aws-sdk-sagemaker 1.82.0 → 1.87.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +25 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +229 -92
- data/lib/aws-sdk-sagemaker/client_api.rb +56 -0
- data/lib/aws-sdk-sagemaker/types.rb +576 -205
- metadata +5 -6
@@ -87,6 +87,7 @@ module Aws::SageMaker
|
|
87
87
|
AttributeName = Shapes::StringShape.new(name: 'AttributeName')
|
88
88
|
AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
|
89
89
|
AuthMode = Shapes::StringShape.new(name: 'AuthMode')
|
90
|
+
AutoGenerateEndpointName = Shapes::BooleanShape.new(name: 'AutoGenerateEndpointName')
|
90
91
|
AutoMLCandidate = Shapes::StructureShape.new(name: 'AutoMLCandidate')
|
91
92
|
AutoMLCandidateStep = Shapes::StructureShape.new(name: 'AutoMLCandidateStep')
|
92
93
|
AutoMLCandidates = Shapes::ListShape.new(name: 'AutoMLCandidates')
|
@@ -111,6 +112,8 @@ module Aws::SageMaker
|
|
111
112
|
AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
|
112
113
|
AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
|
113
114
|
AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
|
115
|
+
AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
|
116
|
+
AutoMLPartialFailureReasons = Shapes::ListShape.new(name: 'AutoMLPartialFailureReasons')
|
114
117
|
AutoMLS3DataSource = Shapes::StructureShape.new(name: 'AutoMLS3DataSource')
|
115
118
|
AutoMLS3DataType = Shapes::StringShape.new(name: 'AutoMLS3DataType')
|
116
119
|
AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
|
@@ -127,8 +130,10 @@ module Aws::SageMaker
|
|
127
130
|
BooleanOperator = Shapes::StringShape.new(name: 'BooleanOperator')
|
128
131
|
Branch = Shapes::StringShape.new(name: 'Branch')
|
129
132
|
CacheHitResult = Shapes::StructureShape.new(name: 'CacheHitResult')
|
133
|
+
CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
|
130
134
|
CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
|
131
135
|
CandidateName = Shapes::StringShape.new(name: 'CandidateName')
|
136
|
+
CandidateProperties = Shapes::StructureShape.new(name: 'CandidateProperties')
|
132
137
|
CandidateSortBy = Shapes::StringShape.new(name: 'CandidateSortBy')
|
133
138
|
CandidateStatus = Shapes::StringShape.new(name: 'CandidateStatus')
|
134
139
|
CandidateStepArn = Shapes::StringShape.new(name: 'CandidateStepArn')
|
@@ -554,6 +559,7 @@ module Aws::SageMaker
|
|
554
559
|
ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
|
555
560
|
ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
|
556
561
|
Explainability = Shapes::StructureShape.new(name: 'Explainability')
|
562
|
+
ExplainabilityLocation = Shapes::StringShape.new(name: 'ExplainabilityLocation')
|
557
563
|
FailureReason = Shapes::StringShape.new(name: 'FailureReason')
|
558
564
|
FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
|
559
565
|
FeatureDefinitions = Shapes::ListShape.new(name: 'FeatureDefinitions')
|
@@ -857,6 +863,7 @@ module Aws::SageMaker
|
|
857
863
|
MaxRuntimePerTrainingJobInSeconds = Shapes::IntegerShape.new(name: 'MaxRuntimePerTrainingJobInSeconds')
|
858
864
|
MaxWaitTimeInSeconds = Shapes::IntegerShape.new(name: 'MaxWaitTimeInSeconds')
|
859
865
|
MaximumExecutionTimeoutInSeconds = Shapes::IntegerShape.new(name: 'MaximumExecutionTimeoutInSeconds')
|
866
|
+
MaximumRetryAttempts = Shapes::IntegerShape.new(name: 'MaximumRetryAttempts')
|
860
867
|
MediaType = Shapes::StringShape.new(name: 'MediaType')
|
861
868
|
MemberDefinition = Shapes::StructureShape.new(name: 'MemberDefinition')
|
862
869
|
MemberDefinitions = Shapes::ListShape.new(name: 'MemberDefinitions')
|
@@ -878,6 +885,8 @@ module Aws::SageMaker
|
|
878
885
|
ModelCacheSetting = Shapes::StringShape.new(name: 'ModelCacheSetting')
|
879
886
|
ModelClientConfig = Shapes::StructureShape.new(name: 'ModelClientConfig')
|
880
887
|
ModelDataQuality = Shapes::StructureShape.new(name: 'ModelDataQuality')
|
888
|
+
ModelDeployConfig = Shapes::StructureShape.new(name: 'ModelDeployConfig')
|
889
|
+
ModelDeployResult = Shapes::StructureShape.new(name: 'ModelDeployResult')
|
881
890
|
ModelDigests = Shapes::StructureShape.new(name: 'ModelDigests')
|
882
891
|
ModelExplainabilityAppSpecification = Shapes::StructureShape.new(name: 'ModelExplainabilityAppSpecification')
|
883
892
|
ModelExplainabilityBaselineConfig = Shapes::StructureShape.new(name: 'ModelExplainabilityBaselineConfig')
|
@@ -1130,6 +1139,8 @@ module Aws::SageMaker
|
|
1130
1139
|
RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
|
1131
1140
|
RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
|
1132
1141
|
RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
|
1142
|
+
RepositoryAuthConfig = Shapes::StructureShape.new(name: 'RepositoryAuthConfig')
|
1143
|
+
RepositoryCredentialsProviderArn = Shapes::StringShape.new(name: 'RepositoryCredentialsProviderArn')
|
1133
1144
|
ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
|
1134
1145
|
ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
|
1135
1146
|
ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
|
@@ -1145,6 +1156,7 @@ module Aws::SageMaker
|
|
1145
1156
|
ResponseMIMETypes = Shapes::ListShape.new(name: 'ResponseMIMETypes')
|
1146
1157
|
RetentionPolicy = Shapes::StructureShape.new(name: 'RetentionPolicy')
|
1147
1158
|
RetentionType = Shapes::StringShape.new(name: 'RetentionType')
|
1159
|
+
RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
|
1148
1160
|
RoleArn = Shapes::StringShape.new(name: 'RoleArn')
|
1149
1161
|
RootAccess = Shapes::StringShape.new(name: 'RootAccess')
|
1150
1162
|
RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
|
@@ -1266,6 +1278,9 @@ module Aws::SageMaker
|
|
1266
1278
|
Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
|
1267
1279
|
TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
|
1268
1280
|
TrafficRoutingConfigType = Shapes::StringShape.new(name: 'TrafficRoutingConfigType')
|
1281
|
+
TrainingEnvironmentKey = Shapes::StringShape.new(name: 'TrainingEnvironmentKey')
|
1282
|
+
TrainingEnvironmentMap = Shapes::MapShape.new(name: 'TrainingEnvironmentMap')
|
1283
|
+
TrainingEnvironmentValue = Shapes::StringShape.new(name: 'TrainingEnvironmentValue')
|
1269
1284
|
TrainingInputMode = Shapes::StringShape.new(name: 'TrainingInputMode')
|
1270
1285
|
TrainingInstanceCount = Shapes::IntegerShape.new(name: 'TrainingInstanceCount')
|
1271
1286
|
TrainingInstanceType = Shapes::StringShape.new(name: 'TrainingInstanceType')
|
@@ -1583,6 +1598,7 @@ module Aws::SageMaker
|
|
1583
1598
|
AutoMLCandidate.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
|
1584
1599
|
AutoMLCandidate.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
|
1585
1600
|
AutoMLCandidate.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
|
1601
|
+
AutoMLCandidate.add_member(:candidate_properties, Shapes::ShapeRef.new(shape: CandidateProperties, location_name: "CandidateProperties"))
|
1586
1602
|
AutoMLCandidate.struct_class = Types::AutoMLCandidate
|
1587
1603
|
|
1588
1604
|
AutoMLCandidateStep.add_member(:candidate_step_type, Shapes::ShapeRef.new(shape: CandidateStepType, required: true, location_name: "CandidateStepType"))
|
@@ -1635,12 +1651,18 @@ module Aws::SageMaker
|
|
1635
1651
|
AutoMLJobSummary.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
|
1636
1652
|
AutoMLJobSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
|
1637
1653
|
AutoMLJobSummary.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
|
1654
|
+
AutoMLJobSummary.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
|
1638
1655
|
AutoMLJobSummary.struct_class = Types::AutoMLJobSummary
|
1639
1656
|
|
1640
1657
|
AutoMLOutputDataConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
|
1641
1658
|
AutoMLOutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
|
1642
1659
|
AutoMLOutputDataConfig.struct_class = Types::AutoMLOutputDataConfig
|
1643
1660
|
|
1661
|
+
AutoMLPartialFailureReason.add_member(:partial_failure_message, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "PartialFailureMessage"))
|
1662
|
+
AutoMLPartialFailureReason.struct_class = Types::AutoMLPartialFailureReason
|
1663
|
+
|
1664
|
+
AutoMLPartialFailureReasons.member = Shapes::ShapeRef.new(shape: AutoMLPartialFailureReason)
|
1665
|
+
|
1644
1666
|
AutoMLS3DataSource.add_member(:s3_data_type, Shapes::ShapeRef.new(shape: AutoMLS3DataType, required: true, location_name: "S3DataType"))
|
1645
1667
|
AutoMLS3DataSource.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
|
1646
1668
|
AutoMLS3DataSource.struct_class = Types::AutoMLS3DataSource
|
@@ -1664,6 +1686,12 @@ module Aws::SageMaker
|
|
1664
1686
|
CacheHitResult.add_member(:source_pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "SourcePipelineExecutionArn"))
|
1665
1687
|
CacheHitResult.struct_class = Types::CacheHitResult
|
1666
1688
|
|
1689
|
+
CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
|
1690
|
+
CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
|
1691
|
+
|
1692
|
+
CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
|
1693
|
+
CandidateProperties.struct_class = Types::CandidateProperties
|
1694
|
+
|
1667
1695
|
CandidateSteps.member = Shapes::ShapeRef.new(shape: AutoMLCandidateStep)
|
1668
1696
|
|
1669
1697
|
CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
|
@@ -1874,6 +1902,7 @@ module Aws::SageMaker
|
|
1874
1902
|
CreateAutoMLJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "RoleArn"))
|
1875
1903
|
CreateAutoMLJobRequest.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
|
1876
1904
|
CreateAutoMLJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
1905
|
+
CreateAutoMLJobRequest.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
1877
1906
|
CreateAutoMLJobRequest.struct_class = Types::CreateAutoMLJobRequest
|
1878
1907
|
|
1879
1908
|
CreateAutoMLJobResponse.add_member(:auto_ml_job_arn, Shapes::ShapeRef.new(shape: AutoMLJobArn, required: true, location_name: "AutoMLJobArn"))
|
@@ -2253,6 +2282,8 @@ module Aws::SageMaker
|
|
2253
2282
|
CreateTrainingJobRequest.add_member(:experiment_config, Shapes::ShapeRef.new(shape: ExperimentConfig, location_name: "ExperimentConfig"))
|
2254
2283
|
CreateTrainingJobRequest.add_member(:profiler_config, Shapes::ShapeRef.new(shape: ProfilerConfig, location_name: "ProfilerConfig"))
|
2255
2284
|
CreateTrainingJobRequest.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
|
2285
|
+
CreateTrainingJobRequest.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
|
2286
|
+
CreateTrainingJobRequest.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
|
2256
2287
|
CreateTrainingJobRequest.struct_class = Types::CreateTrainingJobRequest
|
2257
2288
|
|
2258
2289
|
CreateTrainingJobResponse.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
|
@@ -2688,12 +2719,15 @@ module Aws::SageMaker
|
|
2688
2719
|
DescribeAutoMLJobResponse.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
|
2689
2720
|
DescribeAutoMLJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
|
2690
2721
|
DescribeAutoMLJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
|
2722
|
+
DescribeAutoMLJobResponse.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
|
2691
2723
|
DescribeAutoMLJobResponse.add_member(:best_candidate, Shapes::ShapeRef.new(shape: AutoMLCandidate, location_name: "BestCandidate"))
|
2692
2724
|
DescribeAutoMLJobResponse.add_member(:auto_ml_job_status, Shapes::ShapeRef.new(shape: AutoMLJobStatus, required: true, location_name: "AutoMLJobStatus"))
|
2693
2725
|
DescribeAutoMLJobResponse.add_member(:auto_ml_job_secondary_status, Shapes::ShapeRef.new(shape: AutoMLJobSecondaryStatus, required: true, location_name: "AutoMLJobSecondaryStatus"))
|
2694
2726
|
DescribeAutoMLJobResponse.add_member(:generate_candidate_definitions_only, Shapes::ShapeRef.new(shape: GenerateCandidateDefinitionsOnly, location_name: "GenerateCandidateDefinitionsOnly"))
|
2695
2727
|
DescribeAutoMLJobResponse.add_member(:auto_ml_job_artifacts, Shapes::ShapeRef.new(shape: AutoMLJobArtifacts, location_name: "AutoMLJobArtifacts"))
|
2696
2728
|
DescribeAutoMLJobResponse.add_member(:resolved_attributes, Shapes::ShapeRef.new(shape: ResolvedAttributes, location_name: "ResolvedAttributes"))
|
2729
|
+
DescribeAutoMLJobResponse.add_member(:model_deploy_config, Shapes::ShapeRef.new(shape: ModelDeployConfig, location_name: "ModelDeployConfig"))
|
2730
|
+
DescribeAutoMLJobResponse.add_member(:model_deploy_result, Shapes::ShapeRef.new(shape: ModelDeployResult, location_name: "ModelDeployResult"))
|
2697
2731
|
DescribeAutoMLJobResponse.struct_class = Types::DescribeAutoMLJobResponse
|
2698
2732
|
|
2699
2733
|
DescribeCodeRepositoryInput.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
|
@@ -3257,6 +3291,8 @@ module Aws::SageMaker
|
|
3257
3291
|
DescribeTrainingJobResponse.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
|
3258
3292
|
DescribeTrainingJobResponse.add_member(:profiler_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: ProfilerRuleEvaluationStatuses, location_name: "ProfilerRuleEvaluationStatuses"))
|
3259
3293
|
DescribeTrainingJobResponse.add_member(:profiling_status, Shapes::ShapeRef.new(shape: ProfilingStatus, location_name: "ProfilingStatus"))
|
3294
|
+
DescribeTrainingJobResponse.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
|
3295
|
+
DescribeTrainingJobResponse.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
|
3260
3296
|
DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
|
3261
3297
|
|
3262
3298
|
DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
|
@@ -3727,6 +3763,7 @@ module Aws::SageMaker
|
|
3727
3763
|
HyperParameterTrainingJobDefinition.add_member(:enable_inter_container_traffic_encryption, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableInterContainerTrafficEncryption"))
|
3728
3764
|
HyperParameterTrainingJobDefinition.add_member(:enable_managed_spot_training, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableManagedSpotTraining"))
|
3729
3765
|
HyperParameterTrainingJobDefinition.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
|
3766
|
+
HyperParameterTrainingJobDefinition.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
|
3730
3767
|
HyperParameterTrainingJobDefinition.struct_class = Types::HyperParameterTrainingJobDefinition
|
3731
3768
|
|
3732
3769
|
HyperParameterTrainingJobDefinitions.member = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition)
|
@@ -3793,6 +3830,7 @@ module Aws::SageMaker
|
|
3793
3830
|
Image.struct_class = Types::Image
|
3794
3831
|
|
3795
3832
|
ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
|
3833
|
+
ImageConfig.add_member(:repository_auth_config, Shapes::ShapeRef.new(shape: RepositoryAuthConfig, location_name: "RepositoryAuthConfig"))
|
3796
3834
|
ImageConfig.struct_class = Types::ImageConfig
|
3797
3835
|
|
3798
3836
|
ImageDeletePropertyList.member = Shapes::ShapeRef.new(shape: ImageDeleteProperty)
|
@@ -4731,6 +4769,13 @@ module Aws::SageMaker
|
|
4731
4769
|
ModelDataQuality.add_member(:constraints, Shapes::ShapeRef.new(shape: MetricsSource, location_name: "Constraints"))
|
4732
4770
|
ModelDataQuality.struct_class = Types::ModelDataQuality
|
4733
4771
|
|
4772
|
+
ModelDeployConfig.add_member(:auto_generate_endpoint_name, Shapes::ShapeRef.new(shape: AutoGenerateEndpointName, location_name: "AutoGenerateEndpointName"))
|
4773
|
+
ModelDeployConfig.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
|
4774
|
+
ModelDeployConfig.struct_class = Types::ModelDeployConfig
|
4775
|
+
|
4776
|
+
ModelDeployResult.add_member(:endpoint_name, Shapes::ShapeRef.new(shape: EndpointName, location_name: "EndpointName"))
|
4777
|
+
ModelDeployResult.struct_class = Types::ModelDeployResult
|
4778
|
+
|
4734
4779
|
ModelDigests.add_member(:artifact_digest, Shapes::ShapeRef.new(shape: ArtifactDigest, location_name: "ArtifactDigest"))
|
4735
4780
|
ModelDigests.struct_class = Types::ModelDigests
|
4736
4781
|
|
@@ -5413,6 +5458,9 @@ module Aws::SageMaker
|
|
5413
5458
|
|
5414
5459
|
RenderingErrorList.member = Shapes::ShapeRef.new(shape: RenderingError)
|
5415
5460
|
|
5461
|
+
RepositoryAuthConfig.add_member(:repository_credentials_provider_arn, Shapes::ShapeRef.new(shape: RepositoryCredentialsProviderArn, required: true, location_name: "RepositoryCredentialsProviderArn"))
|
5462
|
+
RepositoryAuthConfig.struct_class = Types::RepositoryAuthConfig
|
5463
|
+
|
5416
5464
|
ResolvedAttributes.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
|
5417
5465
|
ResolvedAttributes.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
|
5418
5466
|
ResolvedAttributes.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
|
@@ -5447,6 +5495,9 @@ module Aws::SageMaker
|
|
5447
5495
|
RetentionPolicy.add_member(:home_efs_file_system, Shapes::ShapeRef.new(shape: RetentionType, location_name: "HomeEfsFileSystem"))
|
5448
5496
|
RetentionPolicy.struct_class = Types::RetentionPolicy
|
5449
5497
|
|
5498
|
+
RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
|
5499
|
+
RetryStrategy.struct_class = Types::RetryStrategy
|
5500
|
+
|
5450
5501
|
RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
|
5451
5502
|
RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
|
5452
5503
|
|
@@ -5636,6 +5687,9 @@ module Aws::SageMaker
|
|
5636
5687
|
TrafficRoutingConfig.add_member(:canary_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "CanarySize"))
|
5637
5688
|
TrafficRoutingConfig.struct_class = Types::TrafficRoutingConfig
|
5638
5689
|
|
5690
|
+
TrainingEnvironmentMap.key = Shapes::ShapeRef.new(shape: TrainingEnvironmentKey)
|
5691
|
+
TrainingEnvironmentMap.value = Shapes::ShapeRef.new(shape: TrainingEnvironmentValue)
|
5692
|
+
|
5639
5693
|
TrainingInstanceTypes.member = Shapes::ShapeRef.new(shape: TrainingInstanceType)
|
5640
5694
|
|
5641
5695
|
TrainingJob.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, location_name: "TrainingJobName"))
|
@@ -5672,6 +5726,8 @@ module Aws::SageMaker
|
|
5672
5726
|
TrainingJob.add_member(:debug_rule_configurations, Shapes::ShapeRef.new(shape: DebugRuleConfigurations, location_name: "DebugRuleConfigurations"))
|
5673
5727
|
TrainingJob.add_member(:tensor_board_output_config, Shapes::ShapeRef.new(shape: TensorBoardOutputConfig, location_name: "TensorBoardOutputConfig"))
|
5674
5728
|
TrainingJob.add_member(:debug_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: DebugRuleEvaluationStatuses, location_name: "DebugRuleEvaluationStatuses"))
|
5729
|
+
TrainingJob.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
|
5730
|
+
TrainingJob.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
|
5675
5731
|
TrainingJob.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
5676
5732
|
TrainingJob.struct_class = Types::TrainingJob
|
5677
5733
|
|
@@ -1706,10 +1706,10 @@ module Aws::SageMaker
|
|
1706
1706
|
end
|
1707
1707
|
|
1708
1708
|
# An Autopilot job returns recommendations, or candidates. Each
|
1709
|
-
# candidate has futher details about the steps
|
1709
|
+
# candidate has futher details about the steps involved and the status.
|
1710
1710
|
#
|
1711
1711
|
# @!attribute [rw] candidate_name
|
1712
|
-
# The candidate
|
1712
|
+
# The name of the candidate.
|
1713
1713
|
# @return [String]
|
1714
1714
|
#
|
1715
1715
|
# @!attribute [rw] final_auto_ml_job_objective_metric
|
@@ -1717,11 +1717,11 @@ module Aws::SageMaker
|
|
1717
1717
|
# @return [Types::FinalAutoMLJobObjectiveMetric]
|
1718
1718
|
#
|
1719
1719
|
# @!attribute [rw] objective_status
|
1720
|
-
# The objective status.
|
1720
|
+
# The objective's status.
|
1721
1721
|
# @return [String]
|
1722
1722
|
#
|
1723
1723
|
# @!attribute [rw] candidate_steps
|
1724
|
-
#
|
1724
|
+
# Information about the candidate's steps.
|
1725
1725
|
# @return [Array<Types::AutoMLCandidateStep>]
|
1726
1726
|
#
|
1727
1727
|
# @!attribute [rw] candidate_status
|
@@ -1729,7 +1729,7 @@ module Aws::SageMaker
|
|
1729
1729
|
# @return [String]
|
1730
1730
|
#
|
1731
1731
|
# @!attribute [rw] inference_containers
|
1732
|
-
#
|
1732
|
+
# Information about the inference container definitions.
|
1733
1733
|
# @return [Array<Types::AutoMLContainerDefinition>]
|
1734
1734
|
#
|
1735
1735
|
# @!attribute [rw] creation_time
|
@@ -1748,6 +1748,10 @@ module Aws::SageMaker
|
|
1748
1748
|
# The failure reason.
|
1749
1749
|
# @return [String]
|
1750
1750
|
#
|
1751
|
+
# @!attribute [rw] candidate_properties
|
1752
|
+
# The AutoML candidate's properties.
|
1753
|
+
# @return [Types::CandidateProperties]
|
1754
|
+
#
|
1751
1755
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
|
1752
1756
|
#
|
1753
1757
|
class AutoMLCandidate < Struct.new(
|
@@ -1760,25 +1764,26 @@ module Aws::SageMaker
|
|
1760
1764
|
:creation_time,
|
1761
1765
|
:end_time,
|
1762
1766
|
:last_modified_time,
|
1763
|
-
:failure_reason
|
1767
|
+
:failure_reason,
|
1768
|
+
:candidate_properties)
|
1764
1769
|
SENSITIVE = []
|
1765
1770
|
include Aws::Structure
|
1766
1771
|
end
|
1767
1772
|
|
1768
|
-
# Information about the steps for a
|
1773
|
+
# Information about the steps for a candidate and what step it is
|
1769
1774
|
# working on.
|
1770
1775
|
#
|
1771
1776
|
# @!attribute [rw] candidate_step_type
|
1772
|
-
# Whether the
|
1777
|
+
# Whether the candidate is at the transform, training, or processing
|
1773
1778
|
# step.
|
1774
1779
|
# @return [String]
|
1775
1780
|
#
|
1776
1781
|
# @!attribute [rw] candidate_step_arn
|
1777
|
-
# The ARN for the
|
1782
|
+
# The ARN for the candidate's step.
|
1778
1783
|
# @return [String]
|
1779
1784
|
#
|
1780
1785
|
# @!attribute [rw] candidate_step_name
|
1781
|
-
# The name for the
|
1786
|
+
# The name for the candidate's step.
|
1782
1787
|
# @return [String]
|
1783
1788
|
#
|
1784
1789
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidateStep AWS API Documentation
