aws-sdk-sagemaker 1.80.0 → 1.85.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -3,7 +3,7 @@
3
3
  # WARNING ABOUT GENERATED CODE
4
4
  #
5
5
  # This file is generated. See the contributing guide for more information:
6
- # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
6
+ # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md
7
7
  #
8
8
  # WARNING ABOUT GENERATED CODE
9
9
 
@@ -1748,6 +1748,10 @@ module Aws::SageMaker
1748
1748
  # The failure reason.
1749
1749
  # @return [String]
1750
1750
  #
1751
+ # @!attribute [rw] candidate_properties
1752
+ # The AutoML candidate's properties.
1753
+ # @return [Types::CandidateProperties]
1754
+ #
1751
1755
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLCandidate AWS API Documentation
1752
1756
  #
1753
1757
  class AutoMLCandidate < Struct.new(
@@ -1760,7 +1764,8 @@ module Aws::SageMaker
1760
1764
  :creation_time,
1761
1765
  :end_time,
1762
1766
  :last_modified_time,
1763
- :failure_reason)
1767
+ :failure_reason,
1768
+ :candidate_properties)
1764
1769
  SENSITIVE = []
1765
1770
  include Aws::Structure
1766
1771
  end
@@ -1791,8 +1796,8 @@ module Aws::SageMaker
1791
1796
  include Aws::Structure
1792
1797
  end
1793
1798
 
1794
- # Similar to Channel. A channel is a named input source that training
1795
- # algorithms can consume. Refer to Channel for detailed descriptions.
1799
+ # A channel is a named input source that training algorithms can
1800
+ # consume. For more information, see .
1796
1801
  #
1797
1802
  # @note When making an API call, you may pass AutoMLChannel
1798
1803
  # data as a hash:
@@ -1809,16 +1814,16 @@ module Aws::SageMaker
1809
1814
  # }
1810
1815
  #
1811
1816
  # @!attribute [rw] data_source
1812
- # The data source.
1817
+ # The data source for an AutoML channel.
1813
1818
  # @return [Types::AutoMLDataSource]
1814
1819
  #
1815
1820
  # @!attribute [rw] compression_type
1816
- # You can use Gzip or None. The default value is None.
1821
+ # You can use `Gzip` or `None`. The default value is `None`.
1817
1822
  # @return [String]
1818
1823
  #
1819
1824
  # @!attribute [rw] target_attribute_name
1820
- # The name of the target variable in supervised learning, a.k.a.
1821
- # 'y'.
1825
+ # The name of the target variable in supervised learning, usually
1826
+ # represented by 'y'.
1822
1827
  # @return [String]
1823
1828
  #
1824
1829
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
@@ -1832,22 +1837,19 @@ module Aws::SageMaker
1832
1837
  end
1833
1838
 
1834
1839
  # A list of container definitions that describe the different containers
1835
- # that make up one AutoML candidate. Refer to ContainerDefinition for
1836
- # more details.
1840
+ # that make up an AutoML candidate. For more information, see .
1837
1841
  #
1838
1842
  # @!attribute [rw] image
1839
- # The ECR path of the container. Refer to ContainerDefinition for more
1840
- # details.
1843
+ # The ECR path of the container. For more information, see .
1841
1844
  # @return [String]
1842
1845
  #
1843
1846
  # @!attribute [rw] model_data_url
1844
- # The location of the model artifacts. Refer to ContainerDefinition
1845
- # for more details.
1847
+ # The location of the model artifacts. For more information, see .
1846
1848
  # @return [String]
1847
1849
  #
1848
1850
  # @!attribute [rw] environment
1849
- # Environment variables to set in the container. Refer to
1850
- # ContainerDefinition for more details.
1851
+ # Environment variables to set in the container. For more information,
1852
+ # see .
1851
1853
  # @return [Hash<String,String>]
1852
1854
  #
1853
1855
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLContainerDefinition AWS API Documentation
@@ -1930,7 +1932,7 @@ module Aws::SageMaker
1930
1932
  # @!attribute [rw] max_auto_ml_job_runtime_in_seconds
1931
1933
  # The maximum time, in seconds, an AutoML job is allowed to wait for a
1932
1934
  # trial to complete. It must be equal to or greater than
1933
- # MaxRuntimePerTrainingJobInSeconds.
1935
+ # `MaxRuntimePerTrainingJobInSeconds`.
1934
1936
  # @return [Integer]
1935
1937
  #
1936
1938
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobCompletionCriteria AWS API Documentation
@@ -1943,7 +1945,7 @@ module Aws::SageMaker
1943
1945
  include Aws::Structure
1944
1946
  end
1945
1947
 
1946
- # A collection of settings used for a job.
1948
+ # A collection of settings used for an AutoML job.
1947
1949
  #
1948
1950
  # @note When making an API call, you may pass AutoMLJobConfig
1949
1951
  # data as a hash:
@@ -1965,8 +1967,8 @@ module Aws::SageMaker
1965
1967
  # }
1966
1968
  #
1967
1969
  # @!attribute [rw] completion_criteria
1968
- # How long a job is allowed to run, or how many candidates a job is
1969
- # allowed to generate.
1970
+ # How long an AutoML job is allowed to run, or how many candidates a
1971
+ # job is allowed to generate.
1970
1972
  # @return [Types::AutoMLJobCompletionCriteria]
1971
1973
  #
1972
1974
  # @!attribute [rw] security_config
@@ -2078,26 +2080,26 @@ module Aws::SageMaker
2078
2080
  include Aws::Structure
2079
2081
  end
2080
2082
 
2081
- # Provides a summary about a job.
