aws-sdk-sagemaker 1.81.0 → 1.86.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -111,6 +111,8 @@ module Aws::SageMaker
111
111
  AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
112
112
  AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
113
113
  AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
114
+ AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
115
+ AutoMLPartialFailureReasons = Shapes::ListShape.new(name: 'AutoMLPartialFailureReasons')
114
116
  AutoMLS3DataSource = Shapes::StructureShape.new(name: 'AutoMLS3DataSource')
115
117
  AutoMLS3DataType = Shapes::StringShape.new(name: 'AutoMLS3DataType')
116
118
  AutoMLSecurityConfig = Shapes::StructureShape.new(name: 'AutoMLSecurityConfig')
@@ -127,8 +129,10 @@ module Aws::SageMaker
127
129
  BooleanOperator = Shapes::StringShape.new(name: 'BooleanOperator')
128
130
  Branch = Shapes::StringShape.new(name: 'Branch')
129
131
  CacheHitResult = Shapes::StructureShape.new(name: 'CacheHitResult')
132
+ CandidateArtifactLocations = Shapes::StructureShape.new(name: 'CandidateArtifactLocations')
130
133
  CandidateDefinitionNotebookLocation = Shapes::StringShape.new(name: 'CandidateDefinitionNotebookLocation')
131
134
  CandidateName = Shapes::StringShape.new(name: 'CandidateName')
135
+ CandidateProperties = Shapes::StructureShape.new(name: 'CandidateProperties')
132
136
  CandidateSortBy = Shapes::StringShape.new(name: 'CandidateSortBy')
133
137
  CandidateStatus = Shapes::StringShape.new(name: 'CandidateStatus')
134
138
  CandidateStepArn = Shapes::StringShape.new(name: 'CandidateStepArn')
@@ -554,6 +558,7 @@ module Aws::SageMaker
554
558
  ExperimentSummary = Shapes::StructureShape.new(name: 'ExperimentSummary')
555
559
  ExpiresInSeconds = Shapes::IntegerShape.new(name: 'ExpiresInSeconds')
556
560
  Explainability = Shapes::StructureShape.new(name: 'Explainability')
561
+ ExplainabilityLocation = Shapes::StringShape.new(name: 'ExplainabilityLocation')
557
562
  FailureReason = Shapes::StringShape.new(name: 'FailureReason')
558
563
  FeatureDefinition = Shapes::StructureShape.new(name: 'FeatureDefinition')
559
564
  FeatureDefinitions = Shapes::ListShape.new(name: 'FeatureDefinitions')
@@ -857,6 +862,7 @@ module Aws::SageMaker
857
862
  MaxRuntimePerTrainingJobInSeconds = Shapes::IntegerShape.new(name: 'MaxRuntimePerTrainingJobInSeconds')
858
863
  MaxWaitTimeInSeconds = Shapes::IntegerShape.new(name: 'MaxWaitTimeInSeconds')
859
864
  MaximumExecutionTimeoutInSeconds = Shapes::IntegerShape.new(name: 'MaximumExecutionTimeoutInSeconds')
865
+ MaximumRetryAttempts = Shapes::IntegerShape.new(name: 'MaximumRetryAttempts')
860
866
  MediaType = Shapes::StringShape.new(name: 'MediaType')
861
867
  MemberDefinition = Shapes::StructureShape.new(name: 'MemberDefinition')
862
868
  MemberDefinitions = Shapes::ListShape.new(name: 'MemberDefinitions')
@@ -1130,6 +1136,8 @@ module Aws::SageMaker
1130
1136
  RenderingError = Shapes::StructureShape.new(name: 'RenderingError')
1131
1137
  RenderingErrorList = Shapes::ListShape.new(name: 'RenderingErrorList')
1132
1138
  RepositoryAccessMode = Shapes::StringShape.new(name: 'RepositoryAccessMode')
1139
+ RepositoryAuthConfig = Shapes::StructureShape.new(name: 'RepositoryAuthConfig')
1140
+ RepositoryCredentialsProviderArn = Shapes::StringShape.new(name: 'RepositoryCredentialsProviderArn')
1133
1141
  ResolvedAttributes = Shapes::StructureShape.new(name: 'ResolvedAttributes')
1134
1142
  ResourceArn = Shapes::StringShape.new(name: 'ResourceArn')
1135
1143
  ResourceConfig = Shapes::StructureShape.new(name: 'ResourceConfig')
@@ -1145,6 +1153,7 @@ module Aws::SageMaker
1145
1153
  ResponseMIMETypes = Shapes::ListShape.new(name: 'ResponseMIMETypes')
1146
1154
  RetentionPolicy = Shapes::StructureShape.new(name: 'RetentionPolicy')
1147
1155
  RetentionType = Shapes::StringShape.new(name: 'RetentionType')
1156
+ RetryStrategy = Shapes::StructureShape.new(name: 'RetryStrategy')
1148
1157
  RoleArn = Shapes::StringShape.new(name: 'RoleArn')
1149
1158
  RootAccess = Shapes::StringShape.new(name: 'RootAccess')
1150
1159
  RuleConfigurationName = Shapes::StringShape.new(name: 'RuleConfigurationName')
@@ -1266,6 +1275,9 @@ module Aws::SageMaker
1266
1275
  Timestamp = Shapes::TimestampShape.new(name: 'Timestamp')
1267
1276
  TrafficRoutingConfig = Shapes::StructureShape.new(name: 'TrafficRoutingConfig')
1268
1277
  TrafficRoutingConfigType = Shapes::StringShape.new(name: 'TrafficRoutingConfigType')
1278
+ TrainingEnvironmentKey = Shapes::StringShape.new(name: 'TrainingEnvironmentKey')
1279
+ TrainingEnvironmentMap = Shapes::MapShape.new(name: 'TrainingEnvironmentMap')
1280
+ TrainingEnvironmentValue = Shapes::StringShape.new(name: 'TrainingEnvironmentValue')
1269
1281
  TrainingInputMode = Shapes::StringShape.new(name: 'TrainingInputMode')
1270
1282
  TrainingInstanceCount = Shapes::IntegerShape.new(name: 'TrainingInstanceCount')
1271
1283
  TrainingInstanceType = Shapes::StringShape.new(name: 'TrainingInstanceType')
@@ -1583,6 +1595,7 @@ module Aws::SageMaker
1583
1595
  AutoMLCandidate.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
1584
1596
  AutoMLCandidate.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
1585
1597
  AutoMLCandidate.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
1598
+ AutoMLCandidate.add_member(:candidate_properties, Shapes::ShapeRef.new(shape: CandidateProperties, location_name: "CandidateProperties"))
1586
1599
  AutoMLCandidate.struct_class = Types::AutoMLCandidate
1587
1600
 
1588
1601
  AutoMLCandidateStep.add_member(:candidate_step_type, Shapes::ShapeRef.new(shape: CandidateStepType, required: true, location_name: "CandidateStepType"))
@@ -1635,12 +1648,18 @@ module Aws::SageMaker
1635
1648
  AutoMLJobSummary.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
1636
1649
  AutoMLJobSummary.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
1637
1650
  AutoMLJobSummary.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
1651
+ AutoMLJobSummary.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
1638
1652
  AutoMLJobSummary.struct_class = Types::AutoMLJobSummary
1639
1653
 
1640
1654
  AutoMLOutputDataConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
1641
1655
  AutoMLOutputDataConfig.add_member(:s3_output_path, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3OutputPath"))
1642
1656
  AutoMLOutputDataConfig.struct_class = Types::AutoMLOutputDataConfig
1643
1657
 
1658
+ AutoMLPartialFailureReason.add_member(:partial_failure_message, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "PartialFailureMessage"))
1659
+ AutoMLPartialFailureReason.struct_class = Types::AutoMLPartialFailureReason
1660
+
1661
+ AutoMLPartialFailureReasons.member = Shapes::ShapeRef.new(shape: AutoMLPartialFailureReason)
1662
+
1644
1663
  AutoMLS3DataSource.add_member(:s3_data_type, Shapes::ShapeRef.new(shape: AutoMLS3DataType, required: true, location_name: "S3DataType"))
1645
1664
  AutoMLS3DataSource.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
1646
1665
  AutoMLS3DataSource.struct_class = Types::AutoMLS3DataSource
@@ -1664,6 +1683,12 @@ module Aws::SageMaker
1664
1683
  CacheHitResult.add_member(:source_pipeline_execution_arn, Shapes::ShapeRef.new(shape: PipelineExecutionArn, location_name: "SourcePipelineExecutionArn"))
1665
1684
  CacheHitResult.struct_class = Types::CacheHitResult
1666
1685
 
1686
+ CandidateArtifactLocations.add_member(:explainability, Shapes::ShapeRef.new(shape: ExplainabilityLocation, required: true, location_name: "Explainability"))
1687
+ CandidateArtifactLocations.struct_class = Types::CandidateArtifactLocations
1688
+
1689
+ CandidateProperties.add_member(:candidate_artifact_locations, Shapes::ShapeRef.new(shape: CandidateArtifactLocations, location_name: "CandidateArtifactLocations"))
1690
+ CandidateProperties.struct_class = Types::CandidateProperties
1691
+
1667
1692
  CandidateSteps.member = Shapes::ShapeRef.new(shape: AutoMLCandidateStep)
1668
1693
 
