aws-sdk-sagemaker 1.81.0 → 1.86.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 2c5be4e4f4a2d09c6bfabfe50c30180d430159a06ca517b54fdcc89e861cba61
4
- data.tar.gz: 9145c2c496bd9d4250f3da46b4b8bb4d21756bf36ed38197c4a43d7943ddd328
3
+ metadata.gz: 70252da28bdb9fdf188757e86122657444538bbb61d8cd8ee3affc624df66fe0
4
+ data.tar.gz: 4569055d7487adf471f69404f3d0755b6b65626cb1cea5adf6e89e1f9e89254d
5
5
  SHA512:
6
- metadata.gz: 7999308409f54115552ad36d65e7ffb7abdffbd58ea682f6d538192622541365cc2483734fc0abef9887aa672ea483e5ad0646ec5103072cf7bac5d999ebd96e
7
- data.tar.gz: 6818bdde11e4e6366efdaea136a90caeb998e7061154635601b2f950c6185b23c30c7654da780acb1fee7d58851c5070ee9f420269d3aa8a83e8f314477056f8
6
+ metadata.gz: 295f08196ef61ed263fe7464b0040bd77c733c7c1e50e726401eecc6ccca1d16e8a944501141e1e99edc86627f38653bb71619f7fd9c5b16b1c7a79cc778c88e
7
+ data.tar.gz: 94ca0e69a233115b6e3f2a07874a974d47b2b268cbed09c9db304c36ad07e5fb329ca346a95793ea3fddd2b125fec06ddb3075e9d1b777029c3a7808ef7e4521
data/CHANGELOG.md CHANGED
@@ -1,6 +1,31 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.86.0 (2021-05-04)
5
+ ------------------
6
+
7
+ * Feature - Enable retrying Training and Tuning Jobs that fail with InternalServerError by setting RetryStrategy.
8
+
9
+ 1.85.0 (2021-03-30)
10
+ ------------------
11
+
12
+ * Feature - Amazon SageMaker Autopilot now supports 1) feature importance reports for AutoML jobs and 2) PartialFailures for AutoML jobs
13
+
14
+ 1.84.0 (2021-03-25)
15
+ ------------------
16
+
17
+ * Feature - This feature allows customer to specify the environment variables in their CreateTrainingJob requests.
18
+
19
+ 1.83.0 (2021-03-19)
20
+ ------------------
21
+
22
+ * Feature - Adding authentication support for pulling images stored in private Docker registries to build containers for real-time inference.
23
+
24
+ 1.82.0 (2021-03-17)
25
+ ------------------
26
+
27
+ * Feature - Support new target device ml_eia2 in SageMaker CreateCompilationJob API
28
+
4
29
  1.81.0 (2021-03-10)
5
30
  ------------------
6
31
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.81.0
1
+ 1.86.0
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.81.0'
52
+ GEM_VERSION = '1.86.0'
53
53
 
54
54
  end
@@ -508,6 +508,13 @@ module Aws::SageMaker
508
508
  # artifact. For more information, see [Amazon SageMaker ML Lineage
509
509
  # Tracking][1].
510
510
  #
511
+ # <note markdown="1"> `CreateAction` can only be invoked from within an SageMaker managed
512
+ # environment. This includes SageMaker training jobs, processing jobs,
513
+ # transform jobs, and SageMaker notebooks. A call to `CreateAction` from
514
+ # outside one of these environments results in an error.
515
+ #
516
+ # </note>
517
+ #
511
518
  #
512
519
  #
513
520
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -827,11 +834,11 @@ module Aws::SageMaker
827
834
  req.send_request(options)
828
835
  end
829
836
 
830
- # Creates a running App for the specified UserProfile. Supported Apps
831
- # are JupyterServer and KernelGateway. This operation is automatically
832
- # invoked by Amazon SageMaker Studio upon access to the associated
833
- # Domain, and when new kernel configurations are selected by the user. A
834
- # user may have multiple Apps active simultaneously.
837
+ # Creates a running app for the specified UserProfile. Supported apps
838
+ # are `JupyterServer` and `KernelGateway`. This operation is
839
+ # automatically invoked by Amazon SageMaker Studio upon access to the
840
+ # associated Domain, and when new kernel configurations are selected by
841
+ # the user. A user may have multiple Apps active simultaneously.
835
842
  #
836
843
  # @option params [required, String] :domain_id
837
844
  # The domain ID.
@@ -840,7 +847,8 @@ module Aws::SageMaker
840
847
  # The user profile name.
841
848
  #
842
849
  # @option params [required, String] :app_type
843
- # The type of app.
850
+ # The type of app. Supported apps are `JupyterServer` and
851
+ # `KernelGateway`. `TensorBoard` is not supported.
844
852
  #
845
853
  # @option params [required, String] :app_name
846
854
  # The name of the app.
@@ -951,6 +959,13 @@ module Aws::SageMaker
951
959
  # URI of a dataset and the ECR registry path of an image. For more
952
960
  # information, see [Amazon SageMaker ML Lineage Tracking][1].
953
961
  #
962
+ # <note markdown="1"> `CreateArtifact` can only be invoked from within an SageMaker managed
963
+ # environment. This includes SageMaker training jobs, processing jobs,
964
+ # transform jobs, and SageMaker notebooks. A call to `CreateArtifact`
965
+ # from outside one of these environments results in an error.
