aws-sdk-sagemaker 1.82.0 → 1.87.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -87,6 +87,7 @@ module Aws::SageMaker
87
87
  AttributeName = Shapes::StringShape.new(name: 'AttributeName')
88
88
  AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
89
89
  AuthMode = Shapes::StringShape.new(name: 'AuthMode')
90
+ AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
90
91
  AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
91
92
  AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
92
93
  AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
@@ -111,6 +112,8 @@ module Aws::SageMaker
111
112
  AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
112
113
  AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
113
114
  AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
115
+ AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
116
+ AutoMLPartialFailureReasons = Shapes::ListShape.new(name: 'AutoMLPartialFailureReasons')
114
117
  AutoMLS3DataSource = Shapes::StructureShape.new(name: 'AutoMLS3DataSource')
115
118
  AutoMLS3DataType = Shapes::StringShape.new(name: 'AutoMLS3DataType')
116
119
  AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
@@ -127,8 +130,10 @@ module Aws::SageMaker
127
130
  BooleanOperator = Shapes::StringShape.new(name: 'BooleanOperator')
128
131
  Branch = Shapes::StringShape.new(name: 'Branch')
129
132
  CacheHitResult = Shapes::StructureShape.new(name: 'CacheHitResult')
133
+ CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
130
134
  CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
131
135
  CandidateName = Shapes::StringShape.new(name: 'CandidateName')
136
+ CandidateProperties = Shapes::StructureShape.new(name: 'CandidateProperties')
132
137
  CandidateSortBy = Shapes::StringShape.new(name: 'CandidateSortBy')
133
138
  CandidateStatus = Shapes::StringShape.new(name: 'CandidateStatus')
134
139
  CandidateStepArn = Shapes::StringShape.new(name: 'CandidateStepArn')
@@ -554,6 +559,7 @@ module Aws::SageMaker
554
559
  ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
555
560
  ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
556
561
  Explainability = Shapes::StructureShape.new(name: 'Explainability')
562
+ ExplainabilityLocation = Shapes::StringShape.new(name: 'ExplainabilityLocation')
557
563
  FailureReason = Shapes::StringShape.new(name: 'FailureReason')
558
564
  FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
559
565
  FeatureDefinitions = Shapes::ListShape.new(name: 'FeatureDefinitions')
@@ -857,6 +863,7 @@ module Aws::SageMaker
857
863
  MaxRuntimePerTrainingJobInSeconds = Shapes::IntegerShape.new(name: 'MaxRuntimePerTrainingJobInSeconds')
858
864
  MaxWaitTimeInSeconds = Shapes::IntegerShape.new(name: 'MaxWaitTimeInSeconds')
859
865
  MaximumExecutionTimeoutInSeconds = Shapes::IntegerShape.new(name: 'MaximumExecutionTimeoutInSeconds')
866
+ MaximumRetryAttempts = Shapes::IntegerShape.new(name: 'MaximumRetryAttempts')
860
867
  MediaType = Shapes::StringShape.new(name: 'MediaType')
861
868
  MemberDefinition = Shapes::StructureShape.new(name: 'MemberDefinition')
862
869
  MemberDefinitions = Shapes::ListShape.new(name: 'MemberDefinitions')
@@ -878,6 +885,8 @@ module Aws::SageMaker
878
885
  ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
879
886
  ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
880
887
  ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
888
+ ModelDeployConfig = Shapes::StructureShape.new(name: 'ModelDeployConfig')
889
+ ModelDeployResult = Shapes::StructureShape.new(name: 'ModelDeployResult')
881
890
  ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
882
891
  ModelExplainabilityAppSpecification = Shapes::StructureShape.new(name: 'ModelExplainabilityAppSpecification')
883
892
  ModelExplainabilityBaselineConfig = Shapes::StructureShape.new(name: 'ModelExplainabilityBaselineConfig')
@@ -1130,6 +1139,8 @@ module Aws::SageMaker
1130
1139
  RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
1131
1140
  RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
1132
1141
  RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
1142
+ RepositoryAuthConfig = Shapes::StructureShape.new(name: 'RepositoryAuthConfig')
1143
+ RepositoryCredentialsProviderArn = Shapes::StringShape.new(name: 'RepositoryCredentialsProviderArn')
1133
1144
  ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
1134
1145
  ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
1135
1146
  ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
@@ -1145,6 +1156,7 @@ module Aws::SageMaker
1145
1156
  ResponseMIMETypes = Shapes::ListShape.new(name: 'ResponseMIMETypes')
1146
1157
  RetentionPolicy = Shapes::StructureShape.new(name: 'RetentionPolicy')
1147
1158
  RetentionType = Shapes::StringShape.new(name: 'RetentionType')
1159
+ RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
1148
1160
  RoleArn = Shapes::StringShape.new(name: 'RoleArn')
1149
1161
  RootAccess = Shapes::StringShape.new(name: 'RootAccess')
1150
1162
  RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
@@ -1266,6 +1278,9 @@ module Aws::SageMaker
1266
1278
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
1267
1279
  TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
1268
1280
  TrafficRoutingConfigType = Shapes::StringShape.new(name: 'TrafficRoutingConfigType')
1281
+ TrainingEnvironmentKey = Shapes::StringShape.new(name: 'TrainingEnvironmentKey')
1282
+ TrainingEnvironmentMap = Shapes::MapShape.new(name: 'TrainingEnvironmentMap')
1283
+ TrainingEnvironmentValue = Shapes::StringShape.new(name: 'TrainingEnvironmentValue')
1269
1284
  TrainingInputMode = Shapes::StringShape.new(name: 'TrainingInputMode')
1270
1285
  TrainingInstanceCount = Shapes::IntegerShape.new(name: 'TrainingInstanceCount')
1271
1286
  TrainingInstanceType = Shapes::StringShape.new(name: 'TrainingInstanceType')
@@ -1583,6 +1598,7 @@ module Aws::SageMaker
1583
1598
  AutoMLCandidate.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
1584
1599
  AutoMLCandidate.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
1585
1600
  AutoMLCandidate.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
1601
+ AutoMLCandidate.add_member(:candidate_properties, Shapes::ShapeRef.new(shape: CandidateProperties, location_name: "CandidateProperties"))
1586
1602
  AutoMLCandidate.struct_class = Types::AutoMLCandidate
1587
1603
 
1588
1604
  AutoMLCandidateStep.add_member(:candidate_step_type, Shapes::ShapeRef.new(shape: CandidateStepType, required: true, location_name: "CandidateStepType"))
@@ -1635,12 +1651,18 @@ module Aws::SageMaker
1635
1651
  AutoMLJobSummary.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
1636
1652
  AutoMLJobSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
1637
1653
  AutoMLJobSummary.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
1654
+ AutoMLJobSummary.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
1638
1655
  AutoMLJobSummary.struct_class = Types::AutoMLJobSummary
1639
1656
 
1640
1657
  AutoMLOutputDataConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
1641
1658
  AutoMLOutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
1642
1659
  AutoMLOutputDataConfig.struct_class = Types::AutoMLOutputDataConfig
1643
1660
 
1661
+ AutoMLPartialFailureReason.add_member(:partial_failure_message, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "PartialFailureMessage"))
1662
+ AutoMLPartialFailureReason.struct_class = Types::AutoMLPartialFailureReason
1663
+
1664
+ AutoMLPartialFailureReasons.member = Shapes::ShapeRef.new(shape: AutoMLPartialFailureReason)
1665
+
1644
1666
  AutoMLS3DataSource.add_member(:s3_data_type, Shapes::ShapeRef.new(shape: AutoMLS3DataType, required: true, location_name: "S3DataType"))
1645
1667
  AutoMLS3DataSource.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
1646
1668
  AutoMLS3DataSource.struct_class = Types::AutoMLS3DataSource
@@ -1664,6 +1686,12 @@ module Aws::SageMaker
1664
1686
  CacheHitResult.add_member(:source_pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "SourcePipelineExecutionArn"))
1665
1687
  CacheHitResult.struct_class = Types::CacheHitResult
1666
1688
 
1689
+ CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
1690
+ CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
1691
+
1692
+ CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
1693
+ CandidateProperties.struct_class = Types::CandidateProperties
1694
+
1667
1695
  CandidateSteps.member = Shapes::ShapeRef.new(shape: AutoMLCandidateStep)
1668
1696
 
1669
1697
  CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
@@ -1874,6 +1902,7 @@ module Aws::SageMaker
1874
1902
  CreateAutoMLJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
1875
1903
  CreateAutoMLJobRequest.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
1876
1904
  CreateAutoMLJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
1905
+ CreateAutoMLJobRequest.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
1877
1906
  CreateAutoMLJobRequest.struct_class = Types::CreateAutoMLJobRequest
1878
1907
 
1879
1908
  CreateAutoMLJobResponse.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
@@ -2253,6 +2282,8 @@ module Aws::SageMaker
2253
2282
  CreateTrainingJobRequest.add_member(:experiment_config, Shapes::ShapeRef.new(shape: ExperimentConfig, location_name: "ExperimentConfig"))
2254
2283
  CreateTrainingJobRequest.add_member(:profiler_config, Shapes::ShapeRef.new(shape: ProfilerConfig, location_name: "ProfilerConfig"))
2255
2284
  CreateTrainingJobRequest.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
2285
+ CreateTrainingJobRequest.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
2286
+ CreateTrainingJobRequest.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
2256
2287
  CreateTrainingJobRequest.struct_class = Types::CreateTrainingJobRequest
2257
2288
 
2258
2289
  CreateTrainingJobResponse.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
@@ -2688,12 +2719,15 @@ module Aws::SageMaker
2688
2719
  DescribeAutoMLJobResponse.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
2689
2720
  DescribeAutoMLJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
2690
2721
  DescribeAutoMLJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
2722
+ DescribeAutoMLJobResponse.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
2691
2723
  DescribeAutoMLJobResponse.add_member(:best_candidate, Shapes::ShapeRef.new(shape: AutoMLCandidate, location_name: "BestCandidate"))
2692
2724
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_status, Shapes::ShapeRef.new(shape: AutoMLJobStatus, required: true, location_name: "AutoMLJobStatus"))
2693
2725
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_secondary_status, Shapes::ShapeRef.new(shape: AutoMLJobSecondaryStatus, required: true, location_name: "AutoMLJobSecondaryStatus"))
2694
2726
  DescribeAutoMLJobResponse.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
2695
2727
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
2696
2728
  DescribeAutoMLJobResponse.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: ResolvedAttributes, location_name: "ResolvedAttributes"))
2729
+ DescribeAutoMLJobResponse.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
2730
+ DescribeAutoMLJobResponse.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
2697
2731
  DescribeAutoMLJobResponse.struct_class = Types::DescribeAutoMLJobResponse
2698
2732
 
2699
2733
  DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
@@ -3257,6 +3291,8 @@ module Aws::SageMaker
3257
3291
  DescribeTrainingJobResponse.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
3258
3292
  DescribeTrainingJobResponse.add_member(:profiler_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: ProfilerRuleEvaluationStatuses, location_name: "ProfilerRuleEvaluationStatuses"))
3259
3293
  DescribeTrainingJobResponse.add_member(:profiling_status, Shapes::ShapeRef.new(shape: ProfilingStatus, location_name: "ProfilingStatus"))
3294
+ DescribeTrainingJobResponse.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
3295
+ DescribeTrainingJobResponse.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
3260
3296
  DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
3261
3297
 
