the User Profile launches.
5863
+ #
5780
5864
  # @option params [Types::UserSettings] :user_settings
5781
5865
  # A collection of settings.
5782
5866
  #
@@ -6427,7 +6511,7 @@ module Aws::SageMaker
6427
6511
  req.send_request(options)
6428
6512
  end
6429
6513
 
6430
- # Deletes an Amazon SageMaker experiment. All trials associated with the
6514
+ # Deletes an SageMaker experiment. All trials associated with the
6431
6515
  # experiment must be deleted first. Use the ListTrials API to get a list
6432
6516
  # of the trials associated with the experiment.
6433
6517
  #
@@ -6662,8 +6746,10 @@ module Aws::SageMaker
6662
6746
  # Marketplace to create models in Amazon SageMaker.
6663
6747
  #
6664
6748
  # @option params [required, String] :model_package_name
6665
- # The name of the model package. The name must have 1 to 63 characters.
6666
- # Valid characters are a-z, A-Z, 0-9, and - (hyphen).
6749
+ # The name or Amazon Resource Name (ARN) of the model package to delete.
6750
+ #
6751
+ # When you specify a name, the name must have 1 to 63 characters. Valid
6752
+ # characters are a-z, A-Z, 0-9, and - (hyphen).
6667
6753
  #
6668
6754
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
6669
6755
  #
@@ -6822,7 +6908,10 @@ module Aws::SageMaker
6822
6908
  req.send_request(options)
6823
6909
  end
6824
6910
 
6825
- # Deletes a pipeline if there are no in-progress executions.
6911
+ # Deletes a pipeline if there are no running instances of the pipeline.
6912
+ # To delete a pipeline, you must stop all running instances of the
6913
+ # pipeline using the `StopPipelineExecution` API. When you delete a
6914
+ # pipeline, all instances of the pipeline are deleted.
6826
6915
  #
6827
6916
  # @option params [required, String] :pipeline_name
6828
6917
  # The name of the pipeline to delete.
@@ -6891,6 +6980,13 @@ module Aws::SageMaker
6891
6980
  #
6892
6981
  # </note>
6893
6982
  #
6983
+ # <note markdown="1"> When you call this API to delete tags from a SageMaker Studio Domain
6984
+ # or User Profile, the deleted tags are not removed from Apps that the
6985
+ # SageMaker Studio Domain or User Profile launched before you called
6986
+ # this API.
6987
+ #
6988
+ # </note>
6989
+ #
6894
6990
  # @option params [required, String] :resource_arn
6895
6991
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
6896
6992
  # delete.
@@ -7459,10 +7555,10 @@ module Aws::SageMaker
7459
7555
  req.send_request(options)
7460
7556
  end
7461
7557
 
7462
- # Returns information about an Amazon SageMaker job.
7558
+ # Returns information about an Amazon SageMaker AutoML job.
7463
7559
  #
7464
7560
  # @option params [required, String] :auto_ml_job_name
7465
- # Request information about a job using that job's unique name.
7561
+ # Requests information about an AutoML job using its unique name.