2083
+ # Provides a summary about an AutoML job.
2082
2084
  #
2083
2085
  # @!attribute [rw] auto_ml_job_name
2084
- # The name of the object you are requesting.
2086
+ # The name of the AutoML you are requesting.
2085
2087
  # @return [String]
2086
2088
  #
2087
2089
  # @!attribute [rw] auto_ml_job_arn
2088
- # The ARN of the job.
2090
+ # The ARN of the AutoML job.
2089
2091
  # @return [String]
2090
2092
  #
2091
2093
  # @!attribute [rw] auto_ml_job_status
2092
- # The job's status.
2094
+ # The status of the AutoML job.
2093
2095
  # @return [String]
2094
2096
  #
2095
2097
  # @!attribute [rw] auto_ml_job_secondary_status
2096
- # The job's secondary status.
2098
+ # The secondary status of the AutoML job.
2097
2099
  # @return [String]
2098
2100
  #
2099
2101
  # @!attribute [rw] creation_time
2100
- # When the job was created.
2102
+ # When the AutoML job was created.
2101
2103
  # @return [Time]
2102
2104
  #
2103
2105
  # @!attribute [rw] end_time
@@ -2105,13 +2107,17 @@ module Aws::SageMaker
2105
2107
  # @return [Time]
2106
2108
  #
2107
2109
  # @!attribute [rw] last_modified_time
2108
- # When the job was last modified.
2110
+ # When the AutoML job was last modified.
2109
2111
  # @return [Time]
2110
2112
  #
2111
2113
  # @!attribute [rw] failure_reason
2112
- # The failure reason of a job.
2114
+ # The failure reason of an AutoML job.
2113
2115
  # @return [String]
2114
2116
  #
2117
+ # @!attribute [rw] partial_failure_reasons
2118
+ # The list of reasons for partial failures within an AutoML job.
2119
+ # @return [Array<Types::AutoMLPartialFailureReason>]
2120
+ #
2115
2121
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobSummary AWS API Documentation
2116
2122
  #
2117
2123
  class AutoMLJobSummary < Struct.new(
@@ -2122,7 +2128,8 @@ module Aws::SageMaker
2122
2128
  :creation_time,
2123
2129
  :end_time,
2124
2130
  :last_modified_time,
2125
- :failure_reason)
2131
+ :failure_reason,
2132
+ :partial_failure_reasons)
2126
2133
  SENSITIVE = []
2127
2134
  include Aws::Structure
2128
2135
  end
@@ -2154,6 +2161,21 @@ module Aws::SageMaker
2154
2161
  include Aws::Structure
2155
2162
  end
2156
2163
 
2164
+ # The reason for a partial failure of an AutoML job.
2165
+ #
2166
+ # @!attribute [rw] partial_failure_message
2167
+ # The message containing the reason for a partial failure of an AutoML
2168
+ # job.
2169
+ # @return [String]
2170
+ #
2171
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLPartialFailureReason AWS API Documentation
2172
+ #
2173
+ class AutoMLPartialFailureReason < Struct.new(
2174
+ :partial_failure_message)
2175
+ SENSITIVE = []
2176
+ include Aws::Structure
2177
+ end
2178
+
2157
2179
  # The Amazon S3 data source.
2158
2180
  #
2159
2181
  # @note When making an API call, you may pass AutoMLS3DataSource
@@ -2317,6 +2339,35 @@ module Aws::SageMaker
2317
2339
  include Aws::Structure
2318
2340
  end
2319
2341
 
2342
+ # Location of artifacts for an AutoML candidate job.
2343
+ #
2344
+ # @!attribute [rw] explainability
2345
+ # The S3 prefix to the explainability artifacts generated for the
2346
+ # AutoML candidate.
2347
+ # @return [String]
2348
+ #
2349
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateArtifactLocations AWS API Documentation
2350
+ #
2351
+ class CandidateArtifactLocations < Struct.new(
2352
+ :explainability)
2353
+ SENSITIVE = []
2354
+ include Aws::Structure
2355
+ end
2356
+
2357
+ # The properties of an AutoML candidate job.
2358
+ #
2359
+ # @!attribute [rw] candidate_artifact_locations
2360
+ # The S3 prefix to the artifacts generated for an AutoML candidate.
2361
+ # @return [Types::CandidateArtifactLocations]
2362
+ #
2363
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CandidateProperties AWS API Documentation
2364
+ #
2365
+ class CandidateProperties < Struct.new(
2366
+ :candidate_artifact_locations)
2367
+ SENSITIVE = []
2368
+ include Aws::Structure
2369
+ end
2370
+
2320
2371
  # Currently, the `CapacitySize` API is not supported.
2321
2372
  #
2322
2373
  # @note When making an API call, you may pass CapacitySize
@@ -2885,6 +2936,9 @@ module Aws::SageMaker
2885
2936
  # image: "ContainerImage",
2886
2937
  # image_config: {
2887
2938
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
2939
+ # repository_auth_config: {
2940
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
2941
+ # },
2888
2942
  # },
2889
2943
  # mode: "SingleModel", # accepts SingleModel, MultiModel
2890
2944
  # model_data_url: "Url",
@@ -3625,7 +3679,8 @@ module Aws::SageMaker
3625
3679
  # @return [String]
3626
3680
  #
3627
3681
  # @!attribute [rw] app_type
3628
- # The type of app.
