aws-sdk-sagemaker 1.81.0 → 1.86.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +25 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +187 -88
- data/lib/aws-sdk-sagemaker/client_api.rb +43 -0
- data/lib/aws-sdk-sagemaker/types.rb +464 -150
- metadata +5 -6
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 70252da28bdb9fdf188757e86122657444538bbb61d8cd8ee3affc624df66fe0
|
4
|
+
data.tar.gz: 4569055d7487adf471f69404f3d0755b6b65626cb1cea5adf6e89e1f9e89254d
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 295f08196ef61ed263fe7464b0040bd77c733c7c1e50e726401eecc6ccca1d16e8a944501141e1e99edc86627f38653bb71619f7fd9c5b16b1c7a79cc778c88e
|
7
|
+
data.tar.gz: 94ca0e69a233115b6e3f2a07874a974d47b2b268cbed09c9db304c36ad07e5fb329ca346a95793ea3fddd2b125fec06ddb3075e9d1b777029c3a7808ef7e4521
|
data/CHANGELOG.md
CHANGED
@@ -1,6 +1,31 @@
|
|
1
1
|
Unreleased Changes
|
2
2
|
------------------
|
3
3
|
|
4
|
+
1.86.0 (2021-05-04)
|
5
|
+
------------------
|
6
|
+
|
7
|
+
* Feature - Enable retrying Training and Tuning Jobs that fail with InternalServerError by setting RetryStrategy.
|
8
|
+
|
9
|
+
1.85.0 (2021-03-30)
|
10
|
+
------------------
|
11
|
+
|
12
|
+
* Feature - Amazon SageMaker Autopilot now supports 1) feature importance reports for AutoML jobs and 2) PartialFailures for AutoML jobs
|
13
|
+
|
14
|
+
1.84.0 (2021-03-25)
|
15
|
+
------------------
|
16
|
+
|
17
|
+
* Feature - This feature allows customer to specify the environment variables in their CreateTrainingJob requests.
|
18
|
+
|
19
|
+
1.83.0 (2021-03-19)
|
20
|
+
------------------
|
21
|
+
|
22
|
+
* Feature - Adding authentication support for pulling images stored in private Docker registries to build containers for real-time inference.
|
23
|
+
|
24
|
+
1.82.0 (2021-03-17)
|
25
|
+
------------------
|
26
|
+
|
27
|
+
* Feature - Support new target device ml_eia2 in SageMaker CreateCompilationJob API
|
28
|
+
|
4
29
|
1.81.0 (2021-03-10)
|
5
30
|
------------------
|
6
31
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.86.0
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -508,6 +508,13 @@ module Aws::SageMaker
|
|
508
508
|
# artifact. For more information, see [Amazon SageMaker ML Lineage
|
509
509
|
# Tracking][1].
|
510
510
|
#
|
511
|
+
# <note markdown="1"> `CreateAction` can only be invoked from within an SageMaker managed
|
512
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
513
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateAction` from
|
514
|
+
# outside one of these environments results in an error.
|
515
|
+
#
|
516
|
+
# </note>
|
517
|
+
#
|
511
518
|
#
|
512
519
|
#
|
513
520
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -827,11 +834,11 @@ module Aws::SageMaker
|
|
827
834
|
req.send_request(options)
|
828
835
|
end
|
829
836
|
|
830
|
-
# Creates a running
|
831
|
-
# are JupyterServer and KernelGateway
|
832
|
-
# invoked by Amazon SageMaker Studio upon access to the
|
833
|
-
# Domain, and when new kernel configurations are selected by
|
834
|
-
# user may have multiple Apps active simultaneously.
|
837
|
+
# Creates a running app for the specified UserProfile. Supported apps
|
838
|
+
# are `JupyterServer` and `KernelGateway`. This operation is
|
839
|
+
# automatically invoked by Amazon SageMaker Studio upon access to the
|
840
|
+
# associated Domain, and when new kernel configurations are selected by
|
841
|
+
# the user. A user may have multiple Apps active simultaneously.
|
835
842
|
#
|
836
843
|
# @option params [required, String] :domain_id
|
837
844
|
# The domain ID.
|
@@ -840,7 +847,8 @@ module Aws::SageMaker
|
|
840
847
|
# The user profile name.
|
841
848
|
#
|
842
849
|
# @option params [required, String] :app_type
|
843
|
-
# The type of app.
|
850
|
+
# The type of app. Supported apps are `JupyterServer` and
|
851
|
+
# `KernelGateway`. `TensorBoard` is not supported.
|
844
852
|
#
|
845
853
|
# @option params [required, String] :app_name
|
846
854
|
# The name of the app.
|
@@ -951,6 +959,13 @@ module Aws::SageMaker
|
|
951
959
|
# URI of a dataset and the ECR registry path of an image. For more
|
952
960
|
# information, see [Amazon SageMaker ML Lineage Tracking][1].
|
953
961
|
#
|
962
|
+
# <note markdown="1"> `CreateArtifact` can only be invoked from within an SageMaker managed
|
963
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
964
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateArtifact`
|
965
|
+
# from outside one of these environments results in an error.
|
966
|
+
#
|
967
|
+
# </note>
|
968
|
+
#
|
954
969
|
#
|
955
970
|
#
|
956
971
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -1025,49 +1040,55 @@ module Aws::SageMaker