1669
1694
  CapacitySize.add_member(:type, Shapes::ShapeRef.new(shape: CapacitySizeType, required: true, location_name: "Type"))
@@ -2253,6 +2278,8 @@ module Aws::SageMaker
2253
2278
  CreateTrainingJobRequest.add_member(:experiment_config, Shapes::ShapeRef.new(shape: ExperimentConfig, location_name: "ExperimentConfig"))
2254
2279
  CreateTrainingJobRequest.add_member(:profiler_config, Shapes::ShapeRef.new(shape: ProfilerConfig, location_name: "ProfilerConfig"))
2255
2280
  CreateTrainingJobRequest.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
2281
+ CreateTrainingJobRequest.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
2282
+ CreateTrainingJobRequest.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
2256
2283
  CreateTrainingJobRequest.struct_class = Types::CreateTrainingJobRequest
2257
2284
 
2258
2285
  CreateTrainingJobResponse.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
@@ -2688,6 +2715,7 @@ module Aws::SageMaker
2688
2715
  DescribeAutoMLJobResponse.add_member(:end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "EndTime"))
2689
2716
  DescribeAutoMLJobResponse.add_member(:last_modified_time, Shapes::ShapeRef.new(shape: Timestamp, required: true, location_name: "LastModifiedTime"))
2690
2717
  DescribeAutoMLJobResponse.add_member(:failure_reason, Shapes::ShapeRef.new(shape: AutoMLFailureReason, location_name: "FailureReason"))
2718
+ DescribeAutoMLJobResponse.add_member(:partial_failure_reasons, Shapes::ShapeRef.new(shape: AutoMLPartialFailureReasons, location_name: "PartialFailureReasons"))
2691
2719
  DescribeAutoMLJobResponse.add_member(:best_candidate, Shapes::ShapeRef.new(shape: AutoMLCandidate, location_name: "BestCandidate"))
2692
2720
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_status, Shapes::ShapeRef.new(shape: AutoMLJobStatus, required: true, location_name: "AutoMLJobStatus"))
2693
2721
  DescribeAutoMLJobResponse.add_member(:auto_ml_job_secondary_status, Shapes::ShapeRef.new(shape: AutoMLJobSecondaryStatus, required: true, location_name: "AutoMLJobSecondaryStatus"))
@@ -3257,6 +3285,8 @@ module Aws::SageMaker
3257
3285
  DescribeTrainingJobResponse.add_member(:profiler_rule_configurations, Shapes::ShapeRef.new(shape: ProfilerRuleConfigurations, location_name: "ProfilerRuleConfigurations"))
3258
3286
  DescribeTrainingJobResponse.add_member(:profiler_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: ProfilerRuleEvaluationStatuses, location_name: "ProfilerRuleEvaluationStatuses"))
3259
3287
  DescribeTrainingJobResponse.add_member(:profiling_status, Shapes::ShapeRef.new(shape: ProfilingStatus, location_name: "ProfilingStatus"))
3288
+ DescribeTrainingJobResponse.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
3289
+ DescribeTrainingJobResponse.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
3260
3290
  DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
3261
3291
 
3262
3292
  DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
@@ -3727,6 +3757,7 @@ module Aws::SageMaker
3727
3757
  HyperParameterTrainingJobDefinition.add_member(:enable_inter_container_traffic_encryption, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableInterContainerTrafficEncryption"))
3728
3758
  HyperParameterTrainingJobDefinition.add_member(:enable_managed_spot_training, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableManagedSpotTraining"))
3729
3759
  HyperParameterTrainingJobDefinition.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
3760
+ HyperParameterTrainingJobDefinition.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
3730
3761
  HyperParameterTrainingJobDefinition.struct_class = Types::HyperParameterTrainingJobDefinition
3731
3762
 
3732
3763
  HyperParameterTrainingJobDefinitions.member = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobDefinition)
@@ -3793,6 +3824,7 @@ module Aws::SageMaker
3793
3824
  Image.struct_class = Types::Image
3794
3825
 
3795
3826
  ImageConfig.add_member(:repository_access_mode, Shapes::ShapeRef.new(shape: RepositoryAccessMode, required: true, location_name: "RepositoryAccessMode"))
3827
+ ImageConfig.add_member(:repository_auth_config, Shapes::ShapeRef.new(shape: RepositoryAuthConfig, location_name: "RepositoryAuthConfig"))
3796
3828
  ImageConfig.struct_class = Types::ImageConfig
3797
3829
 
3798
3830
  ImageDeletePropertyList.member = Shapes::ShapeRef.new(shape: ImageDeleteProperty)
@@ -5413,6 +5445,9 @@ module Aws::SageMaker
5413
5445
 
5414
5446
  RenderingErrorList.member = Shapes::ShapeRef.new(shape: RenderingError)
5415
5447
 
5448
+ RepositoryAuthConfig.add_member(:repository_credentials_provider_arn, Shapes::ShapeRef.new(shape: RepositoryCredentialsProviderArn, required: true, location_name: "RepositoryCredentialsProviderArn"))
5449
+ RepositoryAuthConfig.struct_class = Types::RepositoryAuthConfig
5450
+
5416
5451
  ResolvedAttributes.add_member(:auto_ml_job_objective, Shapes::ShapeRef.new(shape: AutoMLJobObjective, location_name: "AutoMLJobObjective"))
5417
5452
  ResolvedAttributes.add_member(:problem_type, Shapes::ShapeRef.new(shape: ProblemType, location_name: "ProblemType"))
5418
5453
  ResolvedAttributes.add_member(:completion_criteria, Shapes::ShapeRef.new(shape: AutoMLJobCompletionCriteria, location_name: "CompletionCriteria"))
@@ -5447,6 +5482,9 @@ module Aws::SageMaker
5447
5482
  RetentionPolicy.add_member(:home_efs_file_system, Shapes::ShapeRef.new(shape: RetentionType, location_name: "HomeEfsFileSystem"))
5448
5483
  RetentionPolicy.struct_class = Types::RetentionPolicy
5449
5484
 
5485
+ RetryStrategy.add_member(:maximum_retry_attempts, Shapes::ShapeRef.new(shape: MaximumRetryAttempts, required: true, location_name: "MaximumRetryAttempts"))
5486
+ RetryStrategy.struct_class = Types::RetryStrategy
5487
+
5450
5488
  RuleParameters.key = Shapes::ShapeRef.new(shape: ConfigKey)
5451
5489
  RuleParameters.value = Shapes::ShapeRef.new(shape: ConfigValue)
5452
5490
 
@@ -5636,6 +5674,9 @@ module Aws::SageMaker
5636
5674
  TrafficRoutingConfig.add_member(:canary_size, Shapes::ShapeRef.new(shape: CapacitySize, location_name: "CanarySize"))
5637
5675
  TrafficRoutingConfig.struct_class = Types::TrafficRoutingConfig
5638
5676
 
5677
+ TrainingEnvironmentMap.key = Shapes::ShapeRef.new(shape: TrainingEnvironmentKey)
5678
+ TrainingEnvironmentMap.value = Shapes::ShapeRef.new(shape: TrainingEnvironmentValue)
5679
+
5639
5680
  TrainingInstanceTypes.member = Shapes::ShapeRef.new(shape: TrainingInstanceType)
5640
5681
 
5641
5682
  TrainingJob.add_member(:training_job_name, Shapes::ShapeRef.new(shape: TrainingJobName, location_name: "TrainingJobName"))
@@ -5672,6 +5713,8 @@ module Aws::SageMaker
5672
5713
  TrainingJob.add_member(:debug_rule_configurations, Shapes::ShapeRef.new(shape: DebugRuleConfigurations, location_name: "DebugRuleConfigurations"))
5673
5714
  TrainingJob.add_member(:tensor_board_output_config, Shapes::ShapeRef.new(shape: TensorBoardOutputConfig, location_name: "TensorBoardOutputConfig"))
5674
5715
  TrainingJob.add_member(:debug_rule_evaluation_statuses, Shapes::ShapeRef.new(shape: DebugRuleEvaluationStatuses, location_name: "DebugRuleEvaluationStatuses"))
5716
+ TrainingJob.add_member(:environment, Shapes::ShapeRef.new(shape: TrainingEnvironmentMap, location_name: "Environment"))
5717
+ TrainingJob.add_member(:retry_strategy, Shapes::ShapeRef.new(shape: RetryStrategy, location_name: "RetryStrategy"))
5675
5718
  TrainingJob.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
5676
5719
  TrainingJob.struct_class = Types::TrainingJob
5677
5720
 
@@ -1748,6 +1748,10 @@ module Aws::SageMaker
1748
1748
  # The failure reason.
1749
1749
  # @return [String]
1750
1750
  #
1751
+ # @!attribute [rw] candidate_properties
1752
+ # The AutoML candidate's properties.
1753
+ # @return [Types::CandidateProperties]
1754
+ #
1751
1755
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
1752
1756
  #
1753
1757
  class AutoMLCandidate < Struct.new(
@@ -1760,7 +1764,8 @@ module Aws::SageMaker
1760
1764
  :creation_time,
1761
1765
  :end_time,
1762
1766
  :last_modified_time,
1763
- :failure_reason)
1767
+ :failure_reason,
1768
+ :candidate_properties)
1764
1769
  SENSITIVE = []
1765
1770
  include Aws::Structure
1766
1771
  end
@@ -1791,8 +1796,8 @@ module Aws::SageMaker
1791
1796
  include Aws::Structure
1792
1797
  end
1793
1798
 