3682
+ # The type of app. Supported apps are `JupyterServer` and
3683
+ # `KernelGateway`. `TensorBoard` is not supported.
3629
3684
  # @return [String]
3630
3685
  #
3631
3686
  # @!attribute [rw] app_name
@@ -3801,36 +3856,44 @@ module Aws::SageMaker
3801
3856
  # }
3802
3857
  #
3803
3858
  # @!attribute [rw] auto_ml_job_name
3804
- # Identifies an Autopilot job. Must be unique to your account and is
3805
- # case-insensitive.
3859
+ # Identifies an Autopilot job. The name must be unique to your account
3860
+ # and is case-insensitive.
3806
3861
  # @return [String]
3807
3862
  #
3808
3863
  # @!attribute [rw] input_data_config
3809
- # Similar to InputDataConfig supported by Tuning. Format(s) supported:
3810
- # CSV. Minimum of 500 rows.
3864
+ # An array of channel objects that describes the input data and its
3865
+ # location. Each channel is a named input source. Similar to
3866
+ # `InputDataConfig` supported by . Format(s) supported: CSV. Minimum
3867
+ # of 500 rows.
3811
3868
  # @return [Array<Types::AutoMLChannel>]
3812
3869
  #
3813
3870
  # @!attribute [rw] output_data_config
3814
- # Similar to OutputDataConfig supported by Tuning. Format(s)
3815
- # supported: CSV.
3871
+ # Provides information about encryption and the Amazon S3 output path
3872
+ # needed to store artifacts from an AutoML job. Format(s) supported:
3873
+ # CSV.
3816
3874
  # @return [Types::AutoMLOutputDataConfig]
3817
3875
  #
3818
3876
  # @!attribute [rw] problem_type
3819
- # Defines the kind of preprocessing and algorithms intended for the
3877
+ # Defines the type of supervised learning available for the
3820
3878
  # candidates. Options include: BinaryClassification,
3821
- # MulticlassClassification, and Regression.
3879
+ # MulticlassClassification, and Regression. For more information, see
3880
+ # [ Amazon SageMaker Autopilot problem types and algorithm
3881
+ # support][1].
3882
+ #
3883
+ #
3884
+ #
3885
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-problem-types.html
3822
3886
  # @return [String]
3823
3887
  #
3824
3888
  # @!attribute [rw] auto_ml_job_objective
3825
- # Defines the objective of a an AutoML job. You provide a
3826
- # AutoMLJobObjective$MetricName and Autopilot infers whether to
3827
- # minimize or maximize it. If a metric is not specified, the most
3828
- # commonly used ObjectiveMetric for problem type is automaically
3829
- # selected.
3889
+ # Defines the objective metric used to measure the predictive quality
3890
+ # of an AutoML job. You provide a AutoMLJobObjective$MetricName and
3891
+ # Autopilot infers whether to minimize or maximize it.
3830
3892
  # @return [Types::AutoMLJobObjective]
3831
3893
  #
3832
3894
  # @!attribute [rw] auto_ml_job_config
3833
- # Contains CompletionCriteria and SecurityConfig.
3895
+ # Contains CompletionCriteria and SecurityConfig settings for the
3896
+ # AutoML job.
3834
3897
  # @return [Types::AutoMLJobConfig]
3835
3898
  #
3836
3899
  # @!attribute [rw] role_arn
@@ -3838,9 +3901,9 @@ module Aws::SageMaker
3838
3901
  # @return [String]
3839
3902
  #
3840
3903
  # @!attribute [rw] generate_candidate_definitions_only
3841
- # Generates possible candidates without training a model. A candidate
3842
- # is a combination of data preprocessors, algorithms, and algorithm
3843
- # parameter settings.
3904
+ # Generates possible candidates without training the models. A
3905
+ # candidate is a combination of data preprocessors, algorithms, and
3906
+ # algorithm parameter settings.
3844
3907
  # @return [Boolean]
3845
3908
  #
3846
3909
  # @!attribute [rw] tags
@@ -3865,7 +3928,8 @@ module Aws::SageMaker
3865
3928
  end
3866
3929
 
3867
3930
  # @!attribute [rw] auto_ml_job_arn
3868
- # When a job is created, it is assigned a unique ARN.
3931
+ # The unique ARN that is assigned to the AutoML job when it is
3932
+ # created.
3869
3933
  # @return [String]
3870
3934
  #
3871
3935
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateAutoMLJobResponse AWS API Documentation
@@ -3951,7 +4015,7 @@ module Aws::SageMaker
3951
4015
  # },
3952
4016
  # output_config: { # required
3953
4017
  # s3_output_location: "S3Uri", # required
3954
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
4018
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
3955
4019
  # target_platform: {
3956
4020
  # os: "ANDROID", # required, accepts ANDROID, LINUX
3957
4021
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -4407,7 +4471,14 @@ module Aws::SageMaker
4407
4471
  # @return [String]
4408
4472
  #
4409
4473
  # @!attribute [rw] default_user_settings
4410
- # The default user settings.
4474
+ # The default settings to use to create a user profile when
4475
+ # `UserSettings` isn't specified in the call to the
4476
+ # `CreateUserProfile` API.
4477
+ #
4478
+ # `SecurityGroups` is aggregated when specified in both calls. For all
4479
+ # other settings in `UserSettings`, the values specified in
4480
+ # `CreateUserProfile` take precedence over those specified in
4481
+ # `CreateDomain`.
