aws-sdk-sagemaker 1.82.0 → 1.87.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +25 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +229 -92
- data/lib/aws-sdk-sagemaker/client_api.rb +56 -0
- data/lib/aws-sdk-sagemaker/types.rb +576 -205
- metadata +5 -6
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 45e81df582a8f46bb7d50a6580109c4227b377cf5f59586ef50a9be34360cd6f
|
4
|
+
data.tar.gz: cd0db9d973fade8261b241ae82628d4b5067c939818d47f41cbeac57b0aa18cf
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 8f261b921d2bc164337131794649947746c4aa0b4ab5f165cb77f9d76fe3c8db164a563023d01f968747d281eccbd89362ac01a3c0e7aded1794fb5748a6e335
|
7
|
+
data.tar.gz: 73ddb1e3d21f94622d02fb6f96aa8e9aff3fe8a9aac9f4d7c8632aec4c8b1e4453d453165e09cc075466ddad9422a5423a9d2c4c4cf93993923e72443073f135
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,31 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.87.0 (2021-05-05)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Amazon SageMaker Autopilot now provides the ability to automatically deploy the best model to an endpoint
|
8
|
+
|
9
|
+
1.86.0 (2021-05-04)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Enable retrying Training and Tuning Jobs that fail with InternalServerError by setting RetryStrategy.
|
13
|
+
|
14
|
+
1.85.0 (2021-03-30)
|
15
|
+
------------------
|
16
|
+
|
17
|
+
* Feature - Amazon SageMaker Autopilot now supports 1) feature importance reports for AutoML jobs and 2) PartialFailures for AutoML jobs
|
18
|
+
|
19
|
+
1.84.0 (2021-03-25)
|
20
|
+
------------------
|
21
|
+
|
22
|
+
* Feature - This feature allows customer to specify the environment variables in their CreateTrainingJob requests.
|
23
|
+
|
24
|
+
1.83.0 (2021-03-19)
|
25
|
+
------------------
|
26
|
+
|
27
|
+
* Feature - Adding authentication support for pulling images stored in private Docker registries to build containers for real-time inference.
|
28
|
+
|
4
29
|
1.82.0 (2021-03-17)
|
5
30
|
------------------
|
6
31
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.87.0
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -419,6 +419,17 @@ module Aws::SageMaker
|
|
419
419
|
#
|
420
420
|
# </note>
|
421
421
|
#
|
422
|
+
# <note markdown="1"> Tags that you add to a SageMaker Studio Domain or User Profile by
|
423
|
+
# calling this API are also added to any Apps that the Domain or User
|
424
|
+
# Profile launches after you call this API, but not to Apps that the
|
425
|
+
# Domain or User Profile launched before you called this API. To make
|
426
|
+
# sure that the tags associated with a Domain or User Profile are also
|
427
|
+
# added to all Apps that the Domain or User Profile launches, add the
|
428
|
+
# tags when you first create the Domain or User Profile by specifying
|
429
|
+
# them in the `Tags` parameter of CreateDomain or CreateUserProfile.
|
430
|
+
#
|
431
|
+
# </note>
|
432
|
+
#
|
422
433
|
#
|
423
434
|
#
|
424
435
|
# [1]: https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
|
@@ -508,6 +519,13 @@ module Aws::SageMaker
|
|
508
519
|
# artifact. For more information, see [Amazon SageMaker ML Lineage
|
509
520
|
# Tracking][1].
|
510
521
|
#
|
522
|
+
# <note markdown="1"> `CreateAction` can only be invoked from within an SageMaker managed
|
523
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
524
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateAction` from
|
525
|
+
# outside one of these environments results in an error.
|
526
|
+
#
|
527
|
+
# </note>
|
528
|
+
#
|
511
529
|
#
|
512
530
|
#
|
513
531
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -827,11 +845,11 @@ module Aws::SageMaker
|
|
827
845
|
req.send_request(options)