|
|
1025
1040
|
# Creates an Autopilot job.
|
1026
1041
|
#
|
1027
1042
|
# Find the best performing model after you run an Autopilot job by
|
1028
|
-
# calling .
|
1029
|
-
# 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
|
1043
|
+
# calling .
|
1030
1044
|
#
|
1031
|
-
# For information about how to use Autopilot, see [
|
1032
|
-
# Development with Amazon SageMaker Autopilot][
|
1045
|
+
# For information about how to use Autopilot, see [Automate Model
|
1046
|
+
# Development with Amazon SageMaker Autopilot][1].
|
1033
1047
|
#
|
1034
1048
|
#
|
1035
1049
|
#
|
1036
|
-
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/
|
1037
|
-
# [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1050
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
|
1038
1051
|
#
|
1039
1052
|
# @option params [required, String] :auto_ml_job_name
|
1040
|
-
# Identifies an Autopilot job.
|
1041
|
-
# case-insensitive.
|
1053
|
+
# Identifies an Autopilot job. The name must be unique to your account
|
1054
|
+
# and is case-insensitive.
|
1042
1055
|
#
|
1043
1056
|
# @option params [required, Array<Types::AutoMLChannel>] :input_data_config
|
1044
|
-
#
|
1045
|
-
#
|
1057
|
+
# An array of channel objects that describes the input data and its
|
1058
|
+
# location. Each channel is a named input source. Similar to
|
1059
|
+
# `InputDataConfig` supported by . Format(s) supported: CSV. Minimum of
|
1060
|
+
# 500 rows.
|
1046
1061
|
#
|
1047
1062
|
# @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
|
1048
|
-
#
|
1063
|
+
# Provides information about encryption and the Amazon S3 output path
|
1064
|
+
# needed to store artifacts from an AutoML job. Format(s) supported:
|
1049
1065
|
# CSV.
|
1050
1066
|
#
|
1051
1067
|
# @option params [String] :problem_type
|
1052
|
-
# Defines the
|
1053
|
-
#
|
1054
|
-
#
|
1068
|
+
# Defines the type of supervised learning available for the candidates.
|
1069
|
+
# Options include: BinaryClassification, MulticlassClassification, and
|
1070
|
+
# Regression. For more information, see [ Amazon SageMaker Autopilot
|
1071
|
+
# problem types and algorithm support][1].
|
1072
|
+
#
|
1073
|
+
#
|
1074
|
+
#
|
1075
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
|
1055
1076
|
#
|
1056
1077
|
# @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
|
1057
|
-
# Defines the objective
|
1058
|
-
#
|
1059
|
-
#
|
1060
|
-
# ObjectiveMetric for problem type is automaically selected.
|
1078
|
+
# Defines the objective metric used to measure the predictive quality of
|
1079
|
+
# an AutoML job. You provide a AutoMLJobObjective$MetricName and
|
1080
|
+
# Autopilot infers whether to minimize or maximize it.
|
1061
1081
|
#
|
1062
1082
|
# @option params [Types::AutoMLJobConfig] :auto_ml_job_config
|
1063
|
-
# Contains CompletionCriteria and SecurityConfig
|
1083
|
+
# Contains CompletionCriteria and SecurityConfig settings for the AutoML
|
1084
|
+
# job.
|
1064
1085
|
#
|
1065
1086
|
# @option params [required, String] :role_arn
|
1066
1087
|
# The ARN of the role that is used to access the data.
|
1067
1088
|
#
|
1068
1089
|
# @option params [Boolean] :generate_candidate_definitions_only
|
1069
|
-
# Generates possible candidates without training
|
1070
|
-
# a combination of data preprocessors, algorithms, and algorithm
|
1090
|
+
# Generates possible candidates without training the models. A candidate
|
1091
|
+
# is a combination of data preprocessors, algorithms, and algorithm
|
1071
1092
|
# parameter settings.
|
1072
1093
|
#
|
1073
1094
|
# @option params [Array<Types::Tag>] :tags
|
@@ -1304,7 +1325,7 @@ module Aws::SageMaker
|
|
1304
1325
|
# },
|
1305
1326
|
# output_config: { # required
|
1306
1327
|
# s3_output_location: "S3Uri", # required
|
1307
|
-
# target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
|
1328
|
+
# target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
|
1308
1329
|
# target_platform: {
|
1309
1330
|
# os: "ANDROID", # required, accepts ANDROID, LINUX
|
1310
1331
|
# arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
|
@@ -1343,6 +1364,13 @@ module Aws::SageMaker
|
|
1343
1364
|
# entities. Some examples are an endpoint and a model package. For more
|
1344
1365
|
# information, see [Amazon SageMaker ML Lineage Tracking][1].
|
1345
1366
|
#
|
1367
|
+
# <note markdown="1"> `CreateContext` can only be invoked from within an SageMaker managed
|
1368
|
+
# environment. This includes SageMaker training jobs, processing jobs,
|
1369
|
+
# transform jobs, and SageMaker notebooks. A call to `CreateContext`
|
1370
|
+
# from outside one of these environments results in an error.
|
1371
|
+
#
|
1372
|
+
# </note>
|
1373
|
+
#
|
1346
1374
|
#
|
1347
1375
|
#
|
1348
1376
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
|
@@ -1651,7 +1679,14 @@ module Aws::SageMaker
|
|
1651
1679
|
# The mode of authentication that members use to access the domain.
|
1652
1680
|
#
|
1653
1681
|
# @option params [required, Types::UserSettings] :default_user_settings
|
1654
|
-
# The default user
|
1682
|
+
# The default settings to use to create a user profile when
|
1683
|
+
# `UserSettings` isn't specified in the call to the `CreateUserProfile`
|
1684
|
+
# API.
|
1685
|
+
#
|
1686
|
+
# `SecurityGroups` is aggregated when specified in both calls. For all
|
1687
|
+
# other settings in `UserSettings`, the values specified in
|
1688
|
+
# `CreateUserProfile` take precedence over those specified in
|
1689
|
+
# `CreateDomain`.
|
1655
1690
|
#
|
1656
1691
|
# @option params [required, Array<String>] :subnet_ids
|
1657
1692
|
# The VPC subnets that Studio uses for communication.
|
@@ -1663,7 +1698,10 @@ module Aws::SageMaker
|
|
1663
1698
|
# @option params [Array<Types::Tag>] :tags
|
1664
1699
|
# Tags to associated with the Domain. Each tag consists of a key and an
|
1665
1700
|
