aws-sdk-sagemaker 1.82.0 → 1.87.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 67cd458d9885345bf4c946b19922cd5701d71d129e1155a1a1118f89222690d5
4
- data.tar.gz: 79549091e6f25640eb25cf5db6f13dfaa44b3499e34c676298b553bc5a13e10e
3
+ metadata.gz: 45e81df582a8f46bb7d50a6580109c4227b377cf5f59586ef50a9be34360cd6f
4
+ data.tar.gz: cd0db9d973fade8261b241ae82628d4b5067c939818d47f41cbeac57b0aa18cf
5
5
  SHA512:
6
- metadata.gz: d29ea9219b5f7018ccc3d3742f7c17e17c246663b588b2eb17b3d3acd5dc96398ced4c732eee46b79ed800c353e1b5e202b275ba33051a0eb52f71c7e100aeb2
7
- data.tar.gz: 83a1e6afea0864e0cad52b912ccc0470e6eaea646b4705de282fefac8dadf0c45706f2d458af6add286411a8838dbefcbc4b2813baf537f0b69b05450b69ae53
6
+ metadata.gz: 8f261b921d2bc164337131794649947746c4aa0b4ab5f165cb77f9d76fe3c8db164a563023d01f968747d281eccbd89362ac01a3c0e7aded1794fb5748a6e335
7
+ data.tar.gz: 73ddb1e3d21f94622d02fb6f96aa8e9aff3fe8a9aac9f4d7c8632aec4c8b1e4453d453165e09cc075466ddad9422a5423a9d2c4c4cf93993923e72443073f135
data/CHANGELOG.md CHANGED
@@ -1,6 +1,31 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.87.0 (2021-05-05)
5
+ ------------------
6
+
7
+ * Feature - Amazon SageMaker Autopilot now provides the ability to automatically deploy the best model to an endpoint
8
+
9
+ 1.86.0 (2021-05-04)
10
+ ------------------
11
+
12
+ * Feature - Enable retrying Training and Tuning Jobs that fail with InternalServerError by setting RetryStrategy.
13
+
14
+ 1.85.0 (2021-03-30)
15
+ ------------------
16
+
17
+ * Feature - Amazon SageMaker Autopilot now supports 1) feature importance reports for AutoML jobs and 2) PartialFailures for AutoML jobs
18
+
19
+ 1.84.0 (2021-03-25)
20
+ ------------------
21
+
22
+ * Feature - This feature allows customer to specify the environment variables in their CreateTrainingJob requests.
23
+
24
+ 1.83.0 (2021-03-19)
25
+ ------------------
26
+
27
+ * Feature - Adding authentication support for pulling images stored in private Docker registries to build containers for real-time inference.
28
+
4
29
  1.82.0 (2021-03-17)
5
30
  ------------------
6
31
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.82.0
1
+ 1.87.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.82.0'
52
+ GEM_VERSION = '1.87.0'
53
53
 
54
54
  end
@@ -419,6 +419,17 @@ module Aws::SageMaker
419
419
  #
420
420
  # </note>
421
421
  #
422
+ # <note markdown="1"> Tags that you add to a SageMaker Studio Domain or User Profile by
423
+ # calling this API are also added to any Apps that the Domain or User
424
+ # Profile launches after you call this API, but not to Apps that the
425
+ # Domain or User Profile launched before you called this API. To make
426
+ # sure that the tags associated with a Domain or User Profile are also
427
+ # added to all Apps that the Domain or User Profile launches, add the
428
+ # tags when you first create the Domain or User Profile by specifying
429
+ # them in the `Tags` parameter of CreateDomain or CreateUserProfile.
430
+ #
431
+ # </note>
432
+ #
422
433
  #
423
434
  #
424
435
  # [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
@@ -508,6 +519,13 @@ module Aws::SageMaker
508
519
  # artifact. For more information, see [Amazon SageMaker ML Lineage
509
520
  # Tracking][1].
510
521
  #
522
+ # <note markdown="1"> `CreateAction` can only be invoked from within an SageMaker managed
523
+ # environment. This includes SageMaker training jobs, processing jobs,
524
+ # transform jobs, and SageMaker notebooks. A call to `CreateAction` from
525
+ # outside one of these environments results in an error.
526
+ #
527
+ # </note>
528
+ #
511
529
  #
512
530
  #
513
531
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -827,11 +845,11 @@ module Aws::SageMaker
827
845
  req.send_request(options)
828
846
  end
829
847
 
830
- # Creates a running App for the specified UserProfile. Supported Apps
831
- # are JupyterServer and KernelGateway. This operation is automatically
832
- # invoked by Amazon SageMaker Studio upon access to the associated
833
- # Domain, and when new kernel configurations are selected by the user. A
834
- # user may have multiple Apps active simultaneously.
848
+ # Creates a running app for the specified UserProfile. Supported apps
849
+ # are `JupyterServer` and `KernelGateway`. This operation is
850
+ # automatically invoked by Amazon SageMaker Studio upon access to the
851
+ # associated Domain, and when new kernel configurations are selected by
852
+ # the user. A user may have multiple Apps active simultaneously.
835
853
  #
836
854
  # @option params [required, String] :domain_id
837
855
  # The domain ID.
@@ -840,7 +858,8 @@ module Aws::SageMaker
840
858
  # The user profile name.
841
859
  #
842
860
  # @option params [required, String] :app_type
843
- # The type of app.