1794
- # Similar to Channel. A channel is a named input source that training
1795
- # algorithms can consume. Refer to Channel for detailed descriptions.
1799
+ # A channel is a named input source that training algorithms can
1800
+ # consume. For more information, see .
1796
1801
  #
1797
1802
  # @note When making an API call, you may pass AutoMLChannel
1798
1803
  # data as a hash:
@@ -1809,16 +1814,16 @@ module Aws::SageMaker
1809
1814
  # }
1810
1815
  #
1811
1816
  # @!attribute [rw] data_source
1812
- # The data source.
1817
+ # The data source for an AutoML channel.
1813
1818
  # @return [Types::AutoMLDataSource]
1814
1819
  #
1815
1820
  # @!attribute [rw] compression_type
1816
- # You can use Gzip or None. The default value is None.
1821
+ # You can use `Gzip` or `None`. The default value is `None`.
1817
1822
  # @return [String]
1818
1823
  #
1819
1824
  # @!attribute [rw] target_attribute_name
1820
- # The name of the target variable in supervised learning, a.k.a.
1821
- # 'y'.
1825
+ # The name of the target variable in supervised learning, usually
1826
+ # represented by 'y'.
1822
1827
  # @return [String]
1823
1828
  #
1824
1829
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
@@ -1832,22 +1837,19 @@ module Aws::SageMaker
1832
1837
  end
1833
1838
 
1834
1839
  # A list of container definitions that describe the different containers
1835
- # that make up one AutoML candidate. Refer to ContainerDefinition for
1836
- # more details.
1840
+ # that make up an AutoML candidate. For more information, see .
1837
1841
  #
1838
1842
  # @!attribute [rw] image
1839
- # The ECR path of the container. Refer to ContainerDefinition for more
1840
- # details.
1843
+ # The ECR path of the container. For more information, see .
1841
1844
  # @return [String]
1842
1845
  #
1843
1846
  # @!attribute [rw] model_data_url
1844
- # The location of the model artifacts. Refer to ContainerDefinition
1845
- # for more details.
1847
+ # The location of the model artifacts. For more information, see .
1846
1848
  # @return [String]
1847
1849
  #
1848
1850
  # @!attribute [rw] environment
1849
- # Environment variables to set in the container. Refer to
1850
- # ContainerDefinition for more details.
1851
+ # Environment variables to set in the container. For more information,
1852
+ # see .
1851
1853
  # @return [Hash<String,String>]
1852
1854
  #
1853
1855
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -1930,7 +1932,7 @@ module Aws::SageMaker
1930
1932
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
1931
1933
  # The maximum time, in seconds, an AutoML job is allowed to wait for a
1932
1934
  # trial to complete. It must be equal to or greater than
1933
- # MaxRuntimePerTrainingJobInSeconds.
1935
+ # `MaxRuntimePerTrainingJobInSeconds`.
1934
1936
  # @return [Integer]
1935
1937
  #
1936
1938
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
@@ -1943,7 +1945,7 @@ module Aws::SageMaker
1943
1945
  include Aws::Structure
1944
1946
  end
1945
1947
 
1946
- # A collection of settings used for a job.
1948
+ # A collection of settings used for an AutoML job.
1947
1949
  #
1948
1950
  # @note When making an API call, you may pass AutoMLJobConfig
1949
1951
  # data as a hash:
@@ -1965,8 +1967,8 @@ module Aws::SageMaker
1965
1967
  # }
1966
1968
  #
1967
1969
  # @!attribute [rw] completion_criteria
1968
- # How long a job is allowed to run, or how many candidates a job is
1969
- # allowed to generate.
1970
+ # How long an AutoML job is allowed to run, or how many candidates a
1971
+ # job is allowed to generate.
1970
1972
  # @return [Types::AutoMLJobCompletionCriteria]
1971
1973
  #
1972
1974
  # @!attribute [rw] security_config
@@ -2078,26 +2080,26 @@ module Aws::SageMaker
2078
2080
  include Aws::Structure
2079
2081
  end
2080
2082
 
2081
- # Provides a summary about a job.
2083
+ # Provides a summary about an AutoML job.
2082
2084
  #
2083
2085
  # @!attribute [rw] auto_ml_job_name
2084
- # The name of the object you are requesting.
2086
+ # The name of the AutoML you are requesting.
2085
2087
  # @return [String]
2086
2088
  #
2087
2089
  # @!attribute [rw] auto_ml_job_arn
2088
- # The ARN of the job.
2090
+ # The ARN of the AutoML job.
2089
2091
  # @return [String]
2090
2092
  #
2091
2093
  # @!attribute [rw] auto_ml_job_status
2092
- # The job's status.
2094
+ # The status of the AutoML job.
2093
2095
  # @return [String]
2094
2096
  #
2095
2097
  # @!attribute [rw] auto_ml_job_secondary_status
2096
- # The job's secondary status.
2098
+ # The secondary status of the AutoML job.
2097
2099
  # @return [String]
2098
2100
  #
2099
2101
  # @!attribute [rw] creation_time
2100
- # When the job was created.
2102
+ # When the AutoML job was created.
2101
2103
  # @return [Time]
2102
2104
  #
2103
2105
  # @!attribute [rw] end_time
@@ -2105,13 +2107,17 @@ module Aws::SageMaker
2105
2107
  # @return [Time]
2106
2108
  #
2107
2109
  # @!attribute [rw] last_modified_time
2108
- # When the job was last modified.
2110
+ # When the AutoML job was last modified.
2109
2111
  # @return [Time]
2110
2112
  #
2111
2113
  # @!attribute [rw] failure_reason
2112
- # The failure reason of a job.
2114
+ # The failure reason of an AutoML job.
2113
2115
  # @return [String]
2114
2116
  #
2117
+ # @!attribute [rw] partial_failure_reasons
2118
+ # The list of reasons for partial failures within an AutoML job.
2119
+ # @return [Array<Types::AutoMLPartialFailureReason>]
2120
+ #
2115
2121
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
2116
2122
  #
2117
2123
  class AutoMLJobSummary < Struct.new(
@@ -2122,7 +2128,8 @@ module Aws::SageMaker
2122
2128
  :creation_time,
2123
2129
  :end_time,
2124
2130
  :last_modified_time,
2125
- :failure_reason)
2131
+ :failure_reason,
2132
+ :partial_failure_reasons)
2126
2133
  SENSITIVE = []
2127
2134
  include Aws::Structure
2128
2135
  end
@@ -2154,6 +2161,21 @@ module Aws::SageMaker
2154
2161
  include Aws::Structure
2155
2162
  end
2156
2163
 
2164
+ # The reason for a partial failure of an AutoML job.
2165
+ #
2166
+ # @!attribute [rw] partial_failure_message
2167
+ # The message containing the reason for a partial failure of an AutoML
2168
+ # job.
2169
+ # @return [String]
2170
+ #
2171
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLPartialFailureReason AWS API Documentation
2172
+ #
2173
+ class AutoMLPartialFailureReason < Struct.new(
2174
+ :partial_failure_message)
2175
+ SENSITIVE = []
2176
+ include Aws::Structure
2177
+ end
2178
+
2157
2179
  # The Amazon S3 data source.
2158
2180
  #
2159
2181
  # @note When making an API call, you may pass AutoMLS3DataSource
@@ -2317,6 +2339,35 @@ module Aws::SageMaker
2317
2339
  include Aws::Structure
2318
2340
  end
2319
2341
 
2342
+ # Location of artifacts for an AutoML candidate job.
2343
+ #
2344
+ # @!attribute [rw] explainability
2345
+ # The S3 prefix to the explainability artifacts generated for the
2346
+ # AutoML candidate.
2347
+ # @return [String]
2348
+ #
2349
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
2350
+ #
2351
+ class CandidateArtifactLocations < Struct.new(
2352
+ :explainability)
2353
+ SENSITIVE = []
2354
+ include Aws::Structure
2355
+ end
2356
+
2357
+ # The properties of an AutoML candidate job.
2358
+ #
2359
+ # @!attribute [rw] candidate_artifact_locations
2360
+ # The S3 prefix to the artifacts generated for an AutoML candidate.
2361
+ # @return [Types::CandidateArtifactLocations]
2362
+ #
2363
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
2364
+ #
2365
+ class CandidateProperties < Struct.new(
2366
+ :candidate_artifact_locations)
2367
+ SENSITIVE = []
2368
+ include Aws::Structure
2369
+ end
2370
+
2320
2371
  # Currently, the `CapacitySize` API is not supported.
2321
2372
  #
2322
2373
  # @note When making an API call, you may pass CapacitySize
@@ -2861,8 +2912,8 @@ module Aws::SageMaker
2861
2912
  include Aws::Structure
2862
2913
  end
2863
2914
 