3262
3298
  DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
@@ -3727,6 +3763,7 @@ module Aws::SageMaker
3727
3763
  HyperParameterTrainingJobDefinition.add_member(:enable_inter_container_traffic_encryption, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableInterContainerTrafficEncryption"))
3728
3764
  HyperParameterTrainingJobDefinition.add_member(:enable_managed_spot_training, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableManagedSpotTraining"))
3729
3765
  HyperParameterTrainingJobDefinition.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
3766
+ HyperParameterTrainingJobDefinition.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
3730
3767
  HyperParameterTrainingJobDefinition.struct_class = Types::HyperParameterTrainingJobDefinition
3731
3768
 
3732
3769
  HyperParameterTrainingJobDefinitions.member = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition)
@@ -3793,6 +3830,7 @@ module Aws::SageMaker
3793
3830
  Image.struct_class = Types::Image
3794
3831
 
3795
3832
  ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
3833
+ ImageConfig.add_member(:repository_auth_config, Shapes::ShapeRef.new(shape: RepositoryAuthConfig, location_name: "RepositoryAuthConfig"))
3796
3834
  ImageConfig.struct_class = Types::ImageConfig
3797
3835
 
3798
3836
  ImageDeletePropertyList.member = Shapes::ShapeRef.new(shape: ImageDeleteProperty)
@@ -4731,6 +4769,13 @@ module Aws::SageMaker
4731
4769
  ModelDataQuality.add_member(:constraints, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Constraints"))
4732
4770
  ModelDataQuality.struct_class = Types::ModelDataQuality
4733
4771
 
4772
+ ModelDeployConfig.add_member(:auto_generate_endpoint_name, Shapes::ShapeRef.new(shape: AutoGenerateEndpointName, location_name: "AutoGenerateEndpointName"))
4773
+ ModelDeployConfig.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4774
+ ModelDeployConfig.struct_class = Types::ModelDeployConfig
4775
+
4776
+ ModelDeployResult.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
4777
+ ModelDeployResult.struct_class = Types::ModelDeployResult
4778
+
4734
4779
  ModelDigests.add_member(:artifact_digest, Shapes::ShapeRef.new(shape: ArtifactDigest, location_name: "ArtifactDigest"))
4735
4780
  ModelDigests.struct_class = Types::ModelDigests
4736
4781
 
@@ -5413,6 +5458,9 @@ module Aws::SageMaker
5413
5458
 
5414
5459
  RenderingErrorList.member = Shapes::ShapeRef.new(shape: RenderingError)
5415
5460
 
5461
+ RepositoryAuthConfig.add_member(:repository_credentials_provider_arn, Shapes::ShapeRef.new(shape: RepositoryCredentialsProviderArn, required: true, location_name: "RepositoryCredentialsProviderArn"))
5462
+ RepositoryAuthConfig.struct_class = Types::RepositoryAuthConfig
5463
+
5416
5464
  ResolvedAttributes.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
5417
5465
  ResolvedAttributes.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
5418
5466
  ResolvedAttributes.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
@@ -5447,6 +5495,9 @@ module Aws::SageMaker
5447
5495
  RetentionPolicy.add_member(:home_efs_file_system, Shapes::ShapeRef.new(shape: RetentionType, location_name: "HomeEfsFileSystem"))
5448
5496
  RetentionPolicy.struct_class = Types::RetentionPolicy
5449
5497
 
5498
+ RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
5499
+ RetryStrategy.struct_class = Types::RetryStrategy
5500
+
5450
5501
  RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
5451
5502
  RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
5452
5503
 
@@ -5636,6 +5687,9 @@ module Aws::SageMaker
5636
5687
  TrafficRoutingConfig.add_member(:canary_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "CanarySize"))
5637
5688
  TrafficRoutingConfig.struct_class = Types::TrafficRoutingConfig
5638
5689
 
5690
+ TrainingEnvironmentMap.key = Shapes::ShapeRef.new(shape: TrainingEnvironmentKey)
5691
+ TrainingEnvironmentMap.value = Shapes::ShapeRef.new(shape: TrainingEnvironmentValue)
5692
+
5639
5693
  TrainingInstanceTypes.member = Shapes::ShapeRef.new(shape: TrainingInstanceType)
5640
5694
 
5641
5695
  TrainingJob.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, location_name: "TrainingJobName"))
@@ -5672,6 +5726,8 @@ module Aws::SageMaker
5672
5726
  TrainingJob.add_member(:debug_rule_configurations, Shapes::ShapeRef.new(shape: DebugRuleConfigurations, location_name: "DebugRuleConfigurations"))
5673
5727
  TrainingJob.add_member(:tensor_board_output_config, Shapes::ShapeRef.new(shape: TensorBoardOutputConfig, location_name: "TensorBoardOutputConfig"))
5674
5728
  TrainingJob.add_member(:debug_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: DebugRuleEvaluationStatuses, location_name: "DebugRuleEvaluationStatuses"))
5729
+ TrainingJob.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
5730
+ TrainingJob.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
5675
5731
  TrainingJob.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
5676
5732
  TrainingJob.struct_class = Types::TrainingJob
5677
5733
 
@@ -1706,10 +1706,10 @@ module Aws::SageMaker
1706
1706
  end
1707
1707
 
1708
1708
  # An Autopilot job returns recommendations, or candidates. Each
1709
- # candidate has futher details about the steps involed, and the status.
1709
+ # candidate has futher details about the steps involved and the status.
1710
1710
  #
1711
1711
  # @!attribute [rw] candidate_name
1712
- # The candidate name.
1712
+ # The name of the candidate.
1713
1713
  # @return [String]
1714
1714
  #
1715
1715
  # @!attribute [rw] final_auto_ml_job_objective_metric
@@ -1717,11 +1717,11 @@ module Aws::SageMaker
1717
1717
  # @return [Types::FinalAutoMLJobObjectiveMetric]
1718
1718
  #
1719
1719
  # @!attribute [rw] objective_status
1720
- # The objective status.
1720
+ # The objective's status.
1721
1721
  # @return [String]
1722
1722
  #
1723
1723
  # @!attribute [rw] candidate_steps
1724
- # The candidate's steps.
1724
+ # Information about the candidate's steps.
1725
1725
  # @return [Array<Types::AutoMLCandidateStep>]
1726
1726
  #
1727
1727
  # @!attribute [rw] candidate_status
@@ -1729,7 +1729,7 @@ module Aws::SageMaker
1729
1729
  # @return [String]
1730
1730
  #
1731
1731
  # @!attribute [rw] inference_containers
1732
- # The inference containers.
1732
+ # Information about the inference container definitions.
1733
1733
  # @return [Array<Types::AutoMLContainerDefinition>]
1734
1734
  #
1735
1735
  # @!attribute [rw] creation_time
@@ -1748,6 +1748,10 @@ module Aws::SageMaker
1748
1748
  # The failure reason.
1749
1749
  # @return [String]
1750
1750
  #
1751
+ # @!attribute [rw] candidate_properties
1752
+ # The AutoML candidate's properties.
1753
+ # @return [Types::CandidateProperties]
1754
+ #
1751
1755
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
1752
1756
  #
1753
1757
  class AutoMLCandidate < Struct.new(
@@ -1760,25 +1764,26 @@ module Aws::SageMaker
1760
1764
  :creation_time,
1761
1765
  :end_time,
1762
1766
  :last_modified_time,
1763
- :failure_reason)
1767
+ :failure_reason,
1768
+ :candidate_properties)
1764
1769
  SENSITIVE = []
1765
1770
  include Aws::Structure
1766
1771
  end
1767
1772
 
1768
- # Information about the steps for a Candidate, and what step it is
1773
+ # Information about the steps for a candidate and what step it is
1769
1774
  # working on.
1770
1775
  #
1771
1776
  # @!attribute [rw] candidate_step_type
1772
- # Whether the Candidate is at the transform, training, or processing
1777
+ # Whether the candidate is at the transform, training, or processing
1773
1778
  # step.
1774
1779
  # @return [String]
1775
1780
  #
1776
1781
  # @!attribute [rw] candidate_step_arn
1777
- # The ARN for the Candidate's step.
1782
+ # The ARN for the candidate's step.
1778
1783
  # @return [String]
1779
1784
  #
1780
1785
  # @!attribute [rw] candidate_step_name
1781
- # The name for the Candidate's step.
1786
+ # The name for the candidate's step.
1782
1787
  # @return [String]
1783
1788
  #
1784
1789
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateStep AWS API Documentation
@@ -1791,8 +1796,8 @@ module Aws::SageMaker
1791
1796
  include Aws::Structure
1792
1797
  end
1793
1798
 
1794
- # Similar to Channel. A channel is a named input source that training
1795
- # algorithms can consume. Refer to Channel for detailed descriptions.
1799
+ # A channel is a named input source that training algorithms can
1800
+ # consume. For more information, see .
1796
1801
  #
1797
1802
  # @note When making an API call, you may pass AutoMLChannel
1798
1803
  # data as a hash:
@@ -1809,16 +1814,16 @@ module Aws::SageMaker
1809
1814
  # }
1810
1815
  #
1811
1816
  # @!attribute [rw] data_source
1812
- # The data source.
1817
+ # The data source for an AutoML channel.
1813
1818
  # @return [Types::AutoMLDataSource]
1814
1819
  #
1815
1820
  # @!attribute [rw] compression_type
1816
- # You can use Gzip or None. The default value is None.
1821
+ # You can use `Gzip` or `None`. The default value is `None`.
1817
1822
  # @return [String]
1818
1823
  #
1819
1824
  # @!attribute [rw] target_attribute_name
1820
- # The name of the target variable in supervised learning, a.k.a.
1821
- # 'y'.
1825
+ # The name of the target variable in supervised learning, usually
1826
+ # represented by 'y'.
1822
1827
  # @return [String]
1823
1828
  #
1824
1829
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
@@ -1832,22 +1837,19 @@ module Aws::SageMaker
1832
1837
  end
1833
1838
 
1834
1839
  # A list of container definitions that describe the different containers
1835
- # that make up one AutoML candidate. Refer to ContainerDefinition for
1836
- # more details.
1840
+ # that make up an AutoML candidate. For more information, see .
1837
1841
  #
1838
1842
  # @!attribute [rw] image
1839
- # The ECR path of the container. Refer to ContainerDefinition for more
1840
- # details.
1843
+ # The ECR path of the container. For more information, see .
1841
1844
  # @return [String]
1842
1845
  #
1843
1846
  # @!attribute [rw] model_data_url
1844
- # The location of the model artifacts. Refer to ContainerDefinition
1845
- # for more details.
1847
+ # The location of the model artifacts. For more information, see .
1846
1848
  # @return [String]
1847
1849
  #
1848
1850
  # @!attribute [rw] environment
1849
- # Environment variables to set in the container. Refer to
1850
- # ContainerDefinition for more details.
1851
+ # The environment variables to set in the container. For more
1852
+ # information, see .
1851
1853
  # @return [Hash<String,String>]
1852
1854
  #
1853
1855
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -1888,14 +1890,14 @@ module Aws::SageMaker
1888
1890
  include Aws::Structure
1889
1891
  end
1890
1892
 