966
+ #
967
+ # </note>
968
+ #
954
969
  #
955
970
  #
956
971
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -1025,49 +1040,55 @@ module Aws::SageMaker
1025
1040
  # Creates an Autopilot job.
1026
1041
  #
1027
1042
  # Find the best performing model after you run an Autopilot job by
1028
- # calling . Deploy that model by following the steps described in [Step
1029
- # 6.1: Deploy the Model to Amazon SageMaker Hosting Services][1].
1043
+ # calling .
1030
1044
  #
1031
- # For information about how to use Autopilot, see [ Automate Model
1032
- # Development with Amazon SageMaker Autopilot][2].
1045
+ # For information about how to use Autopilot, see [Automate Model
1046
+ # Development with Amazon SageMaker Autopilot][1].
1033
1047
  #
1034
1048
  #
1035
1049
  #
1036
- # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html
1037
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1050
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
1038
1051
  #
1039
1052
  # @option params [required, String] :auto_ml_job_name
1040
- # Identifies an Autopilot job. Must be unique to your account and is
1041
- # case-insensitive.
1053
+ # Identifies an Autopilot job. The name must be unique to your account
1054
+ # and is case-insensitive.
1042
1055
  #
1043
1056
  # @option params [required, Array<Types::AutoMLChannel>] :input_data_config
1044
- # Similar to InputDataConfig supported by Tuning. Format(s) supported:
1045
- # CSV. Minimum of 500 rows.
1057
+ # An array of channel objects that describes the input data and its
1058
+ # location. Each channel is a named input source. Similar to
1059
+ # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum of
1060
+ # 500 rows.
1046
1061
  #
1047
1062
  # @option params [required, Types::AutoMLOutputDataConfig] :output_data_config
1048
- # Similar to OutputDataConfig supported by Tuning. Format(s) supported:
1063
+ # Provides information about encryption and the Amazon S3 output path
1064
+ # needed to store artifacts from an AutoML job. Format(s) supported:
1049
1065
  # CSV.
1050
1066
  #
1051
1067
  # @option params [String] :problem_type
1052
- # Defines the kind of preprocessing and algorithms intended for the
1053
- # candidates. Options include: BinaryClassification,
1054
- # MulticlassClassification, and Regression.
1068
+ # Defines the type of supervised learning available for the candidates.
1069
+ # Options include: BinaryClassification, MulticlassClassification, and
1070
+ # Regression. For more information, see [ Amazon SageMaker Autopilot
1071
+ # problem types and algorithm support][1].
1072
+ #
1073
+ #
1074
+ #
1075
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
1055
1076
  #
1056
1077
  # @option params [Types::AutoMLJobObjective] :auto_ml_job_objective
1057
- # Defines the objective of a an AutoML job. You provide a
1058
- # AutoMLJobObjective$MetricName and Autopilot infers whether to minimize
1059
- # or maximize it. If a metric is not specified, the most commonly used
1060
- # ObjectiveMetric for problem type is automaically selected.
1078
+ # Defines the objective metric used to measure the predictive quality of
1079
+ # an AutoML job. You provide a AutoMLJobObjective$MetricName and
1080
+ # Autopilot infers whether to minimize or maximize it.
1061
1081
  #
1062
1082
  # @option params [Types::AutoMLJobConfig] :auto_ml_job_config
1063
- # Contains CompletionCriteria and SecurityConfig.
1083
+ # Contains CompletionCriteria and SecurityConfig settings for the AutoML
1084
+ # job.
1064
1085
  #
1065
1086
  # @option params [required, String] :role_arn
1066
1087
  # The ARN of the role that is used to access the data.
1067
1088
  #
1068
1089
  # @option params [Boolean] :generate_candidate_definitions_only
1069
- # Generates possible candidates without training a model. A candidate is
1070
- # a combination of data preprocessors, algorithms, and algorithm
1090
+ # Generates possible candidates without training the models. A candidate
1091
+ # is a combination of data preprocessors, algorithms, and algorithm
1071
1092
  # parameter settings.
1072
1093
  #
1073
1094
  # @option params [Array<Types::Tag>] :tags
@@ -1304,7 +1325,7 @@ module Aws::SageMaker
1304
1325
  # },
1305
1326
  # output_config: { # required
1306
1327
  # s3_output_location: "S3Uri", # required
1307
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1328
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
1308
1329
  # target_platform: {
1309
1330
  # os: "ANDROID", # required, accepts ANDROID, LINUX
1310
1331
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -1343,6 +1364,13 @@ module Aws::SageMaker
1343
1364
  # entities. Some examples are an endpoint and a model package. For more
1344
1365
  # information, see [Amazon SageMaker ML Lineage Tracking][1].
1345
1366
  #
1367
+ # <note markdown="1"> `CreateContext` can only be invoked from within an SageMaker managed
1368
+ # environment. This includes SageMaker training jobs, processing jobs,
1369
+ # transform jobs, and SageMaker notebooks. A call to `CreateContext`
1370
+ # from outside one of these environments results in an error.
1371
+ #
1372
+ # </note>
1373
+ #
1346
1374
  #
1347
1375
  #
1348
1376
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html
@@ -1651,7 +1679,14 @@ module Aws::SageMaker
1651
1679
  # The mode of authentication that members use to access the domain.
1652
1680
  #
1653
1681
  # @option params [required, Types::UserSettings] :default_user_settings
1654
- # The default user settings.