# optional value. Tag keys must be unique per resource. Tags are
|
1666
|
-
# searchable using the Search API.
|
1701
|
+
# searchable using the `Search` API.
|
1702
|
+
#
|
1703
|
+
# Tags that you specify for the Domain are also added to all Apps that
|
1704
|
+
# the Domain launches.
|
1667
1705
|
#
|
1668
1706
|
# @option params [String] :app_network_access_type
|
1669
1707
|
# Specifies the VPC used for non-EFS traffic. The default value is
|
@@ -2141,10 +2179,10 @@ module Aws::SageMaker
|
|
2141
2179
|
# measuring the impact of a change to one or more inputs, while keeping
|
2142
2180
|
# the remaining inputs constant.
|
2143
2181
|
#
|
2144
|
-
# When you use
|
2145
|
-
#
|
2146
|
-
#
|
2147
|
-
#
|
2182
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
2183
|
+
# experiments, trials, and trial components are automatically tracked,
|
2184
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
2185
|
+
# must use the logging APIs provided by the SDK.
|
2148
2186
|
#
|
2149
2187
|
# You can add tags to experiments, trials, trial components and then use
|
2150
2188
|
# the Search API to search for the tags.
|
@@ -2722,6 +2760,9 @@ module Aws::SageMaker
|
|
2722
2760
|
# s3_uri: "S3Uri", # required
|
2723
2761
|
# local_path: "DirectoryPath",
|
2724
2762
|
# },
|
2763
|
+
# retry_strategy: {
|
2764
|
+
# maximum_retry_attempts: 1, # required
|
2765
|
+
# },
|
2725
2766
|
# },
|
2726
2767
|
# training_job_definitions: [
|
2727
2768
|
# {
|
@@ -2820,6 +2861,9 @@ module Aws::SageMaker
|
|
2820
2861
|
# s3_uri: "S3Uri", # required
|
2821
2862
|
# local_path: "DirectoryPath",
|
2822
2863
|
# },
|
2864
|
+
# retry_strategy: {
|
2865
|
+
# maximum_retry_attempts: 1, # required
|
2866
|
+
# },
|
2823
2867
|
# },
|
2824
2868
|
# ],
|
2825
2869
|
# warm_start_config: {
|
@@ -3358,6 +3402,9 @@ module Aws::SageMaker
|
|
3358
3402
|
# image: "ContainerImage",
|
3359
3403
|
# image_config: {
|
3360
3404
|
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
3405
|
+
# repository_auth_config: {
|
3406
|
+
# repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
|
3407
|
+
# },
|
3361
3408
|
# },
|
3362
3409
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
3363
3410
|
# model_data_url: "Url",
|
@@ -3375,6 +3422,9 @@ module Aws::SageMaker
|
|
3375
3422
|
# image: "ContainerImage",
|
3376
3423
|
# image_config: {
|
3377
3424
|
# repository_access_mode: "Platform", # required, accepts Platform, Vpc
|
3425
|
+
# repository_auth_config: {
|
3426
|
+
# repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
|
3427
|
+
# },
|
3378
3428
|
# },
|
3379
3429
|
# mode: "SingleModel", # accepts SingleModel, MultiModel
|
3380
3430
|
# model_data_url: "Url",
|
@@ -4963,8 +5013,6 @@ module Aws::SageMaker
|
|
4963
5013
|
# * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
|
4964
5014
|
# Amazon SageMaker to save the results of model training.
|
4965
5015
|
#
|
4966
|
-
#
|
4967
|
-
#
|
4968
5016
|
# * `ResourceConfig` - Identifies the resources, ML compute instances,
|
4969
5017
|
# and ML storage volumes to deploy for model training. In distributed
|
4970
5018
|
# training, you specify more than one instance.
|
@@ -4980,8 +5028,14 @@ module Aws::SageMaker
|
|
4980
5028
|
#
|
4981
5029
|
# * `StoppingCondition` - To help cap training costs, use
|
4982
5030
|
# `MaxRuntimeInSeconds` to set a time limit for training. Use
|
4983
|
-
# `MaxWaitTimeInSeconds` to specify how long
|
4984
|
-
#
|
5031
|
+
# `MaxWaitTimeInSeconds` to specify how long a managed spot training
|
5032
|
+
# job has to complete.
|
5033
|
+
#
|
5034
|
+
# * `Environment` - The environment variables to set in the Docker
|
5035
|
+
# container.
|
5036
|
+
#
|
5037
|
+
# * `RetryStrategy` - The number of times to retry the job when the job
|
5038
|
+
# fails due to an `InternalServerError`.
|
4985
5039
|
#
|
4986
5040
|
# For more information about Amazon SageMaker, see [How It Works][3].
|
4987
5041
|
#
|
@@ -5086,9 +5140,10 @@ module Aws::SageMaker
|
|
5086
5140
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
|
5087
5141
|
#
|
5088
5142
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
5089
|
-
# Specifies a limit to how long a model training job can run.
|
5090
|
-
#
|
5091
|
-
#
|
5143
|
+
# Specifies a limit to how long a model training job can run. It also
|
5144
|
+
# specifies how long a managed Spot training job has to complete. When
|
5145
|
+
# the job reaches the time limit, Amazon SageMaker ends the training
|
5146
|
+
# job. Use this API to cap model training costs.
|
5092
5147
|
#
|
5093
5148
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
5094
5149
|
# signal, which delays job termination for 120 seconds. Algorithms can
|
@@ -5180,6 +5235,13 @@ module Aws::SageMaker
|
|
5180
5235
|
# Configuration information for Debugger rules for profiling system and
|
5181
5236
|
# framework metrics.
|
5182
5237
|
#
|
5238
|
+
# @option params [Hash<String,String>] :environment
|
5239
|
+
# The environment variables to set in the Docker container.
|
5240
|
+
#
|
5241
|
+
# @option params [Types::RetryStrategy] :retry_strategy
|
5242
|
+
# The number of times to retry the job when the job fails due to an
|
5243
|
+
# `InternalServerError`.
|
5244
|
+
#
|
5183
5245
|
# @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
5184
5246
|
#
|
5185
5247
|
# * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
|
@@ -5318,6 +5380,12 @@ module Aws::SageMaker
|
|
5318
5380
|
# },
|
5319
5381
|
# },
|
5320
5382
|
# ],
|
5383
|
+
# environment: {
|
5384
|
+
# "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
|
5385
|
+
# },
|
5386
|
+
# retry_strategy: {
|
5387
|
+
# maximum_retry_attempts: 1, # required
|
5388
|
+
# },
|
5321
5389
|
# })
|
5322
5390
|
#
|
5323
5391
|
# @example Response structure
|
@@ -5543,14 +5611,14 @@ module Aws::SageMaker
|
|
5543
5611
|
req.send_request(options)