|
828
846
|
end
|
829
847
|
|
830
|
-
# Creates a running
|
831
|
-
# are JupyterServer and KernelGateway
|
832
|
-
# invoked by Amazon SageMaker Studio upon access to the
|
833
|
-
# Domain, and when new kernel configurations are selected by
|
834
|
-
# user may have multiple Apps active simultaneously.
|
848
|
+
# Creates a running app for the specified UserProfile. Supported apps
|
849
|
+
# are `JupyterServer` and `KernelGateway`. This operation is
|
850
|
+
# automatically invoked by Amazon SageMaker Studio upon access to the
|
851
|
+
# associated Domain, and when new kernel configurations are selected by
|
852
|
+
# the user. A user may have multiple Apps active simultaneously.
|
835
853
|
#
|
836
854
|
# @option params [required, String] :domain_id
|
837
855
|
# The domain ID.
|
@@ -840,7 +858,8 @@ module Aws::SageMaker
|
|
840
858
|
# The user profile name.
|
841
859
|
#
|
842
860
|
# @option params [required, String] :app_type
|
843
|
-
# The type of app.
|
861
|
+
# The type of app. Supported apps are `JupyterServer` and
|
862
|
+
# `KernelGateway`. `TensorBoard` is not supported.
|
844
863
|
#
|
845
864
|
# @option params [required, String] :app_name
|
846
865
|
# The name of the app.
|
@@ -951,6 +970,13 @@ module Aws::SageMaker
|
|
951
970
|
# URI of a dataset and the ECR registry path of an image. For more
|
952
971
|
# information, see [Amazon SageMaker ML Lineage Tracking][1].
|
953
972
|
#
|
973
|
+
# <note markdown="1"> `CreateArtifact` can only be invoked from within an SageMaker managed
|
974
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
975
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateArtifact`
|
976
|
+
# from outside one of these environments results in an error.
|
977
|
+
#
|
978
|
+
# </note>
|
979
|
+
#
|
954
980
|
#
|
955
981
|
#
|
956
982
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -1025,55 +1051,73 @@ module Aws::SageMaker