1682
+ # The default settings to use to create a user profile when
1683
+ # `UserSettings` isn't specified in the call to the `CreateUserProfile`
1684
+ # API.
1685
+ #
1686
+ # `SecurityGroups` is aggregated when specified in both calls. For all
1687
+ # other settings in `UserSettings`, the values specified in
1688
+ # `CreateUserProfile` take precedence over those specified in
1689
+ # `CreateDomain`.
1655
1690
  #
1656
1691
  # @option params [required, Array<String>] :subnet_ids
1657
1692
  # The VPC subnets that Studio uses for communication.
@@ -1663,7 +1698,10 @@ module Aws::SageMaker
1663
1698
  # @option params [Array<Types::Tag>] :tags
1664
1699
  # Tags to associated with the Domain. Each tag consists of a key and an
1665
1700
  # optional value. Tag keys must be unique per resource. Tags are
1666
- # searchable using the Search API.
1701
+ # searchable using the `Search` API.
1702
+ #
1703
+ # Tags that you specify for the Domain are also added to all Apps that
1704
+ # the Domain launches.
1667
1705
  #
1668
1706
  # @option params [String] :app_network_access_type
1669
1707
  # Specifies the VPC used for non-EFS traffic. The default value is
@@ -2141,10 +2179,10 @@ module Aws::SageMaker
2141
2179
  # measuring the impact of a change to one or more inputs, while keeping
2142
2180
  # the remaining inputs constant.
2143
2181
  #
2144
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
2145
- # SDK, all experiments, trials, and trial components are automatically
2146
- # tracked, logged, and indexed. When you use the AWS SDK for Python
2147
- # (Boto), you must use the logging APIs provided by the SDK.
2182
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
2183
+ # experiments, trials, and trial components are automatically tracked,
2184
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
2185
+ # must use the logging APIs provided by the SDK.
2148
2186
  #
2149
2187
  # You can add tags to experiments, trials, trial components and then use
2150
2188
  # the Search API to search for the tags.
@@ -2722,6 +2760,9 @@ module Aws::SageMaker
2722
2760
  # s3_uri: "S3Uri", # required
2723
2761
  # local_path: "DirectoryPath",
2724
2762
  # },
2763
+ # retry_strategy: {
2764
+ # maximum_retry_attempts: 1, # required
2765
+ # },
2725
2766
  # },
2726
2767
  # training_job_definitions: [
2727
2768
  # {
@@ -2820,6 +2861,9 @@ module Aws::SageMaker
2820
2861
  # s3_uri: "S3Uri", # required
2821
2862
  # local_path: "DirectoryPath",
2822
2863
  # },
2864
+ # retry_strategy: {
2865
+ # maximum_retry_attempts: 1, # required
2866
+ # },
2823
2867
  # },
2824
2868
  # ],
2825
2869
  # warm_start_config: {
@@ -3358,6 +3402,9 @@ module Aws::SageMaker
3358
3402
  # image: "ContainerImage",
3359
3403
  # image_config: {
3360
3404
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
3405
+ # repository_auth_config: {
3406
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
3407
+ # },
3361
3408
  # },
3362
3409
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3363
3410
  # model_data_url: "Url",
@@ -3375,6 +3422,9 @@ module Aws::SageMaker
3375
3422
  # image: "ContainerImage",
3376
3423
  # image_config: {
3377
3424
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
3425
+ # repository_auth_config: {
3426
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
3427
+ # },
3378
3428
  # },
3379
3429
  # mode: "SingleModel", # accepts SingleModel, MultiModel
3380
3430
  # model_data_url: "Url",
@@ -4963,8 +5013,6 @@ module Aws::SageMaker
4963
5013
  # * `OutputDataConfig` - Identifies the Amazon S3 bucket where you want
4964
5014
  # Amazon SageMaker to save the results of model training.
4965
5015
  #
4966
- #
4967
- #
4968
5016
  # * `ResourceConfig` - Identifies the resources, ML compute instances,
4969
5017
  # and ML storage volumes to deploy for model training. In distributed
4970
5018
  # training, you specify more than one instance.
@@ -4980,8 +5028,14 @@ module Aws::SageMaker
4980
5028
  #
4981
5029
  # * `StoppingCondition` - To help cap training costs, use
4982
5030
  # `MaxRuntimeInSeconds` to set a time limit for training. Use
4983
- # `MaxWaitTimeInSeconds` to specify how long you are willing to wait
4984
- # for a managed spot training job to complete.
5031
+ # `MaxWaitTimeInSeconds` to specify how long a managed spot training
5032
+ # job has to complete.
5033
+ #
5034
+ # * `Environment` - The environment variables to set in the Docker
5035
+ # container.
5036
+ #
5037
+ # * `RetryStrategy` - The number of times to retry the job when the job
5038
+ # fails due to an `InternalServerError`.
4985
5039
  #
4986
5040
  # For more information about Amazon SageMaker, see [How It Works][3].
4987
5041
  #
@@ -5086,9 +5140,10 @@ module Aws::SageMaker
5086
5140
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
5087
5141
  #
5088
5142
  # @option params [required, Types::StoppingCondition] :stopping_condition
5089
- # Specifies a limit to how long a model training job can run. When the
5090
- # job reaches the time limit, Amazon SageMaker ends the training job.