7466
7562
  #
7467
7563
  # @return [Types::DescribeAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
7468
7564
  #
@@ -7478,12 +7574,15 @@ module Aws::SageMaker
7478
7574
  # * {Types::DescribeAutoMLJobResponse#end_time #end_time} => Time
7479
7575
  # * {Types::DescribeAutoMLJobResponse#last_modified_time #last_modified_time} => Time
7480
7576
  # * {Types::DescribeAutoMLJobResponse#failure_reason #failure_reason} => String
7577
+ # * {Types::DescribeAutoMLJobResponse#partial_failure_reasons #partial_failure_reasons} => Array&lt;Types::AutoMLPartialFailureReason&gt;
7481
7578
  # * {Types::DescribeAutoMLJobResponse#best_candidate #best_candidate} => Types::AutoMLCandidate
7482
7579
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_status #auto_ml_job_status} => String
7483
7580
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_secondary_status #auto_ml_job_secondary_status} => String
7484
7581
  # * {Types::DescribeAutoMLJobResponse#generate_candidate_definitions_only #generate_candidate_definitions_only} => Boolean
7485
7582
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
7486
7583
  # * {Types::DescribeAutoMLJobResponse#resolved_attributes #resolved_attributes} => Types::ResolvedAttributes
7584
+ # * {Types::DescribeAutoMLJobResponse#model_deploy_config #model_deploy_config} => Types::ModelDeployConfig
7585
+ # * {Types::DescribeAutoMLJobResponse#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
7487
7586
  #
7488
7587
  # @example Request syntax with placeholder values
7489
7588
  #
@@ -7518,6 +7617,8 @@ module Aws::SageMaker
7518
7617
  # resp.end_time #=> Time
7519
7618
  # resp.last_modified_time #=> Time
7520
7619
  # resp.failure_reason #=> String
7620
+ # resp.partial_failure_reasons #=> Array
7621
+ # resp.partial_failure_reasons[0].partial_failure_message #=> String
7521
7622
  # resp.best_candidate.candidate_name #=> String
7522
7623
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
7523
7624
  # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
@@ -7537,8 +7638,9 @@ module Aws::SageMaker
7537
7638
  # resp.best_candidate.end_time #=> Time
7538
7639
  # resp.best_candidate.last_modified_time #=> Time
7539
7640
  # resp.best_candidate.failure_reason #=> String
7641
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
7540
7642
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
7541
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
7643
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
7542
7644
  # resp.generate_candidate_definitions_only #=> Boolean
7543
7645
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
7544
7646
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
@@ -7547,6 +7649,9 @@ module Aws::SageMaker
7547
7649
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
7548
7650
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
7549
7651
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
7652
+ # resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
7653
+ # resp.model_deploy_config.endpoint_name #=> String
7654
+ # resp.model_deploy_result.endpoint_name #=> String
7550
7655
  #
7551
7656
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJob AWS API Documentation
7552
7657
  #
@@ -8488,6 +8593,7 @@ module Aws::SageMaker
8488
8593
  # resp.training_job_definition.enable_managed_spot_training #=> Boolean
8489
8594
  # resp.training_job_definition.checkpoint_config.s3_uri #=> String
8490
8595
  # resp.training_job_definition.checkpoint_config.local_path #=> String
8596
+ # resp.training_job_definition.retry_strategy.maximum_retry_attempts #=> Integer
8491
8597
  # resp.training_job_definitions #=> Array
8492
8598
  # resp.training_job_definitions[0].definition_name #=> String
8493
8599
  # resp.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
@@ -8548,6 +8654,7 @@ module Aws::SageMaker
8548
8654
  # resp.training_job_definitions[0].enable_managed_spot_training #=> Boolean
8549
8655
  # resp.training_job_definitions[0].checkpoint_config.s3_uri #=> String
8550
8656
  # resp.training_job_definitions[0].checkpoint_config.local_path #=> String
8657
+ # resp.training_job_definitions[0].retry_strategy.maximum_retry_attempts #=> Integer
8551
8658
  # resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
8552
8659
  # resp.creation_time #=> Time
8553
8660
  # resp.hyper_parameter_tuning_end_time #=> Time
@@ -9011,7 +9118,11 @@ module Aws::SageMaker
9011
9118
  # packages listed on AWS Marketplace.
9012
9119
  #
9013
9120
  # @option params [required, String] :model_package_name
9014
- # The name of the model package to describe.
9121
+ # The name or Amazon Resource Name (ARN) of the model package to
9122
+ # describe.
9123
+ #
9124
+ # When you specify a name, the name must have 1 to 63 characters. Valid
9125
+ # characters are a-z, A-Z, 0-9, and - (hyphen).