|
|
1025
1051
|
# Creates an Autopilot job.
|
1026
1052
|
#
|
1027
1053
|
# Find the best performing model after you run an Autopilot job by
|
1028
|
-
# calling .
|
1029
|
-
# 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
|
1054
|
+
# calling .
|
1030
1055
|
#
|
1031
|
-
# For information about how to use Autopilot, see [
|
1032
|
-
# Development with Amazon SageMaker Autopilot][
|
1056
|
+
# For information about how to use Autopilot, see [Automate Model
|
1057
|
+
# Development with Amazon SageMaker Autopilot][1].
|
1033
1058
|
#
|
1034
1059
|
#
|
1035
1060
|
#
|
1036
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/
|
1037
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1061
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1038
1062
|
#
|
1039
1063
|
# @option params [required, String] :auto_ml_job_name
|
1040
|
-
# Identifies an Autopilot job.
|
1041
|
-
# case-insensitive.
|
1064
|
+
# Identifies an Autopilot job. The name must be unique to your account
|
1065
|
+
# and is case-insensitive.
|
1042
1066
|
#
|
1043
1067
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
1044
|
-
#
|
1045
|
-
#
|
1068
|
+
# An array of channel objects that describes the input data and its
|
1069
|
+
# location. Each channel is a named input source. Similar to
|
1070
|
+
# `InputDataConfig` supported by . Format(s) supported: CSV. Minimum of
|
1071
|
+
# 500 rows.
|
1046
1072
|
#
|
1047
1073
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
1048
|
-
#
|
1074
|
+
# Provides information about encryption and the Amazon S3 output path
|
1075
|
+
# needed to store artifacts from an AutoML job. Format(s) supported:
|
1049
1076
|
# CSV.
|
1050
1077
|
#
|
1078
|
+
# <para>Specifies whether to automatically deploy the best
|
1079
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
1080
|
+
# deployed automatically.</para>
|
1081
|
+
#
|
1051
1082
|
# @option params [String] :problem_type
|
1052
|
-
# Defines the
|
1053
|
-
#
|
1054
|
-
#
|
1083
|
+
# Defines the type of supervised learning available for the candidates.
|
1084
|
+
# Options include: `BinaryClassification`, `MulticlassClassification`,
|
1085
|
+
# and `Regression`. For more information, see [ Amazon SageMaker
|
1086
|
+
# Autopilot problem types and algorithm support][1].
|
1087
|
+
#
|
1088
|
+
#
|
1089
|
+
#
|
1090
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
|
1055
1091
|
#
|
1056
1092
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1057
|
-
# Defines the objective
|
1058
|
-
#
|
1059
|
-
#
|
1060
|
-
# ObjectiveMetric for problem type is automaically selected.
|
1093
|
+
# Defines the objective metric used to measure the predictive quality of
|
1094
|
+
# an AutoML job. You provide an AutoMLJobObjective$MetricName and
|
1095
|
+
# Autopilot infers whether to minimize or maximize it.
|
1061
1096
|
#
|
1062
1097
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1063
|
-
# Contains CompletionCriteria and SecurityConfig
|
1098
|
+
# Contains `CompletionCriteria` and `SecurityConfig` settings for the
|
1099
|
+
# AutoML job.
|
1064
1100
|
#
|
1065
1101
|
# @option params [required, String] :role_arn
|
1066
1102
|
# The ARN of the role that is used to access the data.
|
1067
1103
|
#
|
1104
|
+
# <para>Specifies whether to automatically deploy the best
|
1105
|
+
# &ATP; model to an endpoint and the name of that endpoint if
|
1106
|
+
# deployed automatically.</para>
|
1107
|
+
#
|
1068
1108
|
# @option params [Boolean] :generate_candidate_definitions_only
|
1069
|
-
# Generates possible candidates without training
|
1070
|
-
# a combination of data preprocessors, algorithms, and algorithm
|
1109
|
+
# Generates possible candidates without training the models. A candidate
|
1110
|
+
# is a combination of data preprocessors, algorithms, and algorithm
|
1071
1111
|
# parameter settings.
|
1072
1112
|
#
|
1073
1113
|
# @option params [Array<Types::Tag>] :tags
|
1074
1114
|
# Each tag consists of a key and an optional value. Tag keys must be
|
1075
1115
|
# unique per resource.
|
1076
1116
|
#
|
1117
|
+
# @option params [Types::ModelDeployConfig] :model_deploy_config
|
1118
|
+
# Specifies how to generate the endpoint name for an automatic one-click
|
1119
|
+
# Autopilot model deployment.
|
1120
|
+
#
|
1077
1121
|
# @return [Types::CreateAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
1078
1122
|
#
|
1079
1123
|
# * {Types::CreateAutoMLJobResponse#auto_ml_job_arn #auto_ml_job_arn} => String
|
@@ -1125,6 +1169,10 @@ module Aws::SageMaker
|
|
1125
1169
|
# value: "TagValue", # required
|
1126
1170
|
# },
|
1127
1171
|
# ],
|
1172
|
+
# model_deploy_config: {
|
1173
|
+
# auto_generate_endpoint_name: false,
|
1174
|
+
# endpoint_name: "EndpointName",
|
1175
|
+
# },
|
1128
1176
|
# })
|
1129
1177
|
#
|
1130
1178
|
# @example Response structure
|
@@ -1343,6 +1391,13 @@ module Aws::SageMaker
|
|
1343
1391
|
# entities. Some examples are an endpoint and a model package. For more
|
1344
1392
|
# information, see [Amazon SageMaker ML Lineage Tracking][1].
|
1345
1393
|
#
|
1394
|
+
# <note markdown="1"> `CreateContext` can only be invoked from within an SageMaker managed
|
1395
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
1396
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateContext`
|
1397
|
+
# from outside one of these environments results in an error.
|
1398
|
+
#
|
1399
|
+
# </note>
|
1400
|
+
#
|
1346
1401
|
#
|
1347
1402
|
#
|
1348
1403
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -1651,7 +1706,14 @@ module Aws::SageMaker