2864
- # There was a conflict when you attempted to modify an experiment,
2865
- # trial, or trial component.
2915
+ # There was a conflict when you attempted to modify a SageMaker entity
2916
+ # such as an `Experiment` or `Artifact`.
2866
2917
  #
2867
2918
  # @!attribute [rw] message
2868
2919
  # @return [String]
@@ -2885,6 +2936,9 @@ module Aws::SageMaker
2885
2936
  # image: "ContainerImage",
2886
2937
  # image_config: {
2887
2938
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2939
+ # repository_auth_config: {
2940
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
2941
+ # },
2888
2942
  # },
2889
2943
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2890
2944
  # model_data_url: "Url",
@@ -3625,7 +3679,8 @@ module Aws::SageMaker
3625
3679
  # @return [String]
3626
3680
  #
3627
3681
  # @!attribute [rw] app_type
3628
- # The type of app.
3682
+ # The type of app. Supported apps are `JupyterServer` and
3683
+ # `KernelGateway`. `TensorBoard` is not supported.
3629
3684
  # @return [String]
3630
3685
  #
3631
3686
  # @!attribute [rw] app_name
@@ -3801,36 +3856,44 @@ module Aws::SageMaker
3801
3856
  # }
3802
3857
  #
3803
3858
  # @!attribute [rw] auto_ml_job_name
3804
- # Identifies an Autopilot job. Must be unique to your account and is
3805
- # case-insensitive.
3859
+ # Identifies an Autopilot job. The name must be unique to your account
3860
+ # and is case-insensitive.
3806
3861
  # @return [String]
3807
3862
  #
3808
3863
  # @!attribute [rw] input_data_config
3809
- # Similar to InputDataConfig supported by Tuning. Format(s) supported:
3810
- # CSV. Minimum of 500 rows.
3864
+ # An array of channel objects that describes the input data and its
3865
+ # location. Each channel is a named input source. Similar to
3866
+ # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum
3867
+ # of 500 rows.
3811
3868
  # @return [Array<Types::AutoMLChannel>]
3812
3869
  #
3813
3870
  # @!attribute [rw] output_data_config
3814
- # Similar to OutputDataConfig supported by Tuning. Format(s)
3815
- # supported: CSV.
3871
+ # Provides information about encryption and the Amazon S3 output path
3872
+ # needed to store artifacts from an AutoML job. Format(s) supported:
3873
+ # CSV.
3816
3874
  # @return [Types::AutoMLOutputDataConfig]
3817
3875
  #
3818
3876
  # @!attribute [rw] problem_type
3819
- # Defines the kind of preprocessing and algorithms intended for the
3877
+ # Defines the type of supervised learning available for the
3820
3878
  # candidates. Options include: BinaryClassification,
3821
- # MulticlassClassification, and Regression.
3879
+ # MulticlassClassification, and Regression. For more information, see
3880
+ # [ Amazon SageMaker Autopilot problem types and algorithm
3881
+ # support][1].
3882
+ #
3883
+ #
3884
+ #
3885
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
3822
3886
  # @return [String]
3823
3887
  #
3824
3888
  # @!attribute [rw] auto_ml_job_objective
3825
- # Defines the objective of a an AutoML job. You provide a
3826
- # AutoMLJobObjective$MetricName and Autopilot infers whether to
3827
- # minimize or maximize it. If a metric is not specified, the most
3828
- # commonly used ObjectiveMetric for problem type is automaically
3829
- # selected.
3889
+ # Defines the objective metric used to measure the predictive quality
3890
+ # of an AutoML job. You provide a AutoMLJobObjective$MetricName and
3891
+ # Autopilot infers whether to minimize or maximize it.
3830
3892
  # @return [Types::AutoMLJobObjective]
3831
3893
  #
3832
3894
  # @!attribute [rw] auto_ml_job_config
3833
- # Contains CompletionCriteria and SecurityConfig.
3895
+ # Contains CompletionCriteria and SecurityConfig settings for the
3896
+ # AutoML job.
3834
3897
  # @return [Types::AutoMLJobConfig]
3835
3898
  #
3836
3899
  # @!attribute [rw] role_arn
@@ -3838,9 +3901,9 @@ module Aws::SageMaker
3838
3901
  # @return [String]
3839
3902
  #
3840
3903
  # @!attribute [rw] generate_candidate_definitions_only
3841
- # Generates possible candidates without training a model. A candidate
3842
- # is a combination of data preprocessors, algorithms, and algorithm
3843
- # parameter settings.
3904
+ # Generates possible candidates without training the models. A
3905
+ # candidate is a combination of data preprocessors, algorithms, and
3906
+ # algorithm parameter settings.
3844
3907
  # @return [Boolean]
3845
3908
  #
3846
3909
  # @!attribute [rw] tags
@@ -3865,7 +3928,8 @@ module Aws::SageMaker
3865
3928
  end
3866
3929
 
3867
3930
  # @!attribute [rw] auto_ml_job_arn
3868
- # When a job is created, it is assigned a unique ARN.
3931
+ # The unique ARN that is assigned to the AutoML job when it is
3932
+ # created.
3869
3933
  # @return [String]
3870
3934
  #
3871
3935
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobResponse AWS API Documentation
@@ -3951,7 +4015,7 @@ module Aws::SageMaker
3951
4015
  # },
3952
4016
  # output_config: { # required
3953
4017
  # s3_output_location: "S3Uri", # required
3954
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
4018
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
3955
4019
  # target_platform: {
3956
4020
  # os: "ANDROID", # required, accepts ANDROID, LINUX
3957
4021
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -4407,7 +4471,14 @@ module Aws::SageMaker
4407
4471
  # @return [String]
4408
4472
  #
4409
4473
  # @!attribute [rw] default_user_settings
4410
- # The default user settings.
4474
+ # The default settings to use to create a user profile when
4475
+ # `UserSettings` isn't specified in the call to the
4476
+ # `CreateUserProfile` API.
4477
+ #
4478
+ # `SecurityGroups` is aggregated when specified in both calls. For all
4479
+ # other settings in `UserSettings`, the values specified in
4480
+ # `CreateUserProfile` take precedence over those specified in
4481
+ # `CreateDomain`.
4411
4482
  # @return [Types::UserSettings]
4412
4483
  #
4413
4484
  # @!attribute [rw] subnet_ids
@@ -4422,7 +4493,10 @@ module Aws::SageMaker
4422
4493
  # @!attribute [rw] tags
4423
4494
  # Tags to associated with the Domain. Each tag consists of a key and
4424
4495
  # an optional value. Tag keys must be unique per resource. Tags are
4425
- # searchable using the Search API.
4496
+ # searchable using the `Search` API.
4497
+ #
4498
+ # Tags that you specify for the Domain are also added to all Apps that
4499
+ # the Domain launches.
4426
4500
  # @return [Array<Types::Tag>]
4427
4501
  #
4428
4502
  # @!attribute [rw] app_network_access_type
@@ -5277,6 +5351,9 @@ module Aws::SageMaker
5277
5351
  # s3_uri: "S3Uri", # required
5278
5352
  # local_path: "DirectoryPath",
5279
5353
  # },
5354
+ # retry_strategy: {
5355
+ # maximum_retry_attempts: 1, # required
5356
+ # },
5280
5357
  # },
5281
5358
  # training_job_definitions: [
5282
5359
  # {
@@ -5375,6 +5452,9 @@ module Aws::SageMaker
5375
5452
  # s3_uri: "S3Uri", # required
5376
5453
  # local_path: "DirectoryPath",
5377
5454
  # },
5455
+ # retry_strategy: {
5456
+ # maximum_retry_attempts: 1, # required
5457
+ # },
5378
5458
  # },
5379
5459
  # ],
5380
5460
  # warm_start_config: {
@@ -6187,6 +6267,9 @@ module Aws::SageMaker
6187
6267
  # image: "ContainerImage",
6188
6268
  # image_config: {
6189
6269
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
6270
+ # repository_auth_config: {
6271
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
6272
+ # },
6190
6273
  # },
6191
6274
  # mode: "SingleModel", # accepts SingleModel, MultiModel
6192
6275
  # model_data_url: "Url",
@@ -6204,6 +6287,9 @@ module Aws::SageMaker
6204
6287
  # image: "ContainerImage",
6205
6288
  # image_config: {
6206
6289
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
6290
+ # repository_auth_config: {
6291
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
6292
+ # },
6207
6293
  # },
6208
6294
  # mode: "SingleModel", # accepts SingleModel, MultiModel
6209
6295
  # model_data_url: "Url",
@@ -7743,6 +7829,12 @@ module Aws::SageMaker
7743
7829
  # },
7744
7830
  # },
7745
7831
  # ],
7832
+ # environment: {
7833
+ # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
7834
+ # },
7835
+ # retry_strategy: {
7836
+ # maximum_retry_attempts: 1, # required
7837
+ # },
7746
7838
  # }
7747
7839
  #
7748
7840
  # @!attribute [rw] training_job_name
@@ -7849,9 +7941,10 @@ module Aws::SageMaker
7849
7941
  # @return [Types::VpcConfig]
7850
7942
  #
7851
7943
  # @!attribute [rw] stopping_condition
7852
- # Specifies a limit to how long a model training job can run. When the
7853
- # job reaches the time limit, Amazon SageMaker ends the training job.
7854
- # Use this API to cap model training costs.
7944
+ # Specifies a limit to how long a model training job can run. It also
7945
+ # specifies how long a managed Spot training job has to complete. When
7946
+ # the job reaches the time limit, Amazon SageMaker ends the training
7947
+ # job. Use this API to cap model training costs.
7855
7948
  #
7856
7949
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
7857
7950
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -7956,6 +8049,15 @@ module Aws::SageMaker
7956
8049
  # and framework metrics.
7957
8050
  # @return [Array<Types::ProfilerRuleConfiguration>]
7958
8051
  #
8052
+ # @!attribute [rw] environment
8053
+ # The environment variables to set in the Docker container.
8054
+ # @return [Hash<String,String>]
8055
+ #
8056
+ # @!attribute [rw] retry_strategy
8057
+ # The number of times to retry the job when the job fails due to an
8058
+ # `InternalServerError`.
8059
+ # @return [Types::RetryStrategy]
8060
+ #
7959
8061
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
7960
8062
  #
7961
8063
  class CreateTrainingJobRequest < Struct.new(
@@ -7978,7 +8080,9 @@ module Aws::SageMaker
7978
8080
  :tensor_board_output_config,
7979
8081
  :experiment_config,
7980
8082
  :profiler_config,
7981
- :profiler_rule_configurations)
8083
+ :profiler_rule_configurations,
8084
+ :environment,
8085
+ :retry_strategy)
7982
8086
  SENSITIVE = []
7983
8087
  include Aws::Structure
7984
8088
  end
@@ -8456,7 +8560,7 @@ module Aws::SageMaker
8456
8560
  # @return [String]
8457
8561
  #
8458
8562
  # @!attribute [rw] user_profile_name
8459
- # A name for the UserProfile.
8563
+ # A name for the UserProfile. This value is not case sensitive.
8460
8564
  # @return [String]
8461
8565
  #
8462
8566
  # @!attribute [rw] single_sign_on_user_identifier
@@ -8478,6 +8582,9 @@ module Aws::SageMaker
8478
8582
  # @!attribute [rw] tags
8479
8583
  # Each tag consists of a key and an optional value. Tag keys must be
8480
8584
  # unique per resource.
8585
+ #
8586
+ # Tags that you specify for the User Profile are also added to all
8587
+ # Apps that the User Profile launches.
8481
8588
  # @return [Array<Types::Tag>]
8482
8589
  #
8483
8590
  # @!attribute [rw] user_settings
@@ -10802,7 +10909,7 @@ module Aws::SageMaker
10802
10909
  # }
10803
10910
  #
10804
10911
  # @!attribute [rw] auto_ml_job_name
10805
- # Request information about a job using that job's unique name.
10912
+ # Requests information about an AutoML job using its unique name.
10806
10913
  # @return [String]
10807
10914
  #
10808
10915
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobRequest AWS API Documentation
@@ -10814,15 +10921,15 @@ module Aws::SageMaker
10814
10921
  end
10815
10922
 