861
+ # The type of app. Supported apps are `JupyterServer` and
862
+ # `KernelGateway`. `TensorBoard` is not supported.
844
863
  #
845
864
  # @option params [required, String] :app_name
846
865
  # The name of the app.
@@ -951,6 +970,13 @@ module Aws::SageMaker
951
970
  # URI of a dataset and the ECR registry path of an image. For more
952
971
  # information, see [Amazon SageMaker ML Lineage Tracking][1].
953
972
  #
973
+ # <note markdown="1"> `CreateArtifact` can only be invoked from within an SageMaker managed
974
+ # environment. This includes SageMaker training jobs, processing jobs,
975
+ # transform jobs, and SageMaker notebooks. A call to `CreateArtifact`
976
+ # from outside one of these environments results in an error.
977
+ #
978
+ # </note>
979
+ #
954
980
  #
955
981
  #
956
982
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -1025,55 +1051,73 @@ module Aws::SageMaker
1025
1051
  # Creates an Autopilot job.
1026
1052
  #
1027
1053
  # Find the best performing model after you run an Autopilot job by
1028
- # calling . Deploy that model by following the steps described in [Step
1029
- # 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
1054
+ # calling .
1030
1055
  #
1031
- # For information about how to use Autopilot, see [ Automate Model
1032
- # Development with Amazon SageMaker Autopilot][2].
1056
+ # For information about how to use Autopilot, see [Automate Model
1057
+ # Development with Amazon SageMaker Autopilot][1].
1033
1058
  #
1034
1059
  #
1035
1060
  #
1036
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html
1037
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1061
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1038
1062
  #
1039
1063
  # @option params [required, String] :auto_ml_job_name
1040
- # Identifies an Autopilot job. Must be unique to your account and is
1041
- # case-insensitive.
1064
+ # Identifies an Autopilot job. The name must be unique to your account
1065
+ # and is case-insensitive.
1042
1066
  #
1043
1067
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1044
- # Similar to InputDataConfig supported by Tuning. Format(s) supported:
1045
- # CSV. Minimum of 500 rows.
1068
+ # An array of channel objects that describes the input data and its
1069
+ # location. Each channel is a named input source. Similar to
1070
+ # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum of
1071
+ # 500 rows.
1046
1072
  #
1047
1073
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1048
- # Similar to OutputDataConfig supported by Tuning. Format(s) supported:
1074
+ # Provides information about encryption and the Amazon S3 output path
1075
+ # needed to store artifacts from an AutoML job. Format(s) supported:
1049
1076
  # CSV.
1050
1077
  #
1078
+ # &lt;para&gt;Specifies whether to automatically deploy the best
1079
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
1080
+ # deployed automatically.&lt;/para&gt;
1081
+ #
1051
1082
  # @option params [String] :problem_type
1052
- # Defines the kind of preprocessing and algorithms intended for the
1053
- # candidates. Options include: BinaryClassification,
1054
- # MulticlassClassification, and Regression.
1083
+ # Defines the type of supervised learning available for the candidates.
1084
+ # Options include: `BinaryClassification`, `MulticlassClassification`,
1085
+ # and `Regression`. For more information, see [ Amazon SageMaker
1086
+ # Autopilot problem types and algorithm support][1].
1087
+ #
1088
+ #
1089
+ #
1090
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
1055
1091
  #
1056
1092
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1057
- # Defines the objective of a an AutoML job. You provide a
1058
- # AutoMLJobObjective$MetricName and Autopilot infers whether to minimize
1059
- # or maximize it. If a metric is not specified, the most commonly used
1060
- # ObjectiveMetric for problem type is automaically selected.
1093
+ # Defines the objective metric used to measure the predictive quality of
1094
+ # an AutoML job. You provide an AutoMLJobObjective$MetricName and
1095
+ # Autopilot infers whether to minimize or maximize it.
1061
1096
  #
1062
1097
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1063
- # Contains CompletionCriteria and SecurityConfig.
1098
+ # Contains `CompletionCriteria` and `SecurityConfig` settings for the
1099
+ # AutoML job.
1064
1100
  #
1065
1101
  # @option params [required, String] :role_arn
1066
1102
  # The ARN of the role that is used to access the data.
1067
1103
  #
1104
+ # &lt;para&gt;Specifies whether to automatically deploy the best
1105
+ # &amp;ATP; model to an endpoint and the name of that endpoint if
1106
+ # deployed automatically.&lt;/para&gt;
1107
+ #
1068
1108
  # @option params [Boolean] :generate_candidate_definitions_only
1069
- # Generates possible candidates without training a model. A candidate is
1070
- # a combination of data preprocessors, algorithms, and algorithm
1109
+ # Generates possible candidates without training the models. A candidate
1110
+ # is a combination of data preprocessors, algorithms, and algorithm
1071
1111
  # parameter settings.
1072
1112
  #
1073
1113
  # @option params [Array<Types::Tag>] :tags
1074
1114
  # Each tag consists of a key and an optional value. Tag keys must be
1075
1115
  # unique per resource.
1076
1116
  #
1117
+ # @option params [Types::ModelDeployConfig] :model_deploy_config
1118
+ # Specifies how to generate the endpoint name for an automatic one-click
1119
+ # Autopilot model deployment.