|
|
1651
1706
|
# The mode of authentication that members use to access the domain.
|
1652
1707
|
#
|
1653
1708
|
# @option params [required, Types::UserSettings] :default_user_settings
|
1654
|
-
# The default user
|
1709
|
+
# The default settings to use to create a user profile when
|
1710
|
+
# `UserSettings` isn't specified in the call to the `CreateUserProfile`
|
1711
|
+
# API.
|
1712
|
+
#
|
1713
|
+
# `SecurityGroups` is aggregated when specified in both calls. For all
|
1714
|
+
# other settings in `UserSettings`, the values specified in
|
1715
|
+
# `CreateUserProfile` take precedence over those specified in
|
1716
|
+
# `CreateDomain`.
|
1655
1717
|
#
|
1656
1718
|
# @option params [required, Array<String>] :subnet_ids
|
1657
1719
|
# The VPC subnets that Studio uses for communication.
|
@@ -1663,7 +1725,10 @@ module Aws::SageMaker
|
|
1663
1725
|
# @option params [Array<Types::Tag>] :tags
|
1664
1726
|
# Tags to associated with the Domain. Each tag consists of a key and an
|
1665
1727
|
# optional value. Tag keys must be unique per resource. Tags are
|
1666
|
-
# searchable using the Search API.
|
1728
|
+
# searchable using the `Search` API.
|
1729
|
+
#
|
1730
|
+
# Tags that you specify for the Domain are also added to all Apps that
|
1731
|
+
# the Domain launches.
|
1667
1732
|
#
|
1668
1733
|
# @option params [String] :app_network_access_type
|
1669
1734
|
# Specifies the VPC used for non-EFS traffic. The default value is
|
@@ -2141,10 +2206,10 @@ module Aws::SageMaker
|
|
2141
2206
|
# measuring the impact of a change to one or more inputs, while keeping
|
2142
2207
|
# the remaining inputs constant.
|
2143
2208
|
#
|
2144
|
-
# When you use
|
2145
|
-
#
|
2146
|
-
#
|
2147
|
-
#
|
2209
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
2210
|
+
# experiments, trials, and trial components are automatically tracked,
|
2211
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
2212
|
+
# must use the logging APIs provided by the SDK.
|
2148
2213
|
#
|
2149
2214
|
# You can add tags to experiments, trials, trial components and then use
|
2150
2215
|
# the Search API to search for the tags.
|
@@ -2722,6 +2787,9 @@ module Aws::SageMaker
|
|
2722
2787
|
# s3_uri: "S3Uri", # required
|
2723
2788
|
# local_path: "DirectoryPath",
|
2724
2789
|
# },
|
2790
|
+
# retry_strategy: {
|
2791
|
+
# maximum_retry_attempts: 1, # required
|
2792
|
+
# },
|
2725
2793
|
# },
|
2726
2794
|
# training_job_definitions: [
|
2727
2795
|
# {
|
@@ -2820,6 +2888,9 @@ module Aws::SageMaker
|
|
2820
2888
|
# s3_uri: "S3Uri", # required
|
2821
2889
|
# local_path: "DirectoryPath",
|
2822
2890
|
# },
|
2891
|
+
# retry_strategy: {
|
2892
|
+
# maximum_retry_attempts: 1, # required
|
2893
|
+
# },
|
2823
2894
|
# },
|
2824
2895
|
# ],
|
2825
2896
|
# warm_start_config: {
|
@@ -3358,6 +3429,9 @@ module Aws::SageMaker
|
|
3358
3429
|
# image: "ContainerImage",
|
3359
3430
|
# image_config: {
|
3360
3431
|
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
3432
|
+
# repository_auth_config: {
|
3433
|
+
# repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
|
3434
|
+
# },
|
3361
3435
|
# },
|
3362
3436
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
3363
3437
|
# model_data_url: "Url",
|
@@ -3375,6 +3449,9 @@ module Aws::SageMaker
|
|
3375
3449
|
# image: "ContainerImage",
|
3376
3450
|
# image_config: {
|
3377
3451
|
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
3452
|
+
# repository_auth_config: {
|
3453
|
+
# repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
|
3454
|
+
# },
|
3378
3455
|
# },
|
3379
3456
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
3380
3457
|
# model_data_url: "Url",
|
@@ -4336,10 +4413,10 @@ module Aws::SageMaker
|
|
4336
4413
|
#
|
4337
4414
|
# @option params [String] :direct_internet_access
|
4338
4415
|
# Sets whether Amazon SageMaker provides internet access to the notebook
|
4339
|
-
# instance. If you set this to `Disabled` this notebook instance
|
4340
|
-
#
|
4341
|
-
#
|
4342
|
-
#
|
4416
|
+
# instance. If you set this to `Disabled` this notebook instance is able
|
4417
|
+
# to access resources only in your VPC, and is not be able to connect to
|
4418
|
+
# Amazon SageMaker training and endpoint services unless you configure a
|
4419
|
+
# NAT Gateway in your VPC.
|
4343
4420
|
#
|
4344
4421
|
# For more information, see [Notebook Instances Are Internet-Enabled by
|
4345
4422
|
# Default][1]. You can set the value of this parameter to `Disabled`
|
@@ -4963,8 +5040,6 @@ module Aws::SageMaker
|
|
4963
5040
|
# * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
|
4964
5041
|
# Amazon SageMaker to save the results of model training.
|
4965
5042
|
#
|
4966
|
-
#
|
4967
|
-
#
|
4968
5043
|
# * `ResourceConfig` - Identifies the resources, ML compute instances,
|
4969
5044
|
# and ML storage volumes to deploy for model training. In distributed
|
4970
5045
|
# training, you specify more than one instance.
|
@@ -4980,8 +5055,14 @@ module Aws::SageMaker
|
|
4980
5055
|
#
|
4981
5056
|
# * `StoppingCondition` - To help cap training costs, use
|
4982
5057
|
# `MaxRuntimeInSeconds` to set a time limit for training. Use
|
4983
|
-
# `MaxWaitTimeInSeconds` to specify how long
|
4984
|
-
#
|
5058
|
+
# `MaxWaitTimeInSeconds` to specify how long a managed spot training
|
5059
|
+
# job has to complete.
|
5060
|
+
#
|
5061
|
+
# * `Environment` - The environment variables to set in the Docker
|
5062
|
+
# container.
|
5063
|
+
#
|
5064
|
+
# * `RetryStrategy` - The number of times to retry the job when the job
|
5065
|
+
# fails due to an `InternalServerError`.
|
4985
5066
|
#
|
4986
5067
|
# For more information about Amazon SageMaker, see [How It Works][3].
|
4987
5068
|
#
|
@@ -5086,9 +5167,10 @@ module Aws::SageMaker
|
|
5086
5167
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
|
5087
5168
|
#
|
5088
5169
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
5089
|
-
# Specifies a limit to how long a model training job can run.
|
5090
|
-
#
|
5091
|
-
#
|
5170
|
+
# Specifies a limit to how long a model training job can run. It also
|
5171
|
+
# specifies how long a managed Spot training job has to complete. When
|
5172
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
5173
|
+
# job. Use this API to cap model training costs.
|
5092
5174
|
#
|
5093
5175
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
5094
5176
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -5180,6 +5262,13 @@ module Aws::SageMaker
|
|
5180
5262
|
# Configuration information for Debugger rules for profiling system and
|
5181
5263
|
# framework metrics.
|
5182
5264
|
#
|
5265
|
+
# @option params [Hash<String,String>] :environment
|
5266
|
+
# The environment variables to set in the Docker container.
|
5267
|
+
#
|
5268
|
+
# @option params [Types::RetryStrategy] :retry_strategy
|
5269
|
+
# The number of times to retry the job when the job fails due to an
|
5270
|
+
# `InternalServerError`.
|
5271
|
+
#
|
5183
5272
|
# @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
5184
5273
|
#
|
5185
5274
|
# * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
|
@@ -5318,6 +5407,12 @@ module Aws::SageMaker
|
|
5318
5407
|
# },
|
5319
5408
|
# },
|
5320
5409
|
# ],
|
5410
|
+
# environment: {
|
5411
|
+
# "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
|
5412
|
+
# },
|
5413
|
+
# retry_strategy: {
|
5414
|
+
# maximum_retry_attempts: 1, # required
|
5415
|
+
# },
|
5321
5416
|
# })
|
5322
5417
|
#
|
5323
5418
|
# @example Response structure
|
@@ -5543,14 +5638,14 @@ module Aws::SageMaker
|
|
5543
5638
|
req.send_request(options)