5091
- # Use this API to cap model training costs.
5143
+ # Specifies a limit to how long a model training job can run. It also
5144
+ # specifies how long a managed Spot training job has to complete. When
5145
+ # the job reaches the time limit, Amazon SageMaker ends the training
5146
+ # job. Use this API to cap model training costs.
5092
5147
  #
5093
5148
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
5094
5149
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -5180,6 +5235,13 @@ module Aws::SageMaker
5180
5235
  # Configuration information for Debugger rules for profiling system and
5181
5236
  # framework metrics.
5182
5237
  #
5238
+ # @option params [Hash<String,String>] :environment
5239
+ # The environment variables to set in the Docker container.
5240
+ #
5241
+ # @option params [Types::RetryStrategy] :retry_strategy
5242
+ # The number of times to retry the job when the job fails due to an
5243
+ # `InternalServerError`.
5244
+ #
5183
5245
  # @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
5184
5246
  #
5185
5247
  # * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
@@ -5318,6 +5380,12 @@ module Aws::SageMaker
5318
5380
  # },
5319
5381
  # },
5320
5382
  # ],
5383
+ # environment: {
5384
+ # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
5385
+ # },
5386
+ # retry_strategy: {
5387
+ # maximum_retry_attempts: 1, # required
5388
+ # },
5321
5389
  # })
5322
5390
  #
5323
5391
  # @example Response structure
@@ -5543,14 +5611,14 @@ module Aws::SageMaker
5543
5611
  req.send_request(options)
5544
5612
  end
5545
5613
 
5546
- # Creates an Amazon SageMaker *trial*. A trial is a set of steps called
5547
- # *trial components* that produce a machine learning model. A trial is
5548
- # part of a single Amazon SageMaker *experiment*.
5614
+ # Creates an SageMaker *trial*. A trial is a set of steps called *trial
5615
+ # components* that produce a machine learning model. A trial is part of
5616
+ # a single SageMaker *experiment*.
5549
5617
  #
5550
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
5551
- # SDK, all experiments, trials, and trial components are automatically
5552
- # tracked, logged, and indexed. When you use the AWS SDK for Python
5553
- # (Boto), you must use the logging APIs provided by the SDK.
5618
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
5619
+ # experiments, trials, and trial components are automatically tracked,
5620
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5621
+ # must use the logging APIs provided by the SDK.
5554
5622
  #
5555
5623
  # You can add tags to a trial and then use the Search API to search for
5556
5624
  # the tags.
@@ -5621,19 +5689,19 @@ module Aws::SageMaker
5621
5689
  # Trial components include pre-processing jobs, training jobs, and batch
5622
5690
  # transform jobs.
5623
5691
  #
5624
- # When you use Amazon SageMaker Studio or the Amazon SageMaker Python
5625
- # SDK, all experiments, trials, and trial components are automatically
5626
- # tracked, logged, and indexed. When you use the AWS SDK for Python
5627
- # (Boto), you must use the logging APIs provided by the SDK.
5692
+ # When you use SageMaker Studio or the SageMaker Python SDK, all
5693
+ # experiments, trials, and trial components are automatically tracked,
5694
+ # logged, and indexed. When you use the AWS SDK for Python (Boto), you
5695
+ # must use the logging APIs provided by the SDK.
5628
5696
  #
5629
5697
  # You can add tags to a trial component and then use the Search API to
5630
5698
  # search for the tags.
5631
5699
  #
5632
- # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an Amazon
5633
- # SageMaker managed environment. This includes Amazon SageMaker training
5634
- # jobs, processing jobs, transform jobs, and Amazon SageMaker notebooks.
5635
- # A call to `CreateTrialComponent` from outside one of these
5636
- # environments results in an error.
5700
+ # <note markdown="1"> `CreateTrialComponent` can only be invoked from within an SageMaker
5701
+ # managed environment. This includes SageMaker training jobs, processing
5702
+ # jobs, transform jobs, and SageMaker notebooks. A call to
5703
+ # `CreateTrialComponent` from outside one of these environments results
5704
+ # in an error.
5637
5705
  #
5638
5706
  # </note>
5639
5707
  #
@@ -5753,7 +5821,7 @@ module Aws::SageMaker
5753
5821
  # The ID of the associated Domain.
5754
5822
  #
5755
5823
  # @option params [required, String] :user_profile_name
5756
- # A name for the UserProfile.
5824
+ # A name for the UserProfile. This value is not case sensitive.
5757
5825
  #
5758
5826
  # @option params [String] :single_sign_on_user_identifier
5759
5827
  # A specifier for the type of value specified in SingleSignOnUserValue.
@@ -5771,6 +5839,9 @@ module Aws::SageMaker
5771
5839
  # Each tag consists of a key and an optional value. Tag keys must be
5772
5840
  # unique per resource.
5773
5841
  #
5842
+ # Tags that you specify for the User Profile are also added to all Apps
5843
+ # that the User Profile launches.