1120
+ #
1077
1121
  # @return [Types::CreateAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1078
1122
  #
1079
1123
  # * {Types::CreateAutoMLJobResponse#auto_ml_job_arn #auto_ml_job_arn} => String
@@ -1125,6 +1169,10 @@ module Aws::SageMaker
1125
1169
  # value: "TagValue", # required
1126
1170
  # },
1127
1171
  # ],
1172
+ # model_deploy_config: {
1173
+ # auto_generate_endpoint_name: false,
1174
+ # endpoint_name: "EndpointName",
1175
+ # },
1128
1176
  # })
1129
1177
  #
1130
1178
  # @example Response structure
@@ -1343,6 +1391,13 @@ module Aws::SageMaker
1343
1391
  # entities. Some examples are an endpoint and a model package. For more
1344
1392
  # information, see [Amazon SageMaker ML Lineage Tracking][1].
1345
1393
  #
1394
+ # <note markdown="1"> `CreateContext` can only be invoked from within an SageMaker managed
1395
+ # environment. This includes SageMaker training jobs, processing jobs,
1396
+ # transform jobs, and SageMaker notebooks. A call to `CreateContext`
1397
+ # from outside one of these environments results in an error.
1398
+ #
1399
+ # </note>
1400
+ #
1346
1401
  #
1347
1402
  #
1348
1403
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -1651,7 +1706,14 @@ module Aws::SageMaker
1651
1706
  # The mode of authentication that members use to access the domain.
1652
1707
  #
1653
1708
  # @option params [required, Types::UserSettings] :default_user_settings
1654
- # The default user settings.
1709
+ # The default settings to use to create a user profile when
1710
+ # `UserSettings` isn't specified in the call to the `CreateUserProfile`
1711
+ # API.
1712
+ #
1713
+ # `SecurityGroups` is aggregated when specified in both calls. For all
1714
+ # other settings in `UserSettings`, the values specified in
1715
+ # `CreateUserProfile` take precedence over those specified in
1716
+ # `CreateDomain`.
1655
1717
  #
1656
1718
  # @option params [required, Array<String>] :subnet_ids
1657
1719
  # The VPC subnets that Studio uses for communication.
@@ -1663,7 +1725,10 @@ module Aws::SageMaker
1663
1725
  # @option params [Array<Types::Tag>] :tags
1664
1726
  # Tags to associated with the Domain. Each tag consists of a key and an
1665
1727
  # optional value. Tag keys must be unique per resource. Tags are
1666
- # searchable using the Search API.
1728
+ # searchable using the `Search` API.
1729
+ #
1730
+ # Tags that you specify for the Domain are also added to all Apps that
1731
+ # the Domain launches.
1667
1732
  #
1668
1733
  # @option params [String] :app_network_access_type
1669
1734
  # Specifies the VPC used for non-EFS traffic. The default value is
@@ -2141,10 +2206,10 @@ module Aws::SageMaker
2141
2206
  # measuring the impact of a change to one or more inputs, while keeping
2142
2207
  # the remaining inputs constant.
2143
2208
  #
2144
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
2145
- # SDK, all experiments, trials, and trial components are automatically
2146
- # tracked, logged, and indexed. When you use the AWS SDK for Python
2147
- # (Boto), you must use the logging APIs provided by the SDK.
2209
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
2210
+ # experiments, trials, and trial components are automatically tracked,
2211
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
2212
+ # must use the logging APIs provided by the SDK.
2148
2213
  #
2149
2214
  # You can add tags to experiments, trials, trial components and then use
2150
2215
  # the Search API to search for the tags.
@@ -2722,6 +2787,9 @@ module Aws::SageMaker
2722
2787
  # s3_uri: "S3Uri", # required
2723
2788
  # local_path: "DirectoryPath",
2724
2789
  # },
2790
+ # retry_strategy: {
2791
+ # maximum_retry_attempts: 1, # required
2792
+ # },
2725
2793
  # },
2726
2794
  # training_job_definitions: [
2727
2795
  # {
@@ -2820,6 +2888,9 @@ module Aws::SageMaker
2820
2888
  # s3_uri: "S3Uri", # required
2821
2889
  # local_path: "DirectoryPath",
2822
2890
  # },
2891
+ # retry_strategy: {
2892
+ # maximum_retry_attempts: 1, # required
2893
+ # },
2823
2894
  # },
2824
2895
  # ],
2825
2896
  # warm_start_config: {
@@ -3358,6 +3429,9 @@ module Aws::SageMaker
3358
3429
  # image: "ContainerImage",
3359
3430
  # image_config: {
3360
3431
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
3432
+ # repository_auth_config: {
3433
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
3434
+ # },
3361
3435
  # },
3362
3436
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3363
3437
  # model_data_url: "Url",
@@ -3375,6 +3449,9 @@ module Aws::SageMaker
3375
3449
  # image: "ContainerImage",
3376
3450
  # image_config: {
3377
3451
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
3452
+ # repository_auth_config: {
3453
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
3454
+ # },
3378
3455
  # },
3379
3456
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3380
3457
  # model_data_url: "Url",
@@ -4336,10 +4413,10 @@ module Aws::SageMaker
4336
4413
  #
4337
4414
  # @option params [String] :direct_internet_access
4338
4415
  # Sets whether Amazon SageMaker provides internet access to the notebook
4339
- # instance. If you set this to `Disabled` this notebook instance will be
4340
- # able to access resources only in your VPC, and will not be able to
4341
- # connect to Amazon SageMaker training and endpoint services unless your
4342
- # configure a NAT Gateway in your VPC.