9015
9126
  #
9016
9127
  # @return [Types::DescribeModelPackageOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
9017
9128
  #
@@ -9574,6 +9685,8 @@ module Aws::SageMaker
9574
9685
  # * {Types::DescribePipelineExecutionResponse#pipeline_execution_display_name #pipeline_execution_display_name} => String
9575
9686
  # * {Types::DescribePipelineExecutionResponse#pipeline_execution_status #pipeline_execution_status} => String
9576
9687
  # * {Types::DescribePipelineExecutionResponse#pipeline_execution_description #pipeline_execution_description} => String
9688
+ # * {Types::DescribePipelineExecutionResponse#pipeline_experiment_config #pipeline_experiment_config} => Types::PipelineExperimentConfig
9689
+ # * {Types::DescribePipelineExecutionResponse#failure_reason #failure_reason} => String
9577
9690
  # * {Types::DescribePipelineExecutionResponse#creation_time #creation_time} => Time
9578
9691
  # * {Types::DescribePipelineExecutionResponse#last_modified_time #last_modified_time} => Time
9579
9692
  # * {Types::DescribePipelineExecutionResponse#created_by #created_by} => Types::UserContext
@@ -9592,6 +9705,9 @@ module Aws::SageMaker
9592
9705
  # resp.pipeline_execution_display_name #=> String
9593
9706
  # resp.pipeline_execution_status #=> String, one of "Executing", "Stopping", "Stopped", "Failed", "Succeeded"
9594
9707
  # resp.pipeline_execution_description #=> String
9708
+ # resp.pipeline_experiment_config.experiment_name #=> String
9709
+ # resp.pipeline_experiment_config.trial_name #=> String
9710
+ # resp.failure_reason #=> String
9595
9711
  # resp.creation_time #=> Time
9596
9712
  # resp.last_modified_time #=> Time
9597
9713
  # resp.created_by.user_profile_arn #=> String
@@ -9871,6 +9987,8 @@ module Aws::SageMaker
9871
9987
  # * {Types::DescribeTrainingJobResponse#profiler_rule_configurations #profiler_rule_configurations} => Array&lt;Types::ProfilerRuleConfiguration&gt;
9872
9988
  # * {Types::DescribeTrainingJobResponse#profiler_rule_evaluation_statuses #profiler_rule_evaluation_statuses} => Array&lt;Types::ProfilerRuleEvaluationStatus&gt;
9873
9989
  # * {Types::DescribeTrainingJobResponse#profiling_status #profiling_status} => String
9990
+ # * {Types::DescribeTrainingJobResponse#retry_strategy #retry_strategy} => Types::RetryStrategy
9991
+ # * {Types::DescribeTrainingJobResponse#environment #environment} => Hash&lt;String,String&gt;
9874
9992
  #
9875
9993
  # @example Request syntax with placeholder values
9876
9994
  #
@@ -9887,7 +10005,7 @@ module Aws::SageMaker
9887
10005
  # resp.auto_ml_job_arn #=> String
9888
10006
  # resp.model_artifacts.s3_model_artifacts #=> String
9889
10007
  # resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
9890
- # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
10008
+ # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
9891
10009
  # resp.failure_reason #=> String
9892
10010
  # resp.hyper_parameters #=> Hash
9893
10011
  # resp.hyper_parameters["HyperParameterKey"] #=> String
@@ -9932,7 +10050,7 @@ module Aws::SageMaker
9932
10050
  # resp.training_end_time #=> Time
9933
10051
  # resp.last_modified_time #=> Time
9934
10052
  # resp.secondary_status_transitions #=> Array
9935
- # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
10053
+ # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
9936
10054
  # resp.secondary_status_transitions[0].start_time #=> Time
9937
10055
  # resp.secondary_status_transitions[0].end_time #=> Time
9938
10056
  # resp.secondary_status_transitions[0].status_message #=> String
@@ -9995,6 +10113,9 @@ module Aws::SageMaker
9995
10113
  # resp.profiler_rule_evaluation_statuses[0].status_details #=> String
9996
10114
  # resp.profiler_rule_evaluation_statuses[0].last_modified_time #=> Time
9997
10115
  # resp.profiling_status #=> String, one of "Enabled", "Disabled"
10116
+ # resp.retry_strategy.maximum_retry_attempts #=> Integer
10117
+ # resp.environment #=> Hash
10118
+ # resp.environment["TrainingEnvironmentKey"] #=> String
9998
10119
  #
9999
10120
  #
10000
10121
  # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
@@ -10239,7 +10360,7 @@ module Aws::SageMaker
10239
10360
  # The domain ID.
10240
10361
  #
10241
10362
  # @option params [required, String] :user_profile_name
10242
- # The user profile name.