|
@@ -1791,8 +1796,8 @@ module Aws::SageMaker
|
|
1791
1796
|
include Aws::Structure
|
1792
1797
|
end
|
1793
1798
|
|
1794
|
-
#
|
1795
|
-
#
|
1799
|
+
# A channel is a named input source that training algorithms can
|
1800
|
+
# consume. For more information, see .
|
1796
1801
|
#
|
1797
1802
|
# @note When making an API call, you may pass AutoMLChannel
|
1798
1803
|
# data as a hash:
|
@@ -1809,16 +1814,16 @@ module Aws::SageMaker
|
|
1809
1814
|
# }
|
1810
1815
|
#
|
1811
1816
|
# @!attribute [rw] data_source
|
1812
|
-
# The data source.
|
1817
|
+
# The data source for an AutoML channel.
|
1813
1818
|
# @return [Types::AutoMLDataSource]
|
1814
1819
|
#
|
1815
1820
|
# @!attribute [rw] compression_type
|
1816
|
-
# You can use Gzip or None
|
1821
|
+
# You can use `Gzip` or `None`. The default value is `None`.
|
1817
1822
|
# @return [String]
|
1818
1823
|
#
|
1819
1824
|
# @!attribute [rw] target_attribute_name
|
1820
|
-
# The name of the target variable in supervised learning,
|
1821
|
-
# 'y'.
|
1825
|
+
# The name of the target variable in supervised learning, usually
|
1826
|
+
# represented by 'y'.
|
1822
1827
|
# @return [String]
|
1823
1828
|
#
|
1824
1829
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
|
@@ -1832,22 +1837,19 @@ module Aws::SageMaker
|
|
1832
1837
|
end
|
1833
1838
|
|
1834
1839
|
# A list of container definitions that describe the different containers
|
1835
|
-
# that make up
|
1836
|
-
# more details.
|
1840
|
+
# that make up an AutoML candidate. For more information, see .
|
1837
1841
|
#
|
1838
1842
|
# @!attribute [rw] image
|
1839
|
-
# The ECR path of the container.
|
1840
|
-
# details.
|
1843
|
+
# The ECR path of the container. For more information, see .
|
1841
1844
|
# @return [String]
|
1842
1845
|
#
|
1843
1846
|
# @!attribute [rw] model_data_url
|
1844
|
-
# The location of the model artifacts.
|
1845
|
-
# for more details.
|
1847
|
+
# The location of the model artifacts. For more information, see .
|
1846
1848
|
# @return [String]
|
1847
1849
|
#
|
1848
1850
|
# @!attribute [rw] environment
|
1849
|
-
#
|
1850
|
-
#
|
1851
|
+
# The environment variables to set in the container. For more
|
1852
|
+
# information, see .
|
1851
1853
|
# @return [Hash<String,String>]
|
1852
1854
|
#
|
1853
1855
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
|
@@ -1888,14 +1890,14 @@ module Aws::SageMaker
|
|
1888
1890
|
include Aws::Structure
|
1889
1891
|
end
|
1890
1892
|
|
1891
|
-
#
|
1893
|
+
# The artifacts that are generated during an AutoML job.
|
1892
1894
|
#
|
1893
1895
|
# @!attribute [rw] candidate_definition_notebook_location
|
1894
|
-
# The URL
|
1896
|
+
# The URL of the notebook location.
|
1895
1897
|
# @return [String]
|
1896
1898
|
#
|
1897
1899
|
# @!attribute [rw] data_exploration_notebook_location
|
1898
|
-
# The URL
|
1900
|
+
# The URL of the notebook location.
|
1899
1901
|
# @return [String]
|
1900
1902
|
#
|
1901
1903
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobArtifacts AWS API Documentation
|
@@ -1930,7 +1932,7 @@ module Aws::SageMaker
|
|
1930
1932
|
# @!attribute [rw] max_auto_ml_job_runtime_in_seconds
|
1931
1933
|
# The maximum time, in seconds, an AutoML job is allowed to wait for a
|
1932
1934
|
# trial to complete. It must be equal to or greater than
|
1933
|
-
# MaxRuntimePerTrainingJobInSeconds
|
1935
|
+
# `MaxRuntimePerTrainingJobInSeconds`.
|
1934
1936
|
# @return [Integer]
|
1935
1937
|
#
|
1936
1938
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
|
@@ -1943,7 +1945,7 @@ module Aws::SageMaker
|
|
1943
1945
|
include Aws::Structure
|
1944
1946
|
end
|
1945
1947
|
|
1946
|
-
# A collection of settings used for
|
1948
|
+
# A collection of settings used for an AutoML job.
|
1947
1949
|
#
|
1948
1950
|
# @note When making an API call, you may pass AutoMLJobConfig
|
1949
1951
|
# data as a hash:
|
@@ -1965,12 +1967,12 @@ module Aws::SageMaker
|
|
1965
1967
|
# }
|
1966
1968
|
#
|
1967
1969
|
# @!attribute [rw] completion_criteria
|
1968
|
-
# How long
|
1969
|
-
# allowed to generate.
|
1970
|
+
# How long an AutoML job is allowed to run, or how many candidates a
|
1971
|
+
# job is allowed to generate.
|
1970
1972
|
# @return [Types::AutoMLJobCompletionCriteria]
|
1971
1973
|
#
|
1972
1974
|
# @!attribute [rw] security_config
|
1973
|
-
#
|
1975
|
+
# The security configuration for traffic encryption or Amazon VPC
|
1974
1976
|
# settings.
|
1975
1977
|
# @return [Types::AutoMLSecurityConfig]
|
1976
1978
|
#
|
@@ -2002,23 +2004,23 @@ module Aws::SageMaker
|
|
2002
2004
|
#
|
2003
2005
|
# * `MSE`\: The mean squared error (MSE) is the average of the squared
|
2004
2006
|
# differences between the predicted and actual values. It is used
|
2005
|
-
# for regression. MSE values are always positive
|
2006
|
-
# is at predicting the actual values the smaller the MSE value.
|
2007
|
-
# the data contains outliers, they tend to dominate the MSE
|
2008
|
-
# might cause subpar prediction performance.
|
2009
|
-
#
|
2010
|
-
# * `Accuracy`\: The ratio of the number correctly classified items
|
2011
|
-
# the total number (correctly and incorrectly) classified
|
2012
|
-
# used for binary and multiclass classification.
|
2013
|
-
# the predicted class values are to the actual
|
2014
|
-
# values vary between zero and one
|
2015
|
-
# zero perfect inaccuracy.
|
2007
|
+
# for regression. MSE values are always positive: the better a model
|
2008
|
+
# is at predicting the actual values, the smaller the MSE value.
|
2009
|
+
# When the data contains outliers, they tend to dominate the MSE,
|
2010
|
+
# which might cause subpar prediction performance.
|
2011
|
+
#
|
2012
|
+
# * `Accuracy`\: The ratio of the number of correctly classified items
|
2013
|
+
# to the total number of (correctly and incorrectly) classified
|
2014
|
+
# items. It is used for binary and multiclass classification. It
|
2015
|
+
# measures how close the predicted class values are to the actual
|
2016
|
+
# values. Accuracy values vary between zero and one: one indicates
|
2017
|
+
# perfect accuracy and zero indicates perfect inaccuracy.
|
2016
2018
|
#
|
2017
2019
|
# * `F1`\: The F1 score is the harmonic mean of the precision and
|
2018
2020
|
# recall. It is used for binary classification into classes
|
2019
2021
|
# traditionally referred to as positive and negative. Predictions
|
2020
|
-
# are said to be true when they match their actual (correct) class
|
2021
|
-
# false when they do not. Precision is the ratio of the true
|
2022
|
+
# are said to be true when they match their actual (correct) class
|
2023
|
+
# and false when they do not. Precision is the ratio of the true
|
2022
2024
|
# positive predictions to all positive predictions (including the
|
2023
2025
|
# false positives) in a data set and measures the quality of the
|
2024
2026
|
# prediction when it predicts the positive class. Recall (or
|
@@ -2027,7 +2029,7 @@ module Aws::SageMaker
|
|
2027
2029
|
# predicts the actual class members in a data set. The standard F1
|
2028
2030
|
# score weighs precision and recall equally. But which metric is
|
2029
2031
|
# paramount typically depends on specific aspects of a problem. F1
|
2030
|
-
# scores vary between zero and one
|
2032
|
+
# scores vary between zero and one: one indicates the best possible
|
2031
2033
|
# performance and zero the worst.
|
2032
2034
|
#
|
2033
2035
|
# * `AUC`\: The area under the curve (AUC) metric is used to compare
|
@@ -2045,20 +2047,21 @@ module Aws::SageMaker
|
|
2045
2047
|
# The AUC score can also be interpreted as the probability that a
|
2046
2048
|
# randomly selected positive data point is more likely to be
|
2047
2049
|
# predicted positive than a randomly selected negative example. AUC
|
2048
|
-
# scores vary between zero and one
|
2049
|
-
#
|
2050
|
-
#
|
2051
|
-
#
|
2050
|
+
# scores vary between zero and one: a score of one indicates perfect
|
2051
|
+
# accuracy and a score of one half indicates that the prediction is
|
2052
|
+
# not better than a random classifier. Values under one half predict
|
2053
|
+
# less accurately than a random predictor. But such consistently bad
|
2054
|
+
# predictors can simply be inverted to obtain better than random
|
2052
2055
|
# predictors.
|
2053
2056
|
#
|
2054
2057
|
# * `F1macro`\: The F1macro score applies F1 scoring to multiclass
|
2055
2058
|
# classification. In this context, you have multiple classes to
|
2056
2059
|
# predict. You just calculate the precision and recall for each
|
2057
2060
|
# class as you did for the positive class in binary classification.
|
2058
|
-
# Then
|
2061
|
+
# Then, use these values to calculate the F1 score for each class
|
2059
2062
|
# and average them to obtain the F1macro score. F1macro scores vary
|
2060
|
-
# between zero and one
|
2061
|
-
# zero the worst.
|
2063
|
+
# between zero and one: one indicates the best possible performance
|
2064
|
+
# and zero the worst.
|
2062
2065
|
#
|
2063
2066
|
# If you do not specify a metric explicitly, the default behavior is
|
2064
2067
|
# to automatically use:
|
@@ -2078,26 +2081,26 @@ module Aws::SageMaker
|
|
2078
2081
|
include Aws::Structure
|
2079
2082
|
end
|
2080
2083
|
|
2081
|
-
# Provides a summary about
|
2084
|
+
# Provides a summary about an AutoML job.
|
2082
2085
|
#
|
2083
2086
|
# @!attribute [rw] auto_ml_job_name
|
2084
|
-
# The name of the
|
2087
|
+
# The name of the AutoML you are requesting.
|
2085
2088
|
# @return [String]
|
2086
2089
|
#
|
2087
2090
|
# @!attribute [rw] auto_ml_job_arn
|
2088
|
-
# The ARN of the job.
|
2091
|
+
# The ARN of the AutoML job.
|
2089
2092
|
# @return [String]
|
2090
2093
|
#
|
2091
2094
|
# @!attribute [rw] auto_ml_job_status
|
2092
|
-
# The job
|
2095
|
+
# The status of the AutoML job.
|
2093
2096
|
# @return [String]
|
2094
2097
|
#
|
2095
2098
|
# @!attribute [rw] auto_ml_job_secondary_status
|
2096
|
-
# The
|
2099
|
+
# The secondary status of the AutoML job.
|
2097
2100
|
# @return [String]
|
2098
2101
|
#
|
2099
2102
|
# @!attribute [rw] creation_time
|
2100
|
-
# When the job was created.
|
2103
|
+
# When the AutoML job was created.
|
2101
2104
|
# @return [Time]
|
2102
2105
|
#
|
2103
2106
|
# @!attribute [rw] end_time
|
@@ -2105,13 +2108,17 @@ module Aws::SageMaker
|
|
2105
2108
|
# @return [Time]
|
2106
2109
|
#
|
2107
2110
|
# @!attribute [rw] last_modified_time
|
2108
|
-
# When the job was last modified.
|
2111
|
+
# When the AutoML job was last modified.
|
2109
2112
|
# @return [Time]
|
2110
2113
|
#
|
2111
2114
|
# @!attribute [rw] failure_reason
|
2112
|
-
# The failure reason of
|
2115
|
+
# The failure reason of an AutoML job.
|
2113
2116
|
# @return [String]
|
2114
2117
|
#
|
2118
|
+
# @!attribute [rw] partial_failure_reasons
|
2119
|
+
# The list of reasons for partial failures within an AutoML job.
|
2120
|
+
# @return [Array<Types::AutoMLPartialFailureReason>]
|
2121
|
+
#
|
2115
2122
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
|
2116
2123
|
#
|
2117
2124
|
class AutoMLJobSummary < Struct.new(
|
@@ -2122,7 +2129,8 @@ module Aws::SageMaker
|
|
2122
2129
|
:creation_time,
|
2123
2130
|
:end_time,
|
2124
2131
|
:last_modified_time,
|
2125
|
-
:failure_reason
|
2132
|
+
:failure_reason,
|
2133
|
+
:partial_failure_reasons)
|
2126
2134
|
SENSITIVE = []
|
2127
2135
|
include Aws::Structure
|
2128
2136
|
end
|
@@ -2154,6 +2162,21 @@ module Aws::SageMaker
|
|
2154
2162
|
include Aws::Structure
|
2155
2163
|
end
|
2156
2164
|
|
2165
|
+
# The reason for a partial failure of an AutoML job.
|
2166
|
+
#
|
2167
|
+
# @!attribute [rw] partial_failure_message
|
2168
|
+
# The message containing the reason for a partial failure of an AutoML
|
2169
|
+
# job.
|
2170
|
+
# @return [String]
|
2171
|
+
#
|
2172
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLPartialFailureReason AWS API Documentation
|
2173
|
+
#
|
2174
|
+
class AutoMLPartialFailureReason < Struct.new(
|
2175
|
+
:partial_failure_message)
|
2176
|
+
SENSITIVE = []