|
5544
5639
|
end
|
5545
5640
|
|
5546
|
-
# Creates an
|
5547
|
-
#
|
5548
|
-
#
|
5641
|
+
# Creates an SageMaker *trial*. A trial is a set of steps called *trial
|
5642
|
+
# components* that produce a machine learning model. A trial is part of
|
5643
|
+
# a single SageMaker *experiment*.
|
5549
5644
|
#
|
5550
|
-
# When you use
|
5551
|
-
#
|
5552
|
-
#
|
5553
|
-
#
|
5645
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
5646
|
+
# experiments, trials, and trial components are automatically tracked,
|
5647
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
5648
|
+
# must use the logging APIs provided by the SDK.
|
5554
5649
|
#
|
5555
5650
|
# You can add tags to a trial and then use the Search API to search for
|
5556
5651
|
# the tags.
|
@@ -5621,19 +5716,19 @@ module Aws::SageMaker
|
|
5621
5716
|
# Trial components include pre-processing jobs, training jobs, and batch
|
5622
5717
|
# transform jobs.
|
5623
5718
|
#
|
5624
|
-
# When you use
|
5625
|
-
#
|
5626
|
-
#
|
5627
|
-
#
|
5719
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
5720
|
+
# experiments, trials, and trial components are automatically tracked,
|
5721
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
5722
|
+
# must use the logging APIs provided by the SDK.
|
5628
5723
|
#
|
5629
5724
|
# You can add tags to a trial component and then use the Search API to
|
5630
5725
|
# search for the tags.
|
5631
5726
|
#
|
5632
|
-
# <note markdown="1"> `CreateTrialComponent` can only be invoked from within an
|
5633
|
-
#
|
5634
|
-
# jobs,
|
5635
|
-
#
|
5636
|
-
#
|
5727
|
+
# <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
|
5728
|
+
# managed environment. This includes SageMaker training jobs, processing
|
5729
|
+
# jobs, transform jobs, and SageMaker notebooks. A call to
|
5730
|
+
# `CreateTrialComponent` from outside one of these environments results
|
5731
|
+
# in an error.
|
5637
5732
|
#
|
5638
5733
|
# </note>
|
5639
5734
|
#
|
@@ -5753,7 +5848,7 @@ module Aws::SageMaker
|
|
5753
5848
|
# The ID of the associated Domain.
|
5754
5849
|
#
|
5755
5850
|
# @option params [required, String] :user_profile_name
|
5756
|
-
# A name for the UserProfile.
|
5851
|
+
# A name for the UserProfile. This value is not case sensitive.
|
5757
5852
|
#
|
5758
5853
|
# @option params [String] :single_sign_on_user_identifier
|
5759
5854
|
# A specifier for the type of value specified in SingleSignOnUserValue.
|
@@ -5771,6 +5866,9 @@ module Aws::SageMaker
|
|
5771
5866
|
# Each tag consists of a key and an optional value. Tag keys must be
|
5772
5867
|
# unique per resource.
|
5773
5868
|
#
|
5869
|
+
# Tags that you specify for the User Profile are also added to all Apps
|
5870
|
+
# that the User Profile launches.
|
5871
|
+
#
|
5774
5872
|
# @option params [Types::UserSettings] :user_settings
|
5775
5873
|
# A collection of settings.
|
5776
5874
|
#
|
@@ -6421,7 +6519,7 @@ module Aws::SageMaker
|
|
6421
6519
|
req.send_request(options)
|
6422
6520
|
end
|
6423
6521
|
|
6424
|
-
# Deletes an
|
6522
|
+
# Deletes an SageMaker experiment. All trials associated with the
|
6425
6523
|
# experiment must be deleted first. Use the ListTrials API to get a list
|
6426
6524
|
# of the trials associated with the experiment.
|
6427
6525
|
#
|
@@ -6816,7 +6914,10 @@ module Aws::SageMaker
|
|
6816
6914
|
req.send_request(options)
|
6817
6915
|
end
|
6818
6916
|
|
6819
|
-
# Deletes a pipeline if there are no
|
6917
|
+
# Deletes a pipeline if there are no running instances of the pipeline.
|
6918
|
+
# To delete a pipeline, you must stop all running instances of the
|
6919
|
+
# pipeline using the `StopPipelineExecution` API. When you delete a
|
6920
|
+
# pipeline, all instances of the pipeline are deleted.
|
6820
6921
|
#
|
6821
6922
|
# @option params [required, String] :pipeline_name
|
6822
6923
|
# The name of the pipeline to delete.
|
@@ -6885,6 +6986,13 @@ module Aws::SageMaker
|
|
6885
6986
|
#
|
6886
6987
|
# </note>
|
6887
6988
|
#
|
6989
|
+
# <note markdown="1"> When you call this API to delete tags from a SageMaker Studio Domain
|
6990
|
+
# or User Profile, the deleted tags are not removed from Apps that the
|
6991
|
+
# SageMaker Studio Domain or User Profile launched before you called
|
6992
|
+
# this API.
|
6993
|
+
#
|
6994
|
+
# </note>
|
6995
|
+
#
|
6888
6996
|
# @option params [required, String] :resource_arn
|
6889
6997
|
# The Amazon Resource Name (ARN) of the resource whose tags you want to
|
6890
6998
|
# delete.
|
@@ -7453,10 +7561,10 @@ module Aws::SageMaker
|
|
7453
7561
|
req.send_request(options)
|
7454
7562
|
end
|
7455
7563
|
|
7456
|
-
# Returns information about an Amazon SageMaker job.
|
7564
|
+
# Returns information about an Amazon SageMaker AutoML job.
|
7457
7565
|
#
|
7458
7566
|
# @option params [required, String] :auto_ml_job_name
|
7459
|
-
#
|
7567
|
+
# Requests information about an AutoML job using its unique name.
|
7460
7568
|
#
|
7461
7569
|
# @return [Types::DescribeAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
7462
7570
|
#
|
@@ -7472,12 +7580,15 @@ module Aws::SageMaker
|
|
7472
7580
|
# * {Types::DescribeAutoMLJobResponse#end_time #end_time} => Time
|
7473
7581
|
# * {Types::DescribeAutoMLJobResponse#last_modified_time #last_modified_time} => Time
|
7474
7582
|
# * {Types::DescribeAutoMLJobResponse#failure_reason #failure_reason} => String
|
7583
|
+
# * {Types::DescribeAutoMLJobResponse#partial_failure_reasons #partial_failure_reasons} => Array<Types::AutoMLPartialFailureReason>
|
7475
7584
|