|
5544
5612
|
end
|
5545
5613
|
|
5546
|
-
# Creates an
|
5547
|
-
#
|
5548
|
-
#
|
5614
|
+
# Creates an SageMaker *trial*. A trial is a set of steps called *trial
|
5615
|
+
# components* that produce a machine learning model. A trial is part of
|
5616
|
+
# a single SageMaker *experiment*.
|
5549
5617
|
#
|
5550
|
-
# When you use
|
5551
|
-
#
|
5552
|
-
#
|
5553
|
-
#
|
5618
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
5619
|
+
# experiments, trials, and trial components are automatically tracked,
|
5620
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
5621
|
+
# must use the logging APIs provided by the SDK.
|
5554
5622
|
#
|
5555
5623
|
# You can add tags to a trial and then use the Search API to search for
|
5556
5624
|
# the tags.
|
@@ -5621,19 +5689,19 @@ module Aws::SageMaker
|
|
5621
5689
|
# Trial components include pre-processing jobs, training jobs, and batch
|
5622
5690
|
# transform jobs.
|
5623
5691
|
#
|
5624
|
-
# When you use
|
5625
|
-
#
|
5626
|
-
#
|
5627
|
-
#
|
5692
|
+
# When you use SageMaker Studio or the SageMaker Python SDK, all
|
5693
|
+
# experiments, trials, and trial components are automatically tracked,
|
5694
|
+
# logged, and indexed. When you use the AWS SDK for Python (Boto), you
|
5695
|
+
# must use the logging APIs provided by the SDK.
|
5628
5696
|
#
|
5629
5697
|
# You can add tags to a trial component and then use the Search API to
|
5630
5698
|
# search for the tags.
|
5631
5699
|
#
|
5632
|
-
# <note markdown="1"> `CreateTrialComponent` can only be invoked from within an
|
5633
|
-
#
|
5634
|
-
# jobs,
|
5635
|
-
#
|
5636
|
-
#
|
5700
|
+
# <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
|
5701
|
+
# managed environment. This includes SageMaker training jobs, processing
|
5702
|
+
# jobs, transform jobs, and SageMaker notebooks. A call to
|
5703
|
+
# `CreateTrialComponent` from outside one of these environments results
|
5704
|
+
# in an error.
|
5637
5705
|
#
|
5638
5706
|
# </note>
|
5639
5707
|
#
|
@@ -5753,7 +5821,7 @@ module Aws::SageMaker
|
|
5753
5821
|
# The ID of the associated Domain.
|
5754
5822
|
#
|
5755
5823
|
# @option params [required, String] :user_profile_name
|
5756
|
-
# A name for the UserProfile.
|
5824
|
+
# A name for the UserProfile. This value is not case sensitive.
|
5757
5825
|
#
|
5758
5826
|
# @option params [String] :single_sign_on_user_identifier
|
5759
5827
|
# A specifier for the type of value specified in SingleSignOnUserValue.
|
@@ -5771,6 +5839,9 @@ module Aws::SageMaker
|
|
5771
5839
|
# Each tag consists of a key and an optional value. Tag keys must be
|
5772
5840
|
# unique per resource.
|
5773
5841
|
#
|
5842
|
+
# Tags that you specify for the User Profile are also added to all Apps
|
5843
|
+
# that the User Profile launches.
|
5844
|
+
#
|
5774
5845
|
# @option params [Types::UserSettings] :user_settings
|
5775
5846
|
# A collection of settings.
|
5776
5847
|
#
|
@@ -6421,7 +6492,7 @@ module Aws::SageMaker
|
|
6421
6492
|
req.send_request(options)
|
6422
6493
|
end
|
6423
6494
|
|
6424
|
-
# Deletes an
|
6495
|
+
# Deletes an SageMaker experiment. All trials associated with the
|
6425
6496
|
# experiment must be deleted first. Use the ListTrials API to get a list
|
6426
6497
|
# of the trials associated with the experiment.
|
6427
6498
|
#
|
@@ -6816,7 +6887,10 @@ module Aws::SageMaker
|
|
6816
6887
|
req.send_request(options)
|
6817
6888
|
end
|
6818
6889
|
|
6819
|
-
# Deletes a pipeline if there are no
|
6890
|
+
# Deletes a pipeline if there are no running instances of the pipeline.
|
6891
|
+
# To delete a pipeline, you must stop all running instances of the
|
6892
|
+
# pipeline using the `StopPipelineExecution` API. When you delete a
|
6893
|
+
# pipeline, all instances of the pipeline are deleted.
|
6820
6894
|
#
|
6821
6895
|
# @option params [required, String] :pipeline_name
|
6822
6896
|
# The name of the pipeline to delete.
|
@@ -7453,10 +7527,10 @@ module Aws::SageMaker
|
|
7453
7527
|
req.send_request(options)
|
7454
7528
|
end
|
7455
7529
|
|
7456
|
-
# Returns information about an Amazon SageMaker job.
|
7530
|
+
# Returns information about an Amazon SageMaker AutoML job.
|
7457
7531
|
#
|
7458
7532
|
# @option params [required, String] :auto_ml_job_name
|
7459
|
-
#
|
7533
|
+
# Requests information about an AutoML job using its unique name.
|
7460
7534
|
#
|
7461
7535
|
# @return [Types::DescribeAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
7462
7536
|
#
|
@@ -7472,6 +7546,7 @@ module Aws::SageMaker
|
|
7472
7546
|
# * {Types::DescribeAutoMLJobResponse#end_time #end_time} => Time
|
7473
7547
|
# * {Types::DescribeAutoMLJobResponse#last_modified_time #last_modified_time} => Time
|
7474
7548
|
# * {Types::DescribeAutoMLJobResponse#failure_reason #failure_reason} => String
|
7549
|
+
# * {Types::DescribeAutoMLJobResponse#partial_failure_reasons #partial_failure_reasons} => Array<Types::AutoMLPartialFailureReason>
|