10363
+ # The user profile name. This value is not case sensitive.
10243
10364
  #
10244
10365
  # @return [Types::DescribeUserProfileResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10245
10366
  #
@@ -11094,11 +11215,10 @@ module Aws::SageMaker
11094
11215
  # Request a list of jobs, using a filter for status.
11095
11216
  #
11096
11217
  # @option params [String] :sort_order
11097
- # The sort order for the results. The default is Descending.
11218
+ # The sort order for the results. The default is `Descending`.
11098
11219
  #
11099
11220
  # @option params [String] :sort_by
11100
- # The parameter by which to sort the results. The default is
11101
- # AutoMLJobName.
11221
+ # The parameter by which to sort the results. The default is `Name`.
11102
11222
  #
11103
11223
  # @option params [Integer] :max_results
11104
11224
  # Request a list of jobs up to a specified limit.
@@ -11135,11 +11255,13 @@ module Aws::SageMaker
11135
11255
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
11136
11256
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
11137
11257
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
11138
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
11258
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
11139
11259
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
11140
11260
  # resp.auto_ml_job_summaries[0].end_time #=> Time
11141
11261
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
11142
11262
  # resp.auto_ml_job_summaries[0].failure_reason #=> String
11263
+ # resp.auto_ml_job_summaries[0].partial_failure_reasons #=> Array
11264
+ # resp.auto_ml_job_summaries[0].partial_failure_reasons[0].partial_failure_message #=> String
11143
11265
  # resp.next_token #=> String
11144
11266
  #
11145
11267
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobs AWS API Documentation
@@ -11151,25 +11273,26 @@ module Aws::SageMaker
11151
11273
  req.send_request(options)
11152
11274
  end
11153
11275
 
11154
- # List the Candidates created for the job.
11276
+ # List the candidates created for the job.
11155
11277
  #
11156
11278
  # @option params [required, String] :auto_ml_job_name
11157
- # List the Candidates created for the job by providing the job's name.
11279
+ # List the candidates created for the job by providing the job's name.
11158
11280
  #
11159
11281
  # @option params [String] :status_equals
11160
- # List the Candidates for the job and filter by status.
11282
+ # List the candidates for the job and filter by status.
11161
11283
  #
11162
11284
  # @option params [String] :candidate_name_equals
11163
- # List the Candidates for the job and filter by candidate name.
11285
+ # List the candidates for the job and filter by candidate name.
11164
11286
  #
11165
11287
  # @option params [String] :sort_order
11166
- # The sort order for the results. The default is Ascending.
11288
+ # The sort order for the results. The default is `Ascending`.
11167
11289
  #
11168
11290
  # @option params [String] :sort_by
11169
- # The parameter by which to sort the results. The default is Descending.
11291
+ # The parameter by which to sort the results. The default is
11292
+ # `Descending`.
11170
11293
  #
11171
11294
  # @option params [Integer] :max_results
11172
- # List the job's Candidates up to a specified limit.
11295
+ # List the job's candidates up to a specified limit.
11173
11296
  #
11174
11297
  # @option params [String] :next_token
11175
11298
  # If the previous response was truncated, you receive this token. Use it
@@ -11216,6 +11339,7 @@ module Aws::SageMaker
11216
11339
  # resp.candidates[0].end_time #=> Time
11217
11340
  # resp.candidates[0].last_modified_time #=> Time
11218
11341
  # resp.candidates[0].failure_reason #=> String
11342
+ # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
11219
11343
  # resp.next_token #=> String
11220
11344
  #
11221
11345
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
@@ -11876,7 +12000,8 @@ module Aws::SageMaker
11876
12000
  # token in the next request.
11877
12001
  #
11878
12002
  # @option params [Integer] :max_results
11879
- # The maximum number of endpoints to return in the response.
12003
+ # The maximum number of endpoints to return in the response. This value
12004
+ # defaults to 10.