5844
+ #
5774
5845
  # @option params [Types::UserSettings] :user_settings
5775
5846
  # A collection of settings.
5776
5847
  #
@@ -6421,7 +6492,7 @@ module Aws::SageMaker
6421
6492
  req.send_request(options)
6422
6493
  end
6423
6494
 
6424
- # Deletes an Amazon SageMaker experiment. All trials associated with the
6495
+ # Deletes an SageMaker experiment. All trials associated with the
6425
6496
  # experiment must be deleted first. Use the ListTrials API to get a list
6426
6497
  # of the trials associated with the experiment.
6427
6498
  #
@@ -6816,7 +6887,10 @@ module Aws::SageMaker
6816
6887
  req.send_request(options)
6817
6888
  end
6818
6889
 
6819
- # Deletes a pipeline if there are no in-progress executions.
6890
+ # Deletes a pipeline if there are no running instances of the pipeline.
6891
+ # To delete a pipeline, you must stop all running instances of the
6892
+ # pipeline using the `StopPipelineExecution` API. When you delete a
6893
+ # pipeline, all instances of the pipeline are deleted.
6820
6894
  #
6821
6895
  # @option params [required, String] :pipeline_name
6822
6896
  # The name of the pipeline to delete.
@@ -7453,10 +7527,10 @@ module Aws::SageMaker
7453
7527
  req.send_request(options)
7454
7528
  end
7455
7529
 
7456
- # Returns information about an Amazon SageMaker job.
7530
+ # Returns information about an Amazon SageMaker AutoML job.
7457
7531
  #
7458
7532
  # @option params [required, String] :auto_ml_job_name
7459
- # Request information about a job using that job's unique name.
7533
+ # Requests information about an AutoML job using its unique name.
7460
7534
  #
7461
7535
  # @return [Types::DescribeAutoMLJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
7462
7536
  #
@@ -7472,6 +7546,7 @@ module Aws::SageMaker
7472
7546
  # * {Types::DescribeAutoMLJobResponse#end_time #end_time} => Time
7473
7547
  # * {Types::DescribeAutoMLJobResponse#last_modified_time #last_modified_time} => Time
7474
7548
  # * {Types::DescribeAutoMLJobResponse#failure_reason #failure_reason} => String
7549
+ # * {Types::DescribeAutoMLJobResponse#partial_failure_reasons #partial_failure_reasons} => Array&lt;Types::AutoMLPartialFailureReason&gt;
7475
7550
  # * {Types::DescribeAutoMLJobResponse#best_candidate #best_candidate} => Types::AutoMLCandidate
7476
7551
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_status #auto_ml_job_status} => String
7477
7552
  # * {Types::DescribeAutoMLJobResponse#auto_ml_job_secondary_status #auto_ml_job_secondary_status} => String
@@ -7512,6 +7587,8 @@ module Aws::SageMaker
7512
7587
  # resp.end_time #=> Time
7513
7588
  # resp.last_modified_time #=> Time
7514
7589
  # resp.failure_reason #=> String
7590
+ # resp.partial_failure_reasons #=> Array
7591
+ # resp.partial_failure_reasons[0].partial_failure_message #=> String
7515
7592
  # resp.best_candidate.candidate_name #=> String
7516
7593
  # resp.best_candidate.final_auto_ml_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
7517
7594
  # resp.best_candidate.final_auto_ml_job_objective_metric.metric_name #=> String, one of "Accuracy", "MSE", "F1", "F1macro", "AUC"
@@ -7531,8 +7608,9 @@ module Aws::SageMaker
7531
7608
  # resp.best_candidate.end_time #=> Time
7532
7609
  # resp.best_candidate.last_modified_time #=> Time
7533
7610
  # resp.best_candidate.failure_reason #=> String
7611
+ # resp.best_candidate.candidate_properties.candidate_artifact_locations.explainability #=> String
7534
7612
  # resp.auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
7535
- # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
7613
+ # resp.auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
7536
7614
  # resp.generate_candidate_definitions_only #=> Boolean
7537
7615
  # resp.auto_ml_job_artifacts.candidate_definition_notebook_location #=> String
7538
7616
  # resp.auto_ml_job_artifacts.data_exploration_notebook_location #=> String
@@ -7641,7 +7719,7 @@ module Aws::SageMaker
7641
7719
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "KERAS", "MXNET", "ONNX", "PYTORCH", "XGBOOST", "TFLITE", "DARKNET", "SKLEARN"
7642
7720
  # resp.input_config.framework_version #=> String
7643
7721
  # resp.output_config.s3_output_location #=> String
7644
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7722
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
7645
7723
  # resp.output_config.target_platform.os #=> String, one of "ANDROID", "LINUX"
7646
7724
  # resp.output_config.target_platform.arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
7647
7725
  # resp.output_config.target_platform.accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -8482,6 +8560,7 @@ module Aws::SageMaker
8482
8560
  # resp.training_job_definition.enable_managed_spot_training #=> Boolean
8483
8561
  # resp.training_job_definition.checkpoint_config.s3_uri #=> String
8484