|
2177
|
+
include Aws::Structure
|
2178
|
+
end
|
2179
|
+
|
2157
2180
|
# The Amazon S3 data source.
|
2158
2181
|
#
|
2159
2182
|
# @note When making an API call, you may pass AutoMLS3DataSource
|
@@ -2204,7 +2227,7 @@ module Aws::SageMaker
|
|
2204
2227
|
# @return [Boolean]
|
2205
2228
|
#
|
2206
2229
|
# @!attribute [rw] vpc_config
|
2207
|
-
# VPC configuration.
|
2230
|
+
# The VPC configuration.
|
2208
2231
|
# @return [Types::VpcConfig]
|
2209
2232
|
#
|
2210
2233
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLSecurityConfig AWS API Documentation
|
@@ -2317,6 +2340,36 @@ module Aws::SageMaker
|
|
2317
2340
|
include Aws::Structure
|
2318
2341
|
end
|
2319
2342
|
|
2343
|
+
# The location of artifacts for an AutoML candidate job.
|
2344
|
+
#
|
2345
|
+
# @!attribute [rw] explainability
|
2346
|
+
# The Amazon S3 prefix to the explainability artifacts generated for
|
2347
|
+
# the AutoML candidate.
|
2348
|
+
# @return [String]
|
2349
|
+
#
|
2350
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
|
2351
|
+
#
|
2352
|
+
class CandidateArtifactLocations < Struct.new(
|
2353
|
+
:explainability)
|
2354
|
+
SENSITIVE = []
|
2355
|
+
include Aws::Structure
|
2356
|
+
end
|
2357
|
+
|
2358
|
+
# The properties of an AutoML candidate job.
|
2359
|
+
#
|
2360
|
+
# @!attribute [rw] candidate_artifact_locations
|
2361
|
+
# The Amazon S3 prefix to the artifacts generated for an AutoML
|
2362
|
+
# candidate.
|
2363
|
+
# @return [Types::CandidateArtifactLocations]
|
2364
|
+
#
|
2365
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
|
2366
|
+
#
|
2367
|
+
class CandidateProperties < Struct.new(
|
2368
|
+
:candidate_artifact_locations)
|
2369
|
+
SENSITIVE = []
|
2370
|
+
include Aws::Structure
|
2371
|
+
end
|
2372
|
+
|
2320
2373
|
# Currently, the `CapacitySize` API is not supported.
|
2321
2374
|
#
|
2322
2375
|
# @note When making an API call, you may pass CapacitySize
|
@@ -2861,8 +2914,8 @@ module Aws::SageMaker
|
|
2861
2914
|
include Aws::Structure
|
2862
2915
|
end
|
2863
2916
|
|
2864
|
-
# There was a conflict when you attempted to modify
|
2865
|
-
#
|
2917
|
+
# There was a conflict when you attempted to modify a SageMaker entity
|
2918
|
+
# such as an `Experiment` or `Artifact`.
|
2866
2919
|
#
|
2867
2920
|
# @!attribute [rw] message
|
2868
2921
|
# @return [String]
|
@@ -2885,6 +2938,9 @@ module Aws::SageMaker
|
|
2885
2938
|
# image: "ContainerImage",
|
2886
2939
|
# image_config: {
|
2887
2940
|
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
2941
|
+
# repository_auth_config: {
|
2942
|
+
# repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
|
2943
|
+
# },
|
2888
2944
|
# },
|
2889
2945
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
2890
2946
|
# model_data_url: "Url",
|
@@ -3625,7 +3681,8 @@ module Aws::SageMaker
|
|
3625
3681
|
# @return [String]
|
3626
3682
|
#
|
3627
3683
|
# @!attribute [rw] app_type
|
3628
|
-
# The type of app.
|
3684
|
+
# The type of app. Supported apps are `JupyterServer` and
|
3685
|
+
# `KernelGateway`. `TensorBoard` is not supported.
|
3629
3686
|
# @return [String]
|
3630
3687
|
#
|
3631
3688
|
# @!attribute [rw] app_name
|
@@ -3798,49 +3855,69 @@ module Aws::SageMaker
|
|
3798
3855
|
# value: "TagValue", # required
|
3799
3856
|
# },
|
3800
3857
|
# ],
|
3858
|
+
# model_deploy_config: {
|
3859
|
+
# auto_generate_endpoint_name: false,
|
3860
|
+
# endpoint_name: "EndpointName",
|
3861
|
+
# },
|
3801
3862
|
# }
|
3802
3863
|
#
|
3803
3864
|
# @!attribute [rw] auto_ml_job_name
|
3804
|
-
# Identifies an Autopilot job.
|
3805
|
-
# case-insensitive.
|
3865
|
+
# Identifies an Autopilot job. The name must be unique to your account
|
3866
|
+
# and is case-insensitive.
|
3806
3867
|
# @return [String]
|
3807
3868
|
#
|
3808
3869
|
# @!attribute [rw] input_data_config
|
3809
|
-
#
|
3810
|
-
#
|
3870
|
+
# An array of channel objects that describes the input data and its
|
3871
|
+
# location. Each channel is a named input source. Similar to
|
3872
|
+
# `InputDataConfig` supported by . Format(s) supported: CSV. Minimum
|
3873
|
+
# of 500 rows.
|
3811
3874
|
# @return [Array<Types::AutoMLChannel>]
|
3812
3875
|
#
|
3813
3876
|
# @!attribute [rw] output_data_config
|
3814
|
-
#
|
3815
|
-
# supported:
|
3877
|
+
# Provides information about encryption and the Amazon S3 output path
|
3878
|
+
# needed to store artifacts from an AutoML job. Format(s) supported:
|
3879
|
+
# CSV.
|
3880
|
+
#
|
3881
|
+
# <para>Specifies whether to automatically deploy the best
|
3882
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
3883
|
+
# deployed automatically.</para>
|
3816
3884
|
# @return [Types::AutoMLOutputDataConfig]
|
3817
3885
|
#
|
3818
3886
|
# @!attribute [rw] problem_type
|
3819
|
-
# Defines the
|
3820
|
-
# candidates. Options include: BinaryClassification
|
3821
|
-
# MulticlassClassification
|
3887
|
+
# Defines the type of supervised learning available for the
|
3888
|
+
# candidates. Options include: `BinaryClassification`,
|
3889
|
+
# `MulticlassClassification`, and `Regression`. For more information,
|
3890
|
+
# see [ Amazon SageMaker Autopilot problem types and algorithm
|
3891
|
+
# support][1].
|
3892
|
+
#
|
3893
|
+
#
|
3894
|
+
#
|
3895
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
|
3822
3896
|
# @return [String]
|
3823
3897
|
#
|
3824
3898
|
# @!attribute [rw] auto_ml_job_objective
|
3825
|
-
# Defines the objective
|
3826
|
-
# AutoMLJobObjective$MetricName and
|
3827
|
-
# minimize or maximize it.
|
3828
|
-
# commonly used ObjectiveMetric for problem type is automaically
|
3829
|
-
# selected.
|
3899
|
+
# Defines the objective metric used to measure the predictive quality
|
3900
|
+
# of an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
3901
|
+
# Autopilot infers whether to minimize or maximize it.
|
3830
3902
|
# @return [Types::AutoMLJobObjective]
|
3831
3903
|
#
|
3832
3904
|
# @!attribute [rw] auto_ml_job_config
|
3833
|
-
# Contains CompletionCriteria and SecurityConfig
|
3905
|
+
# Contains `CompletionCriteria` and `SecurityConfig` settings for the
|
3906
|
+
# AutoML job.
|
3834
3907
|
# @return [Types::AutoMLJobConfig]
|
3835
3908
|
#
|
3836
3909
|
# @!attribute [rw] role_arn
|
3837
3910
|
# The ARN of the role that is used to access the data.
|
3911
|
+
#
|
3912
|
+
# <para>Specifies whether to automatically deploy the best
|
3913
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
3914
|
+
# deployed automatically.</para>
|
3838
3915
|
# @return [String]
|
3839
3916
|
#
|
3840
3917
|
# @!attribute [rw] generate_candidate_definitions_only
|
3841
|
-
# Generates possible candidates without training
|
3842
|
-
# is a combination of data preprocessors, algorithms, and
|
3843
|
-
# parameter settings.
|
3918
|
+
# Generates possible candidates without training the models. A
|
3919
|
+
# candidate is a combination of data preprocessors, algorithms, and
|
3920
|
+
# algorithm parameter settings.
|
3844
3921
|
# @return [Boolean]
|
3845
3922
|
#
|
3846
3923
|
# @!attribute [rw] tags
|
@@ -3848,6 +3925,11 @@ module Aws::SageMaker
|
|
3848
3925
|
# unique per resource.
|
3849
3926
|
# @return [Array<Types::Tag>]
|
3850
3927
|
#
|
3928
|
+
# @!attribute [rw] model_deploy_config
|
3929
|
+
# Specifies how to generate the endpoint name for an automatic
|
3930
|
+
# one-click Autopilot model deployment.
|
3931
|
+
# @return [Types::ModelDeployConfig]
|
3932
|
+
#
|
3851
3933
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobRequest AWS API Documentation
|
3852
3934
|
#
|
3853
3935
|
class CreateAutoMLJobRequest < Struct.new(
|
@@ -3859,13 +3941,15 @@ module Aws::SageMaker
|
|
3859
3941
|
:auto_ml_job_config,
|
3860
3942
|
:role_arn,
|
3861
3943
|
:generate_candidate_definitions_only,
|
3862
|
-
:tags
|
3944
|
+
:tags,
|
3945
|
+
:model_deploy_config)
|
3863
3946
|
SENSITIVE = []
|
3864
3947
|
include Aws::Structure
|
3865
3948
|
end
|
3866
3949
|
|
3867
3950
|
# @!attribute [rw] auto_ml_job_arn
|
3868
|
-
#
|
3951
|
+
# The unique ARN that is assigned to the AutoML job when it is
|
3952
|
+
# created.
|
3869
3953
|
# @return [String]
|
3870
3954
|
#
|
3871
3955
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobResponse AWS API Documentation