1891
- # Artifacts that are generation during a job.
1893
+ # The artifacts that are generated during an AutoML job.
1892
1894
  #
1893
1895
  # @!attribute [rw] candidate_definition_notebook_location
1894
- # The URL to the notebook location.
1896
+ # The URL of the notebook location.
1895
1897
  # @return [String]
1896
1898
  #
1897
1899
  # @!attribute [rw] data_exploration_notebook_location
1898
- # The URL to the notebook location.
1900
+ # The URL of the notebook location.
1899
1901
  # @return [String]
1900
1902
  #
1901
1903
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobArtifacts AWS API Documentation
@@ -1930,7 +1932,7 @@ module Aws::SageMaker
1930
1932
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
1931
1933
  # The maximum time, in seconds, an AutoML job is allowed to wait for a
1932
1934
  # trial to complete. It must be equal to or greater than
1933
- # MaxRuntimePerTrainingJobInSeconds.
1935
+ # `MaxRuntimePerTrainingJobInSeconds`.
1934
1936
  # @return [Integer]
1935
1937
  #
1936
1938
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
@@ -1943,7 +1945,7 @@ module Aws::SageMaker
1943
1945
  include Aws::Structure
1944
1946
  end
1945
1947
 
1946
- # A collection of settings used for a job.
1948
+ # A collection of settings used for an AutoML job.
1947
1949
  #
1948
1950
  # @note When making an API call, you may pass AutoMLJobConfig
1949
1951
  # data as a hash:
@@ -1965,12 +1967,12 @@ module Aws::SageMaker
1965
1967
  # }
1966
1968
  #
1967
1969
  # @!attribute [rw] completion_criteria
1968
- # How long a job is allowed to run, or how many candidates a job is
1969
- # allowed to generate.
1970
+ # How long an AutoML job is allowed to run, or how many candidates a
1971
+ # job is allowed to generate.
1970
1972
  # @return [Types::AutoMLJobCompletionCriteria]
1971
1973
  #
1972
1974
  # @!attribute [rw] security_config
1973
- # Security configuration for traffic encryption or Amazon VPC
1975
+ # The security configuration for traffic encryption or Amazon VPC
1974
1976
  # settings.
1975
1977
  # @return [Types::AutoMLSecurityConfig]
1976
1978
  #
@@ -2002,23 +2004,23 @@ module Aws::SageMaker
2002
2004
  #
2003
2005
  # * `MSE`\: The mean squared error (MSE) is the average of the squared
2004
2006
  # differences between the predicted and actual values. It is used
2005
- # for regression. MSE values are always positive, the better a model
2006
- # is at predicting the actual values the smaller the MSE value. When
2007
- # the data contains outliers, they tend to dominate the MSE which
2008
- # might cause subpar prediction performance.
2009
- #
2010
- # * `Accuracy`\: The ratio of the number correctly classified items to
2011
- # the total number (correctly and incorrectly) classified. It is
2012
- # used for binary and multiclass classification. Measures how close
2013
- # the predicted class values are to the actual values. Accuracy
2014
- # values vary between zero and one, one being perfect accuracy and
2015
- # zero perfect inaccuracy.
2007
+ # for regression. MSE values are always positive: the better a model
2008
+ # is at predicting the actual values, the smaller the MSE value.
2009
+ # When the data contains outliers, they tend to dominate the MSE,
2010
+ # which might cause subpar prediction performance.
2011
+ #
2012
+ # * `Accuracy`\: The ratio of the number of correctly classified items
2013
+ # to the total number of (correctly and incorrectly) classified
2014
+ # items. It is used for binary and multiclass classification. It
2015
+ # measures how close the predicted class values are to the actual
2016
+ # values. Accuracy values vary between zero and one: one indicates
2017
+ # perfect accuracy and zero indicates perfect inaccuracy.
2016
2018
  #
2017
2019
  # * `F1`\: The F1 score is the harmonic mean of the precision and
2018
2020
  # recall. It is used for binary classification into classes
2019
2021
  # traditionally referred to as positive and negative. Predictions
2020
- # are said to be true when they match their actual (correct) class;
2021
- # false when they do not. Precision is the ratio of the true
2022
+ # are said to be true when they match their actual (correct) class
2023
+ # and false when they do not. Precision is the ratio of the true
2022
2024
  # positive predictions to all positive predictions (including the
2023
2025
  # false positives) in a data set and measures the quality of the
2024
2026
  # prediction when it predicts the positive class. Recall (or
@@ -2027,7 +2029,7 @@ module Aws::SageMaker
2027
2029
  # predicts the actual class members in a data set. The standard F1
2028
2030
  # score weighs precision and recall equally. But which metric is
2029
2031
  # paramount typically depends on specific aspects of a problem. F1
2030
- # scores vary between zero and one, one being the best possible
2032
+ # scores vary between zero and one: one indicates the best possible
2031
2033
  # performance and zero the worst.
2032
2034
  #
2033
2035
  # * `AUC`\: The area under the curve (AUC) metric is used to compare
@@ -2045,20 +2047,21 @@ module Aws::SageMaker
2045
2047
  # The AUC score can also be interpreted as the probability that a
2046
2048
  # randomly selected positive data point is more likely to be
2047
2049
  # predicted positive than a randomly selected negative example. AUC
2048
- # scores vary between zero and one, one being perfect accuracy and
2049
- # one half not better than a random classifier. Values less that one
2050
- # half predict worse than a random predictor and such consistently
2051
- # bad predictors can be inverted to obtain better than random
2050
+ # scores vary between zero and one: a score of one indicates perfect
2051
+ # accuracy and a score of one half indicates that the prediction is
2052
+ # not better than a random classifier. Values under one half predict
2053
+ # less accurately than a random predictor. But such consistently bad
2054
+ # predictors can simply be inverted to obtain better than random
2052
2055
  # predictors.
2053
2056
  #
2054
2057
  # * `F1macro`\: The F1macro score applies F1 scoring to multiclass
2055
2058
  # classification. In this context, you have multiple classes to
2056
2059
  # predict. You just calculate the precision and recall for each
2057
2060
  # class as you did for the positive class in binary classification.
2058
- # Then used these values to calculate the F1 score for each class
2061
+ # Then, use these values to calculate the F1 score for each class
2059
2062
  # and average them to obtain the F1macro score. F1macro scores vary
2060
- # between zero and one, one being the best possible performance and
2061
- # zero the worst.
2063
+ # between zero and one: one indicates the best possible performance
2064
+ # and zero the worst.
2062
2065
  #
2063
2066
  # If you do not specify a metric explicitly, the default behavior is
2064
2067
  # to automatically use:
@@ -2078,26 +2081,26 @@ module Aws::SageMaker
2078
2081
  include Aws::Structure
2079
2082
  end
2080
2083
 
2081
- # Provides a summary about a job.
2084
+ # Provides a summary about an AutoML job.
2082
2085
  #
2083
2086
  # @!attribute [rw] auto_ml_job_name
2084
- # The name of the object you are requesting.
2087
+ # The name of the AutoML you are requesting.
2085
2088
  # @return [String]
2086
2089
  #
2087
2090
  # @!attribute [rw] auto_ml_job_arn
2088
- # The ARN of the job.
2091
+ # The ARN of the AutoML job.
2089
2092
  # @return [String]
2090
2093
  #
2091
2094
  # @!attribute [rw] auto_ml_job_status
2092
- # The job's status.
2095
+ # The status of the AutoML job.
2093
2096
  # @return [String]
2094
2097
  #
2095
2098
  # @!attribute [rw] auto_ml_job_secondary_status
2096
- # The job's secondary status.
2099
+ # The secondary status of the AutoML job.
2097
2100
  # @return [String]
2098
2101
  #
2099
2102
  # @!attribute [rw] creation_time
2100
- # When the job was created.
2103
+ # When the AutoML job was created.
2101
2104
  # @return [Time]
2102
2105
  #
2103
2106
  # @!attribute [rw] end_time
@@ -2105,13 +2108,17 @@ module Aws::SageMaker
2105
2108
  # @return [Time]
2106
2109
  #
2107
2110
  # @!attribute [rw] last_modified_time
2108
- # When the job was last modified.
2111
+ # When the AutoML job was last modified.
2109
2112
  # @return [Time]
2110
2113
  #
2111
2114
  # @!attribute [rw] failure_reason
2112
- # The failure reason of a job.
2115
+ # The failure reason of an AutoML job.
2113
2116
  # @return [String]
2114
2117
  #
2118
+ # @!attribute [rw] partial_failure_reasons
2119
+ # The list of reasons for partial failures within an AutoML job.
2120
+ # @return [Array<Types::AutoMLPartialFailureReason>]
2121
+ #
2115
2122
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
2116
2123
  #
2117
2124
  class AutoMLJobSummary < Struct.new(
@@ -2122,7 +2129,8 @@ module Aws::SageMaker
2122
2129
  :creation_time,
2123
2130
  :end_time,
2124
2131
  :last_modified_time,
2125
- :failure_reason)
2132
+ :failure_reason,
2133
+ :partial_failure_reasons)
2126
2134
  SENSITIVE = []
2127
2135
  include Aws::Structure
2128
2136
  end
@@ -2154,6 +2162,21 @@ module Aws::SageMaker
2154
2162
  include Aws::Structure
2155
2163
  end
2156
2164
 
2165
+ # The reason for a partial failure of an AutoML job.
2166
+ #
2167
+ # @!attribute [rw] partial_failure_message
2168
+ # The message containing the reason for a partial failure of an AutoML
2169
+ # job.
2170
+ # @return [String]
2171
+ #
2172
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLPartialFailureReason AWS API Documentation
2173
+ #
2174
+ class AutoMLPartialFailureReason < Struct.new(
2175
+ :partial_failure_message)
2176
+ SENSITIVE = []
2177
+ include Aws::Structure
2178
+ end
2179
+
2157
2180
  # The Amazon S3 data source.
2158
2181
  #
2159
2182
  # @note When making an API call, you may pass AutoMLS3DataSource
@@ -2204,7 +2227,7 @@ module Aws::SageMaker
2204
2227
  # @return [Boolean]
2205
2228
  #
2206
2229
  # @!attribute [rw] vpc_config
2207
- # VPC configuration.
2230
+ # The VPC configuration.
2208
2231
  # @return [Types::VpcConfig]
2209
2232
  #
2210
2233
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLSecurityConfig AWS API Documentation
@@ -2317,6 +2340,36 @@ module Aws::SageMaker
2317
2340
  include Aws::Structure
2318
2341
  end
2319
2342
 