# * {Types::DescribeAutoMLJobResponse#best_candidate #best_candidate} => Types::AutoMLCandidate
|
7476
7585
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_status #auto_ml_job_status} => String
|
7477
7586
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_secondary_status #auto_ml_job_secondary_status} => String
|
7478
7587
|
# * {Types::DescribeAutoMLJobResponse#generate_candidate_definitions_only #generate_candidate_definitions_only} => Boolean
|
7479
7588
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_artifacts #auto_ml_job_artifacts} => Types::AutoMLJobArtifacts
|
7480
7589
|
# * {Types::DescribeAutoMLJobResponse#resolved_attributes #resolved_attributes} => Types::ResolvedAttributes
|
7590
|
+
# * {Types::DescribeAutoMLJobResponse#model_deploy_config #model_deploy_config} => Types::ModelDeployConfig
|
7591
|
+
# * {Types::DescribeAutoMLJobResponse#model_deploy_result #model_deploy_result} => Types::ModelDeployResult
|
7481
7592
|
#
|
7482
7593
|
# @example Request syntax with placeholder values
|
7483
7594
|
#
|
@@ -7512,6 +7623,8 @@ module Aws::SageMaker
|
|
7512
7623
|
# resp.end_time #=> Time
|
7513
7624
|
# resp.last_modified_time #=> Time
|
7514
7625
|
# resp.failure_reason #=> String
|
7626
|
+
# resp.partial_failure_reasons #=> Array
|
7627
|
+
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
7515
7628
|
# resp.best_candidate.candidate_name #=> String
|
7516
7629
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
7517
7630
|
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
@@ -7531,8 +7644,9 @@ module Aws::SageMaker
|
|
7531
7644
|
# resp.best_candidate.end_time #=> Time
|
7532
7645
|
# resp.best_candidate.last_modified_time #=> Time
|
7533
7646
|
# resp.best_candidate.failure_reason #=> String
|
7647
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
7534
7648
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
7535
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
|
7649
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
|
7536
7650
|
# resp.generate_candidate_definitions_only #=> Boolean
|
7537
7651
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
7538
7652
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
@@ -7541,6 +7655,9 @@ module Aws::SageMaker
|
|
7541
7655
|
# resp.resolved_attributes.completion_criteria.max_candidates #=> Integer
|
7542
7656
|
# resp.resolved_attributes.completion_criteria.max_runtime_per_training_job_in_seconds #=> Integer
|
7543
7657
|
# resp.resolved_attributes.completion_criteria.max_auto_ml_job_runtime_in_seconds #=> Integer
|
7658
|
+
# resp.model_deploy_config.auto_generate_endpoint_name #=> Boolean
|
7659
|
+
# resp.model_deploy_config.endpoint_name #=> String
|
7660
|
+
# resp.model_deploy_result.endpoint_name #=> String
|
7544
7661
|
#
|
7545
7662
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJob AWS API Documentation
|
7546
7663
|
#
|
@@ -8482,6 +8599,7 @@ module Aws::SageMaker
|
|
8482
8599
|
# resp.training_job_definition.enable_managed_spot_training #=> Boolean
|
8483
8600
|
# resp.training_job_definition.checkpoint_config.s3_uri #=> String
|
8484
8601
|
# resp.training_job_definition.checkpoint_config.local_path #=> String
|
8602
|
+
# resp.training_job_definition.retry_strategy.maximum_retry_attempts #=> Integer
|
8485
8603
|
# resp.training_job_definitions #=> Array
|
8486
8604
|
# resp.training_job_definitions[0].definition_name #=> String
|
8487
8605
|
# resp.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
|
@@ -8542,6 +8660,7 @@ module Aws::SageMaker
|
|
8542
8660
|
# resp.training_job_definitions[0].enable_managed_spot_training #=> Boolean
|
8543
8661
|
# resp.training_job_definitions[0].checkpoint_config.s3_uri #=> String
|
8544
8662
|
# resp.training_job_definitions[0].checkpoint_config.local_path #=> String
|
8663
|
+
# resp.training_job_definitions[0].retry_strategy.maximum_retry_attempts #=> Integer
|
8545
8664
|
# resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
8546
8665
|
# resp.creation_time #=> Time
|
8547
8666
|
# resp.hyper_parameter_tuning_end_time #=> Time
|
@@ -8812,6 +8931,7 @@ module Aws::SageMaker
|
|
8812
8931
|
# resp.primary_container.container_hostname #=> String
|
8813
8932
|
# resp.primary_container.image #=> String
|
8814
8933
|
# resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
|
8934
|
+
# resp.primary_container.image_config.repository_auth_config.repository_credentials_provider_arn #=> String
|
8815
8935
|
# resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
|
8816
8936
|
# resp.primary_container.model_data_url #=> String
|
8817
8937
|
# resp.primary_container.environment #=> Hash
|
@@ -8822,6 +8942,7 @@ module Aws::SageMaker
|
|
8822
8942
|
# resp.containers[0].container_hostname #=> String
|
8823
8943
|
# resp.containers[0].image #=> String
|
8824
8944
|
# resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
|
8945
|
+
# resp.containers[0].image_config.repository_auth_config.repository_credentials_provider_arn #=> String
|
8825
8946
|
# resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
|
8826
8947
|
# resp.containers[0].model_data_url #=> String
|
8827
8948
|
# resp.containers[0].environment #=> Hash
|
@@ -9863,6 +9984,8 @@ module Aws::SageMaker
|
|
9863
9984
|
# * {Types::DescribeTrainingJobResponse#profiler_rule_configurations #profiler_rule_configurations} => Array<Types::ProfilerRuleConfiguration>
|
9864
9985
|
# * {Types::DescribeTrainingJobResponse#profiler_rule_evaluation_statuses #profiler_rule_evaluation_statuses} => Array<Types::ProfilerRuleEvaluationStatus>