4416
+ # instance. If you set this to `Disabled` this notebook instance is able
4417
+ # to access resources only in your VPC, and is not be able to connect to
4418
+ # Amazon SageMaker training and endpoint services unless you configure a
4419
+ # NAT Gateway in your VPC.
4343
4420
  #
4344
4421
  # For more information, see [Notebook Instances Are Internet-Enabled by
4345
4422
  # Default][1]. You can set the value of this parameter to `Disabled`
@@ -4963,8 +5040,6 @@ module Aws::SageMaker
4963
5040
  # * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
4964
5041
  # Amazon SageMaker to save the results of model training.
4965
5042
  #
4966
- #
4967
- #
4968
5043
  # * `ResourceConfig` - Identifies the resources, ML compute instances,
4969
5044
  # and ML storage volumes to deploy for model training. In distributed
4970
5045
  # training, you specify more than one instance.
@@ -4980,8 +5055,14 @@ module Aws::SageMaker
4980
5055
  #
4981
5056
  # * `StoppingCondition` - To help cap training costs, use
4982
5057
  # `MaxRuntimeInSeconds` to set a time limit for training. Use
4983
- # `MaxWaitTimeInSeconds` to specify how long you are willing to wait
4984
- # for a managed spot training job to complete.
5058
+ # `MaxWaitTimeInSeconds` to specify how long a managed spot training
5059
+ # job has to complete.
5060
+ #
5061
+ # * `Environment` - The environment variables to set in the Docker
5062
+ # container.
5063
+ #
5064
+ # * `RetryStrategy` - The number of times to retry the job when the job
5065
+ # fails due to an `InternalServerError`.
4985
5066
  #
4986
5067
  # For more information about Amazon SageMaker, see [How It Works][3].
4987
5068
  #
@@ -5086,9 +5167,10 @@ module Aws::SageMaker
5086
5167
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
5087
5168
  #
5088
5169
  # @option params [required, Types::StoppingCondition] :stopping_condition
5089
- # Specifies a limit to how long a model training job can run. When the
5090
- # job reaches the time limit, Amazon SageMaker ends the training job.
5091
- # Use this API to cap model training costs.
5170
+ # Specifies a limit to how long a model training job can run. It also
5171
+ # specifies how long a managed Spot training job has to complete. When
5172
+ # the job reaches the time limit, Amazon SageMaker ends the training
5173
+ # job. Use this API to cap model training costs.
5092
5174
  #
5093
5175
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
5094
5176
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -5180,6 +5262,13 @@ module Aws::SageMaker
5180
5262
  # Configuration information for Debugger rules for profiling system and
5181
5263
  # framework metrics.
5182
5264
  #
5265
+ # @option params [Hash<String,String>] :environment
5266
+ # The environment variables to set in the Docker container.
5267
+ #
5268
+ # @option params [Types::RetryStrategy] :retry_strategy
5269
+ # The number of times to retry the job when the job fails due to an
5270
+ # `InternalServerError`.
5271
+ #
5183
5272
  # @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5184
5273
  #
5185
5274
  # * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
@@ -5318,6 +5407,12 @@ module Aws::SageMaker
5318
5407
  # },
5319
5408
  # },
5320
5409
  # ],
5410
+ # environment: {
5411
+ # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
5412
+ # },
5413
+ # retry_strategy: {
5414
+ # maximum_retry_attempts: 1, # required
5415
+ # },
5321
5416
  # })
5322
5417
  #
5323
5418
  # @example Response structure
@@ -5543,14 +5638,14 @@ module Aws::SageMaker
5543
5638
  req.send_request(options)
5544
5639
  end
5545
5640
 
5546
- # Creates an Amazon SageMaker *trial*. A trial is a set of steps called
5547
- # *trial components* that produce a machine learning model. A trial is
5548
- # part of a single Amazon SageMaker *experiment*.
5641
+ # Creates an SageMaker *trial*. A trial is a set of steps called *trial
5642
+ # components* that produce a machine learning model. A trial is part of
5643
+ # a single SageMaker *experiment*.
5549
5644
  #
5550
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
5551
- # SDK, all experiments, trials, and trial components are automatically
5552
- # tracked, logged, and indexed. When you use the AWS SDK for Python
5553
- # (Boto), you must use the logging APIs provided by the SDK.
5645
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
5646
+ # experiments, trials, and trial components are automatically tracked,
5647
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5648
+ # must use the logging APIs provided by the SDK.
5554
5649
  #
5555
5650
  # You can add tags to a trial and then use the Search API to search for
5556
5651
  # the tags.
@@ -5621,19 +5716,19 @@ module Aws::SageMaker
5621
5716
  # Trial components include pre-processing jobs, training jobs, and batch
5622
5717
  # transform jobs.
5623
5718
  #
5624
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
5625
- # SDK, all experiments, trials, and trial components are automatically
5626
- # tracked, logged, and indexed. When you use the AWS SDK for Python
5627
- # (Boto), you must use the logging APIs provided by the SDK.
5719
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
5720
+ # experiments, trials, and trial components are automatically tracked,
5721
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5722
+ # must use the logging APIs provided by the SDK.