10816
10923
  # @!attribute [rw] auto_ml_job_name
10817
- # Returns the name of a job.
10924
+ # Returns the name of the AutoML job.
10818
10925
  # @return [String]
10819
10926
  #
10820
10927
  # @!attribute [rw] auto_ml_job_arn
10821
- # Returns the job's ARN.
10928
+ # Returns the ARN of the AutoML job.
10822
10929
  # @return [String]
10823
10930
  #
10824
10931
  # @!attribute [rw] input_data_config
10825
- # Returns the job's input data config.
10932
+ # Returns the input data configuration for the AutoML job..
10826
10933
  # @return [Array<Types::AutoMLChannel>]
10827
10934
  #
10828
10935
  # @!attribute [rw] output_data_config
@@ -10845,15 +10952,15 @@ module Aws::SageMaker
10845
10952
  # @return [String]
10846
10953
  #
10847
10954
  # @!attribute [rw] auto_ml_job_config
10848
- # Returns the job's config.
10955
+ # Returns the configuration for the AutoML job.
10849
10956
  # @return [Types::AutoMLJobConfig]
10850
10957
  #
10851
10958
  # @!attribute [rw] creation_time
10852
- # Returns the job's creation time.
10959
+ # Returns the creation time of the AutoML job.
10853
10960
  # @return [Time]
10854
10961
  #
10855
10962
  # @!attribute [rw] end_time
10856
- # Returns the job's end time.
10963
+ # Returns the end time of the AutoML job.
10857
10964
  # @return [Time]
10858
10965
  #
10859
10966
  # @!attribute [rw] last_modified_time
@@ -10864,16 +10971,20 @@ module Aws::SageMaker
10864
10971
  # Returns the job's FailureReason.
10865
10972
  # @return [String]
10866
10973
  #
10974
+ # @!attribute [rw] partial_failure_reasons
10975
+ # Returns a list of reasons for partial failures within an AutoML job.
10976
+ # @return [Array<Types::AutoMLPartialFailureReason>]
10977
+ #
10867
10978
  # @!attribute [rw] best_candidate
10868
10979
  # Returns the job's BestCandidate.
10869
10980
  # @return [Types::AutoMLCandidate]
10870
10981
  #
10871
10982
  # @!attribute [rw] auto_ml_job_status
10872
- # Returns the job's AutoMLJobStatus.
10983
+ # Returns the status of the AutoML job's AutoMLJobStatus.
10873
10984
  # @return [String]
10874
10985
  #
10875
10986
  # @!attribute [rw] auto_ml_job_secondary_status
10876
- # Returns the job's AutoMLJobSecondaryStatus.
10987
+ # Returns the secondary status of the AutoML job.
10877
10988
  # @return [String]
10878
10989
  #
10879
10990
  # @!attribute [rw] generate_candidate_definitions_only
@@ -10887,9 +10998,9 @@ module Aws::SageMaker
10887
10998
  #
10888
10999
  # @!attribute [rw] resolved_attributes
10889
11000
  # This contains ProblemType, AutoMLJobObjective and
10890
- # CompletionCriteria. They're auto-inferred values, if not provided
10891
- # by you. If you do provide them, then they'll be the same as
10892
- # provided.
11001
+ # CompletionCriteria. If you do not provide these values, they are
11002
+ # auto-inferred. If you do provide them, they are the values you
11003
+ # provide.
10893
11004
  # @return [Types::ResolvedAttributes]
10894
11005
  #
10895
11006
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
@@ -10907,6 +11018,7 @@ module Aws::SageMaker
10907
11018
  :end_time,
10908
11019
  :last_modified_time,
10909
11020
  :failure_reason,
11021
+ :partial_failure_reasons,
10910
11022
  :best_candidate,
10911
11023
  :auto_ml_job_status,
10912
11024
  :auto_ml_job_secondary_status,
@@ -11472,7 +11584,7 @@ module Aws::SageMaker
11472
11584
  # @return [String]
11473
11585
  #
11474
11586
  # @!attribute [rw] default_user_settings
11475
- # Settings which are applied to all UserProfiles in this domain, if
11587
+ # Settings which are applied to UserProfiles in this domain if
11476
11588
  # settings are not explicitly specified in a given UserProfile.
11477
11589
  # @return [Types::UserSettings]
11478
11590
  #
@@ -14051,9 +14163,9 @@ module Aws::SageMaker
14051
14163
  #
14052
14164
  # @!attribute [rw] stopping_condition
14053
14165
  # Specifies a limit to how long a model training job can run. It also
14054
- # specifies the maximum time to wait for a spot instance. When the job
14055
- # reaches the time limit, Amazon SageMaker ends the training job. Use
14056
- # this API to cap model training costs.
14166
+ # specifies how long a managed Spot training job has to complete. When
14167
+ # the job reaches the time limit, Amazon SageMaker ends the training
14168
+ # job. Use this API to cap model training costs.
14057
14169
  #
14058
14170
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
14059
14171
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -14202,6 +14314,15 @@ module Aws::SageMaker
14202
14314
  # Profiling status of a training job.
14203
14315
  # @return [String]
14204
14316
  #
14317
+ # @!attribute [rw] retry_strategy
14318
+ # The number of times to retry the job when the job fails due to an
14319
+ # `InternalServerError`.
14320
+ # @return [Types::RetryStrategy]
14321
+ #
14322
+ # @!attribute [rw] environment
14323
+ # The environment variables to set in the Docker container.
14324
+ # @return [Hash<String,String>]
14325
+ #
14205
14326
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
14206
14327
  #
14207
14328
  class DescribeTrainingJobResponse < Struct.new(
@@ -14242,7 +14363,9 @@ module Aws::SageMaker
14242
14363
  :profiler_config,
14243
14364
  :profiler_rule_configurations,
14244
14365
  :profiler_rule_evaluation_statuses,
14245
- :profiling_status)
14366
+ :profiling_status,
14367
+ :retry_strategy,
14368
+ :environment)
14246
14369
  SENSITIVE = []
14247
14370
  include Aws::Structure
14248
14371
  end
@@ -14624,7 +14747,7 @@ module Aws::SageMaker
14624
14747
  # @return [String]
14625
14748
  #
14626
14749
  # @!attribute [rw] user_profile_name
14627
- # The user profile name.
14750
+ # The user profile name. This value is not case sensitive.
14628
14751
  # @return [String]
14629
14752
  #
14630
14753
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeUserProfileRequest AWS API Documentation
@@ -15348,7 +15471,7 @@ module Aws::SageMaker
15348
15471
  #
15349
15472
  # @!attribute [rw] s3_data_distribution_type
15350
15473
  # Whether input data distributed in Amazon S3 is fully replicated or
15351
- # sharded by an S3 key. Defauts to `FullyReplicated`
15474
+ # sharded by an S3 key. Defaults to `FullyReplicated`
15352
15475
  # @return [String]
15353
15476
  #
15354
15477
  # @!attribute [rw] features_attribute
@@ -17894,6 +18017,9 @@ module Aws::SageMaker
17894
18017
  # s3_uri: "S3Uri", # required
17895
18018
  # local_path: "DirectoryPath",
17896
18019
  # },
18020
+ # retry_strategy: {
18021
+ # maximum_retry_attempts: 1, # required
18022
+ # },
17897
18023
  # }
17898
18024
  #
17899
18025
  # @!attribute [rw] definition_name
@@ -17975,10 +18101,9 @@ module Aws::SageMaker
17975
18101
  #
17976
18102
  # @!attribute [rw] stopping_condition
17977
18103
  # Specifies a limit to how long a model hyperparameter training job
17978
- # can run. It also specifies how long you are willing to wait for a
17979
- # managed spot training job to complete. When the job reaches the a
17980
- # limit, Amazon SageMaker ends the training job. Use this API to cap
17981
- # model training costs.
18104
+ # can run. It also specifies how long a managed spot training job has
18105
+ # to complete. When the job reaches the time limit, Amazon SageMaker
18106
+ # ends the training job. Use this API to cap model training costs.
17982
18107
  # @return [Types::StoppingCondition]
17983
18108
  #
17984
18109
  # @!attribute [rw] enable_network_isolation
@@ -18010,6 +18135,11 @@ module Aws::SageMaker
18010
18135
  # training checkpoint data.
18011
18136
  # @return [Types::CheckpointConfig]
18012
18137
  #
18138
+ # @!attribute [rw] retry_strategy
18139
+ # The number of times to retry the job when the job fails due to an
18140
+ # `InternalServerError`.
18141
+ # @return [Types::RetryStrategy]
18142
+ #
18013
18143
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
18014
18144
  #
18015
18145
  class HyperParameterTrainingJobDefinition < Struct.new(
@@ -18027,7 +18157,8 @@ module Aws::SageMaker
18027
18157
  :enable_network_isolation,
18028
18158
  :enable_inter_container_traffic_encryption,
18029
18159
  :enable_managed_spot_training,
18030
- :checkpoint_config)
18160
+ :checkpoint_config,
18161
+ :retry_strategy)
18031
18162
  SENSITIVE = []
18032
18163
  include Aws::Structure
18033
18164
  end
@@ -18483,6 +18614,9 @@ module Aws::SageMaker
18483
18614
  #
18484
18615
  # {
18485
18616
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
18617
+ # repository_auth_config: {
18618
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
18619
+ # },
18486
18620
  # }
18487
18621
  #
18488
18622
  # @!attribute [rw] repository_access_mode
@@ -18494,10 +18628,19 @@ module Aws::SageMaker
18494
18628
  # your VPC.
18495
18629
  # @return [String]
18496
18630
  #
18631
+ # @!attribute [rw] repository_auth_config
18632
+ # (Optional) Specifies an authentication configuration for the private
18633
+ # docker registry where your model image is hosted. Specify a value
18634
+ # for this property only if you specified `Vpc` as the value for the
18635
+ # `RepositoryAccessMode` field, and the private Docker registry where
18636
+ # the model image is hosted requires authentication.
18637
+ # @return [Types::RepositoryAuthConfig]
18638
+ #
18497
18639
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
18498
18640
  #
18499
18641
  class ImageConfig < Struct.new(
18500
- :repository_access_mode)
18642
+ :repository_access_mode,
18643
+ :repository_auth_config)
18501
18644
  SENSITIVE = []
18502
18645
  include Aws::Structure
18503
18646
  end
@@ -18818,6 +18961,33 @@ module Aws::SageMaker
18818
18961
  #
18819
18962
  # * `"CompilerOptions": \{"class_labels":
18820
18963
  # "imagenet_labels_1000.txt"\}`
18964
+ #
18965
+ # Depending on the model format, `DataInputConfig` requires the
18966
+ # following parameters for `ml_eia2` [OutputConfig:TargetDevice][1].
18967
+ #
18968
+ # * For TensorFlow models saved in the SavedModel format, specify the
18969
+ # input names from `signature_def_key` and the input model shapes
18970
+ # for `DataInputConfig`. Specify the `signature_def_key` in [
18971
+ # `OutputConfig:CompilerOptions` ][2] if the model does not use
18972
+ # TensorFlow's default signature def key. For example:
18973
+ #
18974
+ # * `"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}`
18975
+ #
18976
+ # * `"CompilerOptions": \{"signature_def_key": "serving_custom"\}`
18977
+ #
18978
+ # * For TensorFlow models saved as a frozen graph, specify the input
18979
+ # tensor names and shapes in `DataInputConfig` and the output tensor
18980
+ # names for `output_names` in [ `OutputConfig:CompilerOptions` ][2].
18981
+ # For example:
18982
+ #
18983
+ # * `"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}`
18984
+ #
18985
+ # * `"CompilerOptions": \{"output_names": ["output_tensor:0"]\}`
18986
+ #
18987
+ #
18988
+ #
18989
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice
18990
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions
18821
18991
  # @return [String]
18822
18992
  #
18823
18993
  # @!attribute [rw] framework
@@ -19239,7 +19409,12 @@ module Aws::SageMaker
19239
19409
  # @return [Types::LabelingJobS3DataSource]
19240
19410
  #
19241
19411
  # @!attribute [rw] sns_data_source
19242
- # An Amazon SNS data source used for streaming labeling jobs.
19412
+ # An Amazon SNS data source used for streaming labeling jobs. To learn
19413
+ # more, see [Send Data to a Streaming Labeling Job][1].
19414
+ #
19415
+ #
19416
+ #
19417
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-send-data
19243
19418
  # @return [Types::LabelingJobSnsDataSource]
19244
19419
  #
19245
19420
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
@@ -19365,37 +19540,42 @@ module Aws::SageMaker
19365
19540
  # The AWS Key Management Service ID of the key used to encrypt the
19366
19541
  # output data, if any.
19367
19542
  #
19368
- # If you use a KMS key ID or an alias of your master key, the Amazon
19369
- # SageMaker execution role must include permissions to call
19370
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
19371
- # uses the default KMS key for Amazon S3 for your role's account.
19372
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
19373
- # for `LabelingJobOutputConfig`. If you use a bucket policy with an
19374
- # `s3:PutObject` permission that only allows objects with server-side
19375
- # encryption, set the condition key of
19376
- # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
19377
- # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
19378
- # Simple Storage Service Developer Guide.*
19543
+ # If you provide your own KMS key ID, you must add the required
19544
+ # permissions to your KMS key described in [Encrypt Output Data and
19545
+ # Storage Volume with AWS KMS][1].
19379
19546
  #
19380
- # The KMS key policy must grant permission to the IAM role that you
19381
- # specify in your `CreateLabelingJob` request. For more information,
19382
- # see [Using Key Policies in AWS KMS][2] in the *AWS Key Management
19383
- # Service Developer Guide*.
19547
+ # If you don't provide a KMS key ID, Amazon SageMaker uses the
19548
+ # default AWS KMS key for Amazon S3 for your role's account to
19549
+ # encrypt your output data.
19384
19550
  #
19551
+ # If you use a bucket policy with an `s3:PutObject` permission that
19552
+ # only allows objects with server-side encryption, set the condition
19553
+ # key of `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
19554
+ # information, see [KMS-Managed Encryption Keys][2] in the *Amazon
19555
+ # Simple Storage Service Developer Guide.*
19385
19556
  #
19386
19557
  #
19387
- # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
19388
- # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
19558
+ #
19559
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-kms-permissions
19560
+ # [2]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
19389
19561
  # @return [String]
19390
19562
  #
19391
19563
  # @!attribute [rw] sns_topic_arn
19392
19564
  # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
19565
+ # Provide a `SnsTopicArn` if you want to do real time chaining to
19566
+ # another streaming job and receive an Amazon SNS notifications each
19567
+ # time a data object is submitted by a worker.
19568
+ #
19569
+ # If you provide an `SnsTopicArn` in `OutputConfig`, when workers
19570
+ # complete labeling tasks, Ground Truth will send labeling task output
19571
+ # data to the SNS output topic you specify here.
19393
19572
  #
19394
- # When workers complete labeling tasks, Ground Truth will send
19395
- # labeling task output data to the SNS output topic you specify here.
19573
+ # To learn more, see [Receive Output Data from a Streaming Labeling
19574
+ # Job][1].
19396
19575
  #
19397
- # You must provide a value for this parameter if you provide an Amazon
19398
- # SNS input topic in `SnsDataSource` in `InputConfig`.
19576
+ #
19577
+ #
19578
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-output-data
19399
19579
  # @return [String]
19400
19580
  #
19401
19581
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
@@ -19408,7 +19588,9 @@ module Aws::SageMaker
19408
19588
  include Aws::Structure
19409
19589
  end
19410
19590
 