8562
  # resp.training_job_definition.checkpoint_config.local_path #=> String
8563
+ # resp.training_job_definition.retry_strategy.maximum_retry_attempts #=> Integer
8485
8564
  # resp.training_job_definitions #=> Array
8486
8565
  # resp.training_job_definitions[0].definition_name #=> String
8487
8566
  # resp.training_job_definitions[0].tuning_objective.type #=> String, one of "Maximize", "Minimize"
@@ -8542,6 +8621,7 @@ module Aws::SageMaker
8542
8621
  # resp.training_job_definitions[0].enable_managed_spot_training #=> Boolean
8543
8622
  # resp.training_job_definitions[0].checkpoint_config.s3_uri #=> String
8544
8623
  # resp.training_job_definitions[0].checkpoint_config.local_path #=> String
8624
+ # resp.training_job_definitions[0].retry_strategy.maximum_retry_attempts #=> Integer
8545
8625
  # resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
8546
8626
  # resp.creation_time #=> Time
8547
8627
  # resp.hyper_parameter_tuning_end_time #=> Time
@@ -8812,6 +8892,7 @@ module Aws::SageMaker
8812
8892
  # resp.primary_container.container_hostname #=> String
8813
8893
  # resp.primary_container.image #=> String
8814
8894
  # resp.primary_container.image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
8895
+ # resp.primary_container.image_config.repository_auth_config.repository_credentials_provider_arn #=> String
8815
8896
  # resp.primary_container.mode #=> String, one of "SingleModel", "MultiModel"
8816
8897
  # resp.primary_container.model_data_url #=> String
8817
8898
  # resp.primary_container.environment #=> Hash
@@ -8822,6 +8903,7 @@ module Aws::SageMaker
8822
8903
  # resp.containers[0].container_hostname #=> String
8823
8904
  # resp.containers[0].image #=> String
8824
8905
  # resp.containers[0].image_config.repository_access_mode #=> String, one of "Platform", "Vpc"
8906
+ # resp.containers[0].image_config.repository_auth_config.repository_credentials_provider_arn #=> String
8825
8907
  # resp.containers[0].mode #=> String, one of "SingleModel", "MultiModel"
8826
8908
  # resp.containers[0].model_data_url #=> String
8827
8909
  # resp.containers[0].environment #=> Hash
@@ -9863,6 +9945,8 @@ module Aws::SageMaker
9863
9945
  # * {Types::DescribeTrainingJobResponse#profiler_rule_configurations #profiler_rule_configurations} => Array&lt;Types::ProfilerRuleConfiguration&gt;
9864
9946
  # * {Types::DescribeTrainingJobResponse#profiler_rule_evaluation_statuses #profiler_rule_evaluation_statuses} => Array&lt;Types::ProfilerRuleEvaluationStatus&gt;
9865
9947
  # * {Types::DescribeTrainingJobResponse#profiling_status #profiling_status} => String
9948
+ # * {Types::DescribeTrainingJobResponse#retry_strategy #retry_strategy} => Types::RetryStrategy
9949
+ # * {Types::DescribeTrainingJobResponse#environment #environment} => Hash&lt;String,String&gt;
9866
9950
  #
9867
9951
  # @example Request syntax with placeholder values
9868
9952
  #
@@ -9879,7 +9963,7 @@ module Aws::SageMaker
9879
9963
  # resp.auto_ml_job_arn #=> String
9880
9964
  # resp.model_artifacts.s3_model_artifacts #=> String
9881
9965
  # resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
9882
- # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
9966
+ # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
9883
9967
  # resp.failure_reason #=> String
9884
9968
  # resp.hyper_parameters #=> Hash
9885
9969
  # resp.hyper_parameters["HyperParameterKey"] #=> String
@@ -9924,7 +10008,7 @@ module Aws::SageMaker
9924
10008
  # resp.training_end_time #=> Time
9925
10009
  # resp.last_modified_time #=> Time
9926
10010
  # resp.secondary_status_transitions #=> Array
9927
- # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
10011
+ # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
9928
10012
  # resp.secondary_status_transitions[0].start_time #=> Time
9929
10013
  # resp.secondary_status_transitions[0].end_time #=> Time
9930
10014
  # resp.secondary_status_transitions[0].status_message #=> String
@@ -9987,6 +10071,9 @@ module Aws::SageMaker
9987
10071
  # resp.profiler_rule_evaluation_statuses[0].status_details #=> String
9988
10072
  # resp.profiler_rule_evaluation_statuses[0].last_modified_time #=> Time
9989
10073
  # resp.profiling_status #=> String, one of "Enabled", "Disabled"
10074
+ # resp.retry_strategy.maximum_retry_attempts #=> Integer
10075
+ # resp.environment #=> Hash
10076
+ # resp.environment["TrainingEnvironmentKey"] #=> String
9990
10077
  #
9991
10078
  #
9992
10079
  # The following waiters are defined for this operation (see {Client#wait_until} for detailed usage):
@@ -10231,7 +10318,7 @@ module Aws::SageMaker
10231
10318
  # The domain ID.
10232
10319
  #
10233
10320
  # @option params [required, String] :user_profile_name
10234
- # The user profile name.
10321
+ # The user profile name. This value is not case sensitive.