|
@@ -4407,7 +4491,14 @@ module Aws::SageMaker
|
|
4407
4491
|
# @return [String]
|
4408
4492
|
#
|
4409
4493
|
# @!attribute [rw] default_user_settings
|
4410
|
-
# The default user
|
4494
|
+
# The default settings to use to create a user profile when
|
4495
|
+
# `UserSettings` isn't specified in the call to the
|
4496
|
+
# `CreateUserProfile` API.
|
4497
|
+
#
|
4498
|
+
# `SecurityGroups` is aggregated when specified in both calls. For all
|
4499
|
+
# other settings in `UserSettings`, the values specified in
|
4500
|
+
# `CreateUserProfile` take precedence over those specified in
|
4501
|
+
# `CreateDomain`.
|
4411
4502
|
# @return [Types::UserSettings]
|
4412
4503
|
#
|
4413
4504
|
# @!attribute [rw] subnet_ids
|
@@ -4422,7 +4513,10 @@ module Aws::SageMaker
|
|
4422
4513
|
# @!attribute [rw] tags
|
4423
4514
|
# Tags to associated with the Domain. Each tag consists of a key and
|
4424
4515
|
# an optional value. Tag keys must be unique per resource. Tags are
|
4425
|
-
# searchable using the Search API.
|
4516
|
+
# searchable using the `Search` API.
|
4517
|
+
#
|
4518
|
+
# Tags that you specify for the Domain are also added to all Apps that
|
4519
|
+
# the Domain launches.
|
4426
4520
|
# @return [Array<Types::Tag>]
|
4427
4521
|
#
|
4428
4522
|
# @!attribute [rw] app_network_access_type
|
@@ -5277,6 +5371,9 @@ module Aws::SageMaker
|
|
5277
5371
|
# s3_uri: "S3Uri", # required
|
5278
5372
|
# local_path: "DirectoryPath",
|
5279
5373
|
# },
|
5374
|
+
# retry_strategy: {
|
5375
|
+
# maximum_retry_attempts: 1, # required
|
5376
|
+
# },
|
5280
5377
|
# },
|
5281
5378
|
# training_job_definitions: [
|
5282
5379
|
# {
|
@@ -5375,6 +5472,9 @@ module Aws::SageMaker
|
|
5375
5472
|
# s3_uri: "S3Uri", # required
|
5376
5473
|
# local_path: "DirectoryPath",
|
5377
5474
|
# },
|
5475
|
+
# retry_strategy: {
|
5476
|
+
# maximum_retry_attempts: 1, # required
|
5477
|
+
# },
|
5378
5478
|
# },
|
5379
5479
|
# ],
|
5380
5480
|
# warm_start_config: {
|
@@ -6187,6 +6287,9 @@ module Aws::SageMaker
|
|
6187
6287
|
# image: "ContainerImage",
|
6188
6288
|
# image_config: {
|
6189
6289
|
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
6290
|
+
# repository_auth_config: {
|
6291
|
+
# repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
|
6292
|
+
# },
|
6190
6293
|
# },
|
6191
6294
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
6192
6295
|
# model_data_url: "Url",
|
@@ -6204,6 +6307,9 @@ module Aws::SageMaker
|
|
6204
6307
|
# image: "ContainerImage",
|
6205
6308
|
# image_config: {
|
6206
6309
|
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
6310
|
+
# repository_auth_config: {
|
6311
|
+
# repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
|
6312
|
+
# },
|
6207
6313
|
# },
|
6208
6314
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
6209
6315
|
# model_data_url: "Url",
|
@@ -7004,9 +7110,9 @@ module Aws::SageMaker
|
|
7004
7110
|
# @!attribute [rw] direct_internet_access
|
7005
7111
|
# Sets whether Amazon SageMaker provides internet access to the
|
7006
7112
|
# notebook instance. If you set this to `Disabled` this notebook
|
7007
|
-
# instance
|
7008
|
-
#
|
7009
|
-
#
|
7113
|
+
# instance is able to access resources only in your VPC, and is not be
|
7114
|
+
# able to connect to Amazon SageMaker training and endpoint services
|
7115
|
+
# unless you configure a NAT Gateway in your VPC.
|
7010
7116
|
#
|
7011
7117
|
# For more information, see [Notebook Instances Are Internet-Enabled
|
7012
7118
|
# by Default][1]. You can set the value of this parameter to
|
@@ -7743,6 +7849,12 @@ module Aws::SageMaker
|
|
7743
7849
|
# },
|
7744
7850
|
# },
|
7745
7851
|
# ],
|
7852
|
+
# environment: {
|
7853
|
+
# "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
|
7854
|
+
# },
|
7855
|
+
# retry_strategy: {
|
7856
|
+
# maximum_retry_attempts: 1, # required
|
7857
|
+
# },
|
7746
7858
|
# }
|
7747
7859
|
#
|
7748
7860
|
# @!attribute [rw] training_job_name
|
@@ -7849,9 +7961,10 @@ module Aws::SageMaker
|
|
7849
7961
|
# @return [Types::VpcConfig]
|
7850
7962
|
#
|
7851
7963
|
# @!attribute [rw] stopping_condition
|
7852
|
-
# Specifies a limit to how long a model training job can run.
|
7853
|
-
#
|
7854
|
-
#
|
7964
|
+
# Specifies a limit to how long a model training job can run. It also
|
7965
|
+
# specifies how long a managed Spot training job has to complete. When
|
7966
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
7967
|
+
# job. Use this API to cap model training costs.
|
7855
7968
|
#
|
7856
7969
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
7857
7970
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -7956,6 +8069,15 @@ module Aws::SageMaker
|
|
7956
8069
|
# and framework metrics.
|
7957
8070
|
# @return [Array<Types::ProfilerRuleConfiguration>]
|
7958
8071
|
#
|
8072
|
+
# @!attribute [rw] environment
|
8073
|
+
# The environment variables to set in the Docker container.
|
8074
|
+
# @return [Hash<String,String>]
|
8075
|
+
#
|
8076
|
+
# @!attribute [rw] retry_strategy
|
8077
|
+
# The number of times to retry the job when the job fails due to an
|
8078
|
+
# `InternalServerError`.
|
8079
|
+
# @return [Types::RetryStrategy]
|
8080
|
+
#
|
7959
8081
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
|
7960
8082
|
#
|
7961
8083
|
class CreateTrainingJobRequest < Struct.new(
|
@@ -7978,7 +8100,9 @@ module Aws::SageMaker
|
|
7978
8100
|
:tensor_board_output_config,
|
7979
8101
|
:experiment_config,
|
7980
8102
|
:profiler_config,
|
7981
|
-
:profiler_rule_configurations
|
8103
|
+
:profiler_rule_configurations,
|
8104
|
+
:environment,
|
8105
|
+
:retry_strategy)
|
7982
8106
|
SENSITIVE = []
|
7983
8107
|
include Aws::Structure
|
7984
8108
|
end
|
@@ -8456,7 +8580,7 @@ module Aws::SageMaker
|
|
8456
8580
|
# @return [String]
|
8457
8581
|
#
|
8458
8582
|
# @!attribute [rw] user_profile_name
|
8459
|
-
# A name for the UserProfile.
|
8583
|
+
# A name for the UserProfile. This value is not case sensitive.
|
8460
8584
|
# @return [String]
|
8461
8585
|
#
|
8462
8586
|
# @!attribute [rw] single_sign_on_user_identifier
|
@@ -8478,6 +8602,9 @@ module Aws::SageMaker
|
|
8478
8602
|
# @!attribute [rw] tags
|
8479
8603
|
# Each tag consists of a key and an optional value. Tag keys must be
|
8480
8604
|
# unique per resource.
|
8605
|
+
#
|
8606
|
+
# Tags that you specify for the User Profile are also added to all
|
8607
|
+
# Apps that the User Profile launches.
|
8481
8608
|
# @return [Array<Types::Tag>]
|
8482
8609
|
#
|
8483
8610
|
# @!attribute [rw] user_settings
|
@@ -8922,7 +9049,9 @@ module Aws::SageMaker
|
|
8922
9049
|
# The valid values are `None` and `Input`. The default value is
|
8923
9050
|
# `None`, which specifies not to join the input with the transformed
|
8924
9051
|
# data. If you want the batch transform job to join the original input
|
8925
|
-
# data with the transformed data, set `JoinSource` to `Input`.
|
9052
|
+
# data with the transformed data, set `JoinSource` to `Input`. You can
|
9053
|
+
# specify `OutputFilter` as an additional filter to select a portion
|
9054
|
+
# of the joined dataset and store it in the output file.
|
8926
9055
|
#
|
8927
9056
|
# For JSON or JSONLines objects, such as a JSON array, Amazon
|
8928
9057
|
# SageMaker adds the transformed data to the input JSON object in an
|
@@ -8932,10 +9061,18 @@ module Aws::SageMaker
|
|
8932
9061
|
# file, and the input data is stored under the `SageMakerInput` key
|
8933
9062
|
# and the results are stored in `SageMakerOutput`.
|
8934
9063
|
#
|
8935
|
-
# For CSV
|
8936
|
-
# the
|
8937
|
-
#
|
8938
|
-
# the transformed data and the output
|
9064
|
+
# For CSV data, Amazon SageMaker takes each row as a JSON array and
|
9065
|
+
# joins the transformed data with the input by appending each
|
9066
|
+
# transformed row to the end of the input. The joined data has the
|
9067
|
+
# original input data followed by the transformed data and the output
|
9068
|
+
# is a CSV file.
|
9069
|
+
#
|
9070
|
+
# For information on how joining in applied, see [Workflow for
|
9071
|
+
# Associating Inferences with Input Records][1].
|
9072
|
+
#
|
9073
|
+
#
|
9074
|
+
#
|
9075
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow
|
8939
9076
|
# @return [String]
|
8940
9077
|
#
|
8941
9078
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
|
@@ -10802,7 +10939,7 @@ module Aws::SageMaker
|
|
10802
10939
|
# }
|
10803
10940
|
#
|
10804
10941
|
# @!attribute [rw] auto_ml_job_name
|
10805
|
-
#
|
10942
|
+
# Requests information about an AutoML job using its unique name.
|
10806
10943
|
# @return [String]
|
10807
10944
|
#
|
10808
10945
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobRequest AWS API Documentation