19411
- # Provides configuration information for labeling jobs.
19591
+ # Configure encryption on the storage volume attached to the ML compute
19592
+ # instance used to run automated data labeling model training and
19593
+ # inference.
19412
19594
  #
19413
19595
  # @note When making an API call, you may pass LabelingJobResourceConfig
19414
19596
  # data as a hash:
@@ -19420,16 +19602,30 @@ module Aws::SageMaker
19420
19602
  # @!attribute [rw] volume_kms_key_id
19421
19603
  # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
19422
19604
  # uses to encrypt data on the storage volume attached to the ML
19423
- # compute instance(s) that run the training job. The `VolumeKmsKeyId`
19424
- # can be any of the following formats:
19605
+ # compute instance(s) that run the training and inference jobs used
19606
+ # for automated data labeling.
19425
19607
  #
19426
- # * // KMS Key ID
19608
+ # You can only specify a `VolumeKmsKeyId` when you create a labeling
19609
+ # job with automated data labeling enabled using the API operation
19610
+ # `CreateLabelingJob`. You cannot specify an AWS KMS customer managed
19611
+ # CMK to encrypt the storage volume used for automated data labeling
19612
+ # model training and inference when you create a labeling job using
19613
+ # the console. To learn more, see [Output Data and Storage Volume
19614
+ # Encryption][1].
19615
+ #
19616
+ # The `VolumeKmsKeyId` can be any of the following formats:
19617
+ #
19618
+ # * KMS Key ID
19427
19619
  #
19428
19620
  # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
19429
19621
  #
19430
- # * // Amazon Resource Name (ARN) of a KMS Key
19622
+ # * Amazon Resource Name (ARN) of a KMS Key
19431
19623
  #
19432
19624
  # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
19625
+ #
19626
+ #
19627
+ #
19628
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security.html
19433
19629
  # @return [String]
19434
19630
  #
19435
19631
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobResourceConfig AWS API Documentation
@@ -19494,9 +19690,6 @@ module Aws::SageMaker
19494
19690
  # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
19495
19691
  # ARN of the input topic you will use to send new data objects to a
19496
19692
  # streaming labeling job.
19497
- #
19498
- # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
19499
- # you must specify a value for `SnsTopicArn` in `OutputConfig`.
19500
19693
  # @return [String]
19501
19694
  #
19502
19695
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
@@ -20245,29 +20438,29 @@ module Aws::SageMaker
20245
20438
  # }
20246
20439
  #
20247
20440
  # @!attribute [rw] auto_ml_job_name
20248
- # List the Candidates created for the job by providing the job's
20441
+ # List the candidates created for the job by providing the job's
20249
20442
  # name.
20250
20443
  # @return [String]
20251
20444
  #
20252
20445
  # @!attribute [rw] status_equals
20253
- # List the Candidates for the job and filter by status.
20446
+ # List the candidates for the job and filter by status.
20254
20447
  # @return [String]
20255
20448
  #
20256
20449
  # @!attribute [rw] candidate_name_equals
20257
- # List the Candidates for the job and filter by candidate name.
20450
+ # List the candidates for the job and filter by candidate name.
20258
20451
  # @return [String]
20259
20452
  #
20260
20453
  # @!attribute [rw] sort_order
20261
- # The sort order for the results. The default is Ascending.
20454
+ # The sort order for the results. The default is `Ascending`.
20262
20455
  # @return [String]
20263
20456
  #
20264
20457
  # @!attribute [rw] sort_by
20265
20458
  # The parameter by which to sort the results. The default is
20266
- # Descending.
20459
+ # `Descending`.
20267
20460
  # @return [String]
20268
20461
  #
20269
20462
  # @!attribute [rw] max_results
20270
- # List the job's Candidates up to a specified limit.
20463
+ # List the job's candidates up to a specified limit.
20271
20464
  # @return [Integer]
20272
20465
  #
20273
20466
  # @!attribute [rw] next_token
@@ -21091,7 +21284,8 @@ module Aws::SageMaker
21091
21284
  # @return [String]
21092
21285
  #
21093
21286
  # @!attribute [rw] max_results
21094
- # The maximum number of endpoints to return in the response.
21287
+ # The maximum number of endpoints to return in the response. This
21288
+ # value defaults to 10.
21095
21289
  # @return [Integer]
21096
21290
  #
21097
21291
  # @!attribute [rw] name_contains
@@ -26349,6 +26543,13 @@ module Aws::SageMaker
26349
26543
  #
26350
26544
  # @!attribute [rw] max_runtime_in_seconds
26351
26545
  # The maximum runtime allowed in seconds.
26546
+ #
26547
+ # <note markdown="1"> The `MaxRuntimeInSeconds` cannot exceed the frequency of the job.
26548
+ # For data quality and model explainability, this can be up to 3600
26549
+ # seconds for an hourly schedule. For model bias and model quality
26550
+ # hourly schedules, this can be up to 1800 seconds.
26551
+ #
26552
+ # </note>
26352
26553
  # @return [Integer]
26353
26554
  #
26354
26555
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MonitoringStoppingCondition AWS API Documentation
@@ -27032,7 +27233,7 @@ module Aws::SageMaker
27032
27233
  #
27033
27234
  # {
27034
27235
  # s3_output_location: "S3Uri", # required
27035
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27236
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27036
27237
  # target_platform: {
27037
27238
  # os: "ANDROID", # required, accepts ANDROID, LINUX
27038
27239
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -27110,6 +27311,18 @@ module Aws::SageMaker
27110
27311
  # for NVIDIA accelerators and highly recommended for CPU compilations.
27111
27312
  # For any other cases, it is optional to specify `CompilerOptions.`
27112
27313
  #
27314
+ # * `DTYPE`\: Specifies the data type for the input. When compiling
27315
+ # for `ml_*` (except for `ml_inf`) instances using PyTorch
27316
+ # framework, provide the data type (dtype) of the model's input.
27317
+ # `"float32"` is used if `"DTYPE"` is not specified. Options for
27318
+ # data type are:
27319
+ #
27320
+ # * float32: Use either `"float"` or `"float32"`.
27321
+ #
27322
+ # * int64: Use either `"int64"` or `"long"`.
27323
+ #
27324
+ # For example, `\{"dtype" : "float32"\}`.
27325
+ #
27113
27326
  # * `CPU`\: Compilation for CPU supports the following compiler
27114
27327
  # options.
27115
27328
  #
@@ -27167,6 +27380,24 @@ module Aws::SageMaker
27167
27380
  #
27168
27381
  # ^
27169
27382
  #
27383
+ # * `EIA`\: Compilation for the Elastic Inference Accelerator supports
27384
+ # the following compiler options:
27385
+ #
27386
+ # * `precision_mode`\: Specifies the precision of compiled
27387
+ # artifacts. Supported values are `"FP16"` and `"FP32"`. Default
27388
+ # is `"FP32"`.
27389
+ #
27390
+ # * `signature_def_key`\: Specifies the signature to use for models
27391
+ # in SavedModel format. Defaults is TensorFlow's default
27392
+ # signature def key.
27393
+ #
27394
+ # * `output_names`\: Specifies a list of output tensor names for
27395
+ # models in FrozenGraph format. Set at most one API field, either:
27396
+ # `signature_def_key` or `output_names`.
27397
+ #
27398
+ # For example: `\{"precision_mode": "FP32", "output_names":
27399
+ # ["output:0"]\}`
27400
+ #
27170
27401
  #
27171
27402
  #
27172
27403
  # [1]: https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-cc/command-line-reference.md
@@ -29396,6 +29627,40 @@ module Aws::SageMaker
29396
29627
  include Aws::Structure
29397
29628
  end
29398
29629
 