|
9865
9986
|
# * {Types::DescribeTrainingJobResponse#profiling_status #profiling_status} => String
|
9987
|
+
# * {Types::DescribeTrainingJobResponse#retry_strategy #retry_strategy} => Types::RetryStrategy
|
9988
|
+
# * {Types::DescribeTrainingJobResponse#environment #environment} => Hash<String,String>
|
9866
9989
|
#
|
9867
9990
|
# @example Request syntax with placeholder values
|
9868
9991
|
#
|
@@ -9879,7 +10002,7 @@ module Aws::SageMaker
|
|
9879
10002
|
# resp.auto_ml_job_arn #=> String
|
9880
10003
|
# resp.model_artifacts.s3_model_artifacts #=> String
|
9881
10004
|
# resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
9882
|
-
# resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
10005
|
+
# resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
9883
10006
|
# resp.failure_reason #=> String
|
9884
10007
|
# resp.hyper_parameters #=> Hash
|
9885
10008
|
# resp.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -9924,7 +10047,7 @@ module Aws::SageMaker
|
|
9924
10047
|
# resp.training_end_time #=> Time
|
9925
10048
|
# resp.last_modified_time #=> Time
|
9926
10049
|
# resp.secondary_status_transitions #=> Array
|
9927
|
-
# resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
10050
|
+
# resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
9928
10051
|
# resp.secondary_status_transitions[0].start_time #=> Time
|
9929
10052
|
# resp.secondary_status_transitions[0].end_time #=> Time
|
9930
10053
|
# resp.secondary_status_transitions[0].status_message #=> String
|
@@ -9987,6 +10110,9 @@ module Aws::SageMaker
|
|
9987
10110
|
# resp.profiler_rule_evaluation_statuses[0].status_details #=> String
|
9988
10111
|
# resp.profiler_rule_evaluation_statuses[0].last_modified_time #=> Time
|
9989
10112
|
# resp.profiling_status #=> String, one of "Enabled", "Disabled"
|
10113
|
+
# resp.retry_strategy.maximum_retry_attempts #=> Integer
|
10114
|
+
# resp.environment #=> Hash
|
10115
|
+
# resp.environment["TrainingEnvironmentKey"] #=> String
|
9990
10116
|
#
|
9991
10117
|
#
|
9992
10118
|
# The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
|
@@ -10231,7 +10357,7 @@ module Aws::SageMaker
|
|
10231
10357
|
# The domain ID.
|
10232
10358
|
#
|
10233
10359
|
# @option params [required, String] :user_profile_name
|
10234
|
-
# The user profile name.
|
10360
|
+
# The user profile name. This value is not case sensitive.
|
10235
10361
|
#
|
10236
10362
|
# @return [Types::DescribeUserProfileResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10237
10363
|
#
|
@@ -11086,11 +11212,10 @@ module Aws::SageMaker
|
|
11086
11212
|
# Request a list of jobs, using a filter for status.
|
11087
11213
|
#
|
11088
11214
|
# @option params [String] :sort_order
|
11089
|
-
# The sort order for the results. The default is Descending
|
11215
|
+
# The sort order for the results. The default is `Descending`.
|
11090
11216
|
#
|
11091
11217
|
# @option params [String] :sort_by
|
11092
|
-
# The parameter by which to sort the results. The default is
|
11093
|
-
# AutoMLJobName.
|
11218
|
+
# The parameter by which to sort the results. The default is `Name`.
|
11094
11219
|
#
|
11095
11220
|
# @option params [Integer] :max_results
|
11096
11221
|
# Request a list of jobs up to a specified limit.
|
@@ -11127,11 +11252,13 @@ module Aws::SageMaker
|
|
11127
11252
|
# resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
|
11128
11253
|
# resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
|
11129
11254
|
# resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
11130
|
-
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
|
11255
|
+
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError", "DeployingModel", "ModelDeploymentError"
|
11131
11256
|
# resp.auto_ml_job_summaries[0].creation_time #=> Time
|
11132
11257
|
# resp.auto_ml_job_summaries[0].end_time #=> Time
|
11133
11258
|
# resp.auto_ml_job_summaries[0].last_modified_time #=> Time
|
11134
11259
|
# resp.auto_ml_job_summaries[0].failure_reason #=> String
|
11260
|
+
# resp.auto_ml_job_summaries[0].partial_failure_reasons #=> Array
|
11261
|
+
# resp.auto_ml_job_summaries[0].partial_failure_reasons[0].partial_failure_message #=> String
|
11135
11262
|
# resp.next_token #=> String
|
11136
11263
|
#
|
11137
11264
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobs AWS API Documentation
|
@@ -11143,25 +11270,26 @@ module Aws::SageMaker
|
|
11143
11270
|
req.send_request(options)