10235
10322
  #
10236
10323
  # @return [Types::DescribeUserProfileResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
10237
10324
  #
@@ -11127,11 +11214,13 @@ module Aws::SageMaker
11127
11214
  # resp.auto_ml_job_summaries[0].auto_ml_job_name #=> String
11128
11215
  # resp.auto_ml_job_summaries[0].auto_ml_job_arn #=> String
11129
11216
  # resp.auto_ml_job_summaries[0].auto_ml_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
11130
- # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated"
11217
+ # resp.auto_ml_job_summaries[0].auto_ml_job_secondary_status #=> String, one of "Starting", "AnalyzingData", "FeatureEngineering", "ModelTuning", "MaxCandidatesReached", "Failed", "Stopped", "MaxAutoMLJobRuntimeReached", "Stopping", "CandidateDefinitionsGenerated", "GeneratingExplainabilityReport", "Completed", "ExplainabilityError"
11131
11218
  # resp.auto_ml_job_summaries[0].creation_time #=> Time
11132
11219
  # resp.auto_ml_job_summaries[0].end_time #=> Time
11133
11220
  # resp.auto_ml_job_summaries[0].last_modified_time #=> Time
11134
11221
  # resp.auto_ml_job_summaries[0].failure_reason #=> String
11222
+ # resp.auto_ml_job_summaries[0].partial_failure_reasons #=> Array
11223
+ # resp.auto_ml_job_summaries[0].partial_failure_reasons[0].partial_failure_message #=> String
11135
11224
  # resp.next_token #=> String
11136
11225
  #
11137
11226
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListAutoMLJobs AWS API Documentation
@@ -11143,25 +11232,26 @@ module Aws::SageMaker
11143
11232
  req.send_request(options)
11144
11233
  end
11145
11234
 
11146
- # List the Candidates created for the job.
11235
+ # List the candidates created for the job.
11147
11236
  #
11148
11237
  # @option params [required, String] :auto_ml_job_name
11149
- # List the Candidates created for the job by providing the job's name.
11238
+ # List the candidates created for the job by providing the job's name.
11150
11239
  #
11151
11240
  # @option params [String] :status_equals
11152
- # List the Candidates for the job and filter by status.
11241
+ # List the candidates for the job and filter by status.
11153
11242
  #
11154
11243
  # @option params [String] :candidate_name_equals
11155
- # List the Candidates for the job and filter by candidate name.
11244
+ # List the candidates for the job and filter by candidate name.
11156
11245
  #
11157
11246
  # @option params [String] :sort_order
11158
- # The sort order for the results. The default is Ascending.
11247
+ # The sort order for the results. The default is `Ascending`.
11159
11248
  #
11160
11249
  # @option params [String] :sort_by
11161
- # The parameter by which to sort the results. The default is Descending.
11250
+ # The parameter by which to sort the results. The default is
11251
+ # `Descending`.
11162
11252
  #
11163
11253
  # @option params [Integer] :max_results
11164
- # List the job's Candidates up to a specified limit.
11254
+ # List the job's candidates up to a specified limit.
11165
11255
  #
11166
11256
  # @option params [String] :next_token
11167
11257
  # If the previous response was truncated, you receive this token. Use it
@@ -11208,6 +11298,7 @@ module Aws::SageMaker
11208
11298
  # resp.candidates[0].end_time #=> Time
11209
11299
  # resp.candidates[0].last_modified_time #=> Time
11210
11300
  # resp.candidates[0].failure_reason #=> String
11301
+ # resp.candidates[0].candidate_properties.candidate_artifact_locations.explainability #=> String
11211
11302
  # resp.next_token #=> String
11212
11303
  #
11213
11304
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListCandidatesForAutoMLJob AWS API Documentation
@@ -11372,7 +11463,7 @@ module Aws::SageMaker
11372
11463
  # resp.compilation_job_summaries[0].creation_time #=> Time
11373
11464
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
11374
11465
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
11375
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11466
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "ml_g4dn", "ml_inf1", "ml_eia2", "jetson_tx1", "jetson_tx2", "jetson_nano", "jetson_xavier", "rasp3b", "imx8qm", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603", "sitara_am57x", "amba_cv22", "x86_win32", "x86_win64", "coreml", "jacinto_tda4vm"
11376
11467
  # resp.compilation_job_summaries[0].compilation_target_platform_os #=> String, one of "ANDROID", "LINUX"
11377
11468
  # resp.compilation_job_summaries[0].compilation_target_platform_arch #=> String, one of "X86_64", "X86", "ARM64", "ARM_EABI", "ARM_EABIHF"
11378
11469
  # resp.compilation_job_summaries[0].compilation_target_platform_accelerator #=> String, one of "INTEL_GRAPHICS", "MALI", "NVIDIA"
@@ -11868,7 +11959,8 @@ module Aws::SageMaker
11868
11959
  # token in the next request.
11869
11960
  #
11870
11961
  # @option params [Integer] :max_results
11871
- # The maximum number of endpoints to return in the response.
11962
+ # The maximum number of endpoints to return in the response. This value
11963
+ # defaults to 10.
11872
11964
  #
11873
11965
  # @option params [String] :name_contains
11874
11966
  # A string in endpoint names. This filter returns only endpoints whose
@@ -13937,16 +14029,17 @@ module Aws::SageMaker
13937
14029
  # <note markdown="1"> When `StatusEquals` and `MaxResults` are set at the same time, the
13938
14030
  # `MaxResults` number of training jobs are first retrieved ignoring the
13939
14031
  # `StatusEquals` parameter and then they are filtered by the
13940
- # `StatusEquals` parameter, which is returned as a response. For
13941
- # example, if `ListTrainingJobs` is invoked with the following
14032
+ # `StatusEquals` parameter, which is returned as a response.
14033
+ #
14034
+ # For example, if `ListTrainingJobs` is invoked with the following
13942
14035
  # parameters:
13943
14036
  #
13944
14037
  # `\{ ... MaxResults: 100, StatusEquals: InProgress ... \}`
13945
14038
  #
13946
- # Then, 100 trainings jobs with any status including those other than
13947
- # `InProgress` are selected first (sorted according the creation time,
13948
- # from the latest to the oldest) and those with status `InProgress` are
13949
- # returned.