4411
4482
  # @return [Types::UserSettings]
4412
4483
  #
4413
4484
  # @!attribute [rw] subnet_ids
@@ -4422,7 +4493,7 @@ module Aws::SageMaker
4422
4493
  # @!attribute [rw] tags
4423
4494
  # Tags to associated with the Domain. Each tag consists of a key and
4424
4495
  # an optional value. Tag keys must be unique per resource. Tags are
4425
- # searchable using the Search API.
4496
+ # searchable using the `Search` API.
4426
4497
  # @return [Array<Types::Tag>]
4427
4498
  #
4428
4499
  # @!attribute [rw] app_network_access_type
@@ -6187,6 +6258,9 @@ module Aws::SageMaker
6187
6258
  # image: "ContainerImage",
6188
6259
  # image_config: {
6189
6260
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
6261
+ # repository_auth_config: {
6262
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
6263
+ # },
6190
6264
  # },
6191
6265
  # mode: "SingleModel", # accepts SingleModel, MultiModel
6192
6266
  # model_data_url: "Url",
@@ -6204,6 +6278,9 @@ module Aws::SageMaker
6204
6278
  # image: "ContainerImage",
6205
6279
  # image_config: {
6206
6280
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
6281
+ # repository_auth_config: {
6282
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
6283
+ # },
6207
6284
  # },
6208
6285
  # mode: "SingleModel", # accepts SingleModel, MultiModel
6209
6286
  # model_data_url: "Url",
@@ -7743,6 +7820,9 @@ module Aws::SageMaker
7743
7820
  # },
7744
7821
  # },
7745
7822
  # ],
7823
+ # environment: {
7824
+ # "TrainingEnvironmentKey" => "TrainingEnvironmentValue",
7825
+ # },
7746
7826
  # }
7747
7827
  #
7748
7828
  # @!attribute [rw] training_job_name
@@ -7956,6 +8036,10 @@ module Aws::SageMaker
7956
8036
  # and framework metrics.
7957
8037
  # @return [Array<Types::ProfilerRuleConfiguration>]
7958
8038
  #
8039
+ # @!attribute [rw] environment
8040
+ # The environment variables to set in the Docker container.
8041
+ # @return [Hash<String,String>]
8042
+ #
7959
8043
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
7960
8044
  #
7961
8045
  class CreateTrainingJobRequest < Struct.new(
@@ -7978,7 +8062,8 @@ module Aws::SageMaker
7978
8062
  :tensor_board_output_config,
7979
8063
  :experiment_config,
7980
8064
  :profiler_config,
7981
- :profiler_rule_configurations)
8065
+ :profiler_rule_configurations,
8066
+ :environment)
7982
8067
  SENSITIVE = []
7983
8068
  include Aws::Structure
7984
8069
  end
@@ -10802,7 +10887,7 @@ module Aws::SageMaker
10802
10887
  # }
10803
10888
  #
10804
10889
  # @!attribute [rw] auto_ml_job_name
10805
- # Request information about a job using that job's unique name.
10890
+ # Requests information about an AutoML job using its unique name.
10806
10891
  # @return [String]
10807
10892
  #
10808
10893
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobRequest AWS API Documentation
@@ -10814,15 +10899,15 @@ module Aws::SageMaker
10814
10899
  end
10815
10900
 
10816
10901
  # @!attribute [rw] auto_ml_job_name
10817
- # Returns the name of a job.
10902
+ # Returns the name of the AutoML job.
10818
10903
  # @return [String]
10819
10904
  #
10820
10905
  # @!attribute [rw] auto_ml_job_arn
10821
- # Returns the job's ARN.
10906
+ # Returns the ARN of the AutoML job.
10822
10907
  # @return [String]
10823
10908
  #
10824
10909
  # @!attribute [rw] input_data_config
10825
- # Returns the job's input data config.
10910
+ # Returns the input data configuration for the AutoML job..
10826
10911
  # @return [Array<Types::AutoMLChannel>]
10827
10912
  #
10828
10913
  # @!attribute [rw] output_data_config
@@ -10845,15 +10930,15 @@ module Aws::SageMaker
10845
10930
  # @return [String]
10846
10931
  #
10847
10932
  # @!attribute [rw] auto_ml_job_config
10848
- # Returns the job's config.
10933
+ # Returns the configuration for the AutoML job.
10849
10934
  # @return [Types::AutoMLJobConfig]
10850
10935
  #
10851
10936
  # @!attribute [rw] creation_time
10852
- # Returns the job's creation time.
10937
+ # Returns the creation time of the AutoML job.
10853
10938
  # @return [Time]
10854
10939
  #
10855
10940
  # @!attribute [rw] end_time
10856
- # Returns the job's end time.
10941
+ # Returns the end time of the AutoML job.
10857
10942
  # @return [Time]
10858
10943
  #
10859
10944
  # @!attribute [rw] last_modified_time
@@ -10864,16 +10949,20 @@ module Aws::SageMaker
10864
10949
  # Returns the job's FailureReason.
10865
10950
  # @return [String]
10866
10951
  #
10952
+ # @!attribute [rw] partial_failure_reasons
10953
+ # Returns a list of reasons for partial failures within an AutoML job.