7475
7550
|
# * {Types::DescribeAutoMLJobResponse#best_candidate #best_candidate} => Types::AutoMLCandidate
|
7476
7551
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_status #auto_ml_job_status} => String
|
7477
7552
|
# * {Types::DescribeAutoMLJobResponse#auto_ml_job_secondary_status #auto_ml_job_secondary_status} => String
|
@@ -7512,6 +7587,8 @@ module Aws::SageMaker
|
|
7512
7587
|
# resp.end_time #=> Time
|
7513
7588
|
# resp.last_modified_time #=> Time
|
7514
7589
|
# resp.failure_reason #=> String
|
7590
|
+
# resp.partial_failure_reasons #=> Array
|
7591
|
+
# resp.partial_failure_reasons[0].partial_failure_message #=> String
|
7515
7592
|
# resp.best_candidate.candidate_name #=> String
|
7516
7593
|
# resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
|
7517
7594
|
# resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
|
@@ -7531,8 +7608,9 @@ module Aws::SageMaker
|
|
7531
7608
|
# resp.best_candidate.end_time #=> Time
|
7532
7609
|
# resp.best_candidate.last_modified_time #=> Time
|
7533
7610
|
# resp.best_candidate.failure_reason #=> String
|
7611
|
+
# resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
|
7534
7612
|
# resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
7535
|
-
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
|
7613
|
+
# resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
|
7536
7614
|
# resp.generate_candidate_definitions_only #=> Boolean
|
7537
7615
|
# resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
|
7538
7616
|
# resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
|
@@ -7641,7 +7719,7 @@ module Aws::SageMaker
|
|
7641
7719
|
# resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
|
7642
7720
|
# resp.input_config.framework_version #=> String
|
7643
7721
|
# resp.output_config.s3_output_location #=> String
|
7644
|
-
# resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
|
7722
|
+
# resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
|
7645
7723
|
# resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
|
7646
7724
|
# resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
|
7647
7725
|
# resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
|
@@ -8482,6 +8560,7 @@ module Aws::SageMaker
|
|
8482
8560
|
# resp.training_job_definition.enable_managed_spot_training #=> Boolean
|
8483
8561
|
# resp.training_job_definition.checkpoint_config.s3_uri #=> String
|
8484
8562
|
# resp.training_job_definition.checkpoint_config.local_path #=> String
|
8563
|
+
# resp.training_job_definition.retry_strategy.maximum_retry_attempts #=> Integer
|
8485
8564
|
# resp.training_job_definitions #=> Array
|
8486
8565
|
# resp.training_job_definitions[0].definition_name #=> String
|
8487
8566
|
# resp.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
|
@@ -8542,6 +8621,7 @@ module Aws::SageMaker
|
|
8542
8621
|
# resp.training_job_definitions[0].enable_managed_spot_training #=> Boolean
|
8543
8622
|
# resp.training_job_definitions[0].checkpoint_config.s3_uri #=> String
|
8544
8623
|
# resp.training_job_definitions[0].checkpoint_config.local_path #=> String
|
8624
|
+
# resp.training_job_definitions[0].retry_strategy.maximum_retry_attempts #=> Integer
|
8545
8625
|
# resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
8546
8626
|
# resp.creation_time #=> Time
|
8547
8627
|
# resp.hyper_parameter_tuning_end_time #=> Time
|
@@ -8812,6 +8892,7 @@ module Aws::SageMaker
|
|
8812
8892
|
# resp.primary_container.container_hostname #=> String
|
8813
8893
|
# resp.primary_container.image #=> String
|
8814
8894
|
# resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
|
8895
|
+
# resp.primary_container.image_config.repository_auth_config.repository_credentials_provider_arn #=> String
|
8815
8896
|
# resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
|
8816
8897
|
# resp.primary_container.model_data_url #=> String
|
8817
8898
|
# resp.primary_container.environment #=> Hash
|
@@ -8822,6 +8903,7 @@ module Aws::SageMaker
|
|
8822
8903
|
# resp.containers[0].container_hostname #=> String
|
8823
8904
|
# resp.containers[0].image #=> String
|
8824
8905
|
# resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
|
8906
|
+
# resp.containers[0].image_config.repository_auth_config.repository_credentials_provider_arn #=> String
|
8825
8907
|
# resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
|
8826
8908
|
# resp.containers[0].model_data_url #=> String
|
8827
8909
|
# resp.containers[0].environment #=> Hash
|
@@ -9863,6 +9945,8 @@ module Aws::SageMaker
|
|
9863
9945
|
# * {Types::DescribeTrainingJobResponse#profiler_rule_configurations #profiler_rule_configurations} => Array<Types::ProfilerRuleConfiguration>
|
9864
9946
|
# * {Types::DescribeTrainingJobResponse#profiler_rule_evaluation_statuses #profiler_rule_evaluation_statuses} => Array<Types::ProfilerRuleEvaluationStatus>