2343
+ # The location of artifacts for an AutoML candidate job.
2344
+ #
2345
+ # @!attribute [rw] explainability
2346
+ # The Amazon S3 prefix to the explainability artifacts generated for
2347
+ # the AutoML candidate.
2348
+ # @return [String]
2349
+ #
2350
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
2351
+ #
2352
+ class CandidateArtifactLocations < Struct.new(
2353
+ :explainability)
2354
+ SENSITIVE = []
2355
+ include Aws::Structure
2356
+ end
2357
+
2358
+ # The properties of an AutoML candidate job.
2359
+ #
2360
+ # @!attribute [rw] candidate_artifact_locations
2361
+ # The Amazon S3 prefix to the artifacts generated for an AutoML
2362
+ # candidate.
2363
+ # @return [Types::CandidateArtifactLocations]
2364
+ #
2365
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
2366
+ #
2367
+ class CandidateProperties < Struct.new(
2368
+ :candidate_artifact_locations)
2369
+ SENSITIVE = []
2370
+ include Aws::Structure
2371
+ end
2372
+
2320
2373
  # Currently, the `CapacitySize` API is not supported.
2321
2374
  #
2322
2375
  # @note When making an API call, you may pass CapacitySize
@@ -2861,8 +2914,8 @@ module Aws::SageMaker
2861
2914
  include Aws::Structure
2862
2915
  end
2863
2916
 
2864
- # There was a conflict when you attempted to modify an experiment,
2865
- # trial, or trial component.
2917
+ # There was a conflict when you attempted to modify a SageMaker entity
2918
+ # such as an `Experiment` or `Artifact`.
2866
2919
  #
2867
2920
  # @!attribute [rw] message
2868
2921
  # @return [String]
@@ -2885,6 +2938,9 @@ module Aws::SageMaker
2885
2938
  # image: "ContainerImage",
2886
2939
  # image_config: {
2887
2940
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2941
+ # repository_auth_config: {
2942
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
2943
+ # },
2888
2944
  # },
2889
2945
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2890
2946
  # model_data_url: "Url",
@@ -3625,7 +3681,8 @@ module Aws::SageMaker
3625
3681
  # @return [String]
3626
3682
  #
3627
3683
  # @!attribute [rw] app_type
3628
- # The type of app.
3684
+ # The type of app. Supported apps are `JupyterServer` and
3685
+ # `KernelGateway`. `TensorBoard` is not supported.
3629
3686
  # @return [String]
3630
3687
  #
3631
3688
  # @!attribute [rw] app_name
@@ -3798,49 +3855,69 @@ module Aws::SageMaker
3798
3855
  # value: "TagValue", # required
3799
3856
  # },
3800
3857
  # ],
3858
+ # model_deploy_config: {
3859
+ # auto_generate_endpoint_name: false,
3860
+ # endpoint_name: "EndpointName",
3861
+ # },
3801
3862
  # }
3802
3863
  #
3803
3864
  # @!attribute [rw] auto_ml_job_name
3804
- # Identifies an Autopilot job. Must be unique to your account and is
3805
- # case-insensitive.
3865
+ # Identifies an Autopilot job. The name must be unique to your account
3866
+ # and is case-insensitive.
3806
3867
  # @return [String]
3807
3868
  #
3808
3869
  # @!attribute [rw] input_data_config
3809
- # Similar to InputDataConfig supported by Tuning. Format(s) supported:
3810
- # CSV. Minimum of 500 rows.
3870
+ # An array of channel objects that describes the input data and its
3871
+ # location. Each channel is a named input source. Similar to
3872
+ # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum
3873
+ # of 500 rows.
3811
3874
  # @return [Array<Types::AutoMLChannel>]
3812
3875
  #
3813
3876
  # @!attribute [rw] output_data_config
3814
- # Similar to OutputDataConfig supported by Tuning. Format(s)
3815
- # supported: CSV.
3877
+ # Provides information about encryption and the Amazon S3 output path
3878
+ # needed to store artifacts from an AutoML job. Format(s) supported:
3879
+ # CSV.
3880
+ #
3881
+ # &lt;para&gt;Specifies whether to automatically deploy the best
3882
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
3883
+ # deployed automatically.&lt;/para&gt;
3816
3884
  # @return [Types::AutoMLOutputDataConfig]
3817
3885
  #
3818
3886
  # @!attribute [rw] problem_type
3819
- # Defines the kind of preprocessing and algorithms intended for the
3820
- # candidates. Options include: BinaryClassification,
3821
- # MulticlassClassification, and Regression.
3887
+ # Defines the type of supervised learning available for the
3888
+ # candidates. Options include: `BinaryClassification`,
3889
+ # `MulticlassClassification`, and `Regression`. For more information,
3890
+ # see [ Amazon SageMaker Autopilot problem types and algorithm
3891
+ # support][1].
3892
+ #
3893
+ #
3894
+ #
3895
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
3822
3896
  # @return [String]
3823
3897
  #
3824
3898
  # @!attribute [rw] auto_ml_job_objective
3825
- # Defines the objective of a an AutoML job. You provide a
3826
- # AutoMLJobObjective$MetricName and Autopilot infers whether to
3827
- # minimize or maximize it. If a metric is not specified, the most
3828
- # commonly used ObjectiveMetric for problem type is automaically
3829
- # selected.
3899
+ # Defines the objective metric used to measure the predictive quality
3900
+ # of an AutoML job. You provide an AutoMLJobObjective$MetricName and
3901
+ # Autopilot infers whether to minimize or maximize it.
3830
3902
  # @return [Types::AutoMLJobObjective]
3831
3903
  #
3832
3904
  # @!attribute [rw] auto_ml_job_config
3833
- # Contains CompletionCriteria and SecurityConfig.
3905
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
3906
+ # AutoML job.
3834
3907
  # @return [Types::AutoMLJobConfig]
3835
3908
  #
3836
3909
  # @!attribute [rw] role_arn
3837
3910
  # The ARN of the role that is used to access the data.
3911
+ #
3912
+ # &lt;para&gt;Specifies whether to automatically deploy the best
3913
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
3914
+ # deployed automatically.&lt;/para&gt;
3838
3915
  # @return [String]
3839
3916
  #
3840
3917
  # @!attribute [rw] generate_candidate_definitions_only
3841
- # Generates possible candidates without training a model. A candidate
3842
- # is a combination of data preprocessors, algorithms, and algorithm
3843
- # parameter settings.
3918
+ # Generates possible candidates without training the models. A
3919
+ # candidate is a combination of data preprocessors, algorithms, and
3920
+ # algorithm parameter settings.
3844
3921
  # @return [Boolean]
3845
3922
  #
3846
3923
  # @!attribute [rw] tags
@@ -3848,6 +3925,11 @@ module Aws::SageMaker
3848
3925
  # unique per resource.
3849
3926
  # @return [Array<Types::Tag>]
3850
3927
  #
3928
+ # @!attribute [rw] model_deploy_config
3929
+ # Specifies how to generate the endpoint name for an automatic
3930
+ # one-click Autopilot model deployment.
3931
+ # @return [Types::ModelDeployConfig]
3932
+ #
3851
3933
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobRequest AWS API Documentation
3852
3934
  #
3853
3935
  class CreateAutoMLJobRequest < Struct.new(
@@ -3859,13 +3941,15 @@ module Aws::SageMaker
3859
3941
  :auto_ml_job_config,
3860
3942
  :role_arn,
3861
3943
  :generate_candidate_definitions_only,
3862
- :tags)
3944
+ :tags,
3945
+ :model_deploy_config)
3863
3946
  SENSITIVE = []
3864
3947
  include Aws::Structure
3865
3948
  end
3866
3949
 