10954
+ # @return [Array<Types::AutoMLPartialFailureReason>]
10955
+ #
10867
10956
  # @!attribute [rw] best_candidate
10868
10957
  # Returns the job's BestCandidate.
10869
10958
  # @return [Types::AutoMLCandidate]
10870
10959
  #
10871
10960
  # @!attribute [rw] auto_ml_job_status
10872
- # Returns the job's AutoMLJobStatus.
10961
+ # Returns the status of the AutoML job's AutoMLJobStatus.
10873
10962
  # @return [String]
10874
10963
  #
10875
10964
  # @!attribute [rw] auto_ml_job_secondary_status
10876
- # Returns the job's AutoMLJobSecondaryStatus.
10965
+ # Returns the secondary status of the AutoML job.
10877
10966
  # @return [String]
10878
10967
  #
10879
10968
  # @!attribute [rw] generate_candidate_definitions_only
@@ -10887,9 +10976,9 @@ module Aws::SageMaker
10887
10976
  #
10888
10977
  # @!attribute [rw] resolved_attributes
10889
10978
  # This contains ProblemType, AutoMLJobObjective and
10890
- # CompletionCriteria. They're auto-inferred values, if not provided
10891
- # by you. If you do provide them, then they'll be the same as
10892
- # provided.
10979
+ # CompletionCriteria. If you do not provide these values, they are
10980
+ # auto-inferred. If you do provide them, they are the values you
10981
+ # provide.
10893
10982
  # @return [Types::ResolvedAttributes]
10894
10983
  #
10895
10984
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeAutoMLJobResponse AWS API Documentation
@@ -10907,6 +10996,7 @@ module Aws::SageMaker
10907
10996
  :end_time,
10908
10997
  :last_modified_time,
10909
10998
  :failure_reason,
10999
+ :partial_failure_reasons,
10910
11000
  :best_candidate,
10911
11001
  :auto_ml_job_status,
10912
11002
  :auto_ml_job_secondary_status,
@@ -11472,7 +11562,7 @@ module Aws::SageMaker
11472
11562
  # @return [String]
11473
11563
  #
11474
11564
  # @!attribute [rw] default_user_settings
11475
- # Settings which are applied to all UserProfiles in this domain, if
11565
+ # Settings which are applied to UserProfiles in this domain if
11476
11566
  # settings are not explicitly specified in a given UserProfile.
11477
11567
  # @return [Types::UserSettings]
11478
11568
  #
@@ -14202,6 +14292,10 @@ module Aws::SageMaker
14202
14292
  # Profiling status of a training job.
14203
14293
  # @return [String]
14204
14294
  #
14295
+ # @!attribute [rw] environment
14296
+ # The environment variables to set in the Docker container.
14297
+ # @return [Hash<String,String>]
14298
+ #
14205
14299
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
14206
14300
  #
14207
14301
  class DescribeTrainingJobResponse < Struct.new(
@@ -14242,7 +14336,8 @@ module Aws::SageMaker
14242
14336
  :profiler_config,
14243
14337
  :profiler_rule_configurations,
14244
14338
  :profiler_rule_evaluation_statuses,
14245
- :profiling_status)
14339
+ :profiling_status,
14340
+ :environment)
14246
14341
  SENSITIVE = []
14247
14342
  include Aws::Structure
14248
14343
  end
@@ -18483,6 +18578,9 @@ module Aws::SageMaker
18483
18578
  #
18484
18579
  # {
18485
18580
  # repository_access_mode: "Platform", # required, accepts Platform, Vpc
18581
+ # repository_auth_config: {
18582
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
18583
+ # },
18486
18584
  # }
18487
18585
  #
18488
18586
  # @!attribute [rw] repository_access_mode
@@ -18494,10 +18592,19 @@ module Aws::SageMaker
18494
18592
  # your VPC.
18495
18593
  # @return [String]
18496
18594
  #
18595
+ # @!attribute [rw] repository_auth_config
18596
+ # (Optional) Specifies an authentication configuration for the private
18597
+ # docker registry where your model image is hosted. Specify a value
18598
+ # for this property only if you specified `Vpc` as the value for the
18599
+ # `RepositoryAccessMode` field, and the private Docker registry where
18600
+ # the model image is hosted requires authentication.
18601
+ # @return [Types::RepositoryAuthConfig]
18602
+ #
18497
18603
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ImageConfig AWS API Documentation
18498
18604
  #
18499
18605
  class ImageConfig < Struct.new(
18500
- :repository_access_mode)
18606
+ :repository_access_mode,
18607
+ :repository_auth_config)
18501
18608
  SENSITIVE = []
18502
18609
  include Aws::Structure
18503
18610
  end
@@ -18818,6 +18925,33 @@ module Aws::SageMaker
18818
18925
  #
18819
18926
  # * `"CompilerOptions": \{"class_labels":
18820
18927
  # "imagenet_labels_1000.txt"\}`
18928
+ #
18929
+ # Depending on the model format, `DataInputConfig` requires the
18930
+ # following parameters for `ml_eia2` [OutputConfig:TargetDevice][1].
18931
+ #
18932
+ # * For TensorFlow models saved in the SavedModel format, specify the
18933
+ # input names from `signature_def_key` and the input model shapes
18934
+ # for `DataInputConfig`. Specify the `signature_def_key` in [
18935
+ # `OutputConfig:CompilerOptions` ][2] if the model does not use
18936
+ # TensorFlow's default signature def key. For example:
18937
+ #
18938
+ # * `"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}`
18939
+ #
18940
+ # * `"CompilerOptions": \{"signature_def_key": "serving_custom"\}`
18941
+ #
18942
+ # * For TensorFlow models saved as a frozen graph, specify the input
18943
+ # tensor names and shapes in `DataInputConfig` and the output tensor
18944
+ # names for `output_names` in [ `OutputConfig:CompilerOptions` ][2].