|
11144
11271
|
end
|
11145
11272
|
|
11146
|
-
# List the
|
11273
|
+
# List the candidates created for the job.
|
11147
11274
|
#
|
11148
11275
|
# @option params [required, String] :auto_ml_job_name
|
11149
|
-
# List the
|
11276
|
+
# List the candidates created for the job by providing the job's name.
|
11150
11277
|
#
|
11151
11278
|
# @option params [String] :status_equals
|
11152
|
-
# List the
|
11279
|
+
# List the candidates for the job and filter by status.
|
11153
11280
|
#
|
11154
11281
|
# @option params [String] :candidate_name_equals
|
11155
|
-
# List the
|
11282
|
+
# List the candidates for the job and filter by candidate name.
|
11156
11283
|
#
|
11157
11284
|
# @option params [String] :sort_order
|
11158
|
-
# The sort order for the results. The default is Ascending
|
11285
|
+
# The sort order for the results. The default is `Ascending`.
|
11159
11286
|
#
|
11160
11287
|
# @option params [String] :sort_by
|
11161
|
-
# The parameter by which to sort the results. The default is
|
11288
|
+
# The parameter by which to sort the results. The default is
|
11289
|
+
# `Descending`.
|
11162
11290
|
#
|
11163
11291
|
# @option params [Integer] :max_results
|
11164
|
-
# List the job's
|
11292
|
+
# List the job's candidates up to a specified limit.
|
11165
11293
|
#
|
11166
11294
|
# @option params [String] :next_token
|
11167
11295
|
# If the previous response was truncated, you receive this token. Use it
|
@@ -11208,6 +11336,7 @@ module Aws::SageMaker
|
|
11208
11336
|
# resp.candidates[0].end_time #=> Time
|
11209
11337
|
# resp.candidates[0].last_modified_time #=> Time
|
11210
11338
|
# resp.candidates[0].failure_reason #=> String
|
11339
|
+
# resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
|
11211
11340
|
# resp.next_token #=> String
|
11212
11341
|
#
|
11213
11342
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
|
@@ -11868,7 +11997,8 @@ module Aws::SageMaker
|
|
11868
11997
|
# token in the next request.
|
11869
11998
|
#
|
11870
11999
|
# @option params [Integer] :max_results
|
11871
|
-
# The maximum number of endpoints to return in the response.
|
12000
|
+
# The maximum number of endpoints to return in the response. This value
|
12001
|
+
# defaults to 10.
|
11872
12002
|
#
|
11873
12003
|
# @option params [String] :name_contains
|
11874
12004
|
# A string in endpoint names. This filter returns only endpoints whose
|
@@ -13937,16 +14067,17 @@ module Aws::SageMaker
|
|
13937
14067
|
# <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
|
13938
14068
|
# `MaxResults` number of training jobs are first retrieved ignoring the
|
13939
14069
|
# `StatusEquals` parameter and then they are filtered by the
|
13940
|
-
# `StatusEquals` parameter, which is returned as a response.
|
13941
|
-
#
|
14070
|
+
# `StatusEquals` parameter, which is returned as a response.
|
14071
|
+
#
|
14072
|
+
# For example, if `ListTrainingJobs` is invoked with the following
|
13942
14073
|
# parameters:
|
13943
14074
|
#
|
13944
14075
|
# `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
|
13945
14076
|
#
|
13946
|
-
#
|
13947
|
-
# `InProgress
|
13948
|
-
# from the
|
13949
|
-
# returned.
|
14077
|
+
# First, 100 trainings jobs with any status, including those other than
|
14078
|
+
# `InProgress`, are selected (sorted according to the creation time,
|
14079
|
+
# from the most current to the oldest). Next, those with a status of
|
14080
|
+
# `InProgress` are returned.
|
13950
14081
|
#
|
13951
14082
|
# You can quickly test the API using the following AWS CLI code.
|
13952
14083
|
#
|
@@ -14790,7 +14921,7 @@ module Aws::SageMaker
|
|
14790
14921
|
# resp.results[0].training_job.auto_ml_job_arn #=> String
|
14791
14922
|
# resp.results[0].training_job.model_artifacts.s3_model_artifacts #=> String
|
14792
14923
|
# resp.results[0].training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
14793
|
-
# resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
14924
|
+
# resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14794
14925
|
# resp.results[0].training_job.failure_reason #=> String
|
14795
14926
|
# resp.results[0].training_job.hyper_parameters #=> Hash
|
14796
14927
|
# resp.results[0].training_job.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -14835,7 +14966,7 @@ module Aws::SageMaker
|
|
14835
14966
|
# resp.results[0].training_job.training_end_time #=> Time
|
14836
14967
|
# resp.results[0].training_job.last_modified_time #=> Time
|
14837
14968
|
# resp.results[0].training_job.secondary_status_transitions #=> Array
|
14838
|
-
# resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
14969
|
+
# resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14839
14970
|
# resp.results[0].training_job.secondary_status_transitions[0].start_time #=> Time
|
14840
14971
|
# resp.results[0].training_job.secondary_status_transitions[0].end_time #=> Time
|
14841
14972
|
# resp.results[0].training_job.secondary_status_transitions[0].status_message #=> String
|
@@ -14878,6 +15009,9 @@ module Aws::SageMaker
|
|
14878
15009
|
# resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
|
14879
15010
|
# resp.results[0].training_job.debug_rule_evaluation_statuses[0].status_details #=> String
|
14880
15011
|
# resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
|
15012
|
+
# resp.results[0].training_job.environment #=> Hash
|
15013
|
+
# resp.results[0].training_job.environment["TrainingEnvironmentKey"] #=> String
|
15014
|
+
# resp.results[0].training_job.retry_strategy.maximum_retry_attempts #=> Integer
|
14881
15015
|
# resp.results[0].training_job.tags #=> Array
|
14882
15016
|
# resp.results[0].training_job.tags[0].key #=> String
|
14883
15017
|
# resp.results[0].training_job.tags[0].value #=> String
|
@@ -14976,7 +15110,7 @@ module Aws::SageMaker
|
|
14976
15110
|
# resp.results[0].trial_component.source_detail.training_job.auto_ml_job_arn #=> String
|
14977
15111
|
# resp.results[0].trial_component.source_detail.training_job.model_artifacts.s3_model_artifacts #=> String
|
14978
15112
|
# resp.results[0].trial_component.source_detail.training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
14979
|
-
# resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
15113
|
+
# resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14980
15114
|
# resp.results[0].trial_component.source_detail.training_job.failure_reason #=> String
|
14981
15115
|
# resp.results[0].trial_component.source_detail.training_job.hyper_parameters #=> Hash
|
14982
15116
|
# resp.results[0].trial_component.source_detail.training_job.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -15021,7 +15155,7 @@ module Aws::SageMaker
|
|
15021
15155
|
# resp.results[0].trial_component.source_detail.training_job.training_end_time #=> Time
|
15022
15156
|
# resp.results[0].trial_component.source_detail.training_job.last_modified_time #=> Time
|
15023
15157
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions #=> Array
|
15024
|
-
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
15158
|
+
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
15025
15159
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].start_time #=> Time
|
15026
15160
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].end_time #=> Time
|
15027
15161
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status_message #=> String
|
@@ -15064,6 +15198,9 @@ module Aws::SageMaker
|
|
15064
15198
|
# resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
|
15065
15199
|
# resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].status_details #=> String
|
15066
15200
|
# resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
|
15201
|
+
# resp.results[0].trial_component.source_detail.training_job.environment #=> Hash
|
15202
|
+
# resp.results[0].trial_component.source_detail.training_job.environment["TrainingEnvironmentKey"] #=> String
|
15203
|
+
# resp.results[0].trial_component.source_detail.training_job.retry_strategy.maximum_retry_attempts #=> Integer
|
15067
15204
|
# resp.results[0].trial_component.source_detail.training_job.tags #=> Array
|
15068
15205
|
# resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
|
15069
15206
|
# resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
|
@@ -17309,7 +17446,7 @@ module Aws::SageMaker
|
|
17309
17446
|
params: params,
|
17310
17447
|
config: config)
|
17311
17448
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
17312
|
-
context[:gem_version] = '1.
|
17449
|
+
context[:gem_version] = '1.87.0'
|
17313
17450
|
Seahorse::Client::Request.new(handlers, context)
|
17314
17451
|
end
|
17315
17452
|
|