3867
3950
  # @!attribute [rw] auto_ml_job_arn
3868
- # When a job is created, it is assigned a unique ARN.
3951
+ # The unique ARN that is assigned to the AutoML job when it is
3952
+ # created.
3869
3953
  # @return [String]
3870
3954
  #
3871
3955
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobResponse AWS API Documentation
@@ -4407,7 +4491,14 @@ module Aws::SageMaker
4407
4491
  # @return [String]
4408
4492
  #
4409
4493
  # @!attribute [rw] default_user_settings
4410
- # The default user settings.
4494
+ # The default settings to use to create a user profile when
4495
+ # `UserSettings` isn't specified in the call to the
4496
+ # `CreateUserProfile` API.
4497
+ #
4498
+ # `SecurityGroups` is aggregated when specified in both calls. For all
4499
+ # other settings in `UserSettings`, the values specified in
4500
+ # `CreateUserProfile` take precedence over those specified in
4501
+ # `CreateDomain`.
4411
4502
  # @return [Types::UserSettings]
4412
4503
  #
4413
4504
  # @!attribute [rw] subnet_ids
@@ -4422,7 +4513,10 @@ module Aws::SageMaker
4422
4513
  # @!attribute [rw] tags
4423
4514
  # Tags to associated with the Domain. Each tag consists of a key and
4424
4515
  # an optional value. Tag keys must be unique per resource. Tags are
4425
- # searchable using the Search API.
4516
+ # searchable using the `Search` API.
4517
+ #
4518
+ # Tags that you specify for the Domain are also added to all Apps that
4519
+ # the Domain launches.
4426
4520
  # @return [Array<Types::Tag>]
4427
4521
  #
4428
4522
  # @!attribute [rw] app_network_access_type
@@ -5277,6 +5371,9 @@ module Aws::SageMaker
5277
5371
  # s3_uri: "S3Uri", # required
5278
5372
  # local_path: "DirectoryPath",
5279
5373
  # },
5374
+ # retry_strategy: {
5375
+ # maximum_retry_attempts: 1, # required
5376
+ # },
5280
5377
  # },
5281
5378
  # training_job_definitions: [
5282
5379
  # {
@@ -5375,6 +5472,9 @@ module Aws::SageMaker
5375
5472
  # s3_uri: "S3Uri", # required
5376
5473
  # local_path: "DirectoryPath",
5377
5474
  # },
5475
+ # retry_strategy: {
5476
+ # maximum_retry_attempts: 1, # required
5477
+ # },
5378
5478
  # },
5379
5479
  # ],
5380
5480
  # warm_start_config: {
@@ -6187,6 +6287,9 @@ module Aws::SageMaker
6187
6287
  # image: "ContainerImage",
6188
6288
  # image_config: {
6189
6289
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
6290
+ # repository_auth_config: {
6291
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
6292
+ # },
6190
6293
  # },
6191
6294
  # mode: "SingleModel", # accepts SingleModel, MultiModel
6192
6295
  # model_data_url: "Url",
@@ -6204,6 +6307,9 @@ module Aws::SageMaker
6204
6307
  # image: "ContainerImage",
6205
6308
  # image_config: {
6206
6309
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
6310
+ # repository_auth_config: {
6311
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
6312
+ # },
6207
6313
  # },
6208
6314
  # mode: "SingleModel", # accepts SingleModel, MultiModel
6209
6315
  # model_data_url: "Url",
@@ -7004,9 +7110,9 @@ module Aws::SageMaker
7004
7110
  # @!attribute [rw] direct_internet_access
7005
7111
  # Sets whether Amazon SageMaker provides internet access to the
7006
7112
  # notebook instance. If you set this to `Disabled` this notebook
7007
- # instance will be able to access resources only in your VPC, and will
7008
- # not be able to connect to Amazon SageMaker training and endpoint
7009
- # services unless your configure a NAT Gateway in your VPC.
7113
+ # instance is able to access resources only in your VPC, and is not be
7114
+ # able to connect to Amazon SageMaker training and endpoint services
7115
+ # unless you configure a NAT Gateway in your VPC.
7010
7116
  #
7011
7117
  # For more information, see [Notebook Instances Are Internet-Enabled
7012
7118
  # by Default][1]. You can set the value of this parameter to
@@ -7743,6 +7849,12 @@ module Aws::SageMaker
7743
7849
  # },
7744
7850
  # },
7745
7851
  # ],
7852
+ # environment: {
7853
+ # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
7854
+ # },
7855
+ # retry_strategy: {
7856
+ # maximum_retry_attempts: 1, # required
7857
+ # },
7746
7858
  # }
7747
7859
  #
7748
7860
  # @!attribute [rw] training_job_name
@@ -7849,9 +7961,10 @@ module Aws::SageMaker
7849
7961
  # @return [Types::VpcConfig]
7850
7962
  #
7851
7963
  # @!attribute [rw] stopping_condition
7852
- # Specifies a limit to how long a model training job can run. When the
7853
- # job reaches the time limit, Amazon SageMaker ends the training job.
7854
- # Use this API to cap model training costs.
7964
+ # Specifies a limit to how long a model training job can run. It also
7965
+ # specifies how long a managed Spot training job has to complete. When
7966
+ # the job reaches the time limit, Amazon SageMaker ends the training
7967
+ # job. Use this API to cap model training costs.
7855
7968
  #
7856
7969
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
7857
7970
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -7956,6 +8069,15 @@ module Aws::SageMaker
7956
8069
  # and framework metrics.
7957
8070
  # @return [Array<Types::ProfilerRuleConfiguration>]
7958
8071
  #
8072
+ # @!attribute [rw] environment
8073
+ # The environment variables to set in the Docker container.
8074
+ # @return [Hash<String,String>]
8075
+ #
8076
+ # @!attribute [rw] retry_strategy
8077
+ # The number of times to retry the job when the job fails due to an
8078
+ # `InternalServerError`.
8079
+ # @return [Types::RetryStrategy]
8080
+ #
7959
8081
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
7960
8082
  #
7961
8083
  class CreateTrainingJobRequest < Struct.new(
@@ -7978,7 +8100,9 @@ module Aws::SageMaker
7978
8100
  :tensor_board_output_config,
7979
8101
  :experiment_config,
7980
8102
  :profiler_config,
7981
- :profiler_rule_configurations)
8103
+ :profiler_rule_configurations,
8104
+ :environment,
8105
+ :retry_strategy)
7982
8106
  SENSITIVE = []
7983
8107
  include Aws::Structure
7984
8108
  end
@@ -8456,7 +8580,7 @@ module Aws::SageMaker
8456
8580
  # @return [String]
8457
8581
  #
8458
8582
  # @!attribute [rw] user_profile_name
8459
- # A name for the UserProfile.
8583
+ # A name for the UserProfile. This value is not case sensitive.
8460
8584
  # @return [String]
8461
8585
  #
8462
8586
  # @!attribute [rw] single_sign_on_user_identifier
@@ -8478,6 +8602,9 @@ module Aws::SageMaker
8478
8602
  # @!attribute [rw] tags
8479
8603
  # Each tag consists of a key and an optional value. Tag keys must be
8480
8604
  # unique per resource.
8605
+ #
8606
+ # Tags that you specify for the User Profile are also added to all
8607
+ # Apps that the User Profile launches.
8481
8608
  # @return [Array<Types::Tag>]
8482
8609
  #
8483
8610
  # @!attribute [rw] user_settings
@@ -8922,7 +9049,9 @@ module Aws::SageMaker
8922
9049
  # The valid values are `None` and `Input`. The default value is
8923
9050
  # `None`, which specifies not to join the input with the transformed
8924
9051
  # data. If you want the batch transform job to join the original input
8925
- # data with the transformed data, set `JoinSource` to `Input`.
9052
+ # data with the transformed data, set `JoinSource` to `Input`. You can
9053
+ # specify `OutputFilter` as an additional filter to select a portion
9054
+ # of the joined dataset and store it in the output file.
8926
9055
  #
8927
9056
  # For JSON or JSONLines objects, such as a JSON array, Amazon
8928
9057
  # SageMaker adds the transformed data to the input JSON object in an
@@ -8932,10 +9061,18 @@ module Aws::SageMaker
8932
9061
  # file, and the input data is stored under the `SageMakerInput` key
8933
9062
  # and the results are stored in `SageMakerOutput`.
8934
9063
  #
8935
- # For CSV files, Amazon SageMaker combines the transformed data with
8936
- # the input data at the end of the input data and stores it in the
8937
- # output file. The joined data has the joined input data followed by
8938
- # the transformed data and the output is a CSV file.
9064
+ # For CSV data, Amazon SageMaker takes each row as a JSON array and
9065
+ # joins the transformed data with the input by appending each
9066
+ # transformed row to the end of the input. The joined data has the
9067
+ # original input data followed by the transformed data and the output
9068
+ # is a CSV file.
9069
+ #
9070
+ # For information on how joining in applied, see [Workflow for
9071
+ # Associating Inferences with Input Records][1].
9072
+ #
9073
+ #
9074
+ #
9075
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow
8939
9076
  # @return [String]
8940
9077
  #
8941
9078
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
@@ -10802,7 +10939,7 @@ module Aws::SageMaker
10802
10939
  # }
10803
10940
  #
10804
10941
  # @!attribute [rw] auto_ml_job_name
10805
- # Request information about a job using that job's unique name.
10942
+ # Requests information about an AutoML job using its unique name.
10806
10943
  # @return [String]
10807
10944
  #
10808
10945
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobRequest AWS API Documentation
@@ -10814,15 +10951,15 @@ module Aws::SageMaker
10814
10951
  end
10815
10952
 