18945
+ # For example:
18946
+ #
18947
+ # * `"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}`
18948
+ #
18949
+ # * `"CompilerOptions": \{"output_names": ["output_tensor:0"]\}`
18950
+ #
18951
+ #
18952
+ #
18953
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice
18954
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions
18821
18955
  # @return [String]
18822
18956
  #
18823
18957
  # @!attribute [rw] framework
@@ -19239,7 +19373,12 @@ module Aws::SageMaker
19239
19373
  # @return [Types::LabelingJobS3DataSource]
19240
19374
  #
19241
19375
  # @!attribute [rw] sns_data_source
19242
- # An Amazon SNS data source used for streaming labeling jobs.
19376
+ # An Amazon SNS data source used for streaming labeling jobs. To learn
19377
+ # more, see [Send Data to a Streaming Labeling Job][1].
19378
+ #
19379
+ #
19380
+ #
19381
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-send-data
19243
19382
  # @return [Types::LabelingJobSnsDataSource]
19244
19383
  #
19245
19384
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobDataSource AWS API Documentation
@@ -19365,37 +19504,39 @@ module Aws::SageMaker
19365
19504
  # The AWS Key Management Service ID of the key used to encrypt the
19366
19505
  # output data, if any.
19367
19506
  #
19368
- # If you use a KMS key ID or an alias of your master key, the Amazon
19369
- # SageMaker execution role must include permissions to call
19370
- # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
19371
- # uses the default KMS key for Amazon S3 for your role's account.
19372
- # Amazon SageMaker uses server-side encryption with KMS-managed keys
19373
- # for `LabelingJobOutputConfig`. If you use a bucket policy with an
19374
- # `s3:PutObject` permission that only allows objects with server-side
19375
- # encryption, set the condition key of
19376
- # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
19377
- # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
19378
- # Simple Storage Service Developer Guide.*
19507
+ # If you provide your own KMS key ID, you must add the required
19508
+ # permissions to your KMS key described in [Encrypt Output Data and
19509
+ # Storage Volume with AWS KMS][1].
19379
19510
  #
19380
- # The KMS key policy must grant permission to the IAM role that you
19381
- # specify in your `CreateLabelingJob` request. For more information,
19382
- # see [Using Key Policies in AWS KMS][2] in the *AWS Key Management
19383
- # Service Developer Guide*.
19511
+ # If you don't provide a KMS key ID, Amazon SageMaker uses the
19512
+ # default AWS KMS key for Amazon S3 for your role's account to
19513
+ # encrypt your output data.
19514
+ #
19515
+ # If you use a bucket policy with an `s3:PutObject` permission that
19516
+ # only allows objects with server-side encryption, set the condition
19517
+ # key of `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
19518
+ # information, see [KMS-Managed Encryption Keys][2] in the *Amazon
19519
+ # Simple Storage Service Developer Guide.*
19384
19520
  #
19385
19521
  #
19386
19522
  #
19387
- # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
19388
- # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
19523
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-kms-permissions
19524
+ # [2]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
19389
19525
  # @return [String]
19390
19526
  #
19391
19527
  # @!attribute [rw] sns_topic_arn
19392
19528
  # An Amazon Simple Notification Service (Amazon SNS) output topic ARN.
19393
19529
  #
19394
- # When workers complete labeling tasks, Ground Truth will send
19395
- # labeling task output data to the SNS output topic you specify here.
19530
+ # If you provide an `SnsTopicArn` in `OutputConfig`, when workers
19531
+ # complete labeling tasks, Ground Truth will send labeling task output
19532
+ # data to the SNS output topic you specify here.
19533
+ #
19534
+ # To learn more, see [Receive Output Data from a Streaming Labeling
19535
+ # Job][1].
19396
19536
  #
19397
- # You must provide a value for this parameter if you provide an Amazon
19398
- # SNS input topic in `SnsDataSource` in `InputConfig`.
19537
+ #
19538
+ #
19539
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-output-data
19399
19540
  # @return [String]
19400
19541
  #
19401
19542
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
@@ -19408,7 +19549,9 @@ module Aws::SageMaker
19408
19549
  include Aws::Structure
19409
19550
  end
19410
19551
 
19411
- # Provides configuration information for labeling jobs.
19552
+ # Configure encryption on the storage volume attached to the ML compute
19553
+ # instance used to run automated data labeling model training and
19554
+ # inference.
19412
19555
  #
19413
19556
  # @note When making an API call, you may pass LabelingJobResourceConfig
19414
19557
  # data as a hash:
@@ -19420,16 +19563,30 @@ module Aws::SageMaker
19420
19563
  # @!attribute [rw] volume_kms_key_id
19421
19564
  # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
19422
19565
  # uses to encrypt data on the storage volume attached to the ML
19423
- # compute instance(s) that run the training job. The `VolumeKmsKeyId`
19424
- # can be any of the following formats:
19566
+ # compute instance(s) that run the training and inference jobs used
19567
+ # for automated data labeling.