|
@@ -10814,15 +10951,15 @@ module Aws::SageMaker
|
|
10814
10951
|
end
|
10815
10952
|
|
10816
10953
|
# @!attribute [rw] auto_ml_job_name
|
10817
|
-
# Returns the name of
|
10954
|
+
# Returns the name of the AutoML job.
|
10818
10955
|
# @return [String]
|
10819
10956
|
#
|
10820
10957
|
# @!attribute [rw] auto_ml_job_arn
|
10821
|
-
# Returns the job
|
10958
|
+
# Returns the ARN of the AutoML job.
|
10822
10959
|
# @return [String]
|
10823
10960
|
#
|
10824
10961
|
# @!attribute [rw] input_data_config
|
10825
|
-
# Returns the
|
10962
|
+
# Returns the input data configuration for the AutoML job..
|
10826
10963
|
# @return [Array<Types::AutoMLChannel>]
|
10827
10964
|
#
|
10828
10965
|
# @!attribute [rw] output_data_config
|
@@ -10845,15 +10982,15 @@ module Aws::SageMaker
|
|
10845
10982
|
# @return [String]
|
10846
10983
|
#
|
10847
10984
|
# @!attribute [rw] auto_ml_job_config
|
10848
|
-
# Returns the job
|
10985
|
+
# Returns the configuration for the AutoML job.
|
10849
10986
|
# @return [Types::AutoMLJobConfig]
|
10850
10987
|
#
|
10851
10988
|
# @!attribute [rw] creation_time
|
10852
|
-
# Returns the
|
10989
|
+
# Returns the creation time of the AutoML job.
|
10853
10990
|
# @return [Time]
|
10854
10991
|
#
|
10855
10992
|
# @!attribute [rw] end_time
|
10856
|
-
# Returns the
|
10993
|
+
# Returns the end time of the AutoML job.
|
10857
10994
|
# @return [Time]
|
10858
10995
|
#
|
10859
10996
|
# @!attribute [rw] last_modified_time
|
@@ -10861,37 +10998,51 @@ module Aws::SageMaker
|
|
10861
10998
|
# @return [Time]
|
10862
10999
|
#
|
10863
11000
|
# @!attribute [rw] failure_reason
|
10864
|
-
# Returns the job
|
11001
|
+
# Returns the failure reason for an AutoML job, when applicable.
|
10865
11002
|
# @return [String]
|
10866
11003
|
#
|
11004
|
+
# @!attribute [rw] partial_failure_reasons
|
11005
|
+
# Returns a list of reasons for partial failures within an AutoML job.
|
11006
|
+
# @return [Array<Types::AutoMLPartialFailureReason>]
|
11007
|
+
#
|
10867
11008
|
# @!attribute [rw] best_candidate
|
10868
|
-
# Returns the job's
|
11009
|
+
# Returns the job's best `AutoMLCandidate`.
|
10869
11010
|
# @return [Types::AutoMLCandidate]
|
10870
11011
|
#
|
10871
11012
|
# @!attribute [rw] auto_ml_job_status
|
10872
|
-
# Returns the job
|
11013
|
+
# Returns the status of the AutoML job.
|
10873
11014
|
# @return [String]
|
10874
11015
|
#
|
10875
11016
|
# @!attribute [rw] auto_ml_job_secondary_status
|
10876
|
-
# Returns the job
|
11017
|
+
# Returns the secondary status of the AutoML job.
|
10877
11018
|
# @return [String]
|
10878
11019
|
#
|
10879
11020
|
# @!attribute [rw] generate_candidate_definitions_only
|
10880
|
-
#
|
11021
|
+
# Indicates whether the output for an AutoML job generates candidate
|
11022
|
+
# definitions only.
|
10881
11023
|
# @return [Boolean]
|
10882
11024
|
#
|
10883
11025
|
# @!attribute [rw] auto_ml_job_artifacts
|
10884
11026
|
# Returns information on the job's artifacts found in
|
10885
|
-
# AutoMLJobArtifacts
|
11027
|
+
# `AutoMLJobArtifacts`.
|
10886
11028
|
# @return [Types::AutoMLJobArtifacts]
|
10887
11029
|
#
|
10888
11030
|
# @!attribute [rw] resolved_attributes
|
10889
|
-
# This contains ProblemType
|
10890
|
-
# CompletionCriteria
|
10891
|
-
#
|
10892
|
-
#
|
11031
|
+
# This contains `ProblemType`, `AutoMLJobObjective` and
|
11032
|
+
# `CompletionCriteria`. If you do not provide these values, they are
|
11033
|
+
# auto-inferred. If you do provide them, the values used are the ones
|
11034
|
+
# you provide.
|
10893
11035
|
# @return [Types::ResolvedAttributes]
|
10894
11036
|
#
|
11037
|
+
# @!attribute [rw] model_deploy_config
|
11038
|
+
# Indicates whether the model was deployed automatically to an
|
11039
|
+
# endpoint and the name of that endpoint if deployed automatically.
|
11040
|
+
# @return [Types::ModelDeployConfig]
|
11041
|
+
#
|
11042
|
+
# @!attribute [rw] model_deploy_result
|
11043
|
+
# Provides information about endpoint for the model deployment.
|
11044
|
+
# @return [Types::ModelDeployResult]
|
11045
|
+
#
|
10895
11046
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
|
10896
11047
|
#
|
10897
11048
|
class DescribeAutoMLJobResponse < Struct.new(
|
@@ -10907,12 +11058,15 @@ module Aws::SageMaker
|
|
10907
11058
|
:end_time,
|
10908
11059
|
:last_modified_time,
|
10909
11060
|
:failure_reason,
|
11061
|
+
:partial_failure_reasons,
|
10910
11062
|
:best_candidate,
|
10911
11063
|
:auto_ml_job_status,
|
10912
11064
|
:auto_ml_job_secondary_status,
|
10913
11065
|
:generate_candidate_definitions_only,
|
10914
11066
|
:auto_ml_job_artifacts,
|
10915
|
-
:resolved_attributes
|
11067
|
+
:resolved_attributes,
|
11068
|
+
:model_deploy_config,
|
11069
|
+
:model_deploy_result)
|
10916
11070
|
SENSITIVE = []
|
10917
11071
|
include Aws::Structure
|
10918
11072
|
end
|
@@ -11472,7 +11626,7 @@ module Aws::SageMaker
|
|
11472
11626
|
# @return [String]
|
11473
11627
|
#
|
11474
11628
|
# @!attribute [rw] default_user_settings
|
11475
|
-
# Settings which are applied to
|
11629
|
+
# Settings which are applied to UserProfiles in this domain if
|
11476
11630
|
# settings are not explicitly specified in a given UserProfile.
|
11477
11631
|
# @return [Types::UserSettings]
|
11478
11632
|
#
|
@@ -14000,7 +14154,7 @@ module Aws::SageMaker
|
|
14000
14154
|
#
|
14001
14155
|
# * `LaunchingMLInstances`
|
14002
14156
|
#
|
14003
|
-
# * `
|
14157
|
+
# * `PreparingTraining`
|
14004
14158
|
#
|
14005
14159
|
# * `DownloadingTrainingImage`
|
14006
14160
|
# @return [String]
|
@@ -14051,9 +14205,9 @@ module Aws::SageMaker
|
|
14051
14205
|
#
|
14052
14206
|
# @!attribute [rw] stopping_condition
|
14053
14207
|
# Specifies a limit to how long a model training job can run. It also
|
14054
|
-
# specifies
|
14055
|
-
# reaches the time limit, Amazon SageMaker ends the training
|
14056
|
-
# this API to cap model training costs.
|
14208
|
+
# specifies how long a managed Spot training job has to complete. When
|
14209
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
14210
|
+
# job. Use this API to cap model training costs.
|
14057
14211
|
#
|
14058
14212
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
14059
14213
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -14202,6 +14356,15 @@ module Aws::SageMaker
|
|
14202
14356
|
# Profiling status of a training job.
|
14203
14357
|
# @return [String]
|
14204
14358
|
#
|
14359
|
+
# @!attribute [rw] retry_strategy
|
14360
|
+
# The number of times to retry the job when the job fails due to an
|
14361
|
+
# `InternalServerError`.
|
14362
|
+
# @return [Types::RetryStrategy]
|
14363
|
+
#
|
14364
|
+
# @!attribute [rw] environment
|
14365
|
+
# The environment variables to set in the Docker container.
|
14366
|
+
# @return [Hash<String,String>]
|
14367
|
+
#
|
14205
14368
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
|
14206
14369
|
#
|
14207
14370
|
class DescribeTrainingJobResponse < Struct.new(
|
@@ -14242,7 +14405,9 @@ module Aws::SageMaker
|
|
14242
14405
|
:profiler_config,
|
14243
14406
|
:profiler_rule_configurations,
|
14244
14407
|
:profiler_rule_evaluation_statuses,
|
14245
|
-
:profiling_status
|
14408
|
+
:profiling_status,
|
14409
|
+
:retry_strategy,
|
14410
|
+
:environment)
|
14246
14411
|
SENSITIVE = []
|
14247
14412
|
include Aws::Structure
|
14248
14413
|
end
|
@@ -14624,7 +14789,7 @@ module Aws::SageMaker
|
|
14624
14789
|
# @return [String]
|
14625
14790
|
#
|
14626
14791
|
# @!attribute [rw] user_profile_name
|
14627
|
-
# The user profile name.
|
14792
|
+
# The user profile name. This value is not case sensitive.
|
14628
14793
|
# @return [String]
|
14629
14794
|
#
|
14630
14795
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfileRequest AWS API Documentation
|
@@ -15348,7 +15513,7 @@ module Aws::SageMaker
|
|
15348
15513
|
#
|
15349
15514
|
# @!attribute [rw] s3_data_distribution_type
|
15350
15515
|
# Whether input data distributed in Amazon S3 is fully replicated or
|
15351
|
-
# sharded by an S3 key.
|
15516
|
+
# sharded by an S3 key. Defaults to `FullyReplicated`
|
15352
15517
|
# @return [String]
|
15353
15518
|
#
|
15354
15519
|
# @!attribute [rw] features_attribute
|
@@ -17894,6 +18059,9 @@ module Aws::SageMaker
|
|
17894
18059
|
# s3_uri: "S3Uri", # required
|
17895
18060
|
# local_path: "DirectoryPath",
|
17896
18061
|
# },
|
18062
|
+
# retry_strategy: {
|
18063
|
+
# maximum_retry_attempts: 1, # required
|
18064
|
+
# },
|
17897
18065
|
# }
|
17898
18066
|
#
|
17899
18067
|
# @!attribute [rw] definition_name
|
@@ -17975,10 +18143,9 @@ module Aws::SageMaker
|
|
17975
18143
|
#
|
17976
18144
|
# @!attribute [rw] stopping_condition
|
17977
18145
|
# Specifies a limit to how long a model hyperparameter training job
|
17978
|
-
# can run. It also specifies how long
|
17979
|
-
#
|
17980
|
-
#
|
17981
|
-
# model training costs.
|
18146
|
+
# can run. It also specifies how long a managed spot training job has
|
18147
|
+
# to complete. When the job reaches the time limit, Amazon SageMaker
|
18148
|
+
# ends the training job. Use this API to cap model training costs.
|
17982
18149
|
# @return [Types::StoppingCondition]
|
17983
18150
|
#
|
17984
18151
|
# @!attribute [rw] enable_network_isolation
|
@@ -18010,6 +18177,11 @@ module Aws::SageMaker
|
|
18010
18177
|
# training checkpoint data.
|
18011
18178
|
# @return [Types::CheckpointConfig]
|
18012
18179
|
#
|
18180
|
+
# @!attribute [rw] retry_strategy
|
18181
|
+
# The number of times to retry the job when the job fails due to an
|
18182
|
+
# `InternalServerError`.
|
18183
|
+
# @return [Types::RetryStrategy]
|
18184
|
+
#
|
18013
18185
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
|
18014
18186
|
#
|
18015
18187
|
class HyperParameterTrainingJobDefinition < Struct.new(
|
@@ -18027,7 +18199,8 @@ module Aws::SageMaker
|
|
18027
18199
|
:enable_network_isolation,
|
18028
18200
|
:enable_inter_container_traffic_encryption,
|
18029
18201
|
:enable_managed_spot_training,
|
18030
|
-
:checkpoint_config
|
18202
|
+
:checkpoint_config,
|
18203
|
+
:retry_strategy)
|
18031
18204
|
SENSITIVE = []
|
18032
18205
|
include Aws::Structure
|
18033
18206
|
end
|
@@ -18483,6 +18656,9 @@ module Aws::SageMaker
|
|
18483
18656
|
#
|
18484
18657
|
# {
|
18485
18658
|
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
18659
|
+
# repository_auth_config: {
|
18660
|
+
# repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
|
18661
|
+
# },
|
18486
18662
|
# }
|
18487
18663
|
#
|
18488
18664
|
# @!attribute [rw] repository_access_mode
|
@@ -18494,10 +18670,19 @@ module Aws::SageMaker
|
|
18494
18670
|
# your VPC.
|
18495
18671
|
# @return [String]
|
18496
18672
|
#
|
18673
|
+
# @!attribute [rw] repository_auth_config
|
18674
|
+
# (Optional) Specifies an authentication configuration for the private
|
18675
|
+
# docker registry where your model image is hosted. Specify a value
|
18676
|
+
# for this property only if you specified `Vpc` as the value for the
|
18677
|
+
# `RepositoryAccessMode` field, and the private Docker registry where
|
18678
|
+
# the model image is hosted requires authentication.
|
18679
|
+
# @return [Types::RepositoryAuthConfig]
|
18680
|
+
#
|
18497
18681
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
|
18498
18682
|
#
|
18499
18683
|
class ImageConfig < Struct.new(
|
18500
|
-
:repository_access_mode
|
18684
|
+
:repository_access_mode,
|
18685
|
+
:repository_auth_config)
|
18501
18686
|
SENSITIVE = []