14039
+ # First, 100 trainings jobs with any status, including those other than
14040
+ # `InProgress`, are selected (sorted according to the creation time,
14041
+ # from the most current to the oldest). Next, those with a status of
14042
+ # `InProgress` are returned.
13950
14043
  #
13951
14044
  # You can quickly test the API using the following AWS CLI code.
13952
14045
  #
@@ -14790,7 +14883,7 @@ module Aws::SageMaker
14790
14883
  # resp.results[0].training_job.auto_ml_job_arn #=> String
14791
14884
  # resp.results[0].training_job.model_artifacts.s3_model_artifacts #=> String
14792
14885
  # resp.results[0].training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
14793
- # resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
14886
+ # resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14794
14887
  # resp.results[0].training_job.failure_reason #=> String
14795
14888
  # resp.results[0].training_job.hyper_parameters #=> Hash
14796
14889
  # resp.results[0].training_job.hyper_parameters["HyperParameterKey"] #=> String
@@ -14835,7 +14928,7 @@ module Aws::SageMaker
14835
14928
  # resp.results[0].training_job.training_end_time #=> Time
14836
14929
  # resp.results[0].training_job.last_modified_time #=> Time
14837
14930
  # resp.results[0].training_job.secondary_status_transitions #=> Array
14838
- # resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
14931
+ # resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14839
14932
  # resp.results[0].training_job.secondary_status_transitions[0].start_time #=> Time
14840
14933
  # resp.results[0].training_job.secondary_status_transitions[0].end_time #=> Time
14841
14934
  # resp.results[0].training_job.secondary_status_transitions[0].status_message #=> String
@@ -14878,6 +14971,9 @@ module Aws::SageMaker
14878
14971
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
14879
14972
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].status_details #=> String
14880
14973
  # resp.results[0].training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
14974
+ # resp.results[0].training_job.environment #=> Hash
14975
+ # resp.results[0].training_job.environment["TrainingEnvironmentKey"] #=> String
14976
+ # resp.results[0].training_job.retry_strategy.maximum_retry_attempts #=> Integer
14881
14977
  # resp.results[0].training_job.tags #=> Array
14882
14978
  # resp.results[0].training_job.tags[0].key #=> String
14883
14979
  # resp.results[0].training_job.tags[0].value #=> String
@@ -14976,7 +15072,7 @@ module Aws::SageMaker
14976
15072
  # resp.results[0].trial_component.source_detail.training_job.auto_ml_job_arn #=> String
14977
15073
  # resp.results[0].trial_component.source_detail.training_job.model_artifacts.s3_model_artifacts #=> String
14978
15074
  # resp.results[0].trial_component.source_detail.training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
14979
- # resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
15075
+ # resp.results[0].trial_component.source_detail.training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
14980
15076
  # resp.results[0].trial_component.source_detail.training_job.failure_reason #=> String
14981
15077
  # resp.results[0].trial_component.source_detail.training_job.hyper_parameters #=> Hash
14982
15078
  # resp.results[0].trial_component.source_detail.training_job.hyper_parameters["HyperParameterKey"] #=> String
@@ -15021,7 +15117,7 @@ module Aws::SageMaker
15021
15117
  # resp.results[0].trial_component.source_detail.training_job.training_end_time #=> Time
15022
15118
  # resp.results[0].trial_component.source_detail.training_job.last_modified_time #=> Time
15023
15119
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions #=> Array
15024
- # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating"
15120
+ # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded", "Updating", "Restarting"
15025
15121
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].start_time #=> Time
15026
15122
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].end_time #=> Time
15027
15123
  # resp.results[0].trial_component.source_detail.training_job.secondary_status_transitions[0].status_message #=> String
@@ -15064,6 +15160,9 @@ module Aws::SageMaker
15064
15160
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].rule_evaluation_status #=> String, one of "InProgress", "NoIssuesFound", "IssuesFound", "Error", "Stopping", "Stopped"
15065
15161
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].status_details #=> String
15066
15162
  # resp.results[0].trial_component.source_detail.training_job.debug_rule_evaluation_statuses[0].last_modified_time #=> Time
15163
+ # resp.results[0].trial_component.source_detail.training_job.environment #=> Hash
15164
+ # resp.results[0].trial_component.source_detail.training_job.environment["TrainingEnvironmentKey"] #=> String
15165
+ # resp.results[0].trial_component.source_detail.training_job.retry_strategy.maximum_retry_attempts #=> Integer
15067
15166
  # resp.results[0].trial_component.source_detail.training_job.tags #=> Array
15068
15167
  # resp.results[0].trial_component.source_detail.training_job.tags[0].key #=> String
15069
15168
  # resp.results[0].trial_component.source_detail.training_job.tags[0].value #=> String
@@ -17309,7 +17408,7 @@ module Aws::SageMaker
17309
17408
  params: params,
17310
17409
  config: config)
17311
17410
  context[:gem_name] = 'aws-sdk-sagemaker'
17312
- context[:gem_version] = '1.81.0'
17411
+ context[:gem_version] = '1.86.0'
17313
17412
  Seahorse::Client::Request.new(handlers, context)
17314
17413
  end
17315
17414