5628
5723
  #
5629
5724
  # You can add tags to a trial component and then use the Search API to
5630
5725
  # search for the tags.
5631
5726
  #
5632
- # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an Amazon
5633
- # SageMaker managed environment. This includes Amazon SageMaker training
5634
- # jobs, processing jobs, transform jobs, and Amazon SageMaker notebooks.
5635
- # A call to `CreateTrialComponent` from outside one of these
5636
- # environments results in an error.
5727
+ # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
5728
+ # managed environment. This includes SageMaker training jobs, processing
5729
+ # jobs, transform jobs, and SageMaker notebooks. A call to
5730
+ # `CreateTrialComponent` from outside one of these environments results
5731
+ # in an error.
5637
5732
  #
5638
5733
  # </note>
5639
5734
  #
@@ -5753,7 +5848,7 @@ module Aws::SageMaker
5753
5848
  # The ID of the associated Domain.
5754
5849
  #
5755
5850
  # @option params [required, String] :user_profile_name
5756
- # A name for the UserProfile.
5851
+ # A name for the UserProfile. This value is not case sensitive.
5757
5852
  #
5758
5853
  # @option params [String] :single_sign_on_user_identifier
5759
5854
  # A specifier for the type of value specified in SingleSignOnUserValue.
@@ -5771,6 +5866,9 @@ module Aws::SageMaker
5771
5866
  # Each tag consists of a key and an optional value. Tag keys must be
5772
5867
  # unique per resource.
5773
5868
  #
5869
+ # Tags that you specify for the User Profile are also added to all Apps
5870
+ # that the User Profile launches.
5871
+ #
5774
5872
  # @option params [Types::UserSettings] :user_settings
5775
5873
  # A collection of settings.
5776
5874
  #
@@ -6421,7 +6519,7 @@ module Aws::SageMaker
6421
6519
  req.send_request(options)
6422
6520
  end
6423
6521
 
6424
- # Deletes an Amazon SageMaker experiment. All trials associated with the
6522
+ # Deletes an SageMaker experiment. All trials associated with the
6425
6523
  # experiment must be deleted first. Use the ListTrials API to get a list
6426
6524
  # of the trials associated with the experiment.
6427
6525
  #
@@ -6816,7 +6914,10 @@ module Aws::SageMaker
6816
6914
  req.send_request(options)
6817
6915
  end
6818
6916
 
6819
- # Deletes a pipeline if there are no in-progress executions.
6917
+ # Deletes a pipeline if there are no running instances of the pipeline.
6918
+ # To delete a pipeline, you must stop all running instances of the
6919
+ # pipeline using the `StopPipelineExecution` API. When you delete a
6920
+ # pipeline, all instances of the pipeline are deleted.
6820
6921
  #
6821
6922
  # @option params [required, String] :pipeline_name
6822
6923
  # The name of the pipeline to delete.
@@ -6885,6 +6986,13 @@ module Aws::SageMaker
6885
6986
  #
6886
6987
  # </note>
6887
6988
  #
6989
+ # <note markdown="1"> When you call this API to delete tags from a SageMaker Studio Domain
6990
+ # or User Profile, the deleted tags are not removed from Apps that the
6991
+ # SageMaker Studio Domain or User Profile launched before you called
6992
+ # this API.
6993
+ #
6994
+ # </note>
6995
+ #
6888
6996
  # @option params [required, String] :resource_arn
6889
6997
  # The Amazon Resource Name (ARN) of the resource whose tags you want to
6890
6998
  # delete.
@@ -7453,10 +7561,10 @@ module Aws::SageMaker
7453
7561
  req.send_request(options)
7454
7562
  end
7455
7563
 
7456
- # Returns information about an Amazon SageMaker job.
7564
+ # Returns information about an Amazon SageMaker AutoML job.
7457
7565
  #
7458
7566
  # @option params [required, String] :auto_ml_job_name
7459
- # Request information about a job using that job's unique name.
7567
+ # Requests information about an AutoML job using its unique name.