10816
10953
  # @!attribute [rw] auto_ml_job_name
10817
- # Returns the name of a job.
10954
+ # Returns the name of the AutoML job.
10818
10955
  # @return [String]
10819
10956
  #
10820
10957
  # @!attribute [rw] auto_ml_job_arn
10821
- # Returns the job's ARN.
10958
+ # Returns the ARN of the AutoML job.
10822
10959
  # @return [String]
10823
10960
  #
10824
10961
  # @!attribute [rw] input_data_config
10825
- # Returns the job's input data config.
10962
+ # Returns the input data configuration for the AutoML job..
10826
10963
  # @return [Array<Types::AutoMLChannel>]
10827
10964
  #
10828
10965
  # @!attribute [rw] output_data_config
@@ -10845,15 +10982,15 @@ module Aws::SageMaker
10845
10982
  # @return [String]
10846
10983
  #
10847
10984
  # @!attribute [rw] auto_ml_job_config
10848
- # Returns the job's config.
10985
+ # Returns the configuration for the AutoML job.
10849
10986
  # @return [Types::AutoMLJobConfig]
10850
10987
  #
10851
10988
  # @!attribute [rw] creation_time
10852
- # Returns the job's creation time.
10989
+ # Returns the creation time of the AutoML job.
10853
10990
  # @return [Time]
10854
10991
  #
10855
10992
  # @!attribute [rw] end_time
10856
- # Returns the job's end time.
10993
+ # Returns the end time of the AutoML job.
10857
10994
  # @return [Time]
10858
10995
  #
10859
10996
  # @!attribute [rw] last_modified_time
@@ -10861,37 +10998,51 @@ module Aws::SageMaker
10861
10998
  # @return [Time]
10862
10999
  #
10863
11000
  # @!attribute [rw] failure_reason
10864
- # Returns the job's FailureReason.
11001
+ # Returns the failure reason for an AutoML job, when applicable.
10865
11002
  # @return [String]
10866
11003
  #
11004
+ # @!attribute [rw] partial_failure_reasons
11005
+ # Returns a list of reasons for partial failures within an AutoML job.
11006
+ # @return [Array<Types::AutoMLPartialFailureReason>]
11007
+ #
10867
11008
  # @!attribute [rw] best_candidate
10868
- # Returns the job's BestCandidate.
11009
+ # Returns the job's best `AutoMLCandidate`.
10869
11010
  # @return [Types::AutoMLCandidate]
10870
11011
  #
10871
11012
  # @!attribute [rw] auto_ml_job_status
10872
- # Returns the job's AutoMLJobStatus.
11013
+ # Returns the status of the AutoML job.
10873
11014
  # @return [String]
10874
11015
  #
10875
11016
  # @!attribute [rw] auto_ml_job_secondary_status
10876
- # Returns the job's AutoMLJobSecondaryStatus.
11017
+ # Returns the secondary status of the AutoML job.
10877
11018
  # @return [String]
10878
11019
  #
10879
11020
  # @!attribute [rw] generate_candidate_definitions_only
10880
- # Returns the job's output from GenerateCandidateDefinitionsOnly.
11021
+ # Indicates whether the output for an AutoML job generates candidate
11022
+ # definitions only.
10881
11023
  # @return [Boolean]
10882
11024
  #
10883
11025
  # @!attribute [rw] auto_ml_job_artifacts
10884
11026
  # Returns information on the job's artifacts found in
10885
- # AutoMLJobArtifacts.
11027
+ # `AutoMLJobArtifacts`.
10886
11028
  # @return [Types::AutoMLJobArtifacts]
10887
11029
  #
10888
11030
  # @!attribute [rw] resolved_attributes
10889
- # This contains ProblemType, AutoMLJobObjective and
10890
- # CompletionCriteria. They're auto-inferred values, if not provided
10891
- # by you. If you do provide them, then they'll be the same as
10892
- # provided.
11031
+ # This contains `ProblemType`, `AutoMLJobObjective` and
11032
+ # `CompletionCriteria`. If you do not provide these values, they are
11033
+ # auto-inferred. If you do provide them, the values used are the ones
11034
+ # you provide.
10893
11035
  # @return [Types::ResolvedAttributes]
10894
11036
  #
11037
+ # @!attribute [rw] model_deploy_config
11038
+ # Indicates whether the model was deployed automatically to an
11039
+ # endpoint and the name of that endpoint if deployed automatically.
11040
+ # @return [Types::ModelDeployConfig]
11041
+ #
11042
+ # @!attribute [rw] model_deploy_result
11043
+ # Provides information about endpoint for the model deployment.
11044
+ # @return [Types::ModelDeployResult]
11045
+ #
10895
11046
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
10896
11047
  #
10897
11048
  class DescribeAutoMLJobResponse < Struct.new(
@@ -10907,12 +11058,15 @@ module Aws::SageMaker
10907
11058
  :end_time,
10908
11059
  :last_modified_time,
10909
11060
  :failure_reason,
11061
+ :partial_failure_reasons,
10910
11062
  :best_candidate,
10911
11063
  :auto_ml_job_status,
10912
11064
  :auto_ml_job_secondary_status,
10913
11065
  :generate_candidate_definitions_only,
10914
11066
  :auto_ml_job_artifacts,
10915
- :resolved_attributes)
11067
+ :resolved_attributes,
11068
+ :model_deploy_config,
11069
+ :model_deploy_result)
10916
11070
  SENSITIVE = []
10917
11071
  include Aws::Structure
10918
11072
  end
@@ -11472,7 +11626,7 @@ module Aws::SageMaker
11472
11626
  # @return [String]
11473
11627
  #
11474
11628
  # @!attribute [rw] default_user_settings
11475
- # Settings which are applied to all UserProfiles in this domain, if
11629
+ # Settings which are applied to UserProfiles in this domain if
11476
11630
  # settings are not explicitly specified in a given UserProfile.
11477
11631
  # @return [Types::UserSettings]
11478
11632
  #
@@ -14000,7 +14154,7 @@ module Aws::SageMaker
14000
14154
  #
14001
14155
  # * `LaunchingMLInstances`
14002
14156
  #
14003
- # * `PreparingTrainingStack`
14157
+ # * `PreparingTraining`
14004
14158
  #
14005
14159
  # * `DownloadingTrainingImage`
14006
14160
  # @return [String]
@@ -14051,9 +14205,9 @@ module Aws::SageMaker
14051
14205
  #
14052
14206
  # @!attribute [rw] stopping_condition
14053
14207
  # Specifies a limit to how long a model training job can run. It also
14054
- # specifies the maximum time to wait for a spot instance. When the job
14055
- # reaches the time limit, Amazon SageMaker ends the training job. Use
14056
- # this API to cap model training costs.
14208
+ # specifies how long a managed Spot training job has to complete. When
14209
+ # the job reaches the time limit, Amazon SageMaker ends the training
14210
+ # job. Use this API to cap model training costs.
14057
14211
  #
14058
14212
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
14059
14213
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -14202,6 +14356,15 @@ module Aws::SageMaker
14202
14356
  # Profiling status of a training job.
14203
14357
  # @return [String]
14204
14358
  #
14359
+ # @!attribute [rw] retry_strategy
14360
+ # The number of times to retry the job when the job fails due to an
14361
+ # `InternalServerError`.
14362
+ # @return [Types::RetryStrategy]
14363
+ #
14364
+ # @!attribute [rw] environment
14365
+ # The environment variables to set in the Docker container.
14366
+ # @return [Hash<String,String>]
14367
+ #
14205
14368
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
14206
14369
  #
14207
14370
  class DescribeTrainingJobResponse < Struct.new(
@@ -14242,7 +14405,9 @@ module Aws::SageMaker
14242
14405
  :profiler_config,
14243
14406
  :profiler_rule_configurations,
14244
14407
  :profiler_rule_evaluation_statuses,
14245
- :profiling_status)
14408
+ :profiling_status,
14409
+ :retry_strategy,
14410
+ :environment)
14246
14411
  SENSITIVE = []
14247
14412
  include Aws::Structure
14248
14413
  end
@@ -14624,7 +14789,7 @@ module Aws::SageMaker
14624
14789
  # @return [String]
14625
14790
  #
14626
14791
  # @!attribute [rw] user_profile_name
14627
- # The user profile name.
14792
+ # The user profile name. This value is not case sensitive.
14628
14793
  # @return [String]
14629
14794
  #
14630
14795
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfileRequest AWS API Documentation
@@ -15348,7 +15513,7 @@ module Aws::SageMaker
15348
15513
  #
15349
15514
  # @!attribute [rw] s3_data_distribution_type
15350
15515
  # Whether input data distributed in Amazon S3 is fully replicated or
15351
- # sharded by an S3 key. Defauts to `FullyReplicated`
15516
+ # sharded by an S3 key. Defaults to `FullyReplicated`
15352
15517
  # @return [String]
15353
15518
  #
15354
15519
  # @!attribute [rw] features_attribute
@@ -17894,6 +18059,9 @@ module Aws::SageMaker
17894
18059
  # s3_uri: "S3Uri", # required
17895
18060
  # local_path: "DirectoryPath",
17896
18061
  # },
18062
+ # retry_strategy: {
18063
+ # maximum_retry_attempts: 1, # required
18064
+ # },
17897
18065
  # }
17898
18066
  #
17899
18067
  # @!attribute [rw] definition_name
@@ -17975,10 +18143,9 @@ module Aws::SageMaker
17975
18143
  #
17976
18144
  # @!attribute [rw] stopping_condition
17977
18145
  # Specifies a limit to how long a model hyperparameter training job
17978
- # can run. It also specifies how long you are willing to wait for a
17979
- # managed spot training job to complete. When the job reaches the a
17980
- # limit, Amazon SageMaker ends the training job. Use this API to cap
17981
- # model training costs.
18146
+ # can run. It also specifies how long a managed spot training job has
18147
+ # to complete. When the job reaches the time limit, Amazon SageMaker
18148
+ # ends the training job. Use this API to cap model training costs.
17982
18149
  # @return [Types::StoppingCondition]
17983
18150
  #
17984
18151
  # @!attribute [rw] enable_network_isolation
@@ -18010,6 +18177,11 @@ module Aws::SageMaker
18010
18177
  # training checkpoint data.
18011
18178
  # @return [Types::CheckpointConfig]
18012
18179
  #
18180
+ # @!attribute [rw] retry_strategy
18181
+ # The number of times to retry the job when the job fails due to an
18182
+ # `InternalServerError`.
18183
+ # @return [Types::RetryStrategy]
18184
+ #
18013
18185
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
18014
18186
  #
18015
18187
  class HyperParameterTrainingJobDefinition < Struct.new(
@@ -18027,7 +18199,8 @@ module Aws::SageMaker
18027
18199
  :enable_network_isolation,
18028
18200
  :enable_inter_container_traffic_encryption,
18029
18201
  :enable_managed_spot_training,
18030
- :checkpoint_config)
18202
+ :checkpoint_config,
18203
+ :retry_strategy)
18031
18204
  SENSITIVE = []
18032
18205
  include Aws::Structure
18033
18206
  end
@@ -18483,6 +18656,9 @@ module Aws::SageMaker
18483
18656
  #
18484
18657
  # {
18485
18658
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
18659
+ # repository_auth_config: {
18660
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
18661
+ # },
18486
18662
  # }
18487
18663
  #
18488
18664
  # @!attribute [rw] repository_access_mode
@@ -18494,10 +18670,19 @@ module Aws::SageMaker
18494
18670
  # your VPC.
18495
18671
  # @return [String]
18496
18672
  #
18673
+ # @!attribute [rw] repository_auth_config
18674
+ # (Optional) Specifies an authentication configuration for the private
18675
+ # docker registry where your model image is hosted. Specify a value
18676
+ # for this property only if you specified `Vpc` as the value for the
18677
+ # `RepositoryAccessMode` field, and the private Docker registry where
18678
+ # the model image is hosted requires authentication.
18679
+ # @return [Types::RepositoryAuthConfig]
18680
+ #
18497
18681
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
18498
18682
  #
18499
18683
  class ImageConfig < Struct.new(
18500
- :repository_access_mode)
18684
+ :repository_access_mode,
18685
+ :repository_auth_config)
18501
18686
  SENSITIVE = []
18502
18687
  include Aws::Structure
18503
18688
  end
@@ -19266,7 +19451,12 @@ module Aws::SageMaker
19266
19451
  # @return [Types::LabelingJobS3DataSource]
19267
19452
  #
19268
19453
  # @!attribute [rw] sns_data_source
19269
- # An Amazon SNS data source used for streaming labeling jobs.
19454
+ # An Amazon SNS data source used for streaming labeling jobs. To learn
19455
+ # more, see [Send Data to a Streaming Labeling Job][1].
19456
+ #
19457
+ #
19458
+ #
19459
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-send-data
19270
19460
  # @return [Types::LabelingJobSnsDataSource]
19271
19461
  #
19272
19462
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
@@ -19290,6 +19480,7 @@ module Aws::SageMaker
19290
19480
  # @return [String]
19291
19481
  #
19292
19482
  # @!attribute [rw] work_requester_account_id
19483
+ # The AWS account ID of the account used to start the labeling job.
19293
19484
  # @return [String]
19294
19485
  #
19295
19486
  # @!attribute [rw] creation_time
@@ -19392,37 +19583,42 @@ module Aws::SageMaker
19392
19583
  # The AWS Key Management Service ID of the key used to encrypt the
19393
19584
  # output data, if any.
19394
19585
  #
19395
- # If you use a KMS key ID or an alias of your master key, the Amazon
19396
- # SageMaker execution role must include permissions to call
19397
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
19398
- # uses the default KMS key for Amazon S3 for your role's account.
19399
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
19400
- # for `LabelingJobOutputConfig`. If you use a bucket policy with an
19401
- # `s3:PutObject` permission that only allows objects with server-side
19402
- # encryption, set the condition key of
19403
- # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
19404
- # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
19405
- # Simple Storage Service Developer Guide.*
19586
+ # If you provide your own KMS key ID, you must add the required
19587
+ # permissions to your KMS key described in [Encrypt Output Data and
19588
+ # Storage Volume with AWS KMS][1].
19406
19589
  #
19407
- # The KMS key policy must grant permission to the IAM role that you
19408
- # specify in your `CreateLabelingJob` request. For more information,
19409
- # see [Using Key Policies in AWS KMS][2] in the *AWS Key Management
19410
- # Service Developer Guide*.
19590
+ # If you don't provide a KMS key ID, Amazon SageMaker uses the
19591
+ # default AWS KMS key for Amazon S3 for your role's account to
19592
+ # encrypt your output data.
19411
19593
  #
19594
+ # If you use a bucket policy with an `s3:PutObject` permission that
19595
+ # only allows objects with server-side encryption, set the condition
19596
+ # key of `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
19597
+ # information, see [KMS-Managed Encryption Keys][2] in the *Amazon
19598
+ # Simple Storage Service Developer Guide.*
19412
19599
  #
19413
19600
  #
19414
- # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
19415
- # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
19601
+ #
19602
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-kms-permissions
19603
+ # [2]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
19416
19604
  # @return [String]
19417
19605
  #
19418
19606
  # @!attribute [rw] sns_topic_arn
19419
19607
  # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
19608
+ # Provide a `SnsTopicArn` if you want to do real time chaining to
19609
+ # another streaming job and receive an Amazon SNS notifications each
19610
+ # time a data object is submitted by a worker.
19611
+ #
19612
+ # If you provide an `SnsTopicArn` in `OutputConfig`, when workers
19613
+ # complete labeling tasks, Ground Truth will send labeling task output
19614
+ # data to the SNS output topic you specify here.
19615
+ #
19616
+ # To learn more, see [Receive Output Data from a Streaming Labeling
19617
+ # Job][1].
19420
19618
  #
19421
- # When workers complete labeling tasks, Ground Truth will send
19422
- # labeling task output data to the SNS output topic you specify here.
19423
19619
  #
19424
- # You must provide a value for this parameter if you provide an Amazon
19425
- # SNS input topic in `SnsDataSource` in `InputConfig`.
19620
+ #
19621
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-output-data
19426
19622
  # @return [String]
19427
19623
  #
19428
19624
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
@@ -19435,7 +19631,9 @@ module Aws::SageMaker
19435
19631
  include Aws::Structure
19436
19632
  end
19437
19633
 