19425
19568
  #
19426
- # * // KMS Key ID
19569
+ # You can only specify a `VolumeKmsKeyId` when you create a labeling
19570
+ # job with automated data labeling enabled using the API operation
19571
+ # `CreateLabelingJob`. You cannot specify an AWS KMS customer managed
19572
+ # CMK to encrypt the storage volume used for automated data labeling
19573
+ # model training and inference when you create a labeling job using
19574
+ # the console. To learn more, see [Output Data and Storage Volume
19575
+ # Encryption][1].
19576
+ #
19577
+ # The `VolumeKmsKeyId` can be any of the following formats:
19578
+ #
19579
+ # * KMS Key ID
19427
19580
  #
19428
19581
  # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
19429
19582
  #
19430
- # * // Amazon Resource Name (ARN) of a KMS Key
19583
+ # * Amazon Resource Name (ARN) of a KMS Key
19431
19584
  #
19432
19585
  # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
19586
+ #
19587
+ #
19588
+ #
19589
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security.html
19433
19590
  # @return [String]
19434
19591
  #
19435
19592
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobResourceConfig AWS API Documentation
@@ -19494,9 +19651,6 @@ module Aws::SageMaker
19494
19651
  # The Amazon SNS input topic Amazon Resource Name (ARN). Specify the
19495
19652
  # ARN of the input topic you will use to send new data objects to a
19496
19653
  # streaming labeling job.
19497
- #
19498
- # If you specify an input topic for `SnsTopicArn` in `InputConfig`,
19499
- # you must specify a value for `SnsTopicArn` in `OutputConfig`.
19500
19654
  # @return [String]
19501
19655
  #
19502
19656
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobSnsDataSource AWS API Documentation
@@ -20245,29 +20399,29 @@ module Aws::SageMaker
20245
20399
  # }
20246
20400
  #
20247
20401
  # @!attribute [rw] auto_ml_job_name
20248
- # List the Candidates created for the job by providing the job's
20402
+ # List the candidates created for the job by providing the job's
20249
20403
  # name.
20250
20404
  # @return [String]
20251
20405
  #
20252
20406
  # @!attribute [rw] status_equals
20253
- # List the Candidates for the job and filter by status.
20407
+ # List the candidates for the job and filter by status.
20254
20408
  # @return [String]
20255
20409
  #
20256
20410
  # @!attribute [rw] candidate_name_equals
20257
- # List the Candidates for the job and filter by candidate name.
20411
+ # List the candidates for the job and filter by candidate name.
20258
20412
  # @return [String]
20259
20413
  #
20260
20414
  # @!attribute [rw] sort_order
20261
- # The sort order for the results. The default is Ascending.
20415
+ # The sort order for the results. The default is `Ascending`.
20262
20416
  # @return [String]
20263
20417
  #
20264
20418
  # @!attribute [rw] sort_by
20265
20419
  # The parameter by which to sort the results. The default is
20266
- # Descending.
20420
+ # `Descending`.
20267
20421
  # @return [String]
20268
20422
  #
20269
20423
  # @!attribute [rw] max_results
20270
- # List the job's Candidates up to a specified limit.
20424
+ # List the job's candidates up to a specified limit.
20271
20425
  # @return [Integer]
20272
20426
  #
20273
20427
  # @!attribute [rw] next_token
@@ -27032,7 +27186,7 @@ module Aws::SageMaker
27032
27186
  #
27033
27187
  # {
27034
27188
  # s3_output_location: "S3Uri", # required
27035
- # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27189
+ # target_device: "lambda", # accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, ml_g4dn, ml_inf1, ml_eia2, jetson_tx1, jetson_tx2, jetson_nano, jetson_xavier, rasp3b, imx8qm, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603, sitara_am57x, amba_cv22, x86_win32, x86_win64, coreml, jacinto_tda4vm
27036
27190
  # target_platform: {
27037
27191
  # os: "ANDROID", # required, accepts ANDROID, LINUX
27038
27192
  # arch: "X86_64", # required, accepts X86_64, X86, ARM64, ARM_EABI, ARM_EABIHF
@@ -27110,6 +27264,18 @@ module Aws::SageMaker
27110
27264
  # for NVIDIA accelerators and highly recommended for CPU compilations.
27111
27265
  # For any other cases, it is optional to specify `CompilerOptions.`
27112
27266
  #
27267
+ # * `DTYPE`\: Specifies the data type for the input. When compiling
27268
+ # for `ml_*` (except for `ml_inf`) instances using PyTorch
27269
+ # framework, provide the data type (dtype) of the model's input.
27270
+ # `"float32"` is used if `"DTYPE"` is not specified. Options for
27271
+ # data type are:
27272
+ #
27273
+ # * float32: Use either `"float"` or `"float32"`.
27274
+ #
27275
+ # * int64: Use either `"int64"` or `"long"`.
27276
+ #
27277
+ # For example, `\{"dtype" : "float32"\}`.
27278
+ #
27113
27279
  # * `CPU`\: Compilation for CPU supports the following compiler
27114
27280
  # options.
27115
27281
  #
@@ -27167,6 +27333,24 @@ module Aws::SageMaker
27167
27333
  #
27168
27334
  # ^
27169
27335
  #
27336
+ # * `EIA`\: Compilation for the Elastic Inference Accelerator supports
27337
+ # the following compiler options:
27338
+ #
27339
+ # * `precision_mode`\: Specifies the precision of compiled
27340
+ # artifacts. Supported values are `"FP16"` and `"FP32"`. Default
27341
+ # is `"FP32"`.