29630
+ # Specifies an authentication configuration for the private docker
29631
+ # registry where your model image is hosted. Specify a value for this
29632
+ # property only if you specified `Vpc` as the value for the
29633
+ # `RepositoryAccessMode` field of the `ImageConfig` object that you
29634
+ # passed to a call to CreateModel and the private Docker registry where
29635
+ # the model image is hosted requires authentication.
29636
+ #
29637
+ # @note When making an API call, you may pass RepositoryAuthConfig
29638
+ # data as a hash:
29639
+ #
29640
+ # {
29641
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
29642
+ # }
29643
+ #
29644
+ # @!attribute [rw] repository_credentials_provider_arn
29645
+ # The Amazon Resource Name (ARN) of an AWS Lambda function that
29646
+ # provides credentials to authenticate to the private Docker registry
29647
+ # where your model image is hosted. For information about how to
29648
+ # create an AWS Lambda function, see [Create a Lambda function with
29649
+ # the console][1] in the *AWS Lambda Developer Guide*.
29650
+ #
29651
+ #
29652
+ #
29653
+ # [1]: https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
29654
+ # @return [String]
29655
+ #
29656
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RepositoryAuthConfig AWS API Documentation
29657
+ #
29658
+ class RepositoryAuthConfig < Struct.new(
29659
+ :repository_credentials_provider_arn)
29660
+ SENSITIVE = []
29661
+ include Aws::Structure
29662
+ end
29663
+
29399
29664
  # The resolved attributes.
29400
29665
  #
29401
29666
  # @!attribute [rw] auto_ml_job_objective
@@ -29523,7 +29788,7 @@ module Aws::SageMaker
29523
29788
  include Aws::Structure
29524
29789
  end
29525
29790
 
29526
- # Resource being accessed is in use.
29791
+ # The resource being accessed is in use.
29527
29792
  #
29528
29793
  # @!attribute [rw] message
29529
29794
  # @return [String]
@@ -29580,7 +29845,7 @@ module Aws::SageMaker
29580
29845
  include Aws::Structure
29581
29846
  end
29582
29847
 