19438
- # Provides configuration information for labeling jobs.
19634
+ # Configure encryption on the storage volume attached to the ML compute
19635
+ # instance used to run automated data labeling model training and
19636
+ # inference.
19439
19637
  #
19440
19638
  # @note When making an API call, you may pass LabelingJobResourceConfig
19441
19639
  # data as a hash:
@@ -19447,16 +19645,30 @@ module Aws::SageMaker
19447
19645
  # @!attribute [rw] volume_kms_key_id
19448
19646
  # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
19449
19647
  # uses to encrypt data on the storage volume attached to the ML
19450
- # compute instance(s) that run the training job. The `VolumeKmsKeyId`
19451
- # can be any of the following formats:
19648
+ # compute instance(s) that run the training and inference jobs used
19649
+ # for automated data labeling.
19452
19650
  #
19453
- # * // KMS Key ID
19651
+ # You can only specify a `VolumeKmsKeyId` when you create a labeling
19652
+ # job with automated data labeling enabled using the API operation
19653
+ # `CreateLabelingJob`. You cannot specify an AWS KMS customer managed
19654
+ # CMK to encrypt the storage volume used for automated data labeling
19655
+ # model training and inference when you create a labeling job using
19656
+ # the console. To learn more, see [Output Data and Storage Volume
19657
+ # Encryption][1].
19658
+ #
19659
+ # The `VolumeKmsKeyId` can be any of the following formats:
19660
+ #
19661
+ # * KMS Key ID
19454
19662
  #
19455
19663
  # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
19456
19664
  #
19457
- # * // Amazon Resource Name (ARN) of a KMS Key
19665
+ # * Amazon Resource Name (ARN) of a KMS Key
19458
19666
  #
19459
19667
  # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
19668
+ #
19669
+ #
19670
+ #
19671
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security.html
19460
19672
  # @return [String]
19461
19673
  #
19462
19674
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobResourceConfig AWS API Documentation
@@ -19521,9 +19733,6 @@ module Aws::SageMaker
19521
19733
  # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
19522
19734
  # ARN of the input topic you will use to send new data objects to a
19523
19735
  # streaming labeling job.
19524
- #
19525
- # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
19526
- # you must specify a value for `SnsTopicArn` in `OutputConfig`.
19527
19736
  # @return [String]
19528
19737
  #
19529
19738
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
@@ -20206,12 +20415,11 @@ module Aws::SageMaker
20206
20415
  # @return [String]
20207
20416
  #
20208
20417
  # @!attribute [rw] sort_order
20209
- # The sort order for the results. The default is Descending.
20418
+ # The sort order for the results. The default is `Descending`.
20210
20419
  # @return [String]
20211
20420
  #
20212
20421
  # @!attribute [rw] sort_by
20213
- # The parameter by which to sort the results. The default is
20214
- # AutoMLJobName.
20422
+ # The parameter by which to sort the results. The default is `Name`.
20215
20423
  # @return [String]
20216
20424
  #
20217
20425
  # @!attribute [rw] max_results
@@ -20272,29 +20480,29 @@ module Aws::SageMaker
20272
20480
  # }
20273
20481
  #
20274
20482
  # @!attribute [rw] auto_ml_job_name
20275
- # List the Candidates created for the job by providing the job's
20483
+ # List the candidates created for the job by providing the job's
20276
20484
  # name.
20277
20485
  # @return [String]
20278
20486
  #
20279
20487
  # @!attribute [rw] status_equals
20280
- # List the Candidates for the job and filter by status.
20488
+ # List the candidates for the job and filter by status.
20281
20489
  # @return [String]
20282
20490
  #
20283
20491
  # @!attribute [rw] candidate_name_equals
20284
- # List the Candidates for the job and filter by candidate name.
20492
+ # List the candidates for the job and filter by candidate name.
20285
20493
  # @return [String]
20286
20494
  #
20287
20495
  # @!attribute [rw] sort_order
20288
- # The sort order for the results. The default is Ascending.
20496
+ # The sort order for the results. The default is `Ascending`.
20289
20497
  # @return [String]
20290
20498
  #
20291
20499
  # @!attribute [rw] sort_by
20292
20500
  # The parameter by which to sort the results. The default is
20293
- # Descending.
20501
+ # `Descending`.
20294
20502
  # @return [String]
20295
20503
  #
20296
20504
  # @!attribute [rw] max_results
20297
- # List the job's Candidates up to a specified limit.
20505
+ # List the job's candidates up to a specified limit.
20298
20506
  # @return [Integer]
20299
20507
  #
20300
20508
  # @!attribute [rw] next_token
@@ -20317,7 +20525,7 @@ module Aws::SageMaker
20317
20525
  end
20318
20526
 
20319
20527
  # @!attribute [rw] candidates
20320
- # Summaries about the Candidates.
20528
+ # Summaries about the `AutoMLCandidates`.
20321
20529
  # @return [Array<Types::AutoMLCandidate>]
20322
20530
  #
20323
20531
  # @!attribute [rw] next_token
@@ -21118,7 +21326,8 @@ module Aws::SageMaker
21118
21326
  # @return [String]
21119
21327
  #
21120
21328
  # @!attribute [rw] max_results
21121
- # The maximum number of endpoints to return in the response.
21329
+ # The maximum number of endpoints to return in the response. This
21330
+ # value defaults to 10.
21122
21331
  # @return [Integer]
21123
21332
  #
21124
21333
  # @!attribute [rw] name_contains
@@ -24353,7 +24562,7 @@ module Aws::SageMaker
24353
24562
  #
24354
24563
  # Model artifacts are the output that results from training a model, and
24355
24564
  # typically consist of trained parameters, a model defintion that
24356
- # desribes how to compute inferences, and other metadata.
24565
+ # describes how to compute inferences, and other metadata.
24357
24566
  #
24358
24567
  # @!attribute [rw] s3_model_artifacts
24359
24568
  # The path of the S3 object that contains the model artifacts. For
@@ -24541,6 +24750,66 @@ module Aws::SageMaker
24541
24750
  include Aws::Structure
24542
24751
  end
24543
24752
 
24753
+ # Specifies how to generate the endpoint name for an automatic one-click
24754
+ # Autopilot model deployment.
24755
+ #
24756
+ # @note When making an API call, you may pass ModelDeployConfig
24757
+ # data as a hash:
24758
+ #
24759
+ # {
24760
+ # auto_generate_endpoint_name: false,
24761
+ # endpoint_name: "EndpointName",
24762
+ # }
24763
+ #
24764
+ # @!attribute [rw] auto_generate_endpoint_name
24765
+ # Set to `True` to automatically generate an endpoint name for a
24766
+ # one-click Autopilot model deployment; set to `False` otherwise. The
24767
+ # default value is `True`.
24768
+ #
24769
+ # <note markdown="1"> If you set `AutoGenerateEndpointName` to `True`, do not specify the
24770
+ # `EndpointName`; otherwise a 400 error is thrown.
24771
+ #
24772
+ # </note>
24773
+ # @return [Boolean]
24774
+ #
24775
+ # @!attribute [rw] endpoint_name
24776
+ # Specifies the endpoint name to use for a one-click Autopilot model
24777
+ # deployment if the endpoint name is not generated automatically.
24778
+ #
24779
+ # <note markdown="1"> Specify the `EndpointName` if and only if you set
24780
+ # `AutoGenerateEndpointName` to `False`; otherwise a 400 error is
24781
+ # thrown.
24782
+ #
24783
+ # </note>
24784
+ # @return [String]
24785
+ #
24786
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployConfig AWS API Documentation
24787
+ #
24788
+ class ModelDeployConfig < Struct.new(
24789
+ :auto_generate_endpoint_name,
24790
+ :endpoint_name)
24791
+ SENSITIVE = []
24792
+ include Aws::Structure
24793
+ end
24794
+
24795
+ # Provides information about the endpoint of the model deployment.
24796
+ #
24797
+ # @!attribute [rw] endpoint_name
24798
+ # The name of the endpoint to which the model has been deployed.
24799
+ #
24800
+ # <note markdown="1"> If model deployment fails, this field is omitted from the response.
24801
+ #
24802
+ # </note>
24803
+ # @return [String]
24804
+ #
24805
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployResult AWS API Documentation
24806
+ #
24807
+ class ModelDeployResult < Struct.new(
24808
+ :endpoint_name)
24809
+ SENSITIVE = []
24810
+ include Aws::Structure
24811
+ end
24812
+
24544
24813
  # Provides information to verify the integrity of stored model
24545
24814
  # artifacts.
24546
24815
  #
@@ -26376,6 +26645,13 @@ module Aws::SageMaker
26376
26645
  #
26377
26646
  # @!attribute [rw] max_runtime_in_seconds
26378
26647
  # The maximum runtime allowed in seconds.
26648
+ #
26649
+ # <note markdown="1"> The `MaxRuntimeInSeconds` cannot exceed the frequency of the job.
26650
+ # For data quality and model explainability, this can be up to 3600
26651
+ # seconds for an hourly schedule. For model bias and model quality
26652
+ # hourly schedules, this can be up to 1800 seconds.
26653
+ #
26654
+ # </note>
26379
26655
  # @return [Integer]
26380
26656
  #
26381
26657
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MonitoringStoppingCondition AWS API Documentation
@@ -27137,6 +27413,18 @@ module Aws::SageMaker
27137
27413
  # for NVIDIA accelerators and highly recommended for CPU compilations.
27138
27414
  # For any other cases, it is optional to specify `CompilerOptions.`
27139
27415
  #
27416
+ # * `DTYPE`\: Specifies the data type for the input. When compiling
27417
+ # for `ml_*` (except for `ml_inf`) instances using PyTorch
27418
+ # framework, provide the data type (dtype) of the model's input.
27419
+ # `"float32"` is used if `"DTYPE"` is not specified. Options for
27420
+ # data type are:
27421
+ #
27422
+ # * float32: Use either `"float"` or `"float32"`.
27423
+ #
27424
+ # * int64: Use either `"int64"` or `"long"`.
27425
+ #
27426
+ # For example, `\{"dtype" : "float32"\}`.
27427
+ #
27140
27428
  # * `CPU`\: Compilation for CPU supports the following compiler
27141
27429
  # options.
27142
27430
  #
@@ -27301,7 +27589,7 @@ module Aws::SageMaker
27301
27589
  #
27302
27590
  #
27303
27591
  #
27304
- # [1]: https://docs.aws.amazon.com/mazonS3/latest/dev/UsingKMSEncryption.html
27592
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
27305
27593
  # [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
27306
27594
  # @return [String]
27307
27595
  #
@@ -29441,6 +29729,40 @@ module Aws::SageMaker
29441
29729
  include Aws::Structure
29442
29730
  end
29443
29731
 