|
18502
18687
|
include Aws::Structure
|
18503
18688
|
end
|
@@ -19266,7 +19451,12 @@ module Aws::SageMaker
|
|
19266
19451
|
# @return [Types::LabelingJobS3DataSource]
|
19267
19452
|
#
|
19268
19453
|
# @!attribute [rw] sns_data_source
|
19269
|
-
# An Amazon SNS data source used for streaming labeling jobs.
|
19454
|
+
# An Amazon SNS data source used for streaming labeling jobs. To learn
|
19455
|
+
# more, see [Send Data to a Streaming Labeling Job][1].
|
19456
|
+
#
|
19457
|
+
#
|
19458
|
+
#
|
19459
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-send-data
|
19270
19460
|
# @return [Types::LabelingJobSnsDataSource]
|
19271
19461
|
#
|
19272
19462
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
|
@@ -19290,6 +19480,7 @@ module Aws::SageMaker
|
|
19290
19480
|
# @return [String]
|
19291
19481
|
#
|
19292
19482
|
# @!attribute [rw] work_requester_account_id
|
19483
|
+
# The AWS account ID of the account used to start the labeling job.
|
19293
19484
|
# @return [String]
|
19294
19485
|
#
|
19295
19486
|
# @!attribute [rw] creation_time
|
@@ -19392,37 +19583,42 @@ module Aws::SageMaker
|
|
19392
19583
|
# The AWS Key Management Service ID of the key used to encrypt the
|
19393
19584
|
# output data, if any.
|
19394
19585
|
#
|
19395
|
-
# If you
|
19396
|
-
#
|
19397
|
-
#
|
19398
|
-
# uses the default KMS key for Amazon S3 for your role's account.
|
19399
|
-
# Amazon SageMaker uses server-side encryption with KMS-managed keys
|
19400
|
-
# for `LabelingJobOutputConfig`. If you use a bucket policy with an
|
19401
|
-
# `s3:PutObject` permission that only allows objects with server-side
|
19402
|
-
# encryption, set the condition key of
|
19403
|
-
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
19404
|
-
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
19405
|
-
# Simple Storage Service Developer Guide.*
|
19586
|
+
# If you provide your own KMS key ID, you must add the required
|
19587
|
+
# permissions to your KMS key described in [Encrypt Output Data and
|
19588
|
+
# Storage Volume with AWS KMS][1].
|
19406
19589
|
#
|
19407
|
-
#
|
19408
|
-
#
|
19409
|
-
#
|
19410
|
-
# Service Developer Guide*.
|
19590
|
+
# If you don't provide a KMS key ID, Amazon SageMaker uses the
|
19591
|
+
# default AWS KMS key for Amazon S3 for your role's account to
|
19592
|
+
# encrypt your output data.
|
19411
19593
|
#
|
19594
|
+
# If you use a bucket policy with an `s3:PutObject` permission that
|
19595
|
+
# only allows objects with server-side encryption, set the condition
|
19596
|
+
# key of `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
19597
|
+
# information, see [KMS-Managed Encryption Keys][2] in the *Amazon
|
19598
|
+
# Simple Storage Service Developer Guide.*
|
19412
19599
|
#
|
19413
19600
|
#
|
19414
|
-
#
|
19415
|
-
# [
|
19601
|
+
#
|
19602
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-kms-permissions
|
19603
|
+
# [2]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
|
19416
19604
|
# @return [String]
|
19417
19605
|
#
|
19418
19606
|
# @!attribute [rw] sns_topic_arn
|
19419
19607
|
# An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
|
19608
|
+
# Provide a `SnsTopicArn` if you want to do real time chaining to
|
19609
|
+
# another streaming job and receive an Amazon SNS notifications each
|
19610
|
+
# time a data object is submitted by a worker.
|
19611
|
+
#
|
19612
|
+
# If you provide an `SnsTopicArn` in `OutputConfig`, when workers
|
19613
|
+
# complete labeling tasks, Ground Truth will send labeling task output
|
19614
|
+
# data to the SNS output topic you specify here.
|
19615
|
+
#
|
19616
|
+
# To learn more, see [Receive Output Data from a Streaming Labeling
|
19617
|
+
# Job][1].
|
19420
19618
|
#
|
19421
|
-
# When workers complete labeling tasks, Ground Truth will send
|
19422
|
-
# labeling task output data to the SNS output topic you specify here.
|
19423
19619
|
#
|
19424
|
-
#
|
19425
|
-
#
|
19620
|
+
#
|
19621
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-output-data
|
19426
19622
|
# @return [String]
|
19427
19623
|
#
|
19428
19624
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
|
@@ -19435,7 +19631,9 @@ module Aws::SageMaker
|
|
19435
19631
|
include Aws::Structure
|
19436
19632
|
end
|
19437
19633
|
|
19438
|
-
#
|
19634
|
+
# Configure encryption on the storage volume attached to the ML compute
|
19635
|
+
# instance used to run automated data labeling model training and
|
19636
|
+
# inference.
|
19439
19637
|
#
|
19440
19638
|
# @note When making an API call, you may pass LabelingJobResourceConfig
|
19441
19639
|
# data as a hash:
|
@@ -19447,16 +19645,30 @@ module Aws::SageMaker
|
|
19447
19645
|
# @!attribute [rw] volume_kms_key_id
|
19448
19646
|
# The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
|
19449
19647
|
# uses to encrypt data on the storage volume attached to the ML
|
19450
|
-
# compute instance(s) that run the training
|
19451
|
-
#
|
19648
|
+
# compute instance(s) that run the training and inference jobs used
|
19649
|
+
# for automated data labeling.
|
19452
19650
|
#
|
19453
|
-
#
|
19651
|
+
# You can only specify a `VolumeKmsKeyId` when you create a labeling
|
19652
|
+
# job with automated data labeling enabled using the API operation
|
19653
|
+
# `CreateLabelingJob`. You cannot specify an AWS KMS customer managed
|
19654
|
+
# CMK to encrypt the storage volume used for automated data labeling
|
19655
|
+
# model training and inference when you create a labeling job using
|
19656
|
+
# the console. To learn more, see [Output Data and Storage Volume
|
19657
|
+
# Encryption][1].
|
19658
|
+
#
|
19659
|
+
# The `VolumeKmsKeyId` can be any of the following formats:
|
19660
|
+
#
|
19661
|
+
# * KMS Key ID
|
19454
19662
|
#
|
19455
19663
|
# `"1234abcd-12ab-34cd-56ef-1234567890ab"`
|
19456
19664
|
#
|
19457
|
-
# *
|
19665
|
+
# * Amazon Resource Name (ARN) of a KMS Key
|
19458
19666
|
#
|
19459
19667
|
# `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
|
19668
|
+
#
|
19669
|
+
#
|
19670
|
+
#
|
19671
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security.html
|
19460
19672
|
# @return [String]
|
19461
19673
|
#
|
19462
19674
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobResourceConfig AWS API Documentation
|
@@ -19521,9 +19733,6 @@ module Aws::SageMaker
|
|
19521
19733
|
# The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
|
19522
19734
|
# ARN of the input topic you will use to send new data objects to a
|
19523
19735
|
# streaming labeling job.
|
19524
|
-
#
|
19525
|
-
# If you specify an input topic for `SnsTopicArn` in `InputConfig`,
|
19526
|
-
# you must specify a value for `SnsTopicArn` in `OutputConfig`.
|
19527
19736
|
# @return [String]
|
19528
19737
|
#
|
19529
19738
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
|
@@ -20206,12 +20415,11 @@ module Aws::SageMaker
|
|
20206
20415
|
# @return [String]
|
20207
20416
|
#
|
20208
20417
|
# @!attribute [rw] sort_order
|
20209
|
-
# The sort order for the results. The default is Descending
|
20418
|
+
# The sort order for the results. The default is `Descending`.
|
20210
20419
|
# @return [String]
|
20211
20420
|
#
|
20212
20421
|
# @!attribute [rw] sort_by
|
20213
|
-
# The parameter by which to sort the results. The default is
|
20214
|
-
# AutoMLJobName.
|
20422
|
+
# The parameter by which to sort the results. The default is `Name`.
|
20215
20423
|
# @return [String]
|
20216
20424
|
#
|
20217
20425
|
# @!attribute [rw] max_results
|
@@ -20272,29 +20480,29 @@ module Aws::SageMaker
|
|
20272
20480
|
# }
|
20273
20481
|
#
|
20274
20482
|
# @!attribute [rw] auto_ml_job_name
|
20275
|
-
# List the
|
20483
|
+
# List the candidates created for the job by providing the job's
|
20276
20484
|
# name.
|
20277
20485
|
# @return [String]
|
20278
20486
|
#
|
20279
20487
|
# @!attribute [rw] status_equals
|
20280
|
-
# List the
|
20488
|
+
# List the candidates for the job and filter by status.
|
20281
20489
|
# @return [String]
|
20282
20490
|
#
|
20283
20491
|
# @!attribute [rw] candidate_name_equals
|
20284
|
-
# List the
|
20492
|
+
# List the candidates for the job and filter by candidate name.
|
20285
20493
|
# @return [String]
|
20286
20494
|
#
|
20287
20495
|
# @!attribute [rw] sort_order
|
20288
|
-
# The sort order for the results. The default is Ascending
|
20496
|
+
# The sort order for the results. The default is `Ascending`.
|
20289
20497
|
# @return [String]
|
20290
20498
|
#
|
20291
20499
|
# @!attribute [rw] sort_by
|
20292
20500
|
# The parameter by which to sort the results. The default is
|
20293
|
-
# Descending
|
20501
|
+
# `Descending`.
|
20294
20502
|
# @return [String]
|
20295
20503
|
#
|
20296
20504
|
# @!attribute [rw] max_results
|
20297
|
-
# List the job's
|
20505
|
+
# List the job's candidates up to a specified limit.
|
20298
20506
|
# @return [Integer]
|
20299
20507
|
#
|
20300
20508
|
# @!attribute [rw] next_token
|
@@ -20317,7 +20525,7 @@ module Aws::SageMaker
|
|
20317
20525
|
end
|
20318
20526
|
|
20319
20527
|
# @!attribute [rw] candidates
|
20320
|
-
# Summaries about the
|
20528
|
+
# Summaries about the `AutoMLCandidates`.
|
20321
20529
|
# @return [Array<Types::AutoMLCandidate>]
|
20322
20530
|
#
|
20323
20531
|
# @!attribute [rw] next_token
|
@@ -21118,7 +21326,8 @@ module Aws::SageMaker
|
|
21118
21326
|
# @return [String]
|
21119
21327
|
#
|
21120
21328
|
# @!attribute [rw] max_results
|
21121
|
-
# The maximum number of endpoints to return in the response.
|
21329
|
+
# The maximum number of endpoints to return in the response. This
|
21330
|
+
# value defaults to 10.
|
21122
21331
|
# @return [Integer]
|
21123
21332
|
#
|
21124
21333
|
# @!attribute [rw] name_contains
|
@@ -24353,7 +24562,7 @@ module Aws::SageMaker
|
|
24353
24562
|
#
|
24354
24563
|
# Model artifacts are the output that results from training a model, and
|
24355
24564
|
# typically consist of trained parameters, a model defintion that
|
24356
|
-
#
|
24565
|
+
# describes how to compute inferences, and other metadata.
|
24357
24566
|
#
|
24358
24567
|
# @!attribute [rw] s3_model_artifacts
|
24359
24568
|
# The path of the S3 object that contains the model artifacts. For
|
@@ -24541,6 +24750,66 @@ module Aws::SageMaker
|
|
24541
24750
|
include Aws::Structure
|
24542
24751
|
end
|
24543
24752
|
|
24753
|
+
# Specifies how to generate the endpoint name for an automatic one-click
|
24754
|
+
# Autopilot model deployment.
|
24755
|
+
#
|
24756
|
+
# @note When making an API call, you may pass ModelDeployConfig
|
24757
|
+
# data as a hash:
|
24758
|
+
#
|
24759
|
+
# {
|
24760
|
+
# auto_generate_endpoint_name: false,
|
24761
|
+
# endpoint_name: "EndpointName",
|
24762
|
+
# }
|
24763
|
+
#
|
24764
|
+
# @!attribute [rw] auto_generate_endpoint_name
|
24765
|
+
# Set to `True` to automatically generate an endpoint name for a
|
24766
|
+
# one-click Autopilot model deployment; set to `False` otherwise. The
|
24767
|
+
# default value is `True`.
|
24768
|
+
#
|
24769
|
+
# <note markdown="1"> If you set `AutoGenerateEndpointName` to `True`, do not specify the
|
24770
|
+
# `EndpointName`; otherwise a 400 error is thrown.
|
24771
|
+
#
|
24772
|
+
# </note>
|
24773
|
+
# @return [Boolean]
|
24774
|
+
#
|
24775
|
+
# @!attribute [rw] endpoint_name
|
24776
|
+
# Specifies the endpoint name to use for a one-click Autopilot model
|
24777
|
+
# deployment if the endpoint name is not generated automatically.
|
24778
|
+
#
|
24779
|
+
# <note markdown="1"> Specify the `EndpointName` if and only if you set
|
24780
|
+
# `AutoGenerateEndpointName` to `False`; otherwise a 400 error is
|
24781
|
+
# thrown.
|
24782
|
+
#
|
24783
|
+
# </note>
|
24784
|
+
# @return [String]
|
24785
|
+
#
|
24786
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployConfig AWS API Documentation
|
24787
|
+
#
|
24788
|
+
class ModelDeployConfig < Struct.new(
|
24789
|
+
:auto_generate_endpoint_name,
|
24790
|
+
:endpoint_name)
|
24791
|
+
SENSITIVE = []
|
24792
|
+
include Aws::Structure
|
24793
|
+
end
|
24794
|
+
|
24795
|
+
# Provides information about the endpoint of the model deployment.
|
24796
|
+
#
|
24797
|
+
# @!attribute [rw] endpoint_name
|
24798
|
+
# The name of the endpoint to which the model has been deployed.
|
24799
|
+
#
|
24800
|
+
# <note markdown="1"> If model deployment fails, this field is omitted from the response.
|
24801
|
+
#
|
24802
|
+
# </note>
|
24803
|
+
# @return [String]
|
24804
|
+
#
|
24805
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelDeployResult AWS API Documentation
|
24806
|
+
#
|
24807
|
+
class ModelDeployResult < Struct.new(
|
24808
|
+
:endpoint_name)
|
24809
|
+
SENSITIVE = []
|
24810
|
+
include Aws::Structure
|
24811
|
+
end
|
24812
|
+
|
24544
24813
|
# Provides information to verify the integrity of stored model
|
24545
24814
|
# artifacts.
|
24546
24815
|
#
|
@@ -26376,6 +26645,13 @@ module Aws::SageMaker
|
|
26376
26645
|
#
|
26377
26646
|
# @!attribute [rw] max_runtime_in_seconds
|
26378
26647
|
# The maximum runtime allowed in seconds.
|
26648
|
+
#
|
26649
|
+
# <note markdown="1"> The `MaxRuntimeInSeconds` cannot exceed the frequency of the job.
|
26650
|
+
# For data quality and model explainability, this can be up to 3600
|
26651
|
+
# seconds for an hourly schedule. For model bias and model quality
|
26652
|
+
# hourly schedules, this can be up to 1800 seconds.
|
26653
|
+
#
|
26654
|
+
# </note>
|
26379
26655
|
# @return [Integer]
|
26380
26656
|
#
|
26381
26657
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MonitoringStoppingCondition AWS API Documentation