29583
- # Resource being access is not found.
29848
+ # The resource being accessed was not found.
29584
29849
  #
29585
29850
  # @!attribute [rw] message
29586
29851
  # @return [String]
@@ -29652,6 +29917,32 @@ module Aws::SageMaker
29652
29917
  include Aws::Structure
29653
29918
  end
29654
29919
 
29920
+ # The retry strategy to use when a training job fails due to an
29921
+ # `InternalServerError`. `RetryStrategy` is specified as part of the
29922
+ # `CreateTrainingJob` and `CreateHyperParameterTuningJob` requests. You
29923
+ # can add the `StoppingCondition` parameter to the request to limit the
29924
+ # training time for the complete job.
29925
+ #
29926
+ # @note When making an API call, you may pass RetryStrategy
29927
+ # data as a hash:
29928
+ #
29929
+ # {
29930
+ # maximum_retry_attempts: 1, # required
29931
+ # }
29932
+ #
29933
+ # @!attribute [rw] maximum_retry_attempts
29934
+ # The number of times to retry the job. When the job is retried, it's
29935
+ # `SecondaryStatus` is changed to `STARTING`.
29936
+ # @return [Integer]
29937
+ #
29938
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RetryStrategy AWS API Documentation
29939
+ #
29940
+ class RetryStrategy < Struct.new(
29941
+ :maximum_retry_attempts)
29942
+ SENSITIVE = []
29943
+ include Aws::Structure
29944
+ end
29945
+
29655
29946
  # Describes the S3 data source.
29656
29947
  #
29657
29948
  # @note When making an API call, you may pass S3DataSource
@@ -30366,10 +30657,11 @@ module Aws::SageMaker
30366
30657
  include Aws::Structure
30367
30658
  end
30368
30659
 
30369
- # Specifies options when sharing an Amazon SageMaker Studio notebook.
30370
- # These settings are specified as part of `DefaultUserSettings` when the
30371
- # CreateDomain API is called, and as part of `UserSettings` when the
30372
- # CreateUserProfile API is called.
30660
+ # Specifies options for sharing SageMaker Studio notebooks. These
30661
+ # settings are specified as part of `DefaultUserSettings` when the
30662
+ # `CreateDomain` API is called, and as part of `UserSettings` when the
30663
+ # `CreateUserProfile` API is called. When `SharingSettings` is not
30664
+ # specified, notebook sharing isn't allowed.
30373
30665
  #
30374
30666
  # @note When making an API call, you may pass SharingSettings
30375
30667
  # data as a hash:
@@ -30883,11 +31175,11 @@ module Aws::SageMaker
30883
31175
  include Aws::Structure
30884
31176
  end
30885
31177
 
30886
- # Specifies a limit to how long a model training or compilation job can
30887
- # run. It also specifies how long you are willing to wait for a managed
30888
- # spot training job to complete. When the job reaches the time limit,
30889
- # Amazon SageMaker ends the training or compilation job. Use this API to
30890
- # cap model training costs.
31178
+ # Specifies a limit to how long a model training job, model compilation
31179
+ # job, or hyperparameter tuning job can run. It also specifies how long
31180
+ # a managed Spot training job has to complete. When the job reaches the
31181
+ # time limit, Amazon SageMaker ends the training or compilation job. Use
31182
+ # this API to cap model training costs.
30891
31183
  #
30892
31184
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
30893
31185
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -30917,18 +31209,27 @@ module Aws::SageMaker
30917
31209
  # }
30918
31210
  #
30919
31211
  # @!attribute [rw] max_runtime_in_seconds
30920
- # The maximum length of time, in seconds, that the training or
30921
- # compilation job can run. If job does not complete during this time,
30922
- # Amazon SageMaker ends the job. If value is not specified, default
30923
- # value is 1 day. The maximum value is 28 days.
31212
+ # The maximum length of time, in seconds, that a training or
31213
+ # compilation job can run. If the job does not complete during this
31214
+ # time, Amazon SageMaker ends the job.
31215
+ #
31216
+ # When `RetryStrategy` is specified in the job request,
31217
+ # `MaxRuntimeInSeconds` specifies the maximum time for all of the
31218
+ # attempts in total, not each individual attempt.
31219
+ #
31220
+ # The default value is 1 day. The maximum value is 28 days.
30924
31221
  # @return [Integer]
30925
31222
  #
30926
31223
  # @!attribute [rw] max_wait_time_in_seconds
30927
- # The maximum length of time, in seconds, how long you are willing to
30928
- # wait for a managed spot training job to complete. It is the amount
30929
- # of time spent waiting for Spot capacity plus the amount of time the
30930
- # training job runs. It must be equal to or greater than
30931
- # `MaxRuntimeInSeconds`.
31224
+ # The maximum length of time, in seconds, that a managed Spot training
31225
+ # job has to complete. It is the amount of time spent waiting for Spot
31226
+ # capacity plus the amount of time the job can run. It must be equal
31227
+ # to or greater than `MaxRuntimeInSeconds`. If the job does not
31228
+ # complete during this time, Amazon SageMaker ends the job.
31229
+ #
31230
+ # When `RetryStrategy` is specified in the job request,
31231
+ # `MaxWaitTimeInSeconds` specifies the maximum time for all of the
31232
+ # attempts in total, not each individual attempt.
30932
31233
  # @return [Integer]
30933
31234
  #
30934
31235
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
@@ -31323,9 +31624,10 @@ module Aws::SageMaker
31323
31624
  # @return [Types::VpcConfig]
31324
31625
  #
31325
31626
  # @!attribute [rw] stopping_condition
31326
- # Specifies a limit to how long a model training job can run. When the
31327
- # job reaches the time limit, Amazon SageMaker ends the training job.
31328
- # Use this API to cap model training costs.
31627
+ # Specifies a limit to how long a model training job can run. It also
31628
+ # specifies how long a managed Spot training job has to complete. When
31629
+ # the job reaches the time limit, Amazon SageMaker ends the training
31630
+ # job. Use this API to cap model training costs.
31329
31631
  #
31330
31632
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
31331
31633
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -31446,6 +31748,15 @@ module Aws::SageMaker
31446
31748
  # training job.
31447
31749
  # @return [Array<Types::DebugRuleEvaluationStatus>]
31448
31750
  #
31751
+ # @!attribute [rw] environment
31752
+ # The environment variables to set in the Docker container.
31753
+ # @return [Hash<String,String>]
31754
+ #
31755
+ # @!attribute [rw] retry_strategy
31756
+ # The number of times to retry the job when the job fails due to an
31757
+ # `InternalServerError`.
31758
+ # @return [Types::RetryStrategy]
31759
+ #
31449
31760
  # @!attribute [rw] tags
31450
31761
  # An array of key-value pairs. You can use tags to categorize your AWS
31451
31762
  # resources in different ways, for example, by purpose, owner, or
@@ -31493,6 +31804,8 @@ module Aws::SageMaker
31493
31804
  :debug_rule_configurations,
31494
31805
  :tensor_board_output_config,
31495
31806
  :debug_rule_evaluation_statuses,
31807
+ :environment,
31808
+ :retry_strategy,
31496
31809
  :tags)
31497
31810
  SENSITIVE = []
31498
31811
  include Aws::Structure
@@ -31586,9 +31899,10 @@ module Aws::SageMaker
31586
31899
  # @return [Types::ResourceConfig]
31587
31900
  #
31588
31901
  # @!attribute [rw] stopping_condition
31589
- # Specifies a limit to how long a model training job can run. When the
31590
- # job reaches the time limit, Amazon SageMaker ends the training job.
31591
- # Use this API to cap model training costs.
31902
+ # Specifies a limit to how long a model training job can run. It also
31903
+ # specifies how long a managed Spot training job has to complete. When
31904
+ # the job reaches the time limit, Amazon SageMaker ends the training
31905
+ # job. Use this API to cap model training costs.
31592
31906
  #
31593
31907
  # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
31594
31908
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -31921,7 +32235,7 @@ module Aws::SageMaker
31921
32235
  #
31922
32236
  #
31923
32237
  # [1]: https://mxnet.apache.org/api/faq/recordio
31924
- # [2]: https://www.tensorflow.org/guide/datasets#consuming_tfrecord_data
32238
+ # [2]: https://www.tensorflow.org/guide/data#consuming_tfrecord_data
31925
32239
  # @return [String]
31926
32240
  #
31927
32241
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TransformInput AWS API Documentation
@@ -34845,8 +35159,8 @@ module Aws::SageMaker
34845
35159
  end
34846
35160
 
34847
35161
  # A collection of settings that apply to users of Amazon SageMaker
34848
- # Studio. These settings are specified when the CreateUserProfile API is
34849
- # called, and as `DefaultUserSettings` when the CreateDomain API is
35162
+ # Studio. These settings are specified when the `CreateUserProfile` API
35163
+ # is called, and as `DefaultUserSettings` when the `CreateDomain` API is
34850
35164
  # called.
34851
35165
  #
34852
35166
  # `SecurityGroups` is aggregated when specified in both calls. For all
@@ -34915,7 +35229,7 @@ module Aws::SageMaker
34915
35229
  # @return [Array<String>]
34916
35230
  #
34917
35231
  # @!attribute [rw] sharing_settings
34918
- # The sharing settings.
35232
+ # Specifies options for sharing SageMaker Studio notebooks.
34919
35233
  # @return [Types::SharingSettings]
34920
35234
  #
34921
35235
  # @!attribute [rw] jupyter_server_app_settings