7460
7568
  #
7461
7569
  # @return [Types::DescribeAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
7462
7570
  #
@@ -7472,12 +7580,15 @@ module Aws::SageMaker
7472
7580
  # * {Types::DescribeAutoMLJobResponse#end_time #end_time} => Time
7473
7581
  # * {Types::DescribeAutoMLJobResponse#last_modified_time #last_modified_time} => Time
7474
7582
  # * {Types::DescribeAutoMLJobResponse#failure_reason #failure_reason} => String
7583
+ # * {Types::DescribeAutoMLJobResponse#partial_failure_reasons #partial_failure_reasons} => Array&lt;Types::AutoMLPartialFailureReason&gt;
7475
7584
  # * {Types::DescribeAutoMLJobResponse#best_candidate #best_candidate} => Types::AutoMLCandidate
7476
7585
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_status #auto_ml_job_status} => String
7477
7586
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_secondary_status #auto_ml_job_secondary_status} => String
7478
7587
  # * {Types::DescribeAutoMLJobResponse#generate_candidate_definitions_only #generate_candidate_definitions_only} => Boolean
7479
7588
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
7480
7589
  # * {Types::DescribeAutoMLJobResponse#resolved_attributes #resolved_attributes} => Types::ResolvedAttributes
7590
+ # * {Types::DescribeAutoMLJobResponse#model_deploy_config #model_deploy_config} => Types::ModelDeployConfig
7591
+ # * {Types::DescribeAutoMLJobResponse#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
7481
7592
  #
7482
7593
  # @example Request syntax with placeholder values
7483
7594
  #
@@ -7512,6 +7623,8 @@ module Aws::SageMaker
7512
7623
  # resp.end_time #=> Time
7513
7624
  # resp.last_modified_time #=> Time
7514
7625
  # resp.failure_reason #=> String
7626
+ # resp.partial_failure_reasons #=> Array
7627
+ # resp.partial_failure_reasons[0].partial_failure_message #=> String
7515
7628
  # resp.best_candidate.candidate_name #=> String
7516
7629
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
7517
7630
  # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
@@ -7531,8 +7644,9 @@ module Aws::SageMaker
7531
7644
  # resp.best_candidate.end_time #=> Time
7532
7645
  # resp.best_candidate.last_modified_time #=> Time
7533
7646
  # resp.best_candidate.failure_reason #=> String
7647
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
7534
7648
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
7535
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
7649
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
7536
7650
  # resp.generate_candidate_definitions_only #=> Boolean
7537
7651
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
7538
7652
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
@@ -7541,6 +7655,9 @@ module Aws::SageMaker
7541
7655
  # resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
7542
7656
  # resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
7543
7657
  # resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
7658
+ # resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
7659
+ # resp.model_deploy_config.endpoint_name #=> String
7660
+ # resp.model_deploy_result.endpoint_name #=> String
7544
7661
  #
7545
7662
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJob AWS API Documentation
7546
7663
  #
@@ -8482,6 +8599,7 @@ module Aws::SageMaker
8482
8599
  # resp.training_job_definition.enable_managed_spot_training #=> Boolean
8483
8600
  # resp.training_job_definition.checkpoint_config.s3_uri #=> String
8484
8601
  # resp.training_job_definition.checkpoint_config.local_path #=> String
8602
+ # resp.training_job_definition.retry_strategy.maximum_retry_attempts #=> Integer
8485
8603
  # resp.training_job_definitions #=> Array
8486
8604
  # resp.training_job_definitions[0].definition_name #=> String
8487
8605
  # resp.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
@@ -8542,6 +8660,7 @@ module Aws::SageMaker
8542
8660
  # resp.training_job_definitions[0].enable_managed_spot_training #=> Boolean
8543
8661
  # resp.training_job_definitions[0].checkpoint_config.s3_uri #=> String
8544
8662
  # resp.training_job_definitions[0].checkpoint_config.local_path #=> String
8663
+ # resp.training_job_definitions[0].retry_strategy.maximum_retry_attempts #=> Integer
8545
8664
  # resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
8546
8665
  # resp.creation_time #=> Time
8547
8666
  # resp.hyper_parameter_tuning_end_time #=> Time
@@ -8812,6 +8931,7 @@ module Aws::SageMaker
8812
8931
  # resp.primary_container.container_hostname #=> String
8813
8932
  # resp.primary_container.image #=> String
8814
8933
  # resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
8934
+ # resp.primary_container.image_config.repository_auth_config.repository_credentials_provider_arn #=> String
8815
8935
  # resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
8816
8936
  # resp.primary_container.model_data_url #=> String
8817
8937
  # resp.primary_container.environment #=> Hash
@@ -8822,6 +8942,7 @@ module Aws::SageMaker
8822
8942
  # resp.containers[0].container_hostname #=> String
8823
8943
  # resp.containers[0].image #=> String
8824
8944
  # resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
8945
+ # resp.containers[0].image_config.repository_auth_config.repository_credentials_provider_arn #=> String
8825
8946
  # resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
8826
8947
  # resp.containers[0].model_data_url #=> String
8827
8948
  # resp.containers[0].environment #=> Hash
@@ -9863,6 +9984,8 @@ module Aws::SageMaker
9863
9984
  # * {Types::DescribeTrainingJobResponse#profiler_rule_configurations #profiler_rule_configurations} => Array&lt;Types::ProfilerRuleConfiguration&gt;
9864
9985
  # * {Types::DescribeTrainingJobResponse#profiler_rule_evaluation_statuses #profiler_rule_evaluation_statuses} => Array&lt;Types::ProfilerRuleEvaluationStatus&gt;
9865
9986
  # * {Types::DescribeTrainingJobResponse#profiling_status #profiling_status} => String
9987
+ # * {Types::DescribeTrainingJobResponse#retry_strategy #retry_strategy} => Types::RetryStrategy
9988
+ # * {Types::DescribeTrainingJobResponse#environment #environment} => Hash&lt;String,String&gt;