11880
12005
  #
11881
12006
  # @option params [String] :name_contains
11882
12007
  # A string in endpoint names. This filter returns only endpoints whose
@@ -13505,6 +13630,11 @@ module Aws::SageMaker
13505
13630
  # resp.pipeline_execution_steps[0].metadata.model.arn #=> String
13506
13631
  # resp.pipeline_execution_steps[0].metadata.register_model.arn #=> String
13507
13632
  # resp.pipeline_execution_steps[0].metadata.condition.outcome #=> String, one of "True", "False"
13633
+ # resp.pipeline_execution_steps[0].metadata.callback.callback_token #=> String
13634
+ # resp.pipeline_execution_steps[0].metadata.callback.sqs_queue_url #=> String
13635
+ # resp.pipeline_execution_steps[0].metadata.callback.output_parameters #=> Array
13636
+ # resp.pipeline_execution_steps[0].metadata.callback.output_parameters[0].name #=> String
13637
+ # resp.pipeline_execution_steps[0].metadata.callback.output_parameters[0].value #=> String
13508
13638
  # resp.next_token #=> String
13509
13639
  #
13510
13640
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListPipelineExecutionSteps AWS API Documentation
@@ -13945,16 +14075,17 @@ module Aws::SageMaker
13945
14075
  # <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
13946
14076
  # `MaxResults` number of training jobs are first retrieved ignoring the
13947
14077
  # `StatusEquals` parameter and then they are filtered by the
13948
- # `StatusEquals` parameter, which is returned as a response. For
13949
- # example, if `ListTrainingJobs` is invoked with the following
14078
+ # `StatusEquals` parameter, which is returned as a response.
14079
+ #
14080
+ # For example, if `ListTrainingJobs` is invoked with the following
13950
14081
  # parameters:
13951
14082
  #
13952
14083
  # `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
13953
14084
  #
13954
- # Then, 100 trainings jobs with any status including those other than
13955
- # `InProgress` are selected first (sorted according the creation time,
13956
- # from the latest to the oldest) and those with status `InProgress` are
13957
- # returned.
14085
+ # First, 100 trainings jobs with any status, including those other than
14086
+ # `InProgress`, are selected (sorted according to the creation time,
14087
+ # from the most current to the oldest). Next, those with a status of
14088
+ # `InProgress` are returned.
13958
14089
  #
13959
14090
  # You can quickly test the API using the following AWS CLI code.
13960
14091
  #
@@ -14798,7 +14929,7 @@ module Aws::SageMaker
14798
14929
  # resp.results[0].training_job.auto_ml_job_arn #=> String
14799
14930
  # resp.results[0].training_job.model_artifacts.s3_model_artifacts #=> String
14800
14931
  # resp.results[0].training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
14801
- # resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
14932
+ # resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14802
14933
  # resp.results[0].training_job.failure_reason #=> String
14803
14934
  # resp.results[0].training_job.hyper_parameters #=> Hash
14804
14935
  # resp.results[0].training_job.hyper_parameters["HyperParameterKey"] #=> String
@@ -14843,7 +14974,7 @@ module Aws::SageMaker
14843
14974
  # resp.results[0].training_job.training_end_time #=> Time
14844
14975
  # resp.results[0].training_job.last_modified_time #=> Time
14845
14976
  # resp.results[0].training_job.secondary_status_transitions #=> Array
14846
- # resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
14977
+ # resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14847
14978
  # resp.results[0].training_job.secondary_status_transitions[0].start_time #=> Time
14848
14979
  # resp.results[0].training_job.secondary_status_transitions[0].end_time #=> Time
14849
14980
  # resp.results[0].training_job.secondary_status_transitions[0].status_message #=> String
@@ -14886,6 +15017,9 @@ module Aws::SageMaker
14886
15017
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
14887
15018
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].status_details #=> String
14888
15019
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
15020
+ # resp.results[0].training_job.environment #=> Hash
15021
+ # resp.results[0].training_job.environment["TrainingEnvironmentKey"] #=> String
15022
+ # resp.results[0].training_job.retry_strategy.maximum_retry_attempts #=> Integer
14889
15023