|
9865
9947
|
# * {Types::DescribeTrainingJobResponse#profiling_status #profiling_status} => String
|
9948
|
+
# * {Types::DescribeTrainingJobResponse#retry_strategy #retry_strategy} => Types::RetryStrategy
|
9949
|
+
# * {Types::DescribeTrainingJobResponse#environment #environment} => Hash<String,String>
|
9866
9950
|
#
|
9867
9951
|
# @example Request syntax with placeholder values
|
9868
9952
|
#
|
@@ -9879,7 +9963,7 @@ module Aws::SageMaker
|
|
9879
9963
|
# resp.auto_ml_job_arn #=> String
|
9880
9964
|
# resp.model_artifacts.s3_model_artifacts #=> String
|
9881
9965
|
# resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
9882
|
-
# resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
9966
|
+
# resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
9883
9967
|
# resp.failure_reason #=> String
|
9884
9968
|
# resp.hyper_parameters #=> Hash
|
9885
9969
|
# resp.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -9924,7 +10008,7 @@ module Aws::SageMaker
|
|
9924
10008
|
# resp.training_end_time #=> Time
|
9925
10009
|
# resp.last_modified_time #=> Time
|
9926
10010
|
# resp.secondary_status_transitions #=> Array
|
9927
|
-
# resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
10011
|
+
# resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
9928
10012
|
# resp.secondary_status_transitions[0].start_time #=> Time
|
9929
10013
|
# resp.secondary_status_transitions[0].end_time #=> Time
|
9930
10014
|
# resp.secondary_status_transitions[0].status_message #=> String
|
@@ -9987,6 +10071,9 @@ module Aws::SageMaker
|
|
9987
10071
|
# resp.profiler_rule_evaluation_statuses[0].status_details #=> String
|
9988
10072
|
# resp.profiler_rule_evaluation_statuses[0].last_modified_time #=> Time
|
9989
10073
|
# resp.profiling_status #=> String, one of "Enabled", "Disabled"
|
10074
|
+
# resp.retry_strategy.maximum_retry_attempts #=> Integer
|
10075
|
+
# resp.environment #=> Hash
|
10076
|
+
# resp.environment["TrainingEnvironmentKey"] #=> String
|
9990
10077
|
#
|
9991
10078
|
#
|
9992
10079
|
# The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
|
@@ -10231,7 +10318,7 @@ module Aws::SageMaker
|
|
10231
10318
|
# The domain ID.
|
10232
10319
|
#
|
10233
10320
|
# @option params [required, String] :user_profile_name
|
10234
|
-
# The user profile name.
|
10321
|
+
# The user profile name. This value is not case sensitive.
|
10235
10322
|
#
|
10236
10323
|
# @return [Types::DescribeUserProfileResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
10237
10324
|
#
|
@@ -11127,11 +11214,13 @@ module Aws::SageMaker
|
|
11127
11214
|
# resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
|
11128
11215
|
# resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
|
11129
11216
|
# resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
|
11130
|
-
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
|
11217
|
+
# resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
|
11131
11218
|
# resp.auto_ml_job_summaries[0].creation_time #=> Time
|
11132
11219
|
# resp.auto_ml_job_summaries[0].end_time #=> Time
|
11133
11220
|
# resp.auto_ml_job_summaries[0].last_modified_time #=> Time
|
11134
11221
|
# resp.auto_ml_job_summaries[0].failure_reason #=> String
|
11222
|
+
# resp.auto_ml_job_summaries[0].partial_failure_reasons #=> Array
|
11223
|
+
# resp.auto_ml_job_summaries[0].partial_failure_reasons[0].partial_failure_message #=> String
|
11135
11224
|
# resp.next_token #=> String
|
11136
11225
|
#
|
11137
11226
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobs AWS API Documentation
|
@@ -11143,25 +11232,26 @@ module Aws::SageMaker
|
|
11143
11232
|
req.send_request(options)