9866
9989
  #
9867
9990
  # @example Request syntax with placeholder values
9868
9991
  #
@@ -9879,7 +10002,7 @@ module Aws::SageMaker
9879
10002
  # resp.auto_ml_job_arn #=> String
9880
10003
  # resp.model_artifacts.s3_model_artifacts #=> String
9881
10004
  # resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
9882
- # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
10005
+ # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
9883
10006
  # resp.failure_reason #=> String
9884
10007
  # resp.hyper_parameters #=> Hash
9885
10008
  # resp.hyper_parameters["HyperParameterKey"] #=> String
@@ -9924,7 +10047,7 @@ module Aws::SageMaker
9924
10047
  # resp.training_end_time #=> Time
9925
10048
  # resp.last_modified_time #=> Time
9926
10049
  # resp.secondary_status_transitions #=> Array
9927
- # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
10050
+ # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
9928
10051
  # resp.secondary_status_transitions[0].start_time #=> Time
9929
10052
  # resp.secondary_status_transitions[0].end_time #=> Time
9930
10053
  # resp.secondary_status_transitions[0].status_message #=> String
@@ -9987,6 +10110,9 @@ module Aws::SageMaker
9987
10110
  # resp.profiler_rule_evaluation_statuses[0].status_details #=> String
9988
10111
  # resp.profiler_rule_evaluation_statuses[0].last_modified_time #=> Time
9989
10112
  # resp.profiling_status #=> String, one of "Enabled", "Disabled"
10113
+ # resp.retry_strategy.maximum_retry_attempts #=> Integer
10114
+ # resp.environment #=> Hash
10115
+ # resp.environment["TrainingEnvironmentKey"] #=> String
9990
10116
  #
9991
10117
  #
9992
10118
  # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
@@ -10231,7 +10357,7 @@ module Aws::SageMaker
10231
10357
  # The domain ID.
10232
10358
  #
10233
10359
  # @option params [required, String] :user_profile_name
10234
- # The user profile name.
10360
+ # The user profile name. This value is not case sensitive.
10235
10361
  #
10236
10362
  # @return [Types::DescribeUserProfileResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10237
10363
  #
@@ -11086,11 +11212,10 @@ module Aws::SageMaker
11086
11212
  # Request a list of jobs, using a filter for status.
11087
11213
  #
11088
11214
  # @option params [String] :sort_order
11089
- # The sort order for the results. The default is Descending.
11215
+ # The sort order for the results. The default is `Descending`.
11090
11216
  #
11091
11217
  # @option params [String] :sort_by
11092
- # The parameter by which to sort the results. The default is
11093
- # AutoMLJobName.
11218
+ # The parameter by which to sort the results. The default is `Name`.
11094
11219
  #
11095
11220
  # @option params [Integer] :max_results
11096
11221
  # Request a list of jobs up to a specified limit.
@@ -11127,11 +11252,13 @@ module Aws::SageMaker
11127
11252
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
11128
11253
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
11129
11254
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
11130
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
11255
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
11131
11256
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
11132
11257
  # resp.auto_ml_job_summaries[0].end_time #=> Time
11133
11258
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
11134
11259
  # resp.auto_ml_job_summaries[0].failure_reason #=> String
11260
+ # resp.auto_ml_job_summaries[0].partial_failure_reasons #=> Array
11261
+ # resp.auto_ml_job_summaries[0].partial_failure_reasons[0].partial_failure_message #=> String
11135
11262
  # resp.next_token #=> String
11136
11263
  #
11137
11264
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobs AWS API Documentation
@@ -11143,25 +11270,26 @@ module Aws::SageMaker
11143
11270
  req.send_request(options)
11144
11271
  end
11145
11272
 
11146
- # List the Candidates created for the job.
11273
+ # List the candidates created for the job.
11147
11274
  #
11148
11275
  # @option params [required, String] :auto_ml_job_name
11149
- # List the Candidates created for the job by providing the job's name.
11276
+ # List the candidates created for the job by providing the job's name.
11150
11277
  #
11151
11278
  # @option params [String] :status_equals
11152
- # List the Candidates for the job and filter by status.
11279
+ # List the candidates for the job and filter by status.
11153
11280
  #
11154
11281
  # @option params [String] :candidate_name_equals
11155
- # List the Candidates for the job and filter by candidate name.
11282
+ # List the candidates for the job and filter by candidate name.
11156
11283
  #
11157
11284
  # @option params [String] :sort_order
11158
- # The sort order for the results. The default is Ascending.
11285
+ # The sort order for the results. The default is `Ascending`.
11159
11286
  #
11160
11287
  # @option params [String] :sort_by
11161
- # The parameter by which to sort the results. The default is Descending.
11288
+ # The parameter by which to sort the results. The default is
11289
+ # `Descending`.
11162
11290
  #
11163
11291
  # @option params [Integer] :max_results
11164
- # List the job's Candidates up to a specified limit.
11292
+ # List the job's candidates up to a specified limit.
11165
11293
  #
11166
11294
  # @option params [String] :next_token
11167
11295
  # If the previous response was truncated, you receive this token. Use it
@@ -11208,6 +11336,7 @@ module Aws::SageMaker
11208
11336
  # resp.candidates[0].end_time #=> Time
11209
11337
  # resp.candidates[0].last_modified_time #=> Time
11210
11338
  # resp.candidates[0].failure_reason #=> String
11339
+ # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
11211
11340
  # resp.next_token #=> String
11212
11341
  #
11213
11342
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
@@ -11868,7 +11997,8 @@ module Aws::SageMaker
11868
11997
  # token in the next request.
11869
11998
  #
11870
11999
  # @option params [Integer] :max_results
11871
- # The maximum number of endpoints to return in the response.
12000
+ # The maximum number of endpoints to return in the response. This value
12001
+ # defaults to 10.