  # resp.results[0].training_job.tags #=> Array
14890
15024
  # resp.results[0].training_job.tags[0].key #=> String
14891
15025
  # resp.results[0].training_job.tags[0].value #=> String
@@ -14984,7 +15118,7 @@ module Aws::SageMaker
14984
15118
  # resp.results[0].trial_component.source_detail.training_job.auto_ml_job_arn #=> String
14985
15119
  # resp.results[0].trial_component.source_detail.training_job.model_artifacts.s3_model_artifacts #=> String
14986
15120
  # resp.results[0].trial_component.source_detail.training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
14987
- # resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
15121
+ # resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14988
15122
  # resp.results[0].trial_component.source_detail.training_job.failure_reason #=> String
14989
15123
  # resp.results[0].trial_component.source_detail.training_job.hyper_parameters #=> Hash
14990
15124
  # resp.results[0].trial_component.source_detail.training_job.hyper_parameters["HyperParameterKey"] #=> String
@@ -15029,7 +15163,7 @@ module Aws::SageMaker
15029
15163
  # resp.results[0].trial_component.source_detail.training_job.training_end_time #=> Time
15030
15164
  # resp.results[0].trial_component.source_detail.training_job.last_modified_time #=> Time
15031
15165
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions #=> Array
15032
- # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
15166
+ # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
15033
15167
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].start_time #=> Time
15034
15168
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].end_time #=> Time
15035
15169
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status_message #=> String
@@ -15072,6 +15206,9 @@ module Aws::SageMaker
15072
15206
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
15073
15207
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].status_details #=> String
15074
15208
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
15209
+ # resp.results[0].trial_component.source_detail.training_job.environment #=> Hash
15210
+ # resp.results[0].trial_component.source_detail.training_job.environment["TrainingEnvironmentKey"] #=> String
15211
+ # resp.results[0].trial_component.source_detail.training_job.retry_strategy.maximum_retry_attempts #=> Integer
15075
15212
  # resp.results[0].trial_component.source_detail.training_job.tags #=> Array
15076
15213
  # resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
15077
15214
  # resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
@@ -15404,6 +15541,9 @@ module Aws::SageMaker
15404
15541
  # resp.results[0].pipeline_execution.pipeline_execution_display_name #=> String
15405
15542
  # resp.results[0].pipeline_execution.pipeline_execution_status #=> String, one of "Executing", "Stopping", "Stopped", "Failed", "Succeeded"
15406
15543
  # resp.results[0].pipeline_execution.pipeline_execution_description #=> String
15544
+ # resp.results[0].pipeline_execution.pipeline_experiment_config.experiment_name #=> String
15545
+ # resp.results[0].pipeline_execution.pipeline_experiment_config.trial_name #=> String
15546
+ # resp.results[0].pipeline_execution.failure_reason #=> String
15407
15547
  # resp.results[0].pipeline_execution.creation_time #=> Time
15408
15548
  # resp.results[0].pipeline_execution.last_modified_time #=> Time
15409
15549
  # resp.results[0].pipeline_execution.created_by.user_profile_arn #=> String
@@ -15452,6 +15592,99 @@ module Aws::SageMaker
15452
15592
  req.send_request(options)
15453
15593
  end
15454
15594
 
15595
+ # Notifies the pipeline that the execution of a callback step failed,
15596
+ # along with a message describing why. When a callback step is run, the
15597
+ # pipeline generates a callback token and includes the token in a
15598
+ # message sent to Amazon Simple Queue Service (Amazon SQS).
15599
+ #
15600
+ # @option params [required, String] :callback_token
15601
+ # The pipeline generated token from the Amazon SQS queue.
15602
+ #
15603
+ # @option params [String] :failure_reason
15604
+ # A message describing why the step failed.
15605
+ #
15606
+ # @option params [String] :client_request_token
15607
+ # A unique, case-sensitive identifier that you provide to ensure the
15608
+ # idempotency of the operation. An idempotent operation completes no
15609
+ # more than one time.