27342
+ #
27343
+ # * `signature_def_key`\: Specifies the signature to use for models
27344
+ # in SavedModel format. Defaults is TensorFlow's default
27345
+ # signature def key.
27346
+ #
27347
+ # * `output_names`\: Specifies a list of output tensor names for
27348
+ # models in FrozenGraph format. Set at most one API field, either:
27349
+ # `signature_def_key` or `output_names`.
27350
+ #
27351
+ # For example: `\{"precision_mode": "FP32", "output_names":
27352
+ # ["output:0"]\}`
27353
+ #
27170
27354
  #
27171
27355
  #
27172
27356
  # [1]: https://github.com/aws/aws-neuron-sdk/blob/master/docs/neuron-cc/command-line-reference.md
@@ -29396,6 +29580,40 @@ module Aws::SageMaker
29396
29580
  include Aws::Structure
29397
29581
  end
29398
29582
 
29583
+ # Specifies an authentication configuration for the private docker
29584
+ # registry where your model image is hosted. Specify a value for this
29585
+ # property only if you specified `Vpc` as the value for the
29586
+ # `RepositoryAccessMode` field of the `ImageConfig` object that you
29587
+ # passed to a call to CreateModel and the private Docker registry where
29588
+ # the model image is hosted requires authentication.
29589
+ #
29590
+ # @note When making an API call, you may pass RepositoryAuthConfig
29591
+ # data as a hash:
29592
+ #
29593
+ # {
29594
+ # repository_credentials_provider_arn: "RepositoryCredentialsProviderArn", # required
29595
+ # }
29596
+ #
29597
+ # @!attribute [rw] repository_credentials_provider_arn
29598
+ # The Amazon Resource Name (ARN) of an AWS Lambda function that
29599
+ # provides credentials to authenticate to the private Docker registry
29600
+ # where your model image is hosted. For information about how to
29601
+ # create an AWS Lambda function, see [Create a Lambda function with
29602
+ # the console][1] in the *AWS Lambda Developer Guide*.
29603
+ #
29604
+ #
29605
+ #
29606
+ # [1]: https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
29607
+ # @return [String]
29608
+ #
29609
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RepositoryAuthConfig AWS API Documentation
29610
+ #
29611
+ class RepositoryAuthConfig < Struct.new(
29612
+ :repository_credentials_provider_arn)
29613
+ SENSITIVE = []
29614
+ include Aws::Structure
29615
+ end
29616
+
29399
29617
  # The resolved attributes.
29400
29618
  #
29401
29619
  # @!attribute [rw] auto_ml_job_objective
@@ -30366,10 +30584,11 @@ module Aws::SageMaker
30366
30584
  include Aws::Structure
30367
30585
  end
30368
30586
 
30369
- # Specifies options when sharing an Amazon SageMaker Studio notebook.
30370
- # These settings are specified as part of `DefaultUserSettings` when the
30371
- # CreateDomain API is called, and as part of `UserSettings` when the
30372
- # CreateUserProfile API is called.
30587
+ # Specifies options for sharing SageMaker Studio notebooks. These
30588
+ # settings are specified as part of `DefaultUserSettings` when the
30589
+ # `CreateDomain` API is called, and as part of `UserSettings` when the
30590
+ # `CreateUserProfile` API is called. When `SharingSettings` is not
30591
+ # specified, notebook sharing isn't allowed.
30373
30592
  #
30374
30593
  # @note When making an API call, you may pass SharingSettings
30375
30594
  # data as a hash:
@@ -31446,6 +31665,10 @@ module Aws::SageMaker
31446
31665
  # training job.
31447
31666
  # @return [Array<Types::DebugRuleEvaluationStatus>]
31448
31667
  #
31668
+ # @!attribute [rw] environment
31669
+ # The environment variables to set in the Docker container.
31670
+ # @return [Hash<String,String>]
31671
+ #
31449
31672
  # @!attribute [rw] tags
31450
31673
  # An array of key-value pairs. You can use tags to categorize your AWS
31451
31674
  # resources in different ways, for example, by purpose, owner, or
@@ -31493,6 +31716,7 @@ module Aws::SageMaker
31493
31716
  :debug_rule_configurations,
31494
31717
  :tensor_board_output_config,
31495
31718
  :debug_rule_evaluation_statuses,
31719
+ :environment,
31496
31720
  :tags)
31497
31721
  SENSITIVE = []
31498
31722
  include Aws::Structure
@@ -34845,8 +35069,8 @@ module Aws::SageMaker
34845
35069
  end
34846
35070
 
34847
35071
  # A collection of settings that apply to users of Amazon SageMaker
34848
- # Studio. These settings are specified when the CreateUserProfile API is
34849
- # called, and as `DefaultUserSettings` when the CreateDomain API is
35072
+ # Studio. These settings are specified when the `CreateUserProfile` API
35073
+ # is called, and as `DefaultUserSettings` when the `CreateDomain` API is
34850
35074
  # called.
34851
35075
  #
34852
35076
  # `SecurityGroups` is aggregated when specified in both calls. For all
@@ -34915,7 +35139,7 @@ module Aws::SageMaker
34915
35139
  # @return [Array<String>]
34916
35140
  #
34917
35141
  # @!attribute [rw] sharing_settings
34918
- # The sharing settings.
35142
+ # Specifies options for sharing SageMaker Studio notebooks.
34919
35143
  # @return [Types::SharingSettings]
34920
35144
  #
34921
35145
  # @!attribute [rw] jupyter_server_app_settings