11872
12002
  #
11873
12003
  # @option params [String] :name_contains
11874
12004
  # A string in endpoint names. This filter returns only endpoints whose
@@ -13937,16 +14067,17 @@ module Aws::SageMaker
13937
14067
  # <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
13938
14068
  # `MaxResults` number of training jobs are first retrieved ignoring the
13939
14069
  # `StatusEquals` parameter and then they are filtered by the
13940
- # `StatusEquals` parameter, which is returned as a response. For
13941
- # example, if `ListTrainingJobs` is invoked with the following
14070
+ # `StatusEquals` parameter, which is returned as a response.
14071
+ #
14072
+ # For example, if `ListTrainingJobs` is invoked with the following
13942
14073
  # parameters:
13943
14074
  #
13944
14075
  # `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
13945
14076
  #
13946
- # Then, 100 trainings jobs with any status including those other than
13947
- # `InProgress` are selected first (sorted according the creation time,
13948
- # from the latest to the oldest) and those with status `InProgress` are
13949
- # returned.
14077
+ # First, 100 trainings jobs with any status, including those other than
14078
+ # `InProgress`, are selected (sorted according to the creation time,
14079
+ # from the most current to the oldest). Next, those with a status of
14080
+ # `InProgress` are returned.
13950
14081
  #
13951
14082
  # You can quickly test the API using the following AWS CLI code.
13952
14083
  #
@@ -14790,7 +14921,7 @@ module Aws::SageMaker
14790
14921
  # resp.results[0].training_job.auto_ml_job_arn #=> String
14791
14922
  # resp.results[0].training_job.model_artifacts.s3_model_artifacts #=> String
14792
14923
  # resp.results[0].training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
14793
- # resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
14924
+ # resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14794
14925
  # resp.results[0].training_job.failure_reason #=> String
14795
14926
  # resp.results[0].training_job.hyper_parameters #=> Hash
14796
14927
  # resp.results[0].training_job.hyper_parameters["HyperParameterKey"] #=> String
@@ -14835,7 +14966,7 @@ module Aws::SageMaker
14835
14966
  # resp.results[0].training_job.training_end_time #=> Time
14836
14967
  # resp.results[0].training_job.last_modified_time #=> Time
14837
14968
  # resp.results[0].training_job.secondary_status_transitions #=> Array
14838
- # resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
14969
+ # resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14839
14970
  # resp.results[0].training_job.secondary_status_transitions[0].start_time #=> Time
14840
14971
  # resp.results[0].training_job.secondary_status_transitions[0].end_time #=> Time
14841
14972
  # resp.results[0].training_job.secondary_status_transitions[0].status_message #=> String
@@ -14878,6 +15009,9 @@ module Aws::SageMaker
14878
15009
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
14879
15010
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].status_details #=> String
14880
15011
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
15012
+ # resp.results[0].training_job.environment #=> Hash
15013
+ # resp.results[0].training_job.environment["TrainingEnvironmentKey"] #=> String
15014
+ # resp.results[0].training_job.retry_strategy.maximum_retry_attempts #=> Integer
14881
15015
  # resp.results[0].training_job.tags #=> Array
14882
15016
  # resp.results[0].training_job.tags[0].key #=> String
14883
15017
  # resp.results[0].training_job.tags[0].value #=> String
@@ -14976,7 +15110,7 @@ module Aws::SageMaker
14976
15110
  # resp.results[0].trial_component.source_detail.training_job.auto_ml_job_arn #=> String
14977
15111
  # resp.results[0].trial_component.source_detail.training_job.model_artifacts.s3_model_artifacts #=> String
14978
15112
  # resp.results[0].trial_component.source_detail.training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
14979
- # resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
15113
+ # resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14980
15114
  # resp.results[0].trial_component.source_detail.training_job.failure_reason #=> String
14981
15115
  # resp.results[0].trial_component.source_detail.training_job.hyper_parameters #=> Hash
14982
15116
  # resp.results[0].trial_component.source_detail.training_job.hyper_parameters["HyperParameterKey"] #=> String
@@ -15021,7 +15155,7 @@ module Aws::SageMaker
15021
15155
  # resp.results[0].trial_component.source_detail.training_job.training_end_time #=> Time
15022
15156
  # resp.results[0].trial_component.source_detail.training_job.last_modified_time #=> Time
15023
15157
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions #=> Array
15024
- # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
15158
+ # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
15025
15159
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].start_time #=> Time
15026
15160
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].end_time #=> Time
15027
15161
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status_message #=> String
@@ -15064,6 +15198,9 @@ module Aws::SageMaker
15064
15198
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
15065
15199
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].status_details #=> String
15066
15200
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
15201
+ # resp.results[0].trial_component.source_detail.training_job.environment #=> Hash
15202
+ # resp.results[0].trial_component.source_detail.training_job.environment["TrainingEnvironmentKey"] #=> String
15203
+ # resp.results[0].trial_component.source_detail.training_job.retry_strategy.maximum_retry_attempts #=> Integer
15067
15204
  # resp.results[0].trial_component.source_detail.training_job.tags #=> Array
15068
15205
  # resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
15069
15206
  # resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
@@ -17309,7 +17446,7 @@ module Aws::SageMaker
17309
17446
  params: params,
17310
17447
  config: config)
17311
17448
  context[:gem_name] = 'aws-sdk-sagemaker'
17312
- context[:gem_version] = '1.82.0'
17449
+ context[:gem_version] = '1.87.0'
17313
17450
  Seahorse::Client::Request.new(handlers, context)
17314
17451
  end
17315
17452