15610
+ #
15611
+ # **A suitable default value is auto-generated.** You should normally
15612
+ # not need to pass this option.**
15613
+ #
15614
+ # @return [Types::SendPipelineExecutionStepFailureResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
15615
+ #
15616
+ # * {Types::SendPipelineExecutionStepFailureResponse#pipeline_execution_arn #pipeline_execution_arn} => String
15617
+ #
15618
+ # @example Request syntax with placeholder values
15619
+ #
15620
+ # resp = client.send_pipeline_execution_step_failure({
15621
+ # callback_token: "CallbackToken", # required
15622
+ # failure_reason: "String256",
15623
+ # client_request_token: "IdempotencyToken",
15624
+ # })
15625
+ #
15626
+ # @example Response structure
15627
+ #
15628
+ # resp.pipeline_execution_arn #=> String
15629
+ #
15630
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepFailure AWS API Documentation
15631
+ #
15632
+ # @overload send_pipeline_execution_step_failure(params = {})
15633
+ # @param [Hash] params ({})
15634
+ def send_pipeline_execution_step_failure(params = {}, options = {})
15635
+ req = build_request(:send_pipeline_execution_step_failure, params)
15636
+ req.send_request(options)
15637
+ end
15638
+
15639
+ # Notifies the pipeline that the execution of a callback step succeeded
15640
+ # and provides a list of the step's output parameters. When a callback
15641
+ # step is run, the pipeline generates a callback token and includes the
15642
+ # token in a message sent to Amazon Simple Queue Service (Amazon SQS).
15643
+ #
15644
+ # @option params [required, String] :callback_token
15645
+ # The pipeline generated token from the Amazon SQS queue.
15646
+ #
15647
+ # @option params [Array<Types::OutputParameter>] :output_parameters
15648
+ # A list of the output parameters of the callback step.
15649
+ #
15650
+ # @option params [String] :client_request_token
15651
+ # A unique, case-sensitive identifier that you provide to ensure the
15652
+ # idempotency of the operation. An idempotent operation completes no
15653
+ # more than one time.
15654
+ #
15655
+ # **A suitable default value is auto-generated.** You should normally
15656
+ # not need to pass this option.**
15657
+ #
15658
+ # @return [Types::SendPipelineExecutionStepSuccessResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
15659
+ #
15660
+ # * {Types::SendPipelineExecutionStepSuccessResponse#pipeline_execution_arn #pipeline_execution_arn} => String
15661
+ #
15662
+ # @example Request syntax with placeholder values
15663
+ #
15664
+ # resp = client.send_pipeline_execution_step_success({
15665
+ # callback_token: "CallbackToken", # required
15666
+ # output_parameters: [
15667
+ # {
15668
+ # name: "String256", # required
15669
+ # value: "String1024", # required
15670
+ # },
15671
+ # ],
15672
+ # client_request_token: "IdempotencyToken",
15673
+ # })
15674
+ #
15675
+ # @example Response structure
15676
+ #
15677
+ # resp.pipeline_execution_arn #=> String
15678
+ #
15679
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/SendPipelineExecutionStepSuccess AWS API Documentation
15680
+ #
15681
+ # @overload send_pipeline_execution_step_success(params = {})
15682
+ # @param [Hash] params ({})
15683
+ def send_pipeline_execution_step_success(params = {}, options = {})
15684
+ req = build_request(:send_pipeline_execution_step_success, params)
15685
+ req.send_request(options)
15686
+ end
15687
+
15455
15688
  # Starts a previously stopped monitoring schedule.
15456
15689
  #
15457
15690
  # <note markdown="1"> By default, when you successfully create a new schedule, the status of
@@ -17317,7 +17550,7 @@ module Aws::SageMaker
17317
17550
  params: params,
17318
17551
  config: config)
17319
17552
  context[:gem_name] = 'aws-sdk-sagemaker'
17320
- context[:gem_version] = '1.83.0'
17553
+ context[:gem_version] = '1.88.0'
17321
17554
  Seahorse::Client::Request.new(handlers, context)
17322
17555
  end
17323
17556