29732
+ # Specifies an authentication configuration for the private docker
29733
+ # registry where your model image is hosted. Specify a value for this
29734
+ # property only if you specified `Vpc` as the value for the
29735
+ # `RepositoryAccessMode` field of the `ImageConfig` object that you
29736
+ # passed to a call to CreateModel and the private Docker registry where
29737
+ # the model image is hosted requires authentication.
29738
+ #
29739
+ # @note When making an API call, you may pass RepositoryAuthConfig
29740
+ # data as a hash:
29741
+ #
29742
+ # {
29743
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
29744
+ # }
29745
+ #
29746
+ # @!attribute [rw] repository_credentials_provider_arn
29747
+ # The Amazon Resource Name (ARN) of an AWS Lambda function that
29748
+ # provides credentials to authenticate to the private Docker registry
29749
+ # where your model image is hosted. For information about how to
29750
+ # create an AWS Lambda function, see [Create a Lambda function with
29751
+ # the console][1] in the *AWS Lambda Developer Guide*.
29752
+ #
29753
+ #
29754
+ #
29755
+ # [1]: https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
29756
+ # @return [String]
29757
+ #
29758
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RepositoryAuthConfig AWS API Documentation
29759
+ #
29760
+ class RepositoryAuthConfig < Struct.new(
29761
+ :repository_credentials_provider_arn)
29762
+ SENSITIVE = []
29763
+ include Aws::Structure
29764
+ end
29765
+
29444
29766
  # The resolved attributes.
29445
29767
  #
29446
29768
  # @!attribute [rw] auto_ml_job_objective
@@ -29697,6 +30019,32 @@ module Aws::SageMaker
29697
30019
  include Aws::Structure
29698
30020
  end
29699
30021
 
30022
+ # The retry strategy to use when a training job fails due to an
30023
+ # `InternalServerError`. `RetryStrategy` is specified as part of the
30024
+ # `CreateTrainingJob` and `CreateHyperParameterTuningJob` requests. You
30025
+ # can add the `StoppingCondition` parameter to the request to limit the
30026
+ # training time for the complete job.
30027
+ #
30028
+ # @note When making an API call, you may pass RetryStrategy
30029
+ # data as a hash:
30030
+ #
30031
+ # {
30032
+ # maximum_retry_attempts: 1, # required
30033
+ # }
30034
+ #
30035
+ # @!attribute [rw] maximum_retry_attempts
30036
+ # The number of times to retry the job. When the job is retried, it's
30037
+ # `SecondaryStatus` is changed to `STARTING`.
30038
+ # @return [Integer]
30039
+ #
30040
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RetryStrategy AWS API Documentation
30041
+ #
30042
+ class RetryStrategy < Struct.new(
30043
+ :maximum_retry_attempts)
30044
+ SENSITIVE = []
30045
+ include Aws::Structure
30046
+ end
30047
+
29700
30048
  # Describes the S3 data source.
29701
30049
  #
29702
30050
  # @note When making an API call, you may pass S3DataSource
@@ -30411,10 +30759,11 @@ module Aws::SageMaker
30411
30759
  include Aws::Structure
30412
30760
  end
30413
30761
 
30414
- # Specifies options when sharing an Amazon SageMaker Studio notebook.
30415
- # These settings are specified as part of `DefaultUserSettings` when the
30416
- # CreateDomain API is called, and as part of `UserSettings` when the
30417
- # CreateUserProfile API is called.
30762
+ # Specifies options for sharing SageMaker Studio notebooks. These
30763
+ # settings are specified as part of `DefaultUserSettings` when the
30764
+ # `CreateDomain` API is called, and as part of `UserSettings` when the
30765
+ # `CreateUserProfile` API is called. When `SharingSettings` is not
30766
+ # specified, notebook sharing isn't allowed.
30418
30767
  #
30419
30768
  # @note When making an API call, you may pass SharingSettings
30420
30769
  # data as a hash:
@@ -30928,11 +31277,11 @@ module Aws::SageMaker
30928
31277
  include Aws::Structure
30929
31278
  end
30930
31279
 
30931
- # Specifies a limit to how long a model training or compilation job can
30932
- # run. It also specifies how long you are willing to wait for a managed
30933
- # spot training job to complete. When the job reaches the time limit,
30934
- # Amazon SageMaker ends the training or compilation job. Use this API to
30935
- # cap model training costs.
31280
+ # Specifies a limit to how long a model training job, model compilation
31281
+ # job, or hyperparameter tuning job can run. It also specifies how long
31282
+ # a managed Spot training job has to complete. When the job reaches the
31283
+ # time limit, Amazon SageMaker ends the training or compilation job. Use
31284
+ # this API to cap model training costs.
30936
31285
  #
30937
31286
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
30938
31287
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -30962,18 +31311,27 @@ module Aws::SageMaker
30962
31311
  # }
30963
31312
  #
30964
31313
  # @!attribute [rw] max_runtime_in_seconds
30965
- # The maximum length of time, in seconds, that the training or
30966
- # compilation job can run. If job does not complete during this time,
30967
- # Amazon SageMaker ends the job. If value is not specified, default
30968
- # value is 1 day. The maximum value is 28 days.
31314
+ # The maximum length of time, in seconds, that a training or
31315
+ # compilation job can run. If the job does not complete during this
31316
+ # time, Amazon SageMaker ends the job.
31317
+ #
31318
+ # When `RetryStrategy` is specified in the job request,
31319
+ # `MaxRuntimeInSeconds` specifies the maximum time for all of the
31320
+ # attempts in total, not each individual attempt.
31321
+ #
31322
+ # The default value is 1 day. The maximum value is 28 days.
30969
31323
  # @return [Integer]
30970
31324
  #
30971
31325
  # @!attribute [rw] max_wait_time_in_seconds
30972
- # The maximum length of time, in seconds, how long you are willing to
30973
- # wait for a managed spot training job to complete. It is the amount
30974
- # of time spent waiting for Spot capacity plus the amount of time the
30975
- # training job runs. It must be equal to or greater than
30976
- # `MaxRuntimeInSeconds`.
31326
+ # The maximum length of time, in seconds, that a managed Spot training
31327
+ # job has to complete. It is the amount of time spent waiting for Spot
31328
+ # capacity plus the amount of time the job can run. It must be equal
31329
+ # to or greater than `MaxRuntimeInSeconds`. If the job does not
31330
+ # complete during this time, Amazon SageMaker ends the job.
31331
+ #
31332
+ # When `RetryStrategy` is specified in the job request,
31333
+ # `MaxWaitTimeInSeconds` specifies the maximum time for all of the
31334
+ # attempts in total, not each individual attempt.
30977
31335
  # @return [Integer]
30978
31336
  #
30979
31337
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
@@ -31368,9 +31726,10 @@ module Aws::SageMaker
31368
31726
  # @return [Types::VpcConfig]
31369
31727
  #
31370
31728
  # @!attribute [rw] stopping_condition
31371
- # Specifies a limit to how long a model training job can run. When the
31372
- # job reaches the time limit, Amazon SageMaker ends the training job.
31373
- # Use this API to cap model training costs.
31729
+ # Specifies a limit to how long a model training job can run. It also
31730
+ # specifies how long a managed Spot training job has to complete. When
31731
+ # the job reaches the time limit, Amazon SageMaker ends the training
31732
+ # job. Use this API to cap model training costs.
31374
31733
  #
31375
31734
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
31376
31735
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -31491,6 +31850,15 @@ module Aws::SageMaker
31491
31850
  # training job.
31492
31851
  # @return [Array<Types::DebugRuleEvaluationStatus>]
31493
31852
  #
31853
+ # @!attribute [rw] environment
31854
+ # The environment variables to set in the Docker container.
31855
+ # @return [Hash<String,String>]
31856
+ #
31857
+ # @!attribute [rw] retry_strategy
31858
+ # The number of times to retry the job when the job fails due to an
31859
+ # `InternalServerError`.
31860
+ # @return [Types::RetryStrategy]
31861
+ #
31494
31862
  # @!attribute [rw] tags
31495
31863
  # An array of key-value pairs. You can use tags to categorize your AWS
31496
31864
  # resources in different ways, for example, by purpose, owner, or
@@ -31538,6 +31906,8 @@ module Aws::SageMaker
31538
31906
  :debug_rule_configurations,
31539
31907
  :tensor_board_output_config,
31540
31908
  :debug_rule_evaluation_statuses,
31909
+ :environment,
31910
+ :retry_strategy,
31541
31911
  :tags)
31542
31912
  SENSITIVE = []
31543
31913
  include Aws::Structure
@@ -31631,9 +32001,10 @@ module Aws::SageMaker
31631
32001
  # @return [Types::ResourceConfig]
31632
32002
  #
31633
32003
  # @!attribute [rw] stopping_condition
31634
- # Specifies a limit to how long a model training job can run. When the
31635
- # job reaches the time limit, Amazon SageMaker ends the training job.
31636
- # Use this API to cap model training costs.
32004
+ # Specifies a limit to how long a model training job can run. It also
32005
+ # specifies how long a managed Spot training job has to complete. When
32006
+ # the job reaches the time limit, Amazon SageMaker ends the training
32007
+ # job. Use this API to cap model training costs.
31637
32008
  #
31638
32009
  # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
31639
32010
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -31966,7 +32337,7 @@ module Aws::SageMaker
31966
32337
  #
31967
32338
  #
31968
32339
  # [1]: https://mxnet.apache.org/api/faq/recordio
31969
- # [2]: https://www.tensorflow.org/guide/datasets#consuming_tfrecord_data
32340
+ # [2]: https://www.tensorflow.org/guide/data#consuming_tfrecord_data
31970
32341
  # @return [String]
31971
32342
  #
31972
32343
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformInput AWS API Documentation
@@ -33111,7 +33482,7 @@ module Aws::SageMaker
33111
33482
  include Aws::Structure
33112
33483
  end
33113
33484
 
33114
- # Represents an amount of money in United States dollars/
33485
+ # Represents an amount of money in United States dollars.
33115
33486
  #
33116
33487
  # @note When making an API call, you may pass USD
33117
33488
  # data as a hash:
@@ -34890,8 +35261,8 @@ module Aws::SageMaker
34890
35261
  end
34891
35262
 
34892
35263
  # A collection of settings that apply to users of Amazon SageMaker
34893
- # Studio. These settings are specified when the CreateUserProfile API is
34894
- # called, and as `DefaultUserSettings` when the CreateDomain API is
35264
+ # Studio. These settings are specified when the `CreateUserProfile` API
35265
+ # is called, and as `DefaultUserSettings` when the `CreateDomain` API is
34895
35266
  # called.
34896
35267
  #
34897
35268
  # `SecurityGroups` is aggregated when specified in both calls. For all
@@ -34960,7 +35331,7 @@ module Aws::SageMaker
34960
35331
  # @return [Array<String>]
34961
35332
  #
34962
35333
  # @!attribute [rw] sharing_settings
34963
- # The sharing settings.
35334
+ # Specifies options for sharing SageMaker Studio notebooks.
34964
35335
  # @return [Types::SharingSettings]
34965
35336
  #
34966
35337
  # @!attribute [rw] jupyter_server_app_settings