|
@@ -27137,6 +27413,18 @@ module Aws::SageMaker
|
|
27137
27413
|
# for NVIDIA accelerators and highly recommended for CPU compilations.
|
27138
27414
|
# For any other cases, it is optional to specify `CompilerOptions.`
|
27139
27415
|
#
|
27416
|
+
# * `DTYPE`\: Specifies the data type for the input. When compiling
|
27417
|
+
# for `ml_*` (except for `ml_inf`) instances using PyTorch
|
27418
|
+
# framework, provide the data type (dtype) of the model's input.
|
27419
|
+
# `"float32"` is used if `"DTYPE"` is not specified. Options for
|
27420
|
+
# data type are:
|
27421
|
+
#
|
27422
|
+
# * float32: Use either `"float"` or `"float32"`.
|
27423
|
+
#
|
27424
|
+
# * int64: Use either `"int64"` or `"long"`.
|
27425
|
+
#
|
27426
|
+
# For example, `\{"dtype" : "float32"\}`.
|
27427
|
+
#
|
27140
27428
|
# * `CPU`\: Compilation for CPU supports the following compiler
|
27141
27429
|
# options.
|
27142
27430
|
#
|
@@ -27301,7 +27589,7 @@ module Aws::SageMaker
|
|
27301
27589
|
#
|
27302
27590
|
#
|
27303
27591
|
#
|
27304
|
-
# [1]: https://docs.aws.amazon.com/
|
27592
|
+
# [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
|
27305
27593
|
# [2]: https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
|
27306
27594
|
# @return [String]
|
27307
27595
|
#
|
@@ -29441,6 +29729,40 @@ module Aws::SageMaker
|
|
29441
29729
|
include Aws::Structure
|
29442
29730
|
end
|
29443
29731
|
|
29732
|
+
# Specifies an authentication configuration for the private docker
|
29733
|
+
# registry where your model image is hosted. Specify a value for this
|
29734
|
+
# property only if you specified `Vpc` as the value for the
|
29735
|
+
# `RepositoryAccessMode` field of the `ImageConfig` object that you
|
29736
|
+
# passed to a call to CreateModel and the private Docker registry where
|
29737
|
+
# the model image is hosted requires authentication.
|
29738
|
+
#
|
29739
|
+
# @note When making an API call, you may pass RepositoryAuthConfig
|
29740
|
+
# data as a hash:
|
29741
|
+
#
|
29742
|
+
# {
|
29743
|
+
# repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
|
29744
|
+
# }
|
29745
|
+
#
|
29746
|
+
# @!attribute [rw] repository_credentials_provider_arn
|
29747
|
+
# The Amazon Resource Name (ARN) of an AWS Lambda function that
|
29748
|
+
# provides credentials to authenticate to the private Docker registry
|
29749
|
+
# where your model image is hosted. For information about how to
|
29750
|
+
# create an AWS Lambda function, see [Create a Lambda function with
|
29751
|
+
# the console][1] in the *AWS Lambda Developer Guide*.
|
29752
|
+
#
|
29753
|
+
#
|
29754
|
+
#
|
29755
|
+
# [1]: https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
|
29756
|
+
# @return [String]
|
29757
|
+
#
|
29758
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RepositoryAuthConfig AWS API Documentation
|
29759
|
+
#
|
29760
|
+
class RepositoryAuthConfig < Struct.new(
|
29761
|
+
:repository_credentials_provider_arn)
|
29762
|
+
SENSITIVE = []
|
29763
|
+
include Aws::Structure
|
29764
|
+
end
|
29765
|
+
|
29444
29766
|
# The resolved attributes.
|
29445
29767
|
#
|
29446
29768
|
# @!attribute [rw] auto_ml_job_objective
|
@@ -29697,6 +30019,32 @@ module Aws::SageMaker
|
|
29697
30019
|
include Aws::Structure
|
29698
30020
|
end
|
29699
30021
|
|
30022
|
+
# The retry strategy to use when a training job fails due to an
|
30023
|
+
# `InternalServerError`. `RetryStrategy` is specified as part of the
|
30024
|
+
# `CreateTrainingJob` and `CreateHyperParameterTuningJob` requests. You
|
30025
|
+
# can add the `StoppingCondition` parameter to the request to limit the
|
30026
|
+
# training time for the complete job.
|
30027
|
+
#
|
30028
|
+
# @note When making an API call, you may pass RetryStrategy
|
30029
|
+
# data as a hash:
|
30030
|
+
#
|
30031
|
+
# {
|
30032
|
+
# maximum_retry_attempts: 1, # required
|
30033
|
+
# }
|
30034
|
+
#
|
30035
|
+
# @!attribute [rw] maximum_retry_attempts
|
30036
|
+
# The number of times to retry the job. When the job is retried, it's
|
30037
|
+
# `SecondaryStatus` is changed to `STARTING`.
|
30038
|
+
# @return [Integer]
|
30039
|
+
#
|
30040
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RetryStrategy AWS API Documentation
|
30041
|
+
#
|
30042
|
+
class RetryStrategy < Struct.new(
|
30043
|
+
:maximum_retry_attempts)
|
30044
|
+
SENSITIVE = []
|
30045
|
+
include Aws::Structure
|
30046
|
+
end
|
30047
|
+
|
29700
30048
|
# Describes the S3 data source.
|
29701
30049
|
#
|
29702
30050
|
# @note When making an API call, you may pass S3DataSource
|
@@ -30411,10 +30759,11 @@ module Aws::SageMaker
|
|
30411
30759
|
include Aws::Structure
|
30412
30760
|
end
|
30413
30761
|
|
30414
|
-
# Specifies options
|
30415
|
-
#
|
30416
|
-
# CreateDomain API is called, and as part of `UserSettings` when the
|
30417
|
-
# CreateUserProfile API is called.
|
30762
|
+
# Specifies options for sharing SageMaker Studio notebooks. These
|
30763
|
+
# settings are specified as part of `DefaultUserSettings` when the
|
30764
|
+
# `CreateDomain` API is called, and as part of `UserSettings` when the
|
30765
|
+
# `CreateUserProfile` API is called. When `SharingSettings` is not
|
30766
|
+
# specified, notebook sharing isn't allowed.
|
30418
30767
|
#
|
30419
30768
|
# @note When making an API call, you may pass SharingSettings
|
30420
30769
|
# data as a hash:
|
@@ -30928,11 +31277,11 @@ module Aws::SageMaker
|
|
30928
31277
|
include Aws::Structure
|
30929
31278
|
end
|
30930
31279
|
|
30931
|
-
# Specifies a limit to how long a model training
|
30932
|
-
# run. It also specifies how long
|
30933
|
-
#
|
30934
|
-
# Amazon SageMaker ends the training or compilation job. Use
|
30935
|
-
# cap model training costs.
|
31280
|
+
# Specifies a limit to how long a model training job, model compilation
|
31281
|
+
# job, or hyperparameter tuning job can run. It also specifies how long
|
31282
|
+
# a managed Spot training job has to complete. When the job reaches the
|
31283
|
+
# time limit, Amazon SageMaker ends the training or compilation job. Use
|
31284
|
+
# this API to cap model training costs.
|
30936
31285
|
#
|
30937
31286
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
30938
31287
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -30962,18 +31311,27 @@ module Aws::SageMaker
|
|
30962
31311
|
# }
|
30963
31312
|
#
|
30964
31313
|
# @!attribute [rw] max_runtime_in_seconds
|
30965
|
-
# The maximum length of time, in seconds, that
|
30966
|
-
# compilation job can run. If job does not complete during this
|
30967
|
-
# Amazon SageMaker ends the job.
|
30968
|
-
#
|
31314
|
+
# The maximum length of time, in seconds, that a training or
|
31315
|
+
# compilation job can run. If the job does not complete during this
|
31316
|
+
# time, Amazon SageMaker ends the job.
|
31317
|
+
#
|
31318
|
+
# When `RetryStrategy` is specified in the job request,
|
31319
|
+
# `MaxRuntimeInSeconds` specifies the maximum time for all of the
|
31320
|
+
# attempts in total, not each individual attempt.
|
31321
|
+
#
|
31322
|
+
# The default value is 1 day. The maximum value is 28 days.
|
30969
31323
|
# @return [Integer]
|
30970
31324
|
#
|
30971
31325
|
# @!attribute [rw] max_wait_time_in_seconds
|
30972
|
-
# The maximum length of time, in seconds,
|
30973
|
-
#
|
30974
|
-
#
|
30975
|
-
#
|
30976
|
-
#
|
31326
|
+
# The maximum length of time, in seconds, that a managed Spot training
|
31327
|
+
# job has to complete. It is the amount of time spent waiting for Spot
|
31328
|
+
# capacity plus the amount of time the job can run. It must be equal
|
31329
|
+
# to or greater than `MaxRuntimeInSeconds`. If the job does not
|
31330
|
+
# complete during this time, Amazon SageMaker ends the job.
|
31331
|
+
#
|
31332
|
+
# When `RetryStrategy` is specified in the job request,
|
31333
|
+
# `MaxWaitTimeInSeconds` specifies the maximum time for all of the
|
31334
|
+
# attempts in total, not each individual attempt.
|
30977
31335
|
# @return [Integer]
|
30978
31336
|
#
|
30979
31337
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
|
@@ -31368,9 +31726,10 @@ module Aws::SageMaker
|
|
31368
31726
|
# @return [Types::VpcConfig]
|
31369
31727
|
#
|
31370
31728
|
# @!attribute [rw] stopping_condition
|
31371
|
-
# Specifies a limit to how long a model training job can run.
|
31372
|
-
#
|
31373
|
-
#
|
31729
|
+
# Specifies a limit to how long a model training job can run. It also
|
31730
|
+
# specifies how long a managed Spot training job has to complete. When
|
31731
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
31732
|
+
# job. Use this API to cap model training costs.
|
31374
31733
|
#
|
31375
31734
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
31376
31735
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -31491,6 +31850,15 @@ module Aws::SageMaker
|
|
31491
31850
|
# training job.
|
31492
31851
|
# @return [Array<Types::DebugRuleEvaluationStatus>]
|
31493
31852
|
#
|
31853
|
+
# @!attribute [rw] environment
|
31854
|
+
# The environment variables to set in the Docker container.
|
31855
|
+
# @return [Hash<String,String>]
|
31856
|
+
#
|
31857
|
+
# @!attribute [rw] retry_strategy
|
31858
|
+
# The number of times to retry the job when the job fails due to an
|
31859
|
+
# `InternalServerError`.
|
31860
|
+
# @return [Types::RetryStrategy]
|
31861
|
+
#
|
31494
31862
|
# @!attribute [rw] tags
|
31495
31863
|
# An array of key-value pairs. You can use tags to categorize your AWS
|
31496
31864
|
# resources in different ways, for example, by purpose, owner, or
|
@@ -31538,6 +31906,8 @@ module Aws::SageMaker
|
|
31538
31906
|
:debug_rule_configurations,
|
31539
31907
|
:tensor_board_output_config,
|
31540
31908
|
:debug_rule_evaluation_statuses,
|
31909
|
+
:environment,
|
31910
|
+
:retry_strategy,
|
31541
31911
|
:tags)
|
31542
31912
|
SENSITIVE = []
|
31543
31913
|
include Aws::Structure
|
@@ -31631,9 +32001,10 @@ module Aws::SageMaker
|
|
31631
32001
|
# @return [Types::ResourceConfig]
|
31632
32002
|
#
|
31633
32003
|
# @!attribute [rw] stopping_condition
|
31634
|
-
# Specifies a limit to how long a model training job can run.
|
31635
|
-
#
|
31636
|
-
#
|
32004
|
+
# Specifies a limit to how long a model training job can run. It also
|
32005
|
+
# specifies how long a managed Spot training job has to complete. When
|
32006
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
32007
|
+
# job. Use this API to cap model training costs.
|
31637
32008
|
#
|
31638
32009
|
# To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
|
31639
32010
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -31966,7 +32337,7 @@ module Aws::SageMaker
|
|
31966
32337
|
#
|
31967
32338
|
#
|
31968
32339
|
# [1]: https://mxnet.apache.org/api/faq/recordio
|
31969
|
-
# [2]: https://www.tensorflow.org/guide/
|
32340
|
+
# [2]: https://www.tensorflow.org/guide/data#consuming_tfrecord_data
|
31970
32341
|
# @return [String]
|
31971
32342
|
#
|
31972
32343
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformInput AWS API Documentation
|
@@ -33111,7 +33482,7 @@ module Aws::SageMaker
|
|
33111
33482
|
include Aws::Structure
|
33112
33483
|
end
|
33113
33484
|
|
33114
|
-
# Represents an amount of money in United States dollars
|
33485
|
+
# Represents an amount of money in United States dollars.
|
33115
33486
|
#
|
33116
33487
|
# @note When making an API call, you may pass USD
|
33117
33488
|
# data as a hash:
|
@@ -34890,8 +35261,8 @@ module Aws::SageMaker
|
|
34890
35261
|
end
|
34891
35262
|
|
34892
35263
|
# A collection of settings that apply to users of Amazon SageMaker
|
34893
|
-
# Studio. These settings are specified when the CreateUserProfile API
|
34894
|
-
# called, and as `DefaultUserSettings` when the CreateDomain API is
|
35264
|
+
# Studio. These settings are specified when the `CreateUserProfile` API
|
35265
|
+
# is called, and as `DefaultUserSettings` when the `CreateDomain` API is
|
34895
35266
|
# called.
|
34896
35267
|
#
|
34897
35268
|
# `SecurityGroups` is aggregated when specified in both calls. For all
|
@@ -34960,7 +35331,7 @@ module Aws::SageMaker
|
|
34960
35331
|
# @return [Array<String>]
|
34961
35332
|
#
|
34962
35333
|
# @!attribute [rw] sharing_settings
|
34963
|
-
#
|
35334
|
+
# Specifies options for sharing SageMaker Studio notebooks.
|
34964
35335
|
# @return [Types::SharingSettings]
|
34965
35336
|
#
|
34966
35337
|
# @!attribute [rw] jupyter_server_app_settings
|