|
11144
11233
|
end
|
11145
11234
|
|
11146
|
-
# List the
|
11235
|
+
# List the candidates created for the job.
|
11147
11236
|
#
|
11148
11237
|
# @option params [required, String] :auto_ml_job_name
|
11149
|
-
# List the
|
11238
|
+
# List the candidates created for the job by providing the job's name.
|
11150
11239
|
#
|
11151
11240
|
# @option params [String] :status_equals
|
11152
|
-
# List the
|
11241
|
+
# List the candidates for the job and filter by status.
|
11153
11242
|
#
|
11154
11243
|
# @option params [String] :candidate_name_equals
|
11155
|
-
# List the
|
11244
|
+
# List the candidates for the job and filter by candidate name.
|
11156
11245
|
#
|
11157
11246
|
# @option params [String] :sort_order
|
11158
|
-
# The sort order for the results. The default is Ascending
|
11247
|
+
# The sort order for the results. The default is `Ascending`.
|
11159
11248
|
#
|
11160
11249
|
# @option params [String] :sort_by
|
11161
|
-
# The parameter by which to sort the results. The default is
|
11250
|
+
# The parameter by which to sort the results. The default is
|
11251
|
+
# `Descending`.
|
11162
11252
|
#
|
11163
11253
|
# @option params [Integer] :max_results
|
11164
|
-
# List the job's
|
11254
|
+
# List the job's candidates up to a specified limit.
|
11165
11255
|
#
|
11166
11256
|
# @option params [String] :next_token
|
11167
11257
|
# If the previous response was truncated, you receive this token. Use it
|
@@ -11208,6 +11298,7 @@ module Aws::SageMaker
|
|
11208
11298
|
# resp.candidates[0].end_time #=> Time
|
11209
11299
|
# resp.candidates[0].last_modified_time #=> Time
|
11210
11300
|
# resp.candidates[0].failure_reason #=> String
|
11301
|
+
# resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
|
11211
11302
|
# resp.next_token #=> String
|
11212
11303
|
#
|
11213
11304
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
|
@@ -11372,7 +11463,7 @@ module Aws::SageMaker
|
|
11372
11463
|
# resp.compilation_job_summaries[0].creation_time #=> Time
|
11373
11464
|
# resp.compilation_job_summaries[0].compilation_start_time #=> Time
|
11374
11465
|
# resp.compilation_job_summaries[0].compilation_end_time #=> Time
|
11375
|
-
# resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
|
11466
|
+
# resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
|
11376
11467
|
# resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
|
11377
11468
|
# resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
|
11378
11469
|
# resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
|
@@ -11868,7 +11959,8 @@ module Aws::SageMaker
|
|
11868
11959
|
# token in the next request.
|
11869
11960
|
#
|
11870
11961
|
# @option params [Integer] :max_results
|
11871
|
-
# The maximum number of endpoints to return in the response.
|
11962
|
+
# The maximum number of endpoints to return in the response. This value
|
11963
|
+
# defaults to 10.
|
11872
11964
|
#
|
11873
11965
|
# @option params [String] :name_contains
|
11874
11966
|
# A string in endpoint names. This filter returns only endpoints whose
|
@@ -13937,16 +14029,17 @@ module Aws::SageMaker
|
|
13937
14029
|
# <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
|
13938
14030
|
# `MaxResults` number of training jobs are first retrieved ignoring the
|
13939
14031
|
# `StatusEquals` parameter and then they are filtered by the
|
13940
|
-
# `StatusEquals` parameter, which is returned as a response.
|
13941
|
-
#
|
14032
|
+
# `StatusEquals` parameter, which is returned as a response.
|
14033
|
+
#
|
14034
|
+
# For example, if `ListTrainingJobs` is invoked with the following
|
13942
14035
|
# parameters:
|
13943
14036
|
#
|
13944
14037
|
# `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
|
13945
14038
|
#
|
13946
|
-
#
|
13947
|
-
# `InProgress
|
13948
|
-
# from the
|
13949
|
-
# returned.
|
14039
|
+
# First, 100 trainings jobs with any status, including those other than
|
14040
|
+
# `InProgress`, are selected (sorted according to the creation time,
|
14041
|
+
# from the most current to the oldest). Next, those with a status of
|
14042
|
+
# `InProgress` are returned.
|
13950
14043
|
#
|
13951
14044
|
# You can quickly test the API using the following AWS CLI code.
|
13952
14045
|
#
|
@@ -14790,7 +14883,7 @@ module Aws::SageMaker
|
|
14790
14883
|
# resp.results[0].training_job.auto_ml_job_arn #=> String
|
14791
14884
|
# resp.results[0].training_job.model_artifacts.s3_model_artifacts #=> String
|
14792
14885
|
# resp.results[0].training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
14793
|
-
# resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
14886
|
+
# resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14794
14887
|
# resp.results[0].training_job.failure_reason #=> String
|
14795
14888
|
# resp.results[0].training_job.hyper_parameters #=> Hash
|
14796
14889
|
# resp.results[0].training_job.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -14835,7 +14928,7 @@ module Aws::SageMaker
|
|
14835
14928
|
# resp.results[0].training_job.training_end_time #=> Time
|
14836
14929
|
# resp.results[0].training_job.last_modified_time #=> Time
|
14837
14930
|
# resp.results[0].training_job.secondary_status_transitions #=> Array
|
14838
|
-
# resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
14931
|
+
# resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14839
14932
|
# resp.results[0].training_job.secondary_status_transitions[0].start_time #=> Time
|
14840
14933
|
# resp.results[0].training_job.secondary_status_transitions[0].end_time #=> Time
|
14841
14934
|
# resp.results[0].training_job.secondary_status_transitions[0].status_message #=> String
|
@@ -14878,6 +14971,9 @@ module Aws::SageMaker
|
|
14878
14971
|
# resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
|
14879
14972
|
# resp.results[0].training_job.debug_rule_evaluation_statuses[0].status_details #=> String
|
14880
14973
|
# resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
|
14974
|
+
# resp.results[0].training_job.environment #=> Hash
|
14975
|
+
# resp.results[0].training_job.environment["TrainingEnvironmentKey"] #=> String
|
14976
|
+
# resp.results[0].training_job.retry_strategy.maximum_retry_attempts #=> Integer
|
14881
14977
|
# resp.results[0].training_job.tags #=> Array
|
14882
14978
|
# resp.results[0].training_job.tags[0].key #=> String
|
14883
14979
|
# resp.results[0].training_job.tags[0].value #=> String
|
@@ -14976,7 +15072,7 @@ module Aws::SageMaker
|
|
14976
15072
|
# resp.results[0].trial_component.source_detail.training_job.auto_ml_job_arn #=> String
|
14977
15073
|
# resp.results[0].trial_component.source_detail.training_job.model_artifacts.s3_model_artifacts #=> String
|
14978
15074
|
# resp.results[0].trial_component.source_detail.training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
|
14979
|
-
# resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
15075
|
+
# resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
14980
15076
|
# resp.results[0].trial_component.source_detail.training_job.failure_reason #=> String
|
14981
15077
|
# resp.results[0].trial_component.source_detail.training_job.hyper_parameters #=> Hash
|
14982
15078
|
# resp.results[0].trial_component.source_detail.training_job.hyper_parameters["HyperParameterKey"] #=> String
|
@@ -15021,7 +15117,7 @@ module Aws::SageMaker
|
|
15021
15117
|
# resp.results[0].trial_component.source_detail.training_job.training_end_time #=> Time
|
15022
15118
|
# resp.results[0].trial_component.source_detail.training_job.last_modified_time #=> Time
|
15023
15119
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions #=> Array
|
15024
|
-
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
|
15120
|
+
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
|
15025
15121
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].start_time #=> Time
|
15026
15122
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].end_time #=> Time
|
15027
15123
|
# resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status_message #=> String
|
@@ -15064,6 +15160,9 @@ module Aws::SageMaker
|
|
15064
15160
|
# resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
|
15065
15161
|
# resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].status_details #=> String
|
15066
15162
|
# resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
|
15163
|
+
# resp.results[0].trial_component.source_detail.training_job.environment #=> Hash
|
15164
|
+
# resp.results[0].trial_component.source_detail.training_job.environment["TrainingEnvironmentKey"] #=> String
|
15165
|
+
# resp.results[0].trial_component.source_detail.training_job.retry_strategy.maximum_retry_attempts #=> Integer
|
15067
15166
|
# resp.results[0].trial_component.source_detail.training_job.tags #=> Array
|
15068
15167
|
# resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
|
15069
15168
|
# resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
|
@@ -17309,7 +17408,7 @@ module Aws::SageMaker
|
|
17309
17408
|
params: params,
|
17310
17409
|
config: config)
|
17311
17410
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
17312
|
-
context[:gem_version] = '1.
|
17411
|
+
context[:gem_version] = '1.86.0'
|
17313
17412
|
Seahorse::Client::Request.new(handlers, context)
|
17314
17413
|
end
|
17